EP3826466A1 - Verwendung von succinatdehydrogenasehemmerfluopyram zur kontrolle des wurzelfäulekomplexes und/oder des setzlingerkrankungskomplexes, die durch rhizoctonia-solani, fusarium-spezien und pythium-spezien in brassicaceae-spezies verursacht werden - Google Patents
Verwendung von succinatdehydrogenasehemmerfluopyram zur kontrolle des wurzelfäulekomplexes und/oder des setzlingerkrankungskomplexes, die durch rhizoctonia-solani, fusarium-spezien und pythium-spezien in brassicaceae-spezies verursacht werdenInfo
- Publication number
- EP3826466A1 EP3826466A1 EP19742754.5A EP19742754A EP3826466A1 EP 3826466 A1 EP3826466 A1 EP 3826466A1 EP 19742754 A EP19742754 A EP 19742754A EP 3826466 A1 EP3826466 A1 EP 3826466A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- plants
- species
- fluopyram
- seed
- brassicaceae
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- KVDJTXBXMWJJEF-UHFFFAOYSA-N fluopyram Chemical compound ClC1=CC(C(F)(F)F)=CN=C1CCNC(=O)C1=CC=CC=C1C(F)(F)F KVDJTXBXMWJJEF-UHFFFAOYSA-N 0.000 title claims abstract description 132
- 239000005783 Fluopyram Substances 0.000 title claims abstract description 131
- 201000010099 disease Diseases 0.000 title claims abstract description 89
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 title claims abstract description 89
- 241000223218 Fusarium Species 0.000 title claims abstract description 85
- 241000813090 Rhizoctonia solani Species 0.000 title claims abstract description 85
- 241000233639 Pythium Species 0.000 title claims abstract description 77
- 241000219193 Brassicaceae Species 0.000 title claims abstract description 71
- 229940124186 Dehydrogenase inhibitor Drugs 0.000 title claims abstract description 10
- 102000019259 Succinate Dehydrogenase Human genes 0.000 title claims abstract description 10
- 108010012901 Succinate Dehydrogenase Proteins 0.000 title claims abstract description 10
- 241000196324 Embryophyta Species 0.000 claims abstract description 248
- 238000000034 method Methods 0.000 claims abstract description 63
- 239000002689 soil Substances 0.000 claims abstract description 16
- 239000000463 material Substances 0.000 claims abstract description 11
- 235000006008 Brassica napus var napus Nutrition 0.000 claims description 60
- 238000011282 treatment Methods 0.000 claims description 54
- 240000002791 Brassica napus Species 0.000 claims description 51
- 235000014698 Brassica juncea var multisecta Nutrition 0.000 claims description 46
- 235000004977 Brassica sinapistrum Nutrition 0.000 claims description 45
- 235000006618 Brassica rapa subsp oleifera Nutrition 0.000 claims description 43
- 235000011293 Brassica napus Nutrition 0.000 claims description 17
- 230000009261 transgenic effect Effects 0.000 claims description 14
- 230000000855 fungicidal effect Effects 0.000 claims description 4
- 240000000385 Brassica napus var. napus Species 0.000 claims 1
- 239000004615 ingredient Substances 0.000 claims 1
- 239000000203 mixture Substances 0.000 description 78
- 238000009472 formulation Methods 0.000 description 54
- 244000275904 brauner Senf Species 0.000 description 53
- 108090000623 proteins and genes Proteins 0.000 description 50
- 239000004480 active ingredient Substances 0.000 description 37
- 239000004009 herbicide Substances 0.000 description 34
- -1 chalk Substances 0.000 description 32
- 102000004169 proteins and genes Human genes 0.000 description 29
- 230000002363 herbicidal effect Effects 0.000 description 25
- 239000000126 substance Substances 0.000 description 19
- 230000000749 insecticidal effect Effects 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 241000238631 Hexapoda Species 0.000 description 14
- 208000015181 infectious disease Diseases 0.000 description 14
- 102000004190 Enzymes Human genes 0.000 description 13
- 108090000790 Enzymes Proteins 0.000 description 13
- 244000178993 Brassica juncea Species 0.000 description 12
- 239000005807 Metalaxyl Substances 0.000 description 12
- ZQEIXNIJLIKNTD-UHFFFAOYSA-N methyl N-(2,6-dimethylphenyl)-N-(methoxyacetyl)alaninate Chemical compound COCC(=O)N(C(C)C(=O)OC)C1=C(C)C=CC=C1C ZQEIXNIJLIKNTD-UHFFFAOYSA-N 0.000 description 12
- PGOOBECODWQEAB-UHFFFAOYSA-N (E)-clothianidin Chemical compound [O-][N+](=O)\N=C(/NC)NCC1=CN=C(Cl)S1 PGOOBECODWQEAB-UHFFFAOYSA-N 0.000 description 11
- GOFJDXZZHFNFLV-UHFFFAOYSA-N 5-fluoro-1,3-dimethyl-N-[2-(4-methylpentan-2-yl)phenyl]pyrazole-4-carboxamide Chemical compound CC(C)CC(C)C1=CC=CC=C1NC(=O)C1=C(F)N(C)N=C1C GOFJDXZZHFNFLV-UHFFFAOYSA-N 0.000 description 11
- 239000005888 Clothianidin Substances 0.000 description 11
- 239000005815 Penflufen Substances 0.000 description 11
- 239000005857 Trifloxystrobin Substances 0.000 description 11
- 239000003921 oil Substances 0.000 description 11
- 235000019198 oils Nutrition 0.000 description 11
- ONCZDRURRATYFI-TVJDWZFNSA-N trifloxystrobin Chemical compound CO\N=C(\C(=O)OC)C1=CC=CC=C1CO\N=C(/C)C1=CC=CC(C(F)(F)F)=C1 ONCZDRURRATYFI-TVJDWZFNSA-N 0.000 description 11
- 239000002270 dispersing agent Substances 0.000 description 10
- 230000002068 genetic effect Effects 0.000 description 10
- 230000012010 growth Effects 0.000 description 10
- 230000009467 reduction Effects 0.000 description 10
- 241000193388 Bacillus thuringiensis Species 0.000 description 9
- 229940097012 bacillus thuringiensis Drugs 0.000 description 9
- 239000000417 fungicide Substances 0.000 description 9
- 239000008187 granular material Substances 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 230000009466 transformation Effects 0.000 description 9
- 241000219198 Brassica Species 0.000 description 8
- 239000004606 Fillers/Extenders Substances 0.000 description 8
- 150000002170 ethers Chemical class 0.000 description 8
- 238000010353 genetic engineering Methods 0.000 description 8
- IXORZMNAPKEEDV-OBDJNFEBSA-N gibberellin A3 Chemical class C([C@@]1(O)C(=C)C[C@@]2(C1)[C@H]1C(O)=O)C[C@H]2[C@]2(C=C[C@@H]3O)[C@H]1[C@]3(C)C(=O)O2 IXORZMNAPKEEDV-OBDJNFEBSA-N 0.000 description 8
- 238000011272 standard treatment Methods 0.000 description 8
- 108010020183 3-phosphoshikimate 1-carboxyvinyltransferase Proteins 0.000 description 7
- 206010021929 Infertility male Diseases 0.000 description 7
- 208000007466 Male Infertility Diseases 0.000 description 7
- 108700019146 Transgenes Proteins 0.000 description 7
- 239000000654 additive Substances 0.000 description 7
- 239000000975 dye Substances 0.000 description 7
- 239000003995 emulsifying agent Substances 0.000 description 7
- 230000035772 mutation Effects 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 101710151559 Crystal protein Proteins 0.000 description 6
- 229930191978 Gibberellin Natural products 0.000 description 6
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 6
- 238000009395 breeding Methods 0.000 description 6
- 239000000969 carrier Substances 0.000 description 6
- 239000003448 gibberellin Substances 0.000 description 6
- 239000003112 inhibitor Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 244000052769 pathogen Species 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000007921 spray Substances 0.000 description 6
- 239000004094 surface-active agent Substances 0.000 description 6
- 108010000700 Acetolactate synthase Proteins 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 240000008042 Zea mays Species 0.000 description 5
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 5
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 5
- 125000000129 anionic group Chemical group 0.000 description 5
- 230000001276 controlling effect Effects 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- 239000003337 fertilizer Substances 0.000 description 5
- 235000009973 maize Nutrition 0.000 description 5
- 235000015097 nutrients Nutrition 0.000 description 5
- 239000003755 preservative agent Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 230000035882 stress Effects 0.000 description 5
- 239000002562 thickening agent Substances 0.000 description 5
- 239000000080 wetting agent Substances 0.000 description 5
- UHPMCKVQTMMPCG-UHFFFAOYSA-N 5,8-dihydroxy-2-methoxy-6-methyl-7-(2-oxopropyl)naphthalene-1,4-dione Chemical compound CC1=C(CC(C)=O)C(O)=C2C(=O)C(OC)=CC(=O)C2=C1O UHPMCKVQTMMPCG-UHFFFAOYSA-N 0.000 description 4
- 244000012866 Brassica narinosa Species 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 4
- 230000036579 abiotic stress Effects 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 150000001413 amino acids Chemical class 0.000 description 4
- 230000001488 breeding effect Effects 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 244000038559 crop plants Species 0.000 description 4
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 239000006260 foam Substances 0.000 description 4
- IGMNYECMUMZDDF-UHFFFAOYSA-N homogentisic acid Chemical compound OC(=O)CC1=CC(O)=CC=C1O IGMNYECMUMZDDF-UHFFFAOYSA-N 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229920000151 polyglycol Polymers 0.000 description 4
- 239000010695 polyglycol Substances 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- IAJOBQBIJHVGMQ-UHFFFAOYSA-N 2-amino-4-[hydroxy(methyl)phosphoryl]butanoic acid Chemical compound CP(O)(=O)CCC(N)C(O)=O IAJOBQBIJHVGMQ-UHFFFAOYSA-N 0.000 description 3
- 241000193755 Bacillus cereus Species 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 235000011331 Brassica Nutrition 0.000 description 3
- 235000006463 Brassica alba Nutrition 0.000 description 3
- 235000005156 Brassica carinata Nutrition 0.000 description 3
- 244000257790 Brassica carinata Species 0.000 description 3
- 235000011332 Brassica juncea Nutrition 0.000 description 3
- 235000014700 Brassica juncea var napiformis Nutrition 0.000 description 3
- 240000007124 Brassica oleracea Species 0.000 description 3
- 235000000540 Brassica rapa subsp rapa Nutrition 0.000 description 3
- 241000499439 Brassica rapa subsp. rapa Species 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 244000068988 Glycine max Species 0.000 description 3
- 235000010469 Glycine max Nutrition 0.000 description 3
- 239000005562 Glyphosate Substances 0.000 description 3
- 206010061217 Infestation Diseases 0.000 description 3
- 241000228457 Leptosphaeria maculans Species 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 241001099903 Paramyrothecium roridum Species 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 241001447693 Verticillium longisporum Species 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 239000012868 active agrochemical ingredient Substances 0.000 description 3
- 239000013543 active substance Substances 0.000 description 3
- 125000002877 alkyl aryl group Chemical group 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 230000000844 anti-bacterial effect Effects 0.000 description 3
- 239000003899 bactericide agent Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 235000013399 edible fruits Nutrition 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 230000035558 fertility Effects 0.000 description 3
- 235000013312 flour Nutrition 0.000 description 3
