EP3827133B1 - Procédé pour stabiliser des excavations profondes ou une instabilité de pente du terrain près d'objets existants de génie civil - Google Patents

Procédé pour stabiliser des excavations profondes ou une instabilité de pente du terrain près d'objets existants de génie civil Download PDF

Info

Publication number
EP3827133B1
EP3827133B1 EP18759997.2A EP18759997A EP3827133B1 EP 3827133 B1 EP3827133 B1 EP 3827133B1 EP 18759997 A EP18759997 A EP 18759997A EP 3827133 B1 EP3827133 B1 EP 3827133B1
Authority
EP
European Patent Office
Prior art keywords
tensile
pile
batter
soldier
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18759997.2A
Other languages
German (de)
English (en)
Other versions
EP3827133A1 (fr
Inventor
Zvonimir SEPAC
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to HRP20230092TT priority Critical patent/HRP20230092T1/hr
Publication of EP3827133A1 publication Critical patent/EP3827133A1/fr
Application granted granted Critical
Publication of EP3827133B1 publication Critical patent/EP3827133B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/20Securing of slopes or inclines
    • E02D17/207Securing of slopes or inclines with means incorporating sheet piles or piles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/02Foundation pits
    • E02D17/04Bordering surfacing or stiffening the sides of foundation pits
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/02Retaining or protecting walls
    • E02D29/0225Retaining or protecting walls comprising retention means in the backfill
    • E02D29/0233Retaining or protecting walls comprising retention means in the backfill the retention means being anchors

Definitions

  • the present invention relates to a method for stabilizing deep civil excavations or earth slope instability in vicinity of existing civil objects.
  • the soldier pile and lagging systems may need to be reinforced with tie-backs, struts, or internal bracing.
  • Such reinforcement techniques increase costs, are laborious, and are prone to interfere with proximate structures, such as where tieback anchors may cross property lines, roadways, and/or buried utilities, for example.
  • Old traffic routes are for the most part in such a condition that they no longer have any significant stability reserves in their original geometry and in their current stress.
  • the widening of lanes on slopes requires the protection of terrain jumps, as in incisions and embankments, unless a safe stand demolition is not possible.
  • These terrain jumps are secured by retaining walls that are subject to earth pressure and must withstand this.
  • the initial static equilibrium changes, causing instability.
  • the consequence of instability is the breakdown of all coupled natural and artificial space with material damage, which generally exceeds the value of the influenced space.
  • Engineering response to these events is a stable retaining engineering structure.
  • the retaining engineering structure is made based on the newly-predicted static equilibrium that is associated with the predetermined Fs stability factor.
  • Document KR20160002620A discloses a soil retaining wall which is supported by multiple piles (10) and a method for stabilizing deep excavations.
  • the soil retaining wall comprises: a support pile (100) which forms the entire or part of the multiple piles (10), and penetrates to a depth (D) which is three times (3/b) the virtual fixing point (1/b) based on the maximum excavation depth (H) of the ground so that the lower end thereof makes up the fixing end; a hinge portion (200) which is formed at the upper end of the support pile (100); and a tendon (300) of which the upper end is combined with the hinge portion (200), and of which the lower end penetrates and is inclined downward to earth and sand in the rear side.
  • Document US3638435A discloses a retaining wall for supporting the embankment of a cut excavation.
  • the wall structure consists of a skin of concrete, an array of rows and columns of dowels or tendons extending from the skin into the cut embankment and rows of wale beams at the juncture of dowels and the face of the skin tying the components together.
  • the retaining wall is built as the cut proceeds.
  • a cut to a selected depth is covered by a skin of pneumatically applied concrete.
  • the dowels are formed as reinforcing, grout-filled boreholes and the wale beams are formed as reinforced concrete members pneumatically sprayed against the skin.
  • the present invention provides one more purposeful a retaining engineering structure for all horizontal loadings in the field of low building constructions.
  • the starting point is the desire that the significant problems present in the engineering approach of the present retaining engineering structure are brought in at least the same level as other building constructions.
  • the object of the present invention is to provide a retaining engineering structure method that achieves 20-25% savings in realizing final construction work.
  • the present invention provides the method for three basic cases, which differ in technological execution possibilities more than in design method, namely for:
  • the retaining engineering structure comprising a plurality of coupled tensile and pressure piles
  • stability of deeper excavations larger than 8 m is achieved by the retaining engineering structure comprising a coupled tensile piles and a vertical building structure such as a reinforced concrete (RC) pile wall or a reinforced concrete (RC) diaphragm wall.
  • RC reinforced concrete
  • RC reinforced concrete
  • the present invention relates to a method for stabilizing deep civil excavations or earth slope instability in vicinity of existing civil objects, and more particularly to the retaining engineering structure comprising a plurality of tensile batter piles and a vertical building structure for shoring excavation or earth slope instabilities in vicinity of existing civil objects.
  • the retaining engineering structure comprises three mutually coupled structural elements, namely a plurality of tensile batter piles, a vertical building structure, the vertical building structure may be a plurality of vertical pressure soldier piles, RC diaphragm wall or a RC soldier pile wall, and a coupling means for coupling said batter piles and the vertical building structure, wherein the plurality of tensile batter piles are disposed inclining downwardly towards backfill at an angle ⁇ in a range between 15° to 20° to the vertical, where the coupling means may be a tube anchorage or a RC head connection beam.
  • the angle ⁇ is the angle to the vertical between the plurality of tensile batter piles and the vertical building structure at the site of their mutual coupling by the coupling means.
  • tensile batter piles are piles arranged at an angle ⁇ with the vertical to resist a lateral force spaced at regular intervals, the angle ⁇ is to the vertical between a plurality of tensile batter piles and a vertical building structure at the site of their mutual coupling by a coupling means.