- 230000009969 flowable effect Effects 0.000 description 3
- 235000003869 genetically modified organism Nutrition 0.000 description 3
- 229940097068 glyphosate Drugs 0.000 description 3
- XDDAORKBJWWYJS-UHFFFAOYSA-M glyphosate(1-) Chemical compound OP(O)(=O)CNCC([O-])=O XDDAORKBJWWYJS-UHFFFAOYSA-M 0.000 description 3
- 239000003630 growth substance Substances 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 239000002917 insecticide Substances 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 238000002703 mutagenesis Methods 0.000 description 3
- 231100000350 mutagenesis Toxicity 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 230000010152 pollination Effects 0.000 description 3
- 229920005862 polyol Polymers 0.000 description 3
- 239000011435 rock Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 238000009331 sowing Methods 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 239000003053 toxin Substances 0.000 description 3
- 231100000765 toxin Toxicity 0.000 description 3
- 230000001131 transforming effect Effects 0.000 description 3
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 3
- GXHYWPWPQSPOJY-UHFFFAOYSA-N 2-(2-pyridin-2-ylethyl)benzamide Chemical compound NC(=O)C1=CC=CC=C1CCC1=CC=CC=N1 GXHYWPWPQSPOJY-UHFFFAOYSA-N 0.000 description 2
- CAAMSDWKXXPUJR-UHFFFAOYSA-N 3,5-dihydro-4H-imidazol-4-one Chemical compound O=C1CNC=N1 CAAMSDWKXXPUJR-UHFFFAOYSA-N 0.000 description 2
- 240000003291 Armoracia rusticana Species 0.000 description 2
- 235000011330 Armoracia rusticana Nutrition 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 2
- 235000010113 Brassica elongata Nutrition 0.000 description 2
- 241000967482 Brassica elongata Species 0.000 description 2
- 235000010114 Brassica fruticulosa Nutrition 0.000 description 2
- 241000967483 Brassica fruticulosa Species 0.000 description 2
- 235000011297 Brassica napobrassica Nutrition 0.000 description 2
- 235000004862 Brassica narinosa Nutrition 0.000 description 2
- 235000011291 Brassica nigra Nutrition 0.000 description 2
- 244000180419 Brassica nigra Species 0.000 description 2
- 235000003899 Brassica oleracea var acephala Nutrition 0.000 description 2
- 235000011299 Brassica oleracea var botrytis Nutrition 0.000 description 2
- 240000003259 Brassica oleracea var. botrytis Species 0.000 description 2
- 235000008744 Brassica perviridis Nutrition 0.000 description 2
- 244000233513 Brassica perviridis Species 0.000 description 2
- 235000011292 Brassica rapa Nutrition 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 239000005980 Gibberellic acid Substances 0.000 description 2
- 239000005561 Glufosinate Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical class [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 102000012338 Poly(ADP-ribose) Polymerases Human genes 0.000 description 2
- 108010061844 Poly(ADP-ribose) Polymerases Proteins 0.000 description 2
- 229920000776 Poly(Adenosine diphosphate-ribose) polymerase Polymers 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 108010009736 Protein Hydrolysates Proteins 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- 230000000895 acaricidal effect Effects 0.000 description 2
- 239000000642 acaricide Substances 0.000 description 2
- 239000003905 agrochemical Substances 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000005667 attractant Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 150000008422 chlorobenzenes Chemical class 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 229960001760 dimethyl sulfoxide Drugs 0.000 description 2
- 238000010410 dusting Methods 0.000 description 2
- 239000003925 fat Substances 0.000 description 2
- 235000019197 fats Nutrition 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 230000009368 gene silencing by RNA Effects 0.000 description 2
- 230000035784 germination Effects 0.000 description 2
- IXORZMNAPKEEDV-UHFFFAOYSA-N gibberellic acid GA3 Natural products OC(=O)C1C2(C3)CC(=C)C3(O)CCC2C2(C=CC3O)C1C3(C)C(=O)O2 IXORZMNAPKEEDV-UHFFFAOYSA-N 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- WLSQDEYDCAGPIR-UHFFFAOYSA-N isocycloseram Chemical compound O=C1N(CC)OCC1NC(=O)C1=CC=C(C=2CC(ON=2)(C=2C=C(Cl)C(F)=C(Cl)C=2)C(F)(F)F)C=C1C WLSQDEYDCAGPIR-UHFFFAOYSA-N 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 230000011890 leaf development Effects 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229930014626 natural product Natural products 0.000 description 2
- 239000005645 nematicide Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 108010082527 phosphinothricin N-acetyltransferase Proteins 0.000 description 2
- 230000000885 phytotoxic effect Effects 0.000 description 2
- 239000004584 polyacrylic acid Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000003531 protein hydrolysate Substances 0.000 description 2
- 210000001938 protoplast Anatomy 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000005070 ripening Effects 0.000 description 2
- 244000128879 sarson Species 0.000 description 2
- 239000003620 semiochemical Substances 0.000 description 2
- 230000011869 shoot development Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- YROXIXLRRCOBKF-UHFFFAOYSA-N sulfonylurea Chemical compound OC(=N)N=S(=O)=O YROXIXLRRCOBKF-UHFFFAOYSA-N 0.000 description 2
- 239000004548 suspo-emulsion Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- ZXQYGBMAQZUVMI-RDDWSQKMSA-N (1S)-cis-(alphaR)-cyhalothrin Chemical compound CC1(C)[C@H](\C=C(/Cl)C(F)(F)F)[C@@H]1C(=O)O[C@@H](C#N)C1=CC=CC(OC=2C=CC=CC=2)=C1 ZXQYGBMAQZUVMI-RDDWSQKMSA-N 0.000 description 1
- ZMYFCFLJBGAQRS-IRXDYDNUSA-N (2R,3S)-epoxiconazole Chemical compound C1=CC(F)=CC=C1[C@@]1(CN2N=CN=C2)[C@H](C=2C(=CC=CC=2)Cl)O1 ZMYFCFLJBGAQRS-IRXDYDNUSA-N 0.000 description 1
- PWWPULQZEAPTTB-UHFFFAOYSA-N (4-phenoxyphenyl)methyl 2-amino-6-methylpyridine-3-carboxylate Chemical compound NC1=NC(C)=CC=C1C(=O)OCC(C=C1)=CC=C1OC1=CC=CC=C1 PWWPULQZEAPTTB-UHFFFAOYSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- HOKKPVIRMVDYPB-UVTDQMKNSA-N (Z)-thiacloprid Chemical compound C1=NC(Cl)=CC=C1CN1C(=N/C#N)/SCC1 HOKKPVIRMVDYPB-UVTDQMKNSA-N 0.000 description 1
- KKFBZUNYJMVNFV-UHFFFAOYSA-N 1,2-bis(2-methylpropyl)naphthalene Chemical compound C1=CC=CC2=C(CC(C)C)C(CC(C)C)=CC=C21 KKFBZUNYJMVNFV-UHFFFAOYSA-N 0.000 description 1
- DAGDLSRRQJATCV-UHFFFAOYSA-N 1-(2-bromoethoxy)-2-propan-2-ylbenzene Chemical compound CC(C)C1=CC=CC=C1OCCBr DAGDLSRRQJATCV-UHFFFAOYSA-N 0.000 description 1
- JWUCHKBSVLQQCO-UHFFFAOYSA-N 1-(2-fluorophenyl)-1-(4-fluorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethanol Chemical compound C=1C=C(F)C=CC=1C(C=1C(=CC=CC=1)F)(O)CN1C=NC=N1 JWUCHKBSVLQQCO-UHFFFAOYSA-N 0.000 description 1
- PXMNMQRDXWABCY-UHFFFAOYSA-N 1-(4-chlorophenyl)-4,4-dimethyl-3-(1H-1,2,4-triazol-1-ylmethyl)pentan-3-ol Chemical compound C1=NC=NN1CC(O)(C(C)(C)C)CCC1=CC=C(Cl)C=C1 PXMNMQRDXWABCY-UHFFFAOYSA-N 0.000 description 1
- TVFWYUWNQVRQRG-UHFFFAOYSA-N 2,3,4-tris(2-phenylethenyl)phenol Chemical compound C=1C=CC=CC=1C=CC1=C(C=CC=2C=CC=CC=2)C(O)=CC=C1C=CC1=CC=CC=C1 TVFWYUWNQVRQRG-UHFFFAOYSA-N 0.000 description 1
- ZFFMLCVRJBZUDZ-UHFFFAOYSA-N 2,3-dimethylbutane Chemical group CC(C)C(C)C ZFFMLCVRJBZUDZ-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- PTQBEFQWTBZMED-UHFFFAOYSA-N 2-(3-ethylsulfonylpyridin-2-yl)-5-(trifluoromethylsulfonyl)-1,3-benzoxazole Chemical group CCS(=O)(=O)C1=CC=CN=C1C1=NC2=CC(S(=O)(=O)C(F)(F)F)=CC=C2O1 PTQBEFQWTBZMED-UHFFFAOYSA-N 0.000 description 1
- UFNOUKDBUJZYDE-UHFFFAOYSA-N 2-(4-chlorophenyl)-3-cyclopropyl-1-(1H-1,2,4-triazol-1-yl)butan-2-ol Chemical compound C1=NC=NN1CC(O)(C=1C=CC(Cl)=CC=1)C(C)C1CC1 UFNOUKDBUJZYDE-UHFFFAOYSA-N 0.000 description 1
- NUPJIGQFXCQJBK-UHFFFAOYSA-N 2-(4-isopropyl-4-methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl)-5-(methoxymethyl)nicotinic acid Chemical compound OC(=O)C1=CC(COC)=CN=C1C1=NC(C)(C(C)C)C(=O)N1 NUPJIGQFXCQJBK-UHFFFAOYSA-N 0.000 description 1
- CLQMBPJKHLGMQK-UHFFFAOYSA-N 2-(4-isopropyl-4-methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl)nicotinic acid Chemical compound N1C(=O)C(C(C)C)(C)N=C1C1=NC=CC=C1C(O)=O CLQMBPJKHLGMQK-UHFFFAOYSA-N 0.000 description 1
- KCTKQZUYHSKJLP-UHFFFAOYSA-N 2-(4-methyl-5-oxo-4-propan-2-yl-1h-imidazol-2-yl)pyridine-3-carboxylate;propan-2-ylazanium Chemical compound CC(C)[NH3+].N1C(=O)C(C(C)C)(C)N=C1C1=NC=CC=C1C([O-])=O KCTKQZUYHSKJLP-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- MNHVNIJQQRJYDH-UHFFFAOYSA-N 2-[2-(1-chlorocyclopropyl)-3-(2-chlorophenyl)-2-hydroxypropyl]-1,2-dihydro-1,2,4-triazole-3-thione Chemical compound N1=CNC(=S)N1CC(C1(Cl)CC1)(O)CC1=CC=CC=C1Cl MNHVNIJQQRJYDH-UHFFFAOYSA-N 0.000 description 1
- JERZEQUMJNCPRJ-UHFFFAOYSA-N 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1H-1,2,4-triazol-1-yl)propan-2-ol Chemical compound C=1C=C(OC=2C=CC(Cl)=CC=2)C=C(C(F)(F)F)C=1C(O)(C)CN1C=NC=N1 JERZEQUMJNCPRJ-UHFFFAOYSA-N 0.000 description 1
- SIIJJFOXEOHODQ-UHFFFAOYSA-N 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-3-methyl-1-(1,2,4-triazol-1-yl)butan-2-ol Chemical compound C=1C=C(OC=2C=CC(Cl)=CC=2)C=C(C(F)(F)F)C=1C(O)(C(C)C)CN1C=NC=N1 SIIJJFOXEOHODQ-UHFFFAOYSA-N 0.000 description 1
- CABMTIJINOIHOD-UHFFFAOYSA-N 2-[4-methyl-5-oxo-4-(propan-2-yl)-4,5-dihydro-1H-imidazol-2-yl]quinoline-3-carboxylic acid Chemical compound N1C(=O)C(C(C)C)(C)N=C1C1=NC2=CC=CC=C2C=C1C(O)=O CABMTIJINOIHOD-UHFFFAOYSA-N 0.000 description 1
- IULJSGIJJZZUMF-UHFFFAOYSA-N 2-hydroxybenzenesulfonic acid Chemical class OC1=CC=CC=C1S(O)(=O)=O IULJSGIJJZZUMF-UHFFFAOYSA-N 0.000 description 1
- LAUKAWOMRTYHJK-UHFFFAOYSA-N 2-pyrimidin-2-yloxysulfanylbenzoic acid Chemical class OC(=O)C1=CC=CC=C1SOC1=NC=CC=N1 LAUKAWOMRTYHJK-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- KKADPXVIOXHVKN-UHFFFAOYSA-M 3-(4-hydroxyphenyl)pyruvate Chemical compound OC1=CC=C(CC(=O)C([O-])=O)C=C1 KKADPXVIOXHVKN-UHFFFAOYSA-M 0.000 description 1
- XCGBHLLWJZOLEM-UHFFFAOYSA-N 3-(difluoromethyl)-N-(7-fluoro-1,1,3-trimethyl-2,3-dihydro-1H-inden-4-yl)-1-methyl-1H-pyrazole-4-carboxamide Chemical compound CC1CC(C)(C)C(C(=CC=2)F)=C1C=2NC(=O)C1=CN(C)N=C1C(F)F XCGBHLLWJZOLEM-UHFFFAOYSA-N 0.000 description 1
- XTDZGXBTXBEZDN-UHFFFAOYSA-N 3-(difluoromethyl)-N-(9-isopropyl-1,2,3,4-tetrahydro-1,4-methanonaphthalen-5-yl)-1-methylpyrazole-4-carboxamide Chemical compound CC(C)C1C2CCC1C1=C2C=CC=C1NC(=O)C1=CN(C)N=C1C(F)F XTDZGXBTXBEZDN-UHFFFAOYSA-N 0.000 description 1
- DGOAXBPOVUPPEB-UHFFFAOYSA-N 3-(difluoromethyl)-N-methoxy-1-methyl-N-[1-(2,4,6-trichlorophenyl)propan-2-yl]pyrazole-4-carboxamide Chemical compound C=1N(C)N=C(C(F)F)C=1C(=O)N(OC)C(C)CC1=C(Cl)C=C(Cl)C=C1Cl DGOAXBPOVUPPEB-UHFFFAOYSA-N 0.000 description 1
- CUTZZBQQGUIEGT-UHFFFAOYSA-N 3-[(3,4-dichloro-1,2-thiazol-5-yl)methoxy]-1,2-benzothiazole 1,1-dioxide Chemical compound ClC1=NSC(COC=2C3=CC=CC=C3S(=O)(=O)N=2)=C1Cl CUTZZBQQGUIEGT-UHFFFAOYSA-N 0.000 description 1
- ZNBJSAAROMDHOX-UHFFFAOYSA-N 3-chloro-4-(2,6-difluorophenyl)-6-methyl-5-phenylpyridazine Chemical group C=1C=CC=CC=1C=1C(C)=NN=C(Cl)C=1C1=C(F)C=CC=C1F ZNBJSAAROMDHOX-UHFFFAOYSA-N 0.000 description 1