  • cementitious refers to such substances as concrete and other stiffening flowable materials.
  • different non-flowable materials can be used for forming the retaining wall,
  • a retaining engineering structure comprises three mutually coupled structural elements, namely a plurality of tensile batter piles, a vertical building structure, the vertical building structure may be a plurality of vertical pressure soldier piles, RC diaphragm wall or a RC soldier pile wall, and a coupling means for coupling said batter piles and the vertical building structure, wherein the plurality of tensile batter piles are disposed inclining downwardly towards backfill at an angle ⁇ in a range between 15° to 20° to the vertical, where the coupling means may be a tube anchorage or a RC head connection beam.
  • the angle ⁇ is the angle to the vertical between the plurality of tensile batter piles and the vertical building structure at the site of their mutual coupling by the coupling means.
  • the site of their mutual coupling is arranged at upper portion of the vertical building structure or at the top of the vertical building structure.
  • Fig. 1 illustrate an example embodiment of the retaining engineering structure for shoring of deeper excavations
  • fig. 4 illustrate an example embodiment of the retaining engineering structure for shoring of excavations up to 8 m
  • fig. 7 illustrate an example embodiment of the retaining engineering structure for shoring of natural slope instability near existing civil objects.
  • the retaining engineering structure comprises the plurality of tensile batter piles 1, disposed inclining downwardly towards backfill at the angle li to the vertical, connected to the vertical building structure, namely to the RC diaphragm wall 2.
  • the vertical building structure may be the RC soldier pile wall 5.
  • the RC diaphragm wall 2 is a reinforced concrete structure constructed in-situ by known techniques.
  • the RC diaphragm wall 2 comprises reinforcement in the form of a steel cage 10.
  • Each tensile batter pile 1 is carried out by jet grouting installation or CFA (continues fly auger) piling technology.
  • Each tensile batter pile 1 is provided with a reinforcing steel bar 8 extending centrally along the tensile batter pile 1.
  • the reinforcing steel bar 8 extends along a length L g of the batter pile 1 and further to reach a vertical front face 15 of the RC diaphragm wall 2 and beyond said vertical front face 15 for a length enabling coupling of the each of the tensile batter piles 1 with the RC diaphragm wall 2 by means of a tensioning means.
  • the tensile batter pile 1 has total length L g
  • the reinforcing steel bar 8 is further extending from concrete part of the tensile batter pile 1 for a length L 0 .
  • Each of the tensile batter piles 1 are placed at the angle ⁇ in the range between 15° to 20° to the vertical, where the angle ⁇ is the angle to the vertical between the plurality of tensile batter piles 1 and the RC diaphragm wall 2 at the site of their mutual coupling by a coupling means.
  • each of the tensile batter piles 1 is coupled to the RC diaphragm wall 2 by means of the tensioning means such as a nut 11, a transient supporting element 12 and an anchor plate 13 (or a flange brace).
  • the anchor plate 13 may be made from steel, or other high strength material, and is firmly fixed to the vertical front face 15 in vicinity of an upper part of the RC diaphragm wall 2,
  • the anchor plate 13 is provided with a trough-hole sized and shaped enabling passing therethrough of the reinforcing steel bar 8, and fixing and pre-stressing the batter piles (1) and the reinforcing steel bar 8 by the means of the nut 11 and the transient supporting element 12.
  • the RC diaphragm wall 2 comprises a plurality of parallelly aligned tubular members 14 through which undergoes each reinforcing steel bar 8 of the tensile batter piles 1.
  • Each tubular member 14 undergoes the RC diaphragm wall 2 at a distance e, the distance e is distance measured from a top of the RC diaphragm wall 2, and each tubular member 14 is disposed inclining downwardly towards backfill at the angle ⁇ to the vertical.
  • the tubular members 14 may be made from steel, or other high strength material.
  • the tubular members 14 are inserted into the RC diapraghm wall 2 before pouring cement.
  • the tensile batter piles 1 are pre-stressed in a range between 25-35% of a batter pile tensile bearing capacity.
  • the retaining engineering structure comprises the plurality of tensile batter piles 1, disposed inclining downwardly towards backfill at the angle ⁇ to the vertical, connected to the vertical building structure, the vertical building structure is the RC soldier pile wall 5.
  • the RC soldier pile wall 5 is a reinforced concrete structure constructed in-situ by known techniques.
  • the RC soldier pile wall 5 comprises reinforcement in the form of the steel cage 10.
  • Each tensile batter pile 1 is carried out by jet grouting installation or CFA (continues fly auger) piling technology.
  • Each tensile batter pile 1 is provided with a reinforcing steel profile 9 extending centrally along the tensile batter pile 1.
  • the tensile batter pile 1 has total length L 1
  • the RC soldier pile wall 5 has total length L 2 .
  • Each of the tensile batter piles 1 are placed at the angle ⁇ in the range between 15° to 20° to the vertical, where the angle ⁇ is the angle to the vertical between the plurality of tensile batter piles 1 and the RC soldier pile wall 5 at the site of their mutual coupling by a coupling means.
  • each of the tensile batter piles 1 is coupled at a top of the RC soldier pile wall 5 by means of a RC head connection beam 4.
  • the RC head connection beam 4 is a reinforced concrete structure comprising a reinforced gasket 7, constructed in-situ by known techniques.
  • the retaining engineering structure comprises the plurality of tensile batter piles 1, disposed inclining downwardly towards backfill at the angle ⁇ to the vertical, connected to the vertical building structure, the vertical building structure is a plurality of soldier piles 6.
  • the soldier piles 6 are a reinforced concrete structure constructed in-situ by known techniques.
  • the coupling means such as the RC head beam 4 for coupling the tensile batter piles 1 and the soldier piles 6 is mounted on the top of the vertical building structure.
  • the tensile batter piles 1 are arranged at an angle ⁇ in the range of 15° - 20°.
  • Each tensile batter pile 1 is carried out by jet grouting installation or CFA (continues fly auger) piling technology.
  • CFA continuous fly auger
  • the tensile batter pile 1 has total length L 1
  • the soldier piles 6 have total length L 2 .
  • Each of the tensile batter piles 1 is disposed inclining downwardly towards backfill at the angle ⁇ in the range between 15° to 20° to the vertical, where the angle ⁇ is the angle to the vertical between the plurality of tensile batter piles 1 and the soldier piles 6 at the site of their mutual coupling by a coupling means.
  • the angle ⁇ is the angle to the vertical between the plurality of tensile batter piles 1 and the soldier piles 6 at the site of their mutual coupling by a coupling means.
  • each of the tensile batter piles 1 and each of the soldier pile 6 are coupled at a top by means of the RC head connection beam 4.
  • the RC head connection beam 4 is a reinforced concrete structure comprising a reinforced gasket 7, constructed in-situ by known techniques.
  • P a is a horizontal load generated by the ground mass G 1
  • K ⁇ is coefficient of active earth pressure
  • a n is tensile force in each of the tensile batter pile (1), wherein the angle ⁇ is in a range between 15-20°.
  • a basic principle of the method for stabilizing deep excavation or earth slope instabilities near civil objects in steep and sloping terrain is considered as three masses of natural soil, namely
  • the plurality of tensile batter piles arranged at the angle ⁇ in the range between 15° to 20° with its tensile force A n reduces the loading of the ground mass G 1 by transferring it to the vertical force of a vertical building structure
  • the vertical building structure may be a RC soldier pile wall 5, a RC diaphragm wall 2 or a soldier pile 6.
  • the retaining engineering structure comprises the plurality of tensile batter piles 1 and the RC diaphragm wall 2 are mutually connected by the plurality of parallelly aligned tubular members 14 as illustrated in fig. 2 , the following equilibrium equations expressing forces per unit linear meter length in the elements of the retaining engineering structure are established: wherein A n ′ is tensile force in each of the tensile batter pile 1, b is span of reaction forces of the vertical building structure and span of a catenary part of the batter piles 1, B n ′ is pressure force in the vertical building structure, and B t ′ is transversal force in the vertical building structure.
  • the retaining engineering structure comprises the plurality of tensile batter piles 1 and the plurality of soldier piles 6 mutually connected by a RC head connection beam 4, the following equilibrium equations expressing forces per unit linear meter length in the elements of the retaining engineering structure are established: wherein A n ′ is tensile force in each of the tensile batter pile 1, b is span of reaction forces of vertical building structure, B n ′ is pressure force in the vertical building structure, and B t ′ is transversal force in the vertical building structure. A t ′ is transversal force in each of the batter pile 1, M A ′ is moment force in a point
  • h 1 is a retained height (depth of soil excavation) and h 2 is an embedment depth of the tensile batter piles 1 and pressure piles 5 in the soil, K ⁇ is koeficient of active earth pressure.
  • the point A is the intersection point between the retained height h 1 and embedment depth h 2 .
  • the excavation is carried out for depths greater than 8 m, which means that in most cases it is necessary to ensure, in addition to static and hydraulic stability.
  • the RC soldier pile wall 5 or RC diaphragm wall 2 are made as watertight.
  • the coupling means such as the tubular member 14 for interconnecting each of the tensile batter pile 1 and the RC diaphragm wall 2 is mounted.
  • the tubular anchorages 14 may be made from steel, or other high strength material.
  • Each of the tensile batter pile 1 is arranged at an angle ⁇ in the range of 15° - 20° using jet grouting installation or CFA pile technology.
  • the reinforcing steel bar 8 having surface area A s , with 3 m of free base for the prestressing needs, is installed throughout the length of each of the batter pile 1.
  • Each batter pile 1 is prestressed in the range between 25-35% of the tensile strength of the tensile batter pile 1.