- SWTPIYGGSMJRTB-UHFFFAOYSA-N 4,4-difluoro-3,3-dimethyl-1-quinolin-3-ylisoquinoline Chemical compound C12=CC=CC=C2C(F)(F)C(C)(C)N=C1C1=CN=C(C=CC=C2)C2=C1 SWTPIYGGSMJRTB-UHFFFAOYSA-N 0.000 description 1
- PVSGXWMWNRGTKE-UHFFFAOYSA-N 5-methyl-2-[4-methyl-5-oxo-4-(propan-2-yl)-4,5-dihydro-1H-imidazol-2-yl]pyridine-3-carboxylic acid Chemical compound N1C(=O)C(C(C)C)(C)N=C1C1=NC=C(C)C=C1C(O)=O PVSGXWMWNRGTKE-UHFFFAOYSA-N 0.000 description 1
- PRZRAMLXTKZUHF-UHFFFAOYSA-N 5-oxo-n-sulfonyl-4h-triazole-1-carboxamide Chemical compound O=S(=O)=NC(=O)N1N=NCC1=O PRZRAMLXTKZUHF-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 241000589159 Agrobacterium sp. Species 0.000 description 1
- 241001167018 Aroa Species 0.000 description 1
- 239000005730 Azoxystrobin Substances 0.000 description 1
- 101710183938 Barstar Proteins 0.000 description 1
- 239000005737 Benzovindiflupyr Substances 0.000 description 1
- 241000219310 Beta vulgaris subsp. vulgaris Species 0.000 description 1
- 239000005738 Bixafen Substances 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 235000011303 Brassica alboglabra Nutrition 0.000 description 1
- 244000060924 Brassica campestris Species 0.000 description 1
- 235000003351 Brassica cretica Nutrition 0.000 description 1
- 235000011371 Brassica hirta Nutrition 0.000 description 1
- 235000005855 Brassica juncea var. subintegrifolia Nutrition 0.000 description 1
- 235000017391 Brassica lanceolata Nutrition 0.000 description 1
- 244000178924 Brassica napobrassica Species 0.000 description 1
- 235000011302 Brassica oleracea Nutrition 0.000 description 1
- 235000011301 Brassica oleracea var capitata Nutrition 0.000 description 1
- 235000004221 Brassica oleracea var gemmifera Nutrition 0.000 description 1
- 235000017647 Brassica oleracea var italica Nutrition 0.000 description 1
- 235000001169 Brassica oleracea var oleracea Nutrition 0.000 description 1
- 235000012905 Brassica oleracea var viridis Nutrition 0.000 description 1
- 244000308368 Brassica oleracea var. gemmifera Species 0.000 description 1
- 244000304217 Brassica oleracea var. gongylodes Species 0.000 description 1
- 244000221633 Brassica rapa subsp chinensis Species 0.000 description 1
- 235000010149 Brassica rapa subsp chinensis Nutrition 0.000 description 1
- 235000000536 Brassica rapa subsp pekinensis Nutrition 0.000 description 1
- 235000003343 Brassica rupestris Nutrition 0.000 description 1
- 235000000883 Brassica tournefortii Nutrition 0.000 description 1
- DPUOLQHDNGRHBS-UHFFFAOYSA-N Brassidinsaeure Natural products CCCCCCCCC=CCCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-UHFFFAOYSA-N 0.000 description 1
- 102100031658 C-X-C chemokine receptor type 5 Human genes 0.000 description 1
- 229910021532 Calcite Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000005746 Carboxin Substances 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 240000001817 Cereus hexagonus Species 0.000 description 1
- 239000005747 Chlorothalonil Substances 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 208000003322 Coinfection Diseases 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 235000002361 Crambe hispanica Nutrition 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 239000005757 Cyproconazole Substances 0.000 description 1
- MDNWOSOZYLHTCG-UHFFFAOYSA-N Dichlorophen Chemical compound OC1=CC=C(Cl)C=C1CC1=CC(Cl)=CC=C1O MDNWOSOZYLHTCG-UHFFFAOYSA-N 0.000 description 1
- 239000005760 Difenoconazole Substances 0.000 description 1
- 101100238646 Drosophila melanogaster msl-1 gene Proteins 0.000 description 1
- 235000007351 Eleusine Nutrition 0.000 description 1
- 241000209215 Eleusine Species 0.000 description 1
- 239000005767 Epoxiconazole Substances 0.000 description 1
- URXZXNYJPAJJOQ-UHFFFAOYSA-N Erucic acid Natural products CCCCCCC=CCCCCCCCCCCCC(O)=O URXZXNYJPAJJOQ-UHFFFAOYSA-N 0.000 description 1
- 241000221785 Erysiphales Species 0.000 description 1
- 101000999829 Escherichia coli (strain K12) NH(3)-dependent NAD(+) synthetase Proteins 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 239000005901 Flubendiamide Substances 0.000 description 1
- 239000005781 Fludioxonil Substances 0.000 description 1
- 239000005784 Fluoxastrobin Substances 0.000 description 1
- 239000005785 Fluquinconazole Substances 0.000 description 1
- 239000005787 Flutriafol Substances 0.000 description 1
- 239000005788 Fluxapyroxad Substances 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000122692 Fusarium avenaceum Species 0.000 description 1
- 241000223195 Fusarium graminearum Species 0.000 description 1
- 241000223221 Fusarium oxysporum Species 0.000 description 1
- 241000427940 Fusarium solani Species 0.000 description 1
- XMJFVIGTHMOGNZ-NSUIRHMESA-N Glucobrassicanapin Natural products S(=O)(=O)(O/N=C(/S[C@H]1[C@@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1)\CCCC=C)O XMJFVIGTHMOGNZ-NSUIRHMESA-N 0.000 description 1
- NCWFGOSXGPNCHQ-KAMPLNKDSA-N Gluconapin Natural products OC[C@H]1O[C@H](SC=NCCC=C)[C@H](O)[C@@H](O)[C@@H]1O NCWFGOSXGPNCHQ-KAMPLNKDSA-N 0.000 description 1
- ZEGLQSKFSKZGRO-IJSGRZKHSA-N Gluconapoleiferin Natural products OC[C@H]1O[C@@H](SC(=NOS(=O)(=O)O)C[C@H](O)CC=C)[C@H](O)[C@@H](O)[C@@H]1O ZEGLQSKFSKZGRO-IJSGRZKHSA-N 0.000 description 1
- 108030006517 Glyphosate oxidoreductases Proteins 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 244000020551 Helianthus annuus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- 101000922405 Homo sapiens C-X-C chemokine receptor type 5 Proteins 0.000 description 1
- 101000589450 Homo sapiens Poly(ADP-ribose) glycohydrolase Proteins 0.000 description 1
- 239000005566 Imazamox Substances 0.000 description 1
- 239000005981 Imazaquin Substances 0.000 description 1
- XVOKUMIPKHGGTN-UHFFFAOYSA-N Imazethapyr Chemical compound OC(=O)C1=CC(CC)=CN=C1C1=NC(C)(C(C)C)C(=O)N1 XVOKUMIPKHGGTN-UHFFFAOYSA-N 0.000 description 1
- 239000005906 Imidacloprid Substances 0.000 description 1
- 239000005867 Iprodione Substances 0.000 description 1
- 239000005799 Isopyrazam Substances 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 229920001732 Lignosulfonate Polymers 0.000 description 1
- 239000004117 Lignosulphonate Substances 0.000 description 1
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 239000005810 Metrafenone Substances 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- FHFBSBQYPLFMHC-TURZUDJPSA-N N-[(2Z)-2-[2-chloro-4-(2-cyclopropylethynyl)phenyl]-2-propan-2-yloxyiminoethyl]-3-(difluoromethyl)-1-methylpyrazole-4-carboxamide Chemical compound CC(C)O\N=C(/CNC(=O)c1cn(C)nc1C(F)F)c1ccc(cc1Cl)C#CC1CC1 FHFBSBQYPLFMHC-TURZUDJPSA-N 0.000 description 1
- CCCGEKHKTPTUHJ-UHFFFAOYSA-N N-[9-(dichloromethylene)-1,2,3,4-tetrahydro-1,4-methanonaphthalen-5-yl]-3-(difluoromethyl)-1-methylpyrazole-4-carboxamide Chemical compound FC(F)C1=NN(C)C=C1C(=O)NC1=CC=CC2=C1C1CCC2C1=C(Cl)Cl CCCGEKHKTPTUHJ-UHFFFAOYSA-N 0.000 description 1
- XQJQCBDIXRIYRP-UHFFFAOYSA-N N-{2-[1,1'-bi(cyclopropyl)-2-yl]phenyl}-3-(difluoromethyl)-1-methyl-1pyrazole-4-carboxamide Chemical compound FC(F)C1=NN(C)C=C1C(=O)NC1=CC=CC=C1C1C(C2CC2)C1 XQJQCBDIXRIYRP-UHFFFAOYSA-N 0.000 description 1
- BAWFJGJZGIEFAR-NNYOXOHSSA-N NAD zwitterion Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-N 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 108010019703 Nicotinamidase Proteins 0.000 description 1
- 102000015532 Nicotinamide phosphoribosyltransferase Human genes 0.000 description 1
- 108010064862 Nicotinamide phosphoribosyltransferase Proteins 0.000 description 1
- 102000000780 Nicotinate phosphoribosyltransferase Human genes 0.000 description 1
- 108700040046 Nicotinate phosphoribosyltransferases Proteins 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 101000708283 Oryza sativa subsp. indica Protein Rf1, mitochondrial Proteins 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 240000007377 Petunia x hybrida Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 1
- 102100032347 Poly(ADP-ribose) glycohydrolase Human genes 0.000 description 1
- 108010035004 Prephenate Dehydrogenase Proteins 0.000 description 1
- 239000005825 Prothioconazole Substances 0.000 description 1
- 239000005869 Pyraclostrobin Substances 0.000 description 1
- 239000005828 Pyrimethanil Substances 0.000 description 1
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 1
- 108091030071 RNAI Proteins 0.000 description 1
- 241000220259 Raphanus Species 0.000 description 1
- 235000019057 Raphanus caudatus Nutrition 0.000 description 1
- 244000088415 Raphanus sativus Species 0.000 description 1
- 235000011380 Raphanus sativus Nutrition 0.000 description 1
- 235000000942 Raphanus sativus var oleiformis Nutrition 0.000 description 1
- 235000006140 Raphanus sativus var sativus Nutrition 0.000 description 1
- 244000198556 Raphanus sativus var. oleiformis Species 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 241001361634 Rhizoctonia Species 0.000 description 1
- 101710141795 Ribonuclease inhibitor Proteins 0.000 description 1
- 229940122208 Ribonuclease inhibitor Drugs 0.000 description 1
- 102100037968 Ribonuclease inhibitor Human genes 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 241001638069 Rigidoporus microporus Species 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 240000002625 Salsola soda Species 0.000 description 1
- 241000221662 Sclerotinia Species 0.000 description 1
- 239000005834 Sedaxane Substances 0.000 description 1
- 239000004113 Sepiolite Substances 0.000 description 1
- 240000003768 Solanum lycopersicum Species 0.000 description 1
- 235000009337 Spinacia oleracea Nutrition 0.000 description 1
- 244000300264 Spinacia oleracea Species 0.000 description 1
- 239000005665 Spiromesifen Substances 0.000 description 1
- 239000005837 Spiroxamine Substances 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 235000021536 Sugar beet Nutrition 0.000 description 1
- 239000005839 Tebuconazole Substances 0.000 description 1
- 239000005940 Thiacloprid Substances 0.000 description 1
- 239000005941 Thiamethoxam Substances 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 239000012963 UV stabilizer Substances 0.000 description 1
- 240000006064 Urena lobata Species 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical class ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- ZEGLQSKFSKZGRO-RELRXRRDSA-N [(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] (3s)-3-hydroxy-n-sulfooxyhex-5-enimidothioate Chemical compound OC[C@H]1O[C@@H](SC(C[C@@H](O)CC=C)=NOS(O)(=O)=O)[C@H](O)[C@@H](O)[C@@H]1O ZEGLQSKFSKZGRO-RELRXRRDSA-N 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 108020002494 acetyltransferase Proteins 0.000 description 1
- 102000005421 acetyltransferase Human genes 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000009418 agronomic effect Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 230000003872 anastomosis Effects 0.000 description 1
- 230000000433 anti-nutritional effect Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- MXWJVTOOROXGIU-UHFFFAOYSA-N atrazine Chemical compound CCNC1=NC(Cl)=NC(NC(C)C)=N1 MXWJVTOOROXGIU-UHFFFAOYSA-N 0.000 description 1
- 229960000892 attapulgite Drugs 0.000 description 1
- GNZZHGJSMCDMBU-UHFFFAOYSA-N azane;5-(methoxymethyl)-2-(4-methyl-5-oxo-4-propan-2-yl-1h-imidazol-2-yl)pyridine-3-carboxylic acid Chemical compound [NH4+].[O-]C(=O)C1=CC(COC)=CN=C1C1=NC(C)(C(C)C)C(=O)N1 GNZZHGJSMCDMBU-UHFFFAOYSA-N 0.000 description 1
- QRSHQJLLXXEYPS-UHFFFAOYSA-N azane;5-ethyl-2-(4-methyl-5-oxo-4-propan-2-yl-1h-imidazol-2-yl)pyridine-3-carboxylic acid Chemical compound [NH4+].[O-]C(=O)C1=CC(CC)=CN=C1C1=NC(C)(C(C)C)C(=O)N1 QRSHQJLLXXEYPS-UHFFFAOYSA-N 0.000 description 1
- FBJUTZMAUXJMMH-UHFFFAOYSA-N azane;5-methyl-2-(4-methyl-5-oxo-4-propan-2-yl-1h-imidazol-2-yl)pyridine-3-carboxylic acid Chemical compound [NH4+].N1C(=O)C(C(C)C)(C)N=C1C1=NC=C(C)C=C1C([O-])=O FBJUTZMAUXJMMH-UHFFFAOYSA-N 0.000 description 1
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 1
- WFDXOXNFNRHQEC-GHRIWEEISA-N azoxystrobin Chemical compound CO\C=C(\C(=O)OC)C1=CC=CC=C1OC1=CC(OC=2C(=CC=CC=2)C#N)=NC=N1 WFDXOXNFNRHQEC-GHRIWEEISA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- GINJFDRNADDBIN-FXQIFTODSA-N bilanafos Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCP(C)(O)=O GINJFDRNADDBIN-FXQIFTODSA-N 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 1
- 238000010352 biotechnological method Methods 0.000 description 1
- 230000004790 biotic stress Effects 0.000 description 1
- QKSKPIVNLNLAAV-UHFFFAOYSA-N bis(2-chloroethyl) sulfide Chemical compound ClCCSCCCl QKSKPIVNLNLAAV-UHFFFAOYSA-N 0.000 description 1
- LDLMOOXUCMHBMZ-UHFFFAOYSA-N bixafen Chemical compound FC(F)C1=NN(C)C=C1C(=O)NC1=CC=C(F)C=C1C1=CC=C(Cl)C(Cl)=C1 LDLMOOXUCMHBMZ-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- GYSSRZJIHXQEHQ-UHFFFAOYSA-N carboxin Chemical compound S1CCOC(C)=C1C(=O)NC1=CC=CC=C1 GYSSRZJIHXQEHQ-UHFFFAOYSA-N 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 210000003855 cell nucleus Anatomy 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- ALLOLPOYFRLCCX-UHFFFAOYSA-N chembl1986529 Chemical compound COC1=CC=CC=C1N=NC1=C(O)C=CC2=CC=CC=C12 ALLOLPOYFRLCCX-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 210000003763 chloroplast Anatomy 0.000 description 1
- CRQQGFGUEAVUIL-UHFFFAOYSA-N chlorothalonil Chemical compound ClC1=C(Cl)C(C#N)=C(Cl)C(C#N)=C1Cl CRQQGFGUEAVUIL-UHFFFAOYSA-N 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- DVBUIBGJRQBEDP-UHFFFAOYSA-N cyantraniliprole Chemical compound CNC(=O)C1=CC(C#N)=CC(C)=C1NC(=O)C1=CC(Br)=NN1C1=NC=CC=C1Cl DVBUIBGJRQBEDP-UHFFFAOYSA-N 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000023753 dehiscence Effects 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 229960003887 dichlorophen Drugs 0.000 description 1
- BQYJATMQXGBDHF-UHFFFAOYSA-N difenoconazole Chemical compound O1C(C)COC1(C=1C(=CC(OC=2C=CC(Cl)=CC=2)=CC=1)Cl)CN1N=CN=C1 BQYJATMQXGBDHF-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010981 drying operation Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- DPUOLQHDNGRHBS-KTKRTIGZSA-N erucic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-KTKRTIGZSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 150000002194 fatty esters Chemical class 0.000 description 1
- QGTOTYJSCYHYFK-RBODFLQRSA-N fenpicoxamid Chemical compound COC1=CC=NC(C(=O)N[C@@H]2C(O[C@@H](C)[C@H](OC(=O)C(C)C)[C@@H](CC=3C=CC=CC=3)C(=O)OC2)=O)=C1OCOC(=O)C(C)C QGTOTYJSCYHYFK-RBODFLQRSA-N 0.000 description 1
- ATZHVIVDMUCBEY-HOTGVXAUSA-N florylpicoxamid Chemical compound C(C)(=O)OC=1C(=NC=CC=1OC)C(=O)N[C@H](C(=O)O[C@H](C(C1=CC=C(C=C1)F)C1=CC=C(C=C1)F)C)C ATZHVIVDMUCBEY-HOTGVXAUSA-N 0.000 description 1
- ZGNITFSDLCMLGI-UHFFFAOYSA-N flubendiamide Chemical compound CC1=CC(C(F)(C(F)(F)F)C(F)(F)F)=CC=C1NC(=O)C1=CC=CC(I)=C1C(=O)NC(C)(C)CS(C)(=O)=O ZGNITFSDLCMLGI-UHFFFAOYSA-N 0.000 description 1
- MUJOIMFVNIBMKC-UHFFFAOYSA-N fludioxonil Chemical compound C=12OC(F)(F)OC2=CC=CC=1C1=CNC=C1C#N MUJOIMFVNIBMKC-UHFFFAOYSA-N 0.000 description 1
- UFEODZBUAFNAEU-NLRVBDNBSA-N fluoxastrobin Chemical compound C=1C=CC=C(OC=2C(=C(OC=3C(=CC=CC=3)Cl)N=CN=2)F)C=1C(=N/OC)\C1=NOCCO1 UFEODZBUAFNAEU-NLRVBDNBSA-N 0.000 description 1
- IJJVMEJXYNJXOJ-UHFFFAOYSA-N fluquinconazole Chemical compound C=1C=C(Cl)C=C(Cl)C=1N1C(=O)C2=CC(F)=CC=C2N=C1N1C=NC=N1 IJJVMEJXYNJXOJ-UHFFFAOYSA-N 0.000 description 1
- SXSGXWCSHSVPGB-UHFFFAOYSA-N fluxapyroxad Chemical compound FC(F)C1=NN(C)C=C1C(=O)NC1=CC=CC=C1C1=CC(F)=C(F)C(F)=C1 SXSGXWCSHSVPGB-UHFFFAOYSA-N 0.000 description 1
- 235000012055 fruits and vegetables Nutrition 0.000 description 1
- 244000053095 fungal pathogen Species 0.000 description 1
- XMJFVIGTHMOGNZ-AHMUMSBHSA-N glucobrassicanapin Chemical compound OC[C@H]1O[C@@H](S\C(CCCC=C)=N/OS(O)(=O)=O)[C@H](O)[C@@H](O)[C@@H]1O XMJFVIGTHMOGNZ-AHMUMSBHSA-N 0.000 description 1
- PLYQBXHVYUJNQB-IIPHORNXSA-N gluconapin Chemical compound OC[C@H]1O[C@@H](S\C(CCC=C)=N/OS(O)(=O)=O)[C@H](O)[C@@H](O)[C@@H]1O PLYQBXHVYUJNQB-IIPHORNXSA-N 0.000 description 1
- IAJOBQBIJHVGMQ-BYPYZUCNSA-N glufosinate-P Chemical compound CP(O)(=O)CC[C@H](N)C(O)=O IAJOBQBIJHVGMQ-BYPYZUCNSA-N 0.000 description 1
- 210000004209 hair Anatomy 0.000 description 1
- 150000005826 halohydrocarbons Chemical class 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- YWTYJOPNNQFBPC-UHFFFAOYSA-N imidacloprid Chemical compound [O-][N+](=O)\N=C1/NCCN1CC1=CC=C(Cl)N=C1 YWTYJOPNNQFBPC-UHFFFAOYSA-N 0.000 description 1
- 229940056881 imidacloprid Drugs 0.000 description 1
- YTCIYOXHHQLDEI-SNVBAGLBSA-N inpyrfluxam Chemical compound C([C@H](C=12)C)C(C)(C)C2=CC=CC=1NC(=O)C1=CN(C)N=C1C(F)F YTCIYOXHHQLDEI-SNVBAGLBSA-N 0.000 description 1
- DSXOWZNZGWXWMX-UHFFFAOYSA-N ipflufenoquin Chemical compound CC1=NC2=C(F)C(F)=CC=C2C=C1OC1=CC=CC(F)=C1C(C)(C)O DSXOWZNZGWXWMX-UHFFFAOYSA-N 0.000 description 1
- ONUFESLQCSAYKA-UHFFFAOYSA-N iprodione Chemical compound O=C1N(C(=O)NC(C)C)CC(=O)N1C1=CC(Cl)=CC(Cl)=C1 ONUFESLQCSAYKA-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 239000003621 irrigation water Substances 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 239000005910 lambda-Cyhalothrin Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 235000019357 lignosulphonate Nutrition 0.000 description 1
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical class [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000004579 marble Substances 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- ZQEIXNIJLIKNTD-GFCCVEGCSA-N metalaxyl-M Chemical compound COCC(=O)N([C@H](C)C(=O)OC)C1=C(C)C=CC=C1C ZQEIXNIJLIKNTD-GFCCVEGCSA-N 0.000 description 1
- WXUNXXKSYBUHMK-UHFFFAOYSA-N methyl 4-methyl-2-(4-methyl-5-oxo-4-propan-2-yl-1h-imidazol-2-yl)benzoate;methyl 5-methyl-2-(4-methyl-5-oxo-4-propan-2-yl-1h-imidazol-2-yl)benzoate Chemical compound COC(=O)C1=CC=C(C)C=C1C1=NC(C)(C(C)C)C(=O)N1.COC(=O)C1=CC(C)=CC=C1C1=NC(C)(C(C)C)C(=O)N1 WXUNXXKSYBUHMK-UHFFFAOYSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- YLGXILFCIXHCMC-JHGZEJCSSA-N methyl cellulose Chemical compound COC1C(OC)C(OC)C(COC)O[C@H]1O[C@H]1C(OC)C(OC)C(OC)OC1COC YLGXILFCIXHCMC-JHGZEJCSSA-N 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- AMSPWOYQQAWRRM-UHFFFAOYSA-N metrafenone Chemical compound COC1=CC=C(Br)C(C)=C1C(=O)C1=C(C)C=C(OC)C(OC)=C1OC AMSPWOYQQAWRRM-UHFFFAOYSA-N 0.000 description 1
- XUQQRGKFXLAPNV-UHFFFAOYSA-N metyltetraprole Chemical compound CC1=CC=CC(N2C(N(C)N=N2)=O)=C1COC(=N1)C=CN1C1=CC=C(Cl)C=C1 XUQQRGKFXLAPNV-UHFFFAOYSA-N 0.000 description 1
- 108091040857 miR-604 stem-loop Proteins 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 230000002438 mitochondrial effect Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 235000010460 mustard Nutrition 0.000 description 1
- JEFUQUGZXLEHLD-UHFFFAOYSA-N n-[(5-chloro-2-propan-2-ylphenyl)methyl]-n-cyclopropyl-3-(difluoromethyl)-5-fluoro-1-methylpyrazole-4-carboxamide Chemical compound CC(C)C1=CC=C(Cl)C=C1CN(C(=O)C=1C(=NN(C)C=1F)C(F)F)C1CC1 JEFUQUGZXLEHLD-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 229950006238 nadide Drugs 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical class C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 229940042880 natural phospholipid Drugs 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 1
- JOUIQRNQJGXQDC-ZYUZMQFOSA-L nicotinate D-ribonucleotide(2-) Chemical compound O1[C@H](COP([O-])([O-])=O)[C@@H](O)[C@@H](O)[C@@H]1[N+]1=CC=CC(C([O-])=O)=C1 JOUIQRNQJGXQDC-ZYUZMQFOSA-L 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000008723 osmotic stress Effects 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 229910052625 palygorskite Inorganic materials 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- 230000008121 plant development Effects 0.000 description 1
- 230000008635 plant growth Effects 0.000 description 1
- 230000037039 plant physiology Effects 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 239000008262 pumice Substances 0.000 description 1
- HZRSNVGNWUDEFX-UHFFFAOYSA-N pyraclostrobin Chemical compound COC(=O)N(OC)C1=CC=CC=C1COC1=NN(C=2C=CC(Cl)=CC=2)C=C1 HZRSNVGNWUDEFX-UHFFFAOYSA-N 0.000 description 1
- KKEJMLAPZVXPOF-UHFFFAOYSA-N pyraziflumid Chemical compound C1=C(F)C(F)=CC=C1C1=CC=CC=C1NC(=O)C1=NC=CN=C1C(F)(F)F KKEJMLAPZVXPOF-UHFFFAOYSA-N 0.000 description 1
- ZLIBICFPKPWGIZ-UHFFFAOYSA-N pyrimethanil Chemical compound CC1=CC(C)=NC(NC=2C=CC=CC=2)=N1 ZLIBICFPKPWGIZ-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 229940043267 rhodamine b Drugs 0.000 description 1
- 239000003161 ribonuclease inhibitor Substances 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 230000002786 root growth Effects 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 235000003441 saturated fatty acids Nutrition 0.000 description 1
- 230000009758 senescence Effects 0.000 description 1
- 229910052624 sepiolite Inorganic materials 0.000 description 1
- 235000019355 sepiolite Nutrition 0.000 description 1
- 239000003352 sequestering agent Substances 0.000 description 1
- 230000007330 shade avoidance Effects 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- ODCWYMIRDDJXKW-UHFFFAOYSA-N simazine Chemical compound CCNC1=NC(Cl)=NC(NCC)=N1 ODCWYMIRDDJXKW-UHFFFAOYSA-N 0.000 description 1
- 241000894007 species Species 0.000 description 1
- GOLXNESZZPUPJE-UHFFFAOYSA-N spiromesifen Chemical compound CC1=CC(C)=CC(C)=C1C(C(O1)=O)=C(OC(=O)CC(C)(C)C)C11CCCC1 GOLXNESZZPUPJE-UHFFFAOYSA-N 0.000 description 1
- WOPFPAIGRGHWAQ-UHFFFAOYSA-N spiropidion Chemical compound CCOC(=O)OC1=C(C=2C(=CC(Cl)=CC=2C)C)C(=O)N(C)C11CCN(OC)CC1 WOPFPAIGRGHWAQ-UHFFFAOYSA-N 0.000 description 1
- PUYXTUJWRLOUCW-UHFFFAOYSA-N spiroxamine Chemical compound O1C(CN(CC)CCC)COC11CCC(C(C)(C)C)CC1 PUYXTUJWRLOUCW-UHFFFAOYSA-N 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- 125000001174 sulfone group Chemical group 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-N sulfonic acid Chemical class OS(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-N 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- XOAAWQZATWQOTB-UHFFFAOYSA-N taurine Chemical class NCCS(O)(=O)=O XOAAWQZATWQOTB-UHFFFAOYSA-N 0.000 description 1
- NWWZPOKUUAIXIW-FLIBITNWSA-N thiamethoxam Chemical compound [O-][N+](=O)\N=C/1N(C)COCN\1CC1=CN=C(Cl)S1 NWWZPOKUUAIXIW-FLIBITNWSA-N 0.000 description 1