  • L 1 is length of the tensile batter piles 1
  • b span of reaction forces of the vertical building structure and span of a catenary part of the batter piles 1 (see figure 3 )
  • d is diameter of the tensile batter piles 1
  • Axial tensile bearing capacity A n,q,Rd of the tensile balter pile 1 regarding soil is calculated according following equation: wherein ⁇ q is earth pressure, ⁇ d is angle of internal friction, and ⁇ R is partial safety coefficient, and ( L 1 - b ) is an anchoring part of each tensile batter pile 1.
  • Axial bearing capacity N s, Rd of the tensile batter pile 1 regarding the reinforcing steel bar is calculated according following equation: where ⁇ s is partial safety coefficient.
  • L 2 is length of the RC pile wall 5 or the RC diaphragm wall 2
  • d 40 - 80 cm is thickness of the RC pile wall 5 or the RC diaphragm wall 2.
  • h 1 is the retained height and h 2 is an embedment depth of the vertical building structure
  • ⁇ ' is weight of soil
  • N q is coefficient of soil bearing capacity
  • a b is base area of vertical bearing structure.
  • Horizontal bearing capacity B t , q , Rd of the vertical building structure at the point B is calculated according following equation: where P p is passive soil resistance, B n ′ is pressure force in the vertical building structure, ⁇ d angle of internal soil friction.
  • a n,q,Rd is axial bearing capacity of batter pile regarding soil
  • B n,q,Rd is axial bearing capacity of vertical building structure regarding soil
  • B t , q , Rd is transversal bearing capacity of vertical building structure regarding soil
  • F S is factor of stability.
  • the excavation is carried out for depths up to 8 m, which means that in most cases it is necessary to ensure, in addition to static and hydraulic stability.
  • the RC soldier pile wall 5 is made as watertight.
  • the RC soldier pile wall 5 is carried out with the usual technology with diameter of each pile 40 to 60 cm and depths of 8 to 12 m.
  • the coupling means such as the RC head beam 4 tor connecting the tensile batter piles 1 and the RC soldier pile wall 5 is mounted on the top of the vertical building structure.
  • the tensile batter piles 1 are arrenged at an angle ⁇ in the range of 15° - 20 ° using jet grouting installation or CFA pile technology.
  • the reinforcing steel profile 9 is an IPE profile, having surface area A s .
  • L1 is length of the tensile batter piles 1
  • d is diameter of the tensile batter piles 1
  • Horizontal bearing capacity A t,q,Rd of the tensile batter pile 1 at the point A regarding soil is calculated according following equation:
  • a t , q , Rd ⁇ ′ ⁇ h 0 + h 2 ⁇ K p ⁇ d ⁇ h 2 2 ⁇ R
  • y' is weight of soil
  • h 0 is height of retained soil
  • h 2 is an embedment depth of the batter pile 1
  • K p is coefficient of passive earth pressure
  • d is diameter of batter pile
  • ⁇ R is partial safety coefficient.
  • L 2 is length of RC soldier pile wall 5
  • d 40 - 60 cm is diameter of the RC soldier pile wall 5.
  • h 1 is the retained height and h 2 is the embedment depth of the vertical building structure, namely RC soldier pile wall 5
  • y' is weight of soil
  • N q is koeficient of soil bearing capacity
  • a b is base area of the vertical bearing structure.
  • a n , q , Rd is axial bearing capacity of the tensile batter pile 1 regarding soil
  • B n,q,Rd is axial bearing capacity of the RC soldier pile wall 5 regarding soil
  • B t , q , Rd is transversal bearing capacity of the RC soldier pile wall 5 regarding soil
  • a t,q,Rd is transversal bearing capacity of the tensile batter pile 1 regarding soil.
  • h 0 depth of sliding layer
  • L slope length of sliding plane
  • reaction force R con in the plain of sliding surface must be such that following condition is satisfied: A t ′ + B t ′ > R con
  • the soldier piles 6 are carried out with the usual technology.
  • the coupling means such as RC head beam 4 for coupling the tensile batter piles 1 and the soldier piles 6 is mounted at the top of the vertical building structure.
  • the tensile batter piles 1 are arranged at an angle ⁇ in the range of 15° - 20° using jet grouting installation or CFA pile technology.
  • the reinforcing steel profile 9 having surface area A s .
  • L 1 is length of the tensile batter piles 1
  • y' weight of soil
  • h 0 the depth of the loading soil layer
  • h 2 the embedment depth of the vertical building structure, namely of the tensile batter piles 1
  • K p coefficient of passive earth pressure
  • d diameter of the tensile batter pile 1
  • ⁇ R is partial safety coefficient
  • the point A is the intersection point between the retained height h 1 and embedment depth h 2 .
  • h 1 is retained height and h 2 is embedment depth of the vertical building structure
  • y' is weight of soil
  • N q is koeficient of soil bearing capaciti
  • a b is base area of the vertical bearing structure.
  • a n,q , Rd is axial bearing capacity of each tensile batter pile 1 regarding soil
  • B n,q,Rd is axial bearing capacity of the vertical building structure, namely each soldier pile 6 regarding soil
  • B t , q , Rd is transversal bearing capacity of the vertical building structure, namely each soldier pile 6 regarding soil
  • a t,q,Rd is transversal bearing capacity of each tensile batter pile 1 regarding soil.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)
  • Revetment (AREA)

Claims (10)

  1. Procédé de stabilisation d'excavations profondes ou de terrain en pente instable à proximité d'objets civils existants, au moyen d'un ouvrage d'art de retenue comprenant une structure bâtie verticale et une pluralité de pieux inclinés en traction (1) disposés de manière inclinée vers le bas en direction d'un remblai, la structure bâtie verticale et chaque pieu parmi la pluralité de pieux inclinés en traction (1) étant accouplés les uns aux autres par un moyen d'accouplement et disposés les uns par rapport aux autres suivant un angle β, l'angle β étant l'angle entre chaque pieu parmi la pluralité de pieux inclinés en traction (1) et la structure bâtie verticale, au point d'accouplement de ceux-ci par ledit moyen par rapport à la verticale, le procédé comprenant les étapes suivantes consistant à :
    a) déterminer un type de l'ouvrage d'art de retenue en fonction d'une profondeur d'excavation ;
    b) déterminer un état de condition de sol ;
    c) déterminer des paramètres de l'ouvrage d'art de retenue en fonction du type ; et
    d) réaliser les travaux de construction d'ouvrage d'art de retenue,
    caractérisé en ce que
    indépendamment du type de l'ouvrage d'art de retenue, une charge horizontale H sur la structure bâtie verticale est calculée selon l'expression H = P a K a × A n × cos β
    Figure imgb0118
    dans laquelle Pa représente une charge horizontale générée par la masse du sol G1, Ka représente le coefficient de poussée des terres, et An représente la force de traction dans chaque pieu incliné en traction (1), l'angle β se situant dans une plage comprise entre 15 et 20°.
  2. Procédé selon la revendication 1, dans lequel, pour les excavations de plus de 8 m, la structure bâtie verticale est réalisée sous forme de paroi berlinoise (5) en RC ou de paroi moulée (2) en RC.
  3. Procédé selon la revendication 1, dans lequel, pour les excavations allant jusqu'à 8 m et un terrain en pente instable à proximité d'objets civils existants, la structure bâtie verticale est réalisée sous forme d'une pluralité de pieux verticaux (6) ou d'une paroi berlinoise (5) en RC.
  4. Procédé selon les revendications 1 et 2, dans lequel les équations d'équilibre suivantes sont établies, exprimant les forces par longueur de mètre linéaire unitaire dans les éléments de l'ouvrage d'art de retenue : A n × b × tan β + b × tan β × A n × cos β 2 a × P a K a × A n × cos β = 0
    Figure imgb0119
    B n × b × tan β b × tan β × A n × cos β 2 a × P a K a × A n × cos β = 0
    Figure imgb0120
    B t = P a K a × A n × cos β × c b
    Figure imgb0121
    dans lesquelles A n
    Figure imgb0122
    représente la force de traction dans chaque pieu incliné en traction (1), b représente l'amplitude des forces de réaction de la structure bâtie verticale et l'amplitude d'une pièce en chaînette des pieux inclinés (1), B n
    Figure imgb0123
    représente la force de pression dans la structure bâtie verticale au niveau de sa base, et B t
    Figure imgb0124
    représente la force transversale de la structure bâtie verticale au niveau de sa base.
  5. Procédé selon la revendication 4, dans lequel les pieux inclinés en traction (1) sont précontraints dans une plage entre 25 et 35 % d'une capacité portante de traction de pieu incliné.
  6. Procédé selon les revendications 1 et 3, dans lequel les équations d'équilibre suivantes sont établies, exprimant les forces par longueur de mètre linéaire unitaire dans les éléments de l'ouvrage d'art de retenue : M A = 3 × A n × cos β × h 1 2 × tan β 32 × b
    Figure imgb0125
    A t = h 1 2 × tan β × A n × cos β 2 × b + M A h 1
    Figure imgb0126
    B t = P a K a × A n × cos β × c b
    Figure imgb0127
    A n × b × tan β + h 1 2 × tan β × A n × cos β 2 × b + 2 h 2 + y 3 × A t a × P a K a × A n × cos β + M A = 0
    Figure imgb0128
    B n × b × tan β h 1 2 × tan β × A n × cos β 2 × b 2 h 2 + y 3 × B t h 1 3 × P a K a × A n × cos β + M A = 0
    Figure imgb0129
    dans lesquelles A n
    Figure imgb0130
    représente la force de traction dans chaque pieu incliné en traction (1), b représente l'amplitude des forces de réaction de chaque pieu vertical (6) ou de la paroi berlinoise (5) en RC, B n
    Figure imgb0131
    représente la force de pression dans chaque pieu vertical (6) ou la paroi berlinoise (5) en RC au niveau de la base, et B t
    Figure imgb0132
    représente la force transversale dans chaque pieu vertical (6) ou la paroi berlinoise (5) en RC au niveau de la base, , A t
    Figure imgb0133
    représente la force transversale dans chaque pieu incliné en traction (1), M A
    Figure imgb0134
    représente le moment de la force au point A de chaque pieu incliné en traction (1), le point A représentant le point d'intersection entre une hauteur de retenue h 1 et une profondeur d'ancrage h 2 .
  7. Procédé selon les revendications 1, 2, 4 et 5, dans lequel les conditions suivantes doivent être satisfaites : A n d 1 × F S < A n , q , Rd
    Figure imgb0135
    B t d 2 × F S < B t , q , Rd
    Figure imgb0136
    B n d 2 × F S < B n , q , Rd
    Figure imgb0137
    dans lesquelles An,q,Rd représente une capacité portante axiale de chaque pieu incliné en traction (1) par rapport au sol, Bn,q,Rd représente une capacité portante axiale de la structure bâtie verticale par rapport au sol, B t,q,Rd représente une capacité portante transversale de la structure bâtie verticale par rapport au sol, FS représente un facteur de stabilité, FS étant situé dans une plage entre 1,2 et 1,5.
  8. Procédé selon les revendications 1, 3 et 5, dans lequel pour les excavations allant jusqu'à 8 m les conditions suivantes doivent être satisfaites : A n d 1 × F S < A n , q , Rd
    Figure imgb0138
    A t d 1 × F S < A t , q , Rd
    Figure imgb0139
    B t d 2 × F S < B t , q , Rd
    Figure imgb0140
    B n d 2 × F S < B n , q , Rd
    Figure imgb0141
    dans lesquelles A n,q,Rd représente une capacité portante axiale de chaque pieu incliné en traction (1) par rapport au sol, Bn,q,Rd représente une capacité portante axiale de chaque pieu vertical (6) ou de la paroi berlinoise (5) en RC au niveau de la base par rapport au sol, B t,q,Rd représente une capacité portante transversale de chaque pieu vertical (6) ou de la paroi berlinoise (5) en RC au niveau de la base par rapport au sol, At,q,Rd représente la force transversale dans chaque pieu incliné en traction (1) par rapport au sol, FS représente un facteur de stabilité, FS étant situé dans une plage entre 1,2 et 1,5.
  9. Procédé selon les revendications 1, 3 et 6, dans lequel pour un terrain en pente instable à proximité d'objets civils existants les conditions suivantes doivent être satisfaites : R con = 0,5 × R sol , rés = 0,5 × c rés + h 0 × γ × tan φ rés × L pente
    Figure imgb0142
    A t + B t > R con
    Figure imgb0143
    A n d 1 × F S < A n , q , Rd
    Figure imgb0144
    A t d 1 × F S < A t , q , Rd
    Figure imgb0145
    B n d 2 × F S < B n , q , Rd
    Figure imgb0146
    B t d 2 × F S < B t , q , Rd
    Figure imgb0147
    dans lesquelles A n,q,Rd représente une capacité portante axiale de chaque pieu incliné en traction par rapport au sol, Bn,q,Rd représente une capacité portante axiale de chaque pieu vertical (6) au niveau de sa base par rapport au sol, B t,q,Rd représente une capacité portante transversale de chaque pieu vertical (6) au niveau de sa base par rapport au sol, At,q,Rd représente la force transversale dans chaque pieu incliné en traction (1) par rapport au sol, , FS représente un facteur de stabilité, ϕrés et crés représentent des paramètres résiduels de résistance du sol, Rcon représente une résistance de réaction au cisaillement de l'ouvrage d'art de retenue, Rsol,rés représente une résistance au cisaillement résiduelle du sol, y' représente le poids du sol, h 0 représente la profondeur d'une couche de glissement de sol, Lpente représente la longueur d'un plan de rupture.
  10. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'étape de réalisation des travaux de construction d'ouvrage d'art de retenue comprend les étapes de :
    i. installation des pieux inclinés en traction (1) selon l'angle β dans la plage entre 15 et 20°,
    ii. installation de la structure bâtie verticale, et
    iii. accouplement de chaque pieu incliné en traction (1) à la structure bâtie verticale à l'aide du moyen d'accouplement, dans lequel la structure bâtie verticale est réalisée sous forme de paroi berlinoise (5) en RC, de paroi moulée (2) en RC ou de pieux verticaux (6), dans lequel chacun des pieux inclinés en traction (1) est réalisé par une installation d'injection de coulis de cimentation ou par une technologie de construction de pieux CFA, et les pieux verticaux (6) sont réalisés par une technologie de construction de pieux CFA.
EP18759997.2A 2018-07-26 2018-07-26 Procédé pour stabiliser des excavations profondes ou une instabilité de pente du terrain près d'objets existants de génie civil Active EP3827133B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
HRP20230092TT HRP20230092T1 (hr) 2018-07-26 2018-07-26 Metoda za stabilizaciju dubokih iskopa ili nestabilnosti zemljine kosine u blizini postojećih civilnih objekata