- 230000009974 thixotropic effect Effects 0.000 description 1
- IHNSIFFSNUQGQN-UHFFFAOYSA-N tioxazafen Chemical compound C1=CSC(C=2ON=C(N=2)C=2C=CC=CC=2)=C1 IHNSIFFSNUQGQN-UHFFFAOYSA-N 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 125000002348 vinylic group Chemical group 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/34—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
- A01N43/40—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
Definitions
- succinate dehydrogenase inhibitor Fluopyram for controlling Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in Brassicaceae species
- the invention relates to the use of the succinate dehydrogenase inhibitor Fluopyram for controlling root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in Brassicaceae plants, to a method for treating Brassicaceae plants, plant parts thereof, plant propagation material or the soil in which Brassicaceae plants are grown or intended to be grown for controlling root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species and to a method for controlling root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in Brassicaceae seed and in Brassicaceae plants which grow from the seed, by treating the Brassicaceae .seed with Fluopyram.
- Root rot complex and/or seedling disease complex in Brassicaceae plants caused by Rhizoctonia solani, Fusarium species and Pythium species, is the one of the most economically important disease of canola ( Brassica napus ) in Canada and can cause significant loss of yield, especially for susceptible varieties (Kataria and Verma, Crop Protection (1992), Vol 11, pp 8).
- Rhizoctonia solani Fusarium species and Pythium species also other fungal pathogens may play a role.
- Rhizoctonia solani causing brown girdling root rot causing infections on taproot and lateral roots at or following the onset of flowering is considered to be the most serious root rot disease, with Fusarium subspecies playing a role in secondary infection.
- Important pathogenic anastomosis groups of Rhizoctonia solani are AG2-1 and AG4, other groups are AG2- 2, AG3 and AG5.
- Brassicaceae may be infected by Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species mainly in the seedling stage.
- Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species is of great economic significance in Brassicaceae plant species, in particular in winter and spring oilseed rape and Canola.
- Chemical control of root rot complex employs currently rather old fungicides like carboxin, iprodione, cyproconazole of different mode of action (Kataria and Verma, Crop Protection (1992), Vol 11, pp 8).
- Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in Brassicaceae plants, for example oilseed rape.
- Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species is more preferably to be controlled in Canola.
- WO 2004/16088 discloses derivatives of the pyridinylethylbenzamide fungicides, for example Fluopyram (Example 20), which are utilized against different fungi.
- Fluopyram is known mainly as a foliar fungicide for fruits and vegetables under the brand-name LunaTM sold by Bayer CropScience ihttp://www.cronscience.baver.com/Products-and-
- EP-A 2 100 506 discloses the use of Fluopyram against Rhizoctonia in general but not in the specific context of root rot complex in Brassicaceae. EP-A 2 100 506 also discloses no further details about efficacy or preferred methods how to treat oilseed rape affected.
- WO-A 2010/139410 describes the activity of Fluopyram against Sclerotinia spp. in soybean and oilseed rape.
- WO 2010/086103 describes the activity of Fluopyram against powdery mildew primary infection. More particularly, all documents do not explicitly disclose the suitability of Fluopyram for treatment of Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species, in particular using seed treatment methods.
- the succinate dehydrogenase inhibitor Fluopyram is particularly suitable for control of Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in Brassicaceae plants, plant parts thereof, plant propagation material or the soil in which Brassicaceae plants are grown or intended to be grown, in particular in winter and spring oilseed rape or Canola.
- Fluopyram in the presence of Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species and in plants with known susceptibility to Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species, increases yield of Brassicaceae plants.
- the use of Fluopyram controls the infection in early leaves of Brassicaceae plants, the stem infection in Brassicaceae plants and reduces lodging of Brassicaceae plants.
- Fluopyram offers a different mode of action for controlling or control of Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species being a succinate dehydrogenase inhibitor.
- Fluopyram for control of Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in Canola has been found to be particularly advantageous.
- combinations comprising Fluopyram and a further fungicide can be used for control of Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in Brassicaceae plants.
- the present invention accordingly provides for the use of the succinate dehydrogenase inhibitor Fluopyram for control of Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species.
- the use of the succinate dehydrogenase inhibitor Fluopyram in seed treatment methods for control of Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species is described.
- Fluopyram which has the chemical name N- ⁇ [3-chloro-5-(trifluoromethyl)-2-pyridinyl]ethyl ⁇ -2- trifluoromethylbenzamide and is a compound according to formula (I), and suitable processes for preparation thereof, proceeding from commercially available starting materials, are described in WO 2004/16088.
- control of Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species means a significant reduction in infestation by Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species, compared with the untreated plant, preferably a significant reduction (by 40-79%), compared with the untreated plant (0% infection reduction); more preferably, the infection by Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species is entirely suppressed (by 70-100%).
- the control may be curative, i.e. for treatment of already infected plants, or protective, for protection of plants which have not yet been infected.
- control of Rhizoctonia solani means a significant reduction in infestation by Rhizoctonia solani, compared with the untreated plant, preferably a significant reduction (by 40-79%), compared with the untreated plant (0% infection reduction); more preferably, the infection by Rhizoctonia solani is entirely suppressed (by 70-100%).
- the control may be curative, i.e. for treatment of already infected plants, or protective, for protection of plants which have not yet been infected. Root rot may further be assessed in comparison to standard treatment by assessing the % incidence, so the frequency of infected plants compared to the standard treatment or an untreated control.
- control of Fusarium species means a significant reduction in infestation by Fusarium species, compared with the untreated plant, preferably a significant reduction (by 40- 79%), compared with the untreated plant (0% infection reduction); more preferably, the infection by Fusarium species is entirely suppressed (by 70-100%).
- the control may be curative, i.e. for treatment of already infected plants, or protective, for protection of plants which have not yet been infected.
- Fusarium species may be selected from Fusarium avenaceum, Fusarium graminearum, Fusarium oxysporum, Fusarium solani.
- Root rot may further be assessed in comparison to standard treatment by assessing the % incidence, so the frequency of infected plants compared to the standard treatment or an untreated control. Root rot may also be assessed in comparison to standard treatment by assessing the disease severity index, so evaluating the strength/severeness of the symptoms of infected plants compared to the standard treatment or an untreated control.
- root rot complex also affects the stand of the plants as well as the biomass, in order to assess root rot the stand counts in comparison to untreated controls or standard treatments as well as the normalized difference vegetation index may be used in comparison to untreated controls or standard treatments.
- “lodging” refers to the bending or falling over of the stem of the Brassicaceae plants. It can be measured for example as the degree of lean to the lower stem of a plant or by visual assessment of plants in an area.
- a healthy population of Brassicaceae plants may be less affected by lodging. Lodging is expressed on a relative scale from 1 to 5 with 5 being heavy lodging.
- a plant is preferably understood to mean a plant at or after the stage of leaf development (at or after BBCH stage 10 according to the BBCH monograph from the German Federal Biological Research Centre for Agriculture and Forestry, 2nd edition, 2001).
- the term "plant” is also understood to mean seed or seedlings.
- Fluopyram or compositions comprising Fluopyram is carried out directly or by acting on the environment, habitat or storage space using customary treatment methods, for example by dipping, spraying, atomizing, misting, evaporating, dusting, fogging, scattering, foaming, painting on, spreading, injecting, drenching, trickle irrigation and, in the case of propagation material, in particular in the case of seed, furthermore by the dry seed treatment method, the wet seed treatment method, the slurry treatment method, by encrusting, by coating with one or more coats and the like. It is furthermore possible to apply the active substances by the ultra-low volume method or to inject the active substance preparation or the active substance itself into the soil.
- a direct treatment of the plants is the leaf application treatment or foliar application, i.e. Fluopyram or compositions comprising Fluopyram are applied to the foliage, it being possible for the treatment frequency and the application rate to be matched to the infection pressure of the Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in question.
- a preferred direct treatment of the plants is the soil application treatment, i.e. Fluopyram or compositions comprising Fluopyram are applied to the soil wherein the Brassicaceae plant or plant part is growing in, it being possible for the treatment frequency and the application rate to be matched to the infection pressure of the Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in question.
- a preferred direct treatment of the plants is the seed application treatment, i.e. Fluopyram or compositions comprising Fluopyram are applied to the seed of Brassicaceae plant or plant part, it being possible for the treatment frequency and the application rate to be matched to the infection pressure of the Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in question.
- Fluopyram or compositions comprising Fluopyram reach the plants via the root system.
- the treatment of the plants is effected by allowing Fluopyram or compositions comprising Fluopyram to act on the environment of the plant. This can be done for example by drenching, incorporating in the soil or into the nutrient solution, i.e. the location of the plant (for example the soil or hydroponic systems) is impregnated with a liquid form of Fluopyram or compositions comprising Fluopyram, or by soil application, i.e. the Fluopyram or compositions comprising Fluopyram are incorporated into the location of the plants in solid form (for example in the form of granules).
- the inventive use exhibits the advantages described on Brassicaceae plants, plant parts thereof, plant propagation material or the soil in which Brassicaceae plants are grown or intended to be grown in spray application, in seed treatment, in drip and drench applications, in-furrow application, chemigation, i.e. by addition of Fluopyram to the irrigation water, and in hydroponic/mineral systems.
- Fluopyram with substances including insecticides, fungicides and bactericides, fertilizers, growth regulators, can likewise find use in the control of plant diseases in the context of the present invention.
- Fluopyram is effected preferably with a dosage between 0.01 and 3 kg/ha, more preferably between 0.05 and 2 kg/ha, very preferably between 0.1 and 1 kg/ha, most preferably between 0.1 and 1 kg/ha.
- Fluopyram is effected preferably for spray application with a dosage between 0.005 and 500 g/ha, between 0.01 and 350 g/ha, between 0.01 and 250 g/ha, 0.02 and 100 g/ha, between 1 and 80 g/ha, between 5 and 80 g/ha, between 10 and 50 g/ha, or between 0.02 and 0.05 g/ha.
- Fluopyram is effected preferably for in-furrow application with a dosage between 0.005 and 500 g/ha, between 0.01 and 350 g/ha, between 0.01 and 250 g/ha, 0.02 and 100 g/ha, between 1 and 80 g/ha, between 5 and 80 g/ha, between 10 and 50 g/ha, or between 0.02 and 0.05 g/ha.
- Fluopyram is effected preferably for drip and drench application with a dosage between 0.005 and 500 g/ha, between 0.01 and 350 g/ha, between 0.01 and 250 g/ha, 0.02 and 100 g/ha, between 1 and 80 g/ha, between 5 and 80 g/ha, between 10 and 50 g/ha, or between 0.02 and 0.05 g/ha.
- Fluopyram is effected preferably for chemigation with a dosage between 0.005 and 500 g/ha, between 0.01 and 350 g/ha, between 0.01 and 250 g/ha, 0.02 and 100 g/ha, between 1 and 80 g/ha, between 5 and 80 g/ha, between 10 and 50 g/ha, or between 0.02 and 0.05 g/ha.
- the present invention therefore relates more particularly also to a method for treating seed to control Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in Brassicaceae plants by treating the Brassicaceae plants between BBCH stage 5 and 29.
- a method for treating seed to control Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in canola plants by treating the Brassicaceae plants between BBCH stage 5 and 29.
- a method for treating seed to control Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in canola hybrid plants by treating the Brassicaceae plants between BBCH stage 5 and 29.
- a method for treating seed to control Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in herbicide tolerant canola hybrid plants by treating the Brassicaceae plants between BBCH stage 5 and 29.
- fungicidal compositions comprising Fluopyram are described which further comprise agriculturally suitable auxiliaries, solvents, carriers, surfactants or extenders.
- a carrier is a natural or synthetic, organic or inorganic substance with which the active ingredients are mixed or combined for better applicability, in particular for application to plants or plant parts or seed.
- the carrier which may be solid or liquid, is generally inert and should be suitable for use in agriculture.
- Useful solid carriers include: for example ammonium salts and natural rock flours, such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and synthetic rock flours, such as finely divided silica, alumina and silicates; useful solid carriers for granules include: for example, crushed and fractionated natural rocks such as calcite, marble, pumice, sepiolite and dolomite, and also synthetic granules of inorganic and organic flours, and granules of organic material such as paper, sawdust, coconut shells, maize cobs and tobacco stalks; useful emulsifiers and/or foam-formers include: for example non-ionic and anionic emulsifiers, such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkylsulphonates, alkyl sulphates, ary
- oligo- or polymers for example those derived from vinylic monomers, from acrylic acid, from EO and/or PO alone or in combination with, for example, (poly)alcohols or (poly)amines. It is also possible to use lignin and its sulphonic acid derivatives, unmodified and modified celluloses, aromatic and/or aliphatic sulphonic acids and also their adducts with formaldehyde.
- Fluopyram can be converted to the customary formulations, such as solutions, emulsions, wettable powders, water- and oil-based suspensions, powders, dusts, pastes, soluble powders, soluble granules, granules for broadcasting, suspoemulsion concentrates, natural products impregnated with active ingredient, synthetic substances impregnated with active ingredient, fertilizers and also micro encapsulations in polymeric substances.
- solutions emulsions, wettable powders, water- and oil-based suspensions, powders, dusts, pastes, soluble powders, soluble granules, granules for broadcasting, suspoemulsion concentrates, natural products impregnated with active ingredient, synthetic substances impregnated with active ingredient, fertilizers and also micro encapsulations in polymeric substances.
- Fluopyram can be applied as such, in the form of its formulations or the use forms prepared therefrom, such as ready-to-use solutions, emulsions, water- or oil-based suspensions, powders, wettable powders, pastes, soluble powders, dusts, soluble granules, granules for broadcasting, suspoemulsion concentrates, natural products impregnated with active ingredient, synthetic substances impregnated with active ingredient, fertilizers and also microencapsulations in polymeric substances.
- Application is accomplished in a customary manner, for example by watering, spraying, atomizing, broadcasting, dusting, foaming, spreading-on and the like. It is also possible to deploy the active ingredients by the ultra-low volume method or to inject the active ingredient preparation/the active ingredient itself into the soil. It is also possible to treat the seed of the plants.
- the formulations mentioned can be prepared in a manner known per se, for example by mixing the active ingredients with at least one customary extender, solvent or diluent, emulsifier, dispersant and/or binder or fixing agent, wetting agent, a water repellent, if appropriate siccatives and UV stabilizers and if appropriate dyes and pigments, antifoams, preservatives, secondary thickeners, stickers, gibberellins and also other processing auxiliaries.
- the present invention includes not only formulations which are already ready for use and can be deployed with a suitable apparatus to the plant or the seed, but also commercial concentrates which have to be diluted with water prior to use.
- Fluopyram may be present as such or in its (commercial) formulations and in the use forms prepared from these formulations as a mixture with other (known) active ingredients, such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides, fertilizers, safeners and/or semiochemicals.
- active ingredients such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides, fertilizers, safeners and/or semiochemicals.
- auxiliaries used may be those substances which are suitable for imparting particular properties to the composition itself or and/or to preparations derived therefrom (for example spray liquors, seed dressings), such as certain technical properties and/or also particular biological properties.
- Typical auxiliaries include: extenders, solvents and carriers.
- Suitable extenders are, for example, water, polar and nonpolar organic chemical liquids, for example from the classes of the aromatic and nonaromatic hydrocarbons (such as paraffins, alkylbenzenes, alkylnaphthalenes, chlorobenzenes), the alcohols and polyols (which may optionally also be substituted, etherified and/or esterified), the ketones (such as acetone, cyclohexanone), esters (including fats and oils) and (poly)ethers, the unsubstituted and substituted amines, amides, lactams (such as N-alkylpyrrolidones) and lactones, the sulphones and sulphoxides (such as dimethyl sulphoxide).
- aromatic and nonaromatic hydrocarbons such as paraffins, alkylbenzenes, alkylnaphthalenes, chlorobenzenes
- the alcohols and polyols which may optionally also
- Liquefied gaseous extenders or carriers are understood to mean liquids which are gaseous at standard temperature and under standard pressure, for example aerosol propellants such as halohydro carbons, or else butane, propane, nitrogen and carbon dioxide.
- tackifiers such as carboxymethylcellulose, natural and synthetic polymers in the form of powders, granules or latices, such as gum arabic, polyvinyl alcohol and polyvinyl acetate, or else natural phospholipids such as cephalins and lecithins and synthetic phospholipids.
- Further additives may be mineral and vegetable oils.
- Useful liquid solvents are essentially: aromatics such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylenes or methylene chloride, aliphatic hydrocarbons such as cyclohexane or paraffins, for example petroleum fractions, alcohols such as butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethylformamide and dimethyl sulphoxide, or else water.
- aromatics such as xylene, toluene or alkylnaphthalenes
- chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylenes or methylene chloride
- aliphatic hydrocarbons such as
- Compositions comprising Fluopyram may additionally comprise further components, for example surfactants.
- surfactants are emulsifiers and/or foam formers, dispersants or wetting agents having ionic or nonionic properties, or mixtures of these surfactants.
- Examples thereof are salts of polyacrylic acid, salts of lignosulphonic acid, salts of phenolsulphonic acid or naphthalenesulphonic acid, polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, substituted phenols (preferably alkylphenols or arylphenols), salts of sulphosuccinic esters, taurine derivatives (preferably alkyl taurates), phosphoric esters of polyethoxylated alcohols or phenols, fatty esters of polyols, and derivatives of the compounds containing sulphates, sulphonates and phosphates, for example alkylaryl polyglycol ethers, alkylsulphonates, alkyl sulphates, arylsulphonates, protein hydrolysates, lignosulphite waste liquors and methylcellulose.
- the presence of a surfactant is necessary if one of the active ingredients and/or one of the inert
- Further additives may be perfumes, mineral or vegetable, optionally modified oils, waxes and nutrients (including trace nutrients), such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
- Additional components may be stabilizers, such as cold stabilizers, preservatives, antioxidants, light stabilizers, or other agents which improve chemical and/or physical stability. If appropriate, other additional components may also be present, for example protective colloids, binders, adhesives, thickeners, thixotropic substances, penetrants, stabilizers, sequestering agents, complex formers.
- the active ingredients can be combined with any solid or liquid additive commonly used for formulation purposes.
- the formulations contain generally between 0.05 and 99% by weight, 0.01 and 98% by weight, preferably between 0.1 and 95% by weight, more preferably between 0.5 and 90% of active ingredient, most preferably between 10 and 70 per cent by weight.
- formulations of Fluopyram comprise 300 to 700 g/L Fluopyram as an SC or FS formulation, preferably 380 to 600 g/L Fluopyram.
- the formulations described above can be used for control of Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species, in which the compositions comprising Fluopyram are applied to Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species and/or in their habitat.
- Fluopyram may be present in their commercially available formulations and in the use forms, prepared from these formulations, as a mixture with other active ingredients, such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides, safeners, fertilizers or semiochemicals.
- active ingredients such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides, safeners, fertilizers or semiochemicals.
- Fluopyram may be present in their commercially available formulations and in the use forms, prepared from these formulations, as a mixture with one or more active ingredients selected from the group of prothioconazole, tebuconazole, epoxiconazole, difenoconazole, fluquinconazole, flutriafol, azoxystrobin, trifloxystrobin, fluoxastrobin, fludioxonil, metalaxyl, mefenoxam, pyraclostrobin, pyrimethanil, chlorothalonil, spiroxamine, bixafen, penflufen, fluxapyroxad, boscabd, benzovindiflupyr, sedaxane, isopyrazam, metalaxyl, metrafenone, tioxazafen, imidacloprid, clothianidin, thiacloprid, thiamethoxam, rynaxapyr,
- plants and plant parts can be treated.
- plants are meant all plants and plant populations such as desirable and undesirable wild plants, cultivars and plant varieties (whether or not protectable by plant variety or plant breeder’s rights).
- Cultivars and plant varieties can be plants obtained by conventional propagation and breeding methods which can be assisted or supplemented by one or more biotechnological methods such as by use of double haploids, protoplast fusion, random and directed mutagenesis, molecular or genetic markers or by bioengineering and genetic engineering methods.
- plant parts are meant all above ground and below ground parts and organs of plants such as shoot, leaf, blossom and root, whereby for example leaves, needles, stems, branches, blossoms, fruiting bodies, fruits and seed as well as roots, conns and rhizomes are listed.
- Crops and vegetative and generative propagating material for example cuttings, conns, rhizomes, runners, slips and seeds also belong to plant parts.
- crop plants belonging to the plant family Brassicaceae are Brassica plants.