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/HR2018/000012 WO2020021294A1 (fr) 2018-07-26 2018-07-26 Structure d'ingénierie de retenue et procédé de conception pour stabiliser des excavations profondes ou une instabilité de pente du terrain près d'objets existants de génie civil

Publications (2)

Publication Number Publication Date
EP3827133A1 EP3827133A1 (fr) 2021-06-02
EP3827133B1 true EP3827133B1 (fr) 2022-11-02

Family

ID=63405245

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18759997.2A Active EP3827133B1 (fr) 2018-07-26 2018-07-26 Procédé pour stabiliser des excavations profondes ou une instabilité de pente du terrain près d'objets existants de génie civil

Country Status (3)

Country Link
EP (1) EP3827133B1 (fr)
HR (1) HRP20230092T1 (fr)
WO (1) WO2020021294A1 (fr)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111507041B (zh) * 2020-04-29 2023-05-05 济南大学 一种可回收锚索回收期支护桩水平位移计算方法
CN111851539A (zh) * 2020-08-27 2020-10-30 北交智汇千路(北京)科技有限公司 一种用于边坡结构安全的凹槽型抗滑桩及其施工方法
CN112380594A (zh) * 2020-10-10 2021-02-19 上海市政工程设计研究总院(集团)有限公司 一种基于坑底承压水的基坑墙底抗隆起稳定性的计算方法
CN112302031B (zh) * 2020-10-23 2022-05-10 武汉地大建筑设计有限公司 用于倾斜建筑物的加固纠偏体系和方法
CN112227384B (zh) * 2020-10-29 2022-06-21 北京中岩大地科技股份有限公司 一种增阻大变形围护结构的施工方法
CN112417550B (zh) * 2020-11-05 2022-07-12 中国电建集团成都勘测设计研究院有限公司 一种碎石桩竖向承载力的简化计算方法
CN113062161B (zh) * 2021-04-13 2022-11-01 金陵科技学院 一种桩顶注浆桩承式路堤及其施工方法
CN113216204A (zh) * 2021-04-30 2021-08-06 中建四局第六建设有限公司 一种用于水平换撑结构加固的装置及其施工方法
CN113699998A (zh) * 2021-05-07 2021-11-26 金华职业技术学院 一种控制基坑沉降偏离方法
CN113221224A (zh) * 2021-05-21 2021-08-06 北京翼为科技有限公司 一种基于信息模型技术的基坑支护正向设计方法及系统
CN113356878B (zh) * 2021-06-11 2023-08-08 中铁工程设计咨询集团有限公司 应力流守恒原理及地下洞室群布置设计方法和装置
CN113591183B (zh) * 2021-07-19 2023-10-13 浙江大学 一种黏性土地层多支点式围护结构非平衡计算方法
CN113591184B (zh) * 2021-07-19 2023-10-20 浙江大学 一种邻近地下室外墙基坑悬臂式刚性围护结构设计计算方法
CN113494093B (zh) * 2021-07-26 2022-07-19 温州市阳光建设有限公司 一种深基坑支护结构
CN114215069A (zh) * 2021-12-13 2022-03-22 珠海华发人居生活研究院有限公司 一种自稳式基坑支护组合施工方法
CN114457810A (zh) * 2022-01-26 2022-05-10 中铁第一勘察设计院集团有限公司 基于永临结合的基坑内支撑体系及其构建方法
CN114508116B (zh) * 2022-03-14 2023-06-09 中铁二院工程集团有限责任公司 山沟超大容量弃渣场分级阻滑桩设计方法
CN114818046B (zh) * 2022-03-16 2024-04-05 湖南大学 一种变形超预警值桩锚支护结构基坑安全性确定方法
CN114809005A (zh) * 2022-04-21 2022-07-29 中交天津港湾工程研究院有限公司 一种双轮铣水泥土墙复合锚索支护结构的施工方法
CN115130167B (zh) * 2022-05-13 2023-02-03 安徽省城建设计研究总院股份有限公司 Π型支座设计方法、应用π型支座的支护方法和支护设计系统
CN114970016B (zh) * 2022-05-13 2022-11-25 安徽省城建设计研究总院股份有限公司 Π型支座斜撑位移计算方法、π型支座设计方法和支护方法
CN114991181A (zh) * 2022-06-21 2022-09-02 中国铁路设计集团有限公司 一种门式深路堑边坡加固结构及其施工方法
CN114960705B (zh) * 2022-08-01 2022-10-25 郯城县交投建设发展集团有限公司 一种用于高速公路的边坡防滑坡装置
CN115094963A (zh) * 2022-08-01 2022-09-23 上海建工一建集团有限公司 一种考虑空间效应的伺服混凝土支撑轴力主动优化方法
CN115492136A (zh) * 2022-11-01 2022-12-20 中国建筑第五工程局有限公司 一种用于不规则岩层侧壁的加固装置及加固方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3638435A (en) * 1970-04-01 1972-02-01 Edward E Mason Method for the construction of a retaining wall
KR20160002620A (ko) * 2015-12-15 2016-01-08 박지배 흙막이 구조물 및 그 시공방법