- cultivars and varieties belonging to the plant genus Brassica are
- Brassica carinata Abyssinian mustard or Abyssinian cabbage
- Brassica elongata elongated mustard
- Brassica fruticulosa Mediterranean cabbage
- Brassica juncea Indian mustard, brown and leaf mustards, Sarepta mustard
- Brassica napus comprising winter rapeseed, spring rapeseed, rutabaga ( Brassica napus subsp rapifera swede/Swedish tumip/swede turnip)
- Brassica narinosa broadbeaked mustard
- Brassica nigra black mustard
- Brassica oleracea comprising cultivars like kale, cabbage, broccoli, cauliflower, kai-lan, Brussels sprouts, kohlrabi
- Brassica perviridis tender green, mustard spinach
- Brassica rapa (syn B. c ampestris) comprising Chinese cabbage, turnip, rapini, komatsuna Brassica rapes tris: brown mustard Brassica septiceps : seventop turnip Brassica toumefortii: Asian mustard Brassica alba (syn Sinapis alba, white mustard)
- an oilseed plant must meet the following internationally regulated standard: "Seeds of the genus Brassica ( Brassica napus, Brassica rapa or Brassica juncea) from which the oil shall contain less than 2% erucic acid in its fatty acid profile and the solid component shall contain less than 30 micromoles of any one or any mixture of 3-butenyl glucosinolate, 4-pentenyl glucosinolate, 2-hydro xy-3 butenyl glucosinolate, and 2-hydroxy- 4-pentenyl glucosinolate per gram of air-dry, oil-free solid.”
- Further preferred crop plants belonging to the plant family Brassicaceae are horseradish (Armoracia rusticana), radish (e.g. Raphanus sativus var. oleiformis, Raphanus sativus L. var. sativus.
- Brassica plants, plant parts or seeds are oilseed rape plants, plant parts or seeds ( Brassica napus), Canola plants, plant parts or seeds or Brassica juncea plants, plant parts or seeds; more preferred winter oilseed rape plants, plant parts or seeds ( Brassica napus), spring oilseed rape plants, plant parts or seeds or Canola, plant parts or seeds.
- Brassica napus or juncea plants, plant parts or seeds are hybrid plants, plant parts or seeds .
- Brassica napus or juncea hybrids are Ogura hybrids, Ms8/Rf3 hybrids (marketed under the tradename Invigor) or Msl 1/RF3 hybrids.
- the Brassica napus or juncea plants, plant parts or seeds are tolerant to one or more of the herbicides selected from the group of glufosinate, glyphosate (tradename RoundupReady), imazamethabenz, imazamethabenz-methyl, imazamox, imazamox-ammonium, imazapic, imazapic- ammonium, imazapyr, imazapyr-isopropyl-ammonium, imazaquin, imazaquin-ammonium, imazethapyr, imazethapyr-ammonium, atrazine, simazine.
- the herbicides selected from the group of glufosinate, glyphosate (tradename RoundupReady), imazamethabenz, imazamethabenz-methyl, imazamox, imazamox-ammonium, imazapic, imazapic- ammonium, imazapyr, imazapyr-isopropyl-ammonium, imazaquin, imazaquin-am
- growth stage refers to the growth stages as defined by the BBCH Codes in "Growth stages of mono- and dicotyledonous plants", 2nd edition 2001, edited by Uwe Meier from the Federal Biological Research Centre for Agriculture and Forestry.
- the BBCH codes are a well-established system for a uniform coding of phonologically similar growth stages of all mono- and dicotyledonous plant species.
- the abbreviation BBCH derives from "Bisammlungtician, Bundessortenamt und Chemische Industrie”.
- Plant cultivars are understood to mean plants which have new properties ("traits") and which have been obtained by conventional breeding, by mutagenesis or with the aid of recombinant DNA techniques.
- Crop plants may accordingly be plants which can be obtained by conventional breeding and optimization methods or by biotechnology and genetic engineering methods or combinations of these methods, including the transgenic plants and including the plant varieties which can and cannot be protected by plant variety rights.
- GMOs genetically modified organisms
- Genetically modified plants are plants in which a heterologous gene has been integrated stably into the genome.
- heterologous gene means essentially a gene which is provided or assembled outside the plant and which, on introduction into the cell nucleus genome, imparts new or improved agronomic or other properties to the chloroplast genome or the mitochondrial genome of the transformed plant by virtue of it expressing a protein or polypeptide of interest or by virtue of another gene which is present in the plant, or other genes which are present in the plant, being downregulated or silenced (for example by means of antisense technology, co-suppression technology or RNAi technology [RNA interference]).
- a heterologous gene present in the genome is likewise referred to as a transgene.
- a transgene which is defined by its specific presence in the plant genome is referred to as a transformation or transgenic event.
- Plants and plant cultivars which are preferably treated according to the invention include all plants which have genetic material which imparts particularly advantageous, useful traits to these plants (whether obtained by breeding and/or biotechnological means).
- Plants and plant cultivars which may also be treated in according to invention are those plants which are resistant to one or more abiotic stresses.
- Abiotic stress conditions may include, for example, drought, cold temperature exposure, heat exposure, osmotic stress, flooding, increased soil salinity, increased mineral exposure, ozone exposure, high light exposure, limited availability of nitrogen nutrients, limited availability of phosphorus nutrients or shade avoidance.
- Plants and plant cultivars which may also be treated according to the invention are those plants characterized by enhanced yield characteristics.
- Increased yield in said plants can be the result of, for example, improved plant physiology, growth and development, such as water use efficiency, water retention efficiency, improved nitrogen use, enhanced carbon assimilation, improved photosynthesis, increased germination efficiency and accelerated maturation.
- Yield can furthermore be affected by improved plant architecture (under stress and non-stress conditions), including but not limited to early flowering, flowering control for hybrid seed production, seedling vigour, plant size, intemode number and distance, root growth, seed size, fruit size, pod size, pod or ear number, seed number per pod or ear, seed mass, enhanced seed filling, reduced seed dispersal, reduced pod dehiscence and lodging resistance.
- Further yield traits include seed composition, such as carbohydrate content, protein content, oil content and composition, nutritional value, reduction in anti- nutritional compounds, improved processability and better storage stability.
- Plants that may also be treated according to the invention are hybrid plants that already express the characteristic of heterosis or hybrid vigour which generally results in higher yield, vigour, health and resistance towards biotic and abiotic stress factors. Such plants are typically made by crossing an inbred male-sterile parent line (the female parent) with another inbred male-fertile parent line (the male parent). Hybrid seed is typically harvested from the male sterile plants and sold to growers. Male sterile plants can sometimes (e.g. in maize) be produced by detasseling, i.e. the mechanical removal of the male reproductive organs (or male flowers), but, more typically, male sterility is the result of genetic determinants in the plant genome.
- cytoplasmatic male sterility were for instance described in Brassica species (WO 1992/005251, WO 1995/009910, WO 1998/27806, WO 2005/002324, WO 2006/021972 and US 6,229,072).
- male-sterile plants can also be obtained by plant biotechnology methods such as genetic engineering.
- a particularly useful means of obtaining male-sterile plants is described in WO 89/10396, in which, for example, a ribonuclease such as bamase is selectively expressed in the tapetum cells in the stamens. Fertility can then be restored by expression in the tapetum cells of a ribonuclease inhibitor such as barstar (e.g. WO 1991/002069).
- Plants or plant cultivars which may likewise be treated according to the invention are herbicide-tolerant plants, i.e. plants made tolerant to one or more given herbicides. Such plants can be obtained either by genetic transformation, or by selection of plants containing a mutation imparting such herbicide tolerance.
- Herbicide-tolerant plants are for example glyphosate-tolerant plants, i.e. plants made tolerant to the herbicide glyphosate or salts thereof.
- glyphosate-tolerant plants can be obtained by transforming the plant with a gene encoding the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS).
- EPSPS 5-enolpyruvylshikimate-3-phosphate synthase
- EPSPS genes are the AroA gene (mutant CT7) of the bacterium Salmonella typhimurium (Comai et al., Science (1983), 221, 370-371), the CP4 gene of the bacterium Agrobacterium sp. (Barry et al., Curr. Topics Plant Physiol. (1992), 7, 139-145), the genes encoding a petunia EPSPS (Shah et al., Science (1986), 233, 478-481), a tomato EPSPS (Gasser et al., J. Biol. Chem. (1988), 263, 4280-4289) or an Eleusine EPSPS (WO 2001/66704).
- Glyphosate-tolerant plants can also be obtained by expressing a gene that encodes a glyphosate oxidoreductase enzyme as described in US 5,776,760 and US 5,463,175.
- Glyphosate-tolerant plants can also be obtained by expressing a gene that encodes a glyphosate acetyl transferase enzyme as described, for example, in WO 2002/036782, WO 2003/092360, WO 2005/012515 and WO 2007/024782.
- Glyphosate-tolerant plants can also be obtained by selecting plants containing naturally occurring mutations of the above-mentioned genes as described, for example, in WO 2001/024615 or WO 2003/013226.
- herbicide-resistant plants are for example plants that have been made tolerant to herbicides inhibiting the enzyme glutamine synthase, such as bialaphos, phosphinothricin or glufosinate.
- Such plants can be obtained by expressing an enzyme detoxifying the herbicide or a mutant glutamine synthase enzyme that is resistant to inhibition.
- One such efficient detoxifying enzyme is, for example, an enzyme encoding a phosphinothricin acetyltransferase (such as the bar or pat protein from Streptomyces species).
- Plants expressing an exogenous phosphinothricin acetyltransferase are for example described in US 5,561,236; US 5,648,477; US 5,646,024; US 5,273,894; US 5,637,489; US 5,276,268; US 5,739,082; US 5,908,810 and US 7,112,665.
- hydroxyphenylpyruvatedioxygenase HPPD
- Hydroxyphenylpyruvatedioxygenases are enzymes that catalyse the reaction in which para-hydroxyphenylpyruvate (HPP) is transformed into homogentisate.
- Plants tolerant to HPPD-inhibitors can be transformed with a gene encoding a naturally occurring resistant HPPD enzyme, or a gene encoding a mutated HPPD enzyme according to WO 1996/038567, WO 1999/024585 and WO 1999/024586.
- Tolerance to HPPD inhibitors can also be obtained by transforming plants with genes encoding certain enzymes enabling the formation of homogentisate despite the inhibition of the native HPPD enzyme by the HPPD inhibitor. Such plants and genes are described in WO 1999/034008 and WO 2002/36787. Tolerance of plants to HPPD inhibitors can also be improved by transforming plants with a gene encoding an enzyme prephenate dehydrogenase in addition to a gene encoding an HPPD-tolerant enzyme, as described in WO 2004/024928.
- ALS-inhibitors include, for example, sulphonylurea, imidazolinone, triazolopyrimidines, pyrimidinyloxy(thio)benzoates, and/or sulphonylaminocarbonyltriazolinone herbicides.
- ALS enzyme also known as acetohydroxyacid synthase, AHAS
- AHAS acetohydroxyacid synthase
- plants tolerant to imidazolinone and/or sulphonylurea can be obtained by induced mutagenesis, selection in cell cultures in the presence of the herbicide or by mutation breeding as described for example for soya beans in US 5,084,082, for rice in WO 1997/41218, for sugar beet in US 5,773,702 and WO 1999/057965, for letuce in US 5,198,599 or for sunflower in WO 2001/065922.
- Plants or plant cultivars obtained by plant biotechnology methods such as genetic engineering which may also be treated according to the invention are insect-resistant transgenic plants, i.e. plants made resistant to atack by certain target insects. Such plants can be obtained by genetic transformation, or by selection of plants containing a mutation imparting such insect resistance.