Also Published As

Publication number Publication date
EP3827133A1 (fr) 2021-06-02
HRP20230092T1 (hr) 2023-03-17
WO2020021294A1 (fr) 2020-01-30

Similar Documents

Publication Publication Date Title
EP3827133B1 (fr) Procédé pour stabiliser des excavations profondes ou une instabilité de pente du terrain près d&#39;objets existants de génie civil
AU2014237379B2 (en) Precast concrete retaining wall
CN201125354Y (zh) 陡坡路基支挡加固结构
US20190127941A1 (en) Sheet pile retaining wall system
US5551810A (en) Retaining wall with an outer face and method of forming the same
EA037484B1 (ru) Способ подпорного сооружения блочного типа для предотвращения обвала и оползня
US10094088B1 (en) Sheet pile retaining wall system
US5395185A (en) Method of temporarily shoring and permanently facing and excavated slope with a retaining wall
CN113389220B (zh) 岩质边坡非开挖路肩挡土墙及其施工方法
US6745421B2 (en) Abutment with seismic restraints
CN101368388B (zh) 锚管构架支护方法
US20030143038A1 (en) Multiple synthetic deformed bars and retaining walls
US9951493B2 (en) Precast integral post and retaining wall and method for installing same
Edens et al. Foundation retrofit of three structures utilizing micropiles
CN113404060A (zh) 刚性肋墙式桩墙基坑支护结构及施工方法
KR0138260Y1 (ko) 송전철탑용 록 앙카 구조물
CN220565238U (zh) 一种适用于大高差深基坑的桩锚与内支撑组合支护系统
Yashinsky Earthquake damage to structures
KR102610495B1 (ko) 절토부 자립식 옹벽시공 방법
CN211816326U (zh) 一种半h形抗滑桩和挡土板的联合支挡结构
CN215801664U (zh) 刚性肋墙式桩墙基坑支护结构
KR102272494B1 (ko) 지지력과 긴장력을 이용한 사면 보강 구조물 및 이의 시공 방법
Rahaja et al. To Study Type, Behaviour and Design of Retaining Wall Structure by Software Analysis
Ramesh et al. Analysis for Failure Mechanism of Temporary Shoring Structure
Vasishth Steel Arches Used in Bridge Reconstruction Over 1-5

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210216

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220523

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1528837

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018042570

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20230092

Country of ref document: HR

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1528837

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230302

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230202

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230302

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018042570

Country of ref document: DE

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20230092

Country of ref document: HR

Payment date: 20230703

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230704

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HR

Payment date: 20230703

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602018042570

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230726

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230726

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240201

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230726