- insect-resistant transgenic plant includes any plant containing at least one transgene comprising a coding sequence encoding:
- an insecticidal crystal protein from Bacillus thuringiensis or an insecticidal portion thereof such as the insecticidal crystal proteins listed by Crickmore et ah, Microbiology and Molecular Biology Reviews (1998), 62, 807-813, updated by Crickmore et al. (2005) in the Bacillus thuringiensis toxin nomenclature, online at: http://www.bfesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/), or insecticidal portions thereof, e.g. proteins of the Cry protein classes CrylAb, CrylAc, CrylF, Cry2Ab, Cry3Ae or Cry3Bb or insecticidal portions thereof; or
- a crystal protein from Bacillus thuringiensis or a portion thereof which is insecticidal in the presence of a second other crystal protein from Bacillus thuringiensis or a portion thereof, such as the binary toxin made up of the Cy34 and Cy35 crystal proteins (Moellenbeck et al., Nat. Biotechnol. (2001), 19, 668-72; Schnepf et al., Applied Environm. Microb. (2006), 71, 1765-1774); or
- a hybrid insecticidal protein comprising parts of two different insecticidal crystal proteins from Bacillus thuringiensis, such as a hybrid of the proteins of 1) above or a hybrid of the proteins of 2) above, e.g. the CrylA.105 protein produced by maize event MON98034 (WO 2007/027777); or 4) a protein of any one of points 1) to 3) above wherein some, particularly 1 to 10, amino acids have been replaced by another amino acid to obtain a higher insecticidal activity to a target insect species, and/or to expand the range of target insect species affected, and/or because of changes induced in the encoding DNA during cloning or transformation, such as the Cry3Bbl protein in maize events MON863 or MON88017, or the Cry3A protein in maize event MIR604; or
- VIP vegetative insecticidal proteins
- a secreted protein from Bacillus thuringiensis or Bacillus cereus which is insecticidal in the presence of a second secreted protein from Bacillus thuringiensis or B. cereus, such as the binary toxin made up of the VIP1A and VIP2A proteins (WO 1994/21795); or
- a hybrid insecticidal protein comprising parts from different secreted proteins from Bacillus thuringiensis or Bacillus cereus, such as a hybrid of the proteins in 1) above or a hybrid of the proteins in 2) above; or
- 8) a protein of any one of points 1) to 3) above wherein some, particularly 1 to 10, amino acids have been replaced by another amino acid to obtain a higher insecticidal activity to a target insect species, and/or to expand the range of target insect species affected, and/or because of changes induced in the encoding DNA during cloning or transformation (while still encoding an insecticidal protein), such as the VIP3Aa protein in cotton event COT102.
- insect-resistant transgenic plants also include any plant comprising a combination of genes encoding the proteins of any one of the abovementioned classes 1 to 8.
- an insect-resistant plant contains more than one transgene encoding a protein of any one of the abovementioned classes 1 to 8, to expand the range of target insect species affected or to delay insect resistance development to the plants, by using different proteins insecticidal to the same target insect species but having a different mode of action, such as binding to different receptor binding sites in the insect.
- Plants or plant cultivars which may also be treated according to the invention are tolerant to abiotic stress factors. Such plants can be obtained by genetic transformation, or by selection of plants containing a mutation imparting such stress resistance.
- Particularly useful stress-tolerant plants include: a. plants which contain a transgene capable of reducing the expression and/or the activity of the poly(ADP-ribose)polymerase (PARP) gene in the plant cells or plants as described in WO 2000/004173 or EP 04077984.5 or EP 06009836.5; b.
- PARP poly(ADP-ribose)polymerase
- Plants or plant cultivars which may also be treated according to the invention are plants, such as oilseed rape or related Brassica plants, with altered oil profile characteristics.
- Such plants can be obtained by genetic transformation or by selection of plants containing a mutation imparting such altered oil characteristics and include: a) plants, such as oilseed rape plants, producing oil having a high oleic acid content, as described, for example, in US 5,969,169, US 5,840,946 or US 6,323,392 or US 6,063,947; b) plants, such as oilseed rape plants, producing oil having a low linolenic acid content, as described in US 6,270828, US 6,169,190 or US 5,965,755. c) plants, such as oilseed rape plants, producing oil having a low level of saturated fatty acids, as described, for example, in US 5,434,283.
- the Brassica napus or Brassica juncea plants or cultivars are also understood to be hybrids. Of particular interest are spring or winter oilseed rape, especially Canola hybrids. These hybrids may have in addition new properties (“traits”), which may have been obtained by conventional biological breeding methods, such as crossing or protoplast fusion. In a further preferred embodiment, transgenic plants and plant cultivars of Brassicaceae are obtained by genetic engineering, if appropriate in combination with conventional methods (Genetically Modified Organisms).
- Particularly useful transgenic Brassicaceae plants are plants containing transformation events, or a combination of transformation events, and that are listed for example in the databases for various national or regional regulatory agencies including Event BLR1 (oilseed rape, restoration of male sterility, deposited as NCIMB 41193, described in WO 2005/074671), Event MON88302 (oilseed rape, herbicide tolerance, deposited as PTA-10955, described in WO 2011/153186), Event MS11 (oilseed rape, pollination control - herbicide tolerance, deposited as ATCC PTA-850 or PTA-2485, described in WO 01/031042); Event MS8 (oilseed rape, pollination control - herbicide tolerance, deposited as ATCC PTA-730, described in WO 01/041558 or US-A 2003-188347); Event RF3 (oilseed rape, pollination control - herbicide tolerance, deposited as ATCC PTA-730, described in WO 01/041558 or US-A
- Foliar treatment of plants has been known for a long time and is the subject of constant improvements. It is additionally desirable to optimize the amount of Fluopyram used in such a way as to provide the best possible protection for the plant, and all parts thereof from attack by Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species, but without damaging the Brassicaceae plant itself by the active ingredient used.
- the present invention therefore relates more particularly also to a method for foliar treatment to control Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in Brassicaceae plants by treating the Brassicaceae foliage with Fluopyram.
- a method for treating foliage of the plant to control Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in Brassicaceae plants between BBCH stage 19 to 49 by treating the Brassicaceae foliage with Fluopyram in another embodiment a method for treating foliage of the plant to control Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in Brassicaceae plants between BBCH stage 19 to 49 by treating the Brassicaceae foliage with Fluopyram.
- a method for treating seed to control Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in Brassica napus plants between BBCH stage 19 to 49 by treating the Brassica napus foliage with Fluopyram in another embodiment a method for treating seed to control Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in Brassica napus plants between BBCH stage 19 to 49 by treating the Brassica napus foliage with Fluopyram.
- a method for treating seed to control Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in canola plants between BBCH stage 19 to 49 by treating the canola plant foliage with Fluopyram in another embodiment a method for treating seed to control Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in canola plants between BBCH stage 19 to 49 by treating the canola plant foliage with Fluopyram.
- a method for treating foliage of the plant to control Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in Brassicaceae plants between BBCH stage 19 to 39 by treating the Brassicaceae foliage with Fluopyram In another embodiment a method for treating seed to control Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in Brassica napus plants between BBCH stage 19 to 39 by treating the Brassica napus foliage with Fluopyram.
- a method for treating foliage of the plant to control Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in Brassicaceae plants between BBCH stage 19 to 29 by treating the Brassicaceae foliage with Fluopyram in another embodiment a method for treating foliage of the plant to control Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in Brassicaceae plants between BBCH stage 19 to 29 by treating the Brassicaceae foliage with Fluopyram.
- a method for treating seed to control Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in Brassica napus plants between BBCH stage 19 to 29 by treating the Brassica napus foliage with Fluopyram in another embodiment a method for treating seed to control Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in Brassica napus plants between BBCH stage 19 to 29 by treating the Brassica napus foliage with Fluopyram.
- a method for treating seed to control Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in canola plants between BBCH stage 19 to 29 by treating the canola plant foliage with Fluopyram in another embodiment a method for treating seed to control Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in canola plants between BBCH stage 19 to 29 by treating the canola plant foliage with Fluopyram.
- a method for treating foliage of the plant to control Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in Brassicaceae plants between BBCH stage 21 to 29 by treating the Brassicaceae foliage with Fluopyram In another embodiment a method for treating seed to control Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in Brassica napus plants between BBCH stage 21 to 29 by treating the Brassica napus foliage with Fluopyram.
- a method for treating seed to control Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in canola plants between BBCH stage 21 to 29 by treating the canola plant foliage with Fluopyram in another embodiment a method for treating seed to control Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in canola plants between BBCH stage 21 to 29 by treating the canola plant foliage with Fluopyram.
- the invention likewise relates to the use of Fluopyram for treatment of foliage to control Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in the seed, the germinating plant, the foliage and the plants or plant parts which grow therefrom.
- One of the advantages of the present invention is that, owing to the particular systemic properties of Fluopyram, the treatment of the foliage with Fluopyram, enables not only the control of Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species on the foliage itself, but also on the complete plants. In this way, the immediate treatment of the crop at the time of sowing or shortly thereafter can be dispensed with.
- Fluopyram can especially also be used in transgenic seed. Fluopyram, is applied to the foliage alone or in a suitable formulation.
- Fluopyram can be applied directly, i.e. without containing any further components and without having been diluted. In general, it is preferable to apply Fluopyram, to the seed in the form of a suitable formulation. Suitable formulations and methods for seed treatment are known to those skilled in the art and are described, for example, in the following documents: US 4,272,417 A, US 4,245,432 A, US 4,808,430 A, US 5,876,739 A, US 2003/0176428 Al, WO 2002/080675 Al, WO 2002/028186 A2. Fluopyram can be converted to the customary seed dressing formulations, such as solutions, emulsions, suspensions, powders, foams, slurries or other coating materials for seed, and also ULV formulations.
- formulations are produced in a known manner, by mixing the active ingredients or active ingredient combinations with customary additives, for example customary extenders and solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, stickers, gibberellins and also water.
- customary additives for example customary extenders and solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, stickers, gibberellins and also water.
- the foliar treatment formulations usable in accordance with the invention can be used to treat either directly or after preceding dilution with water.
- the foliar treatment preparations usable in accordance with the invention or the dilute preparations thereof can also be used to dress seed of transgenic plants. In this case, it is also possible for additional synergistic effects to occur in interaction with substances formed by expression.
- the application rate of foliar treatment formulations usable in accordance with the invention may vary within a relatively wide range.
- the use of Fluopyram is effected preferably with a dosage between 0.01 and 3 kg/ha, more preferably between 0.05 and 2 kg/ha, very preferably between 0.1 and 1 kg/ha, most preferably between 0.1 and 1 kg/ha.
- the application method is selected from the group comprising of spray application, drip-and-drench application, chemigation. In one embodiment spray application is preferred.
- Fluopyram is effected preferably for spray application with a dosage between 0.005 and 500 g/ha, between 0.01 and 350 g/ha, between 0.01 and 250 g/ha, 0.02 and 100 g/ha, between 1 and 80 g/ha, between 5 and 80 g/ha, between 10 and 50 g/ha, or between 0.02 and 0.05 g/ha.
- Fluopyram is effected preferably for in-furrow application with a dosage between 0.005 and 500 g/ha, between 0.01 and 350 g/ha, between 0.01 and 250 g/ha, 0.02 and 100 g/ha, between 1 and 80 g/ha, between 5 and 80 g/ha, between 10 and 50 g/ha, or between 0.02 and 0.05 g/ha.
- Fluopyram is effected preferably for drip and drench application with a dosage between 0.005 and 500 g/ha, between 0.01 and 350 g/ha, between 0.01 and 250 g/ha, 0.02 and 100 g/ha, between 1 and 80 g/ha, between 5 and 80 g/ha, between 10 and 50 g/ha, or between 0.02 and 0.05 g/ha.
- Fluopyram is effected preferably for chemigation with a dosage between 0.005 and 500 g/ha, between 0.01 and 350 g/ha, between 0.01 and 250 g/ha, 0.02 and 100 g/ha, between 1 and 80 g/ha, between 5 and 80 g/ha, between 10 and 50 g/ha, or between 0.02 and 0.05 g/ha.
- the present invention therefore relates more particularly also to a method for treating seed to control Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in Brassicaceae plants which grow from the seed or seedlings, by treating the Brassicaceae seed with Fluopyram.
- a method for treating seed to control Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in Brassicaceae plants at BBCH stage 10 or later which grow from the seed or seedlings by treating the Brassicaceae seed at BBCH stage 00 with Fluopyram.
- a method for treating seed to control Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in Brassica napus plants at BBCH stage 10 or later which grow from the seed or seedlings by treating the Brassica napus seed at BBCH stage 00 with Fluopyram.
- a method for treating seed to control Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in canola plants at BBCH stage 10 or later which grow from the seed or seedlings by treating the canola seed at BBCH stage 00 with Fluopyram.
- a method for treating seed to control Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in canola hybrid plants at BBCH stage 10 or later which grow from the seed or seedlings by treating the canola hybrid seed at BBCH stage 00 with Fluopyram.
- a method for treating seed to control Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in herbicide tolerant canola hybrid plants at BBCH stage 10 or later which grow from the seed or seedlings by treating the herbicide tolerant canola hybrid seed at BBCH stage 00 with Fluopyram.
- the invention likewise relates to the use of Fluopyram for treatment of seed to control Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species in the seed, the germinating plant and the plants or plant parts which grow therefrom.
- One of the advantages of the present invention is that, owing to the particular systemic properties of Fluopyram, the treatment of the seed with Fluopyram, enables not only the control of Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species on the seed itself, but also on the plants which originate therefrom after emergence. In this way, the immediate treatment of the crop at the time of sowing or shortly thereafter can be dispensed with.
- Fluopyram can especially also be used in transgenic seed.
- Fluopyram is applied to the seed alone or in a suitable formulation.
- the seed is treated in a state in which it is stable enough to avoid damage during treatment.
- the seed may be treated at any time between harvest and sowing.
- the seed typically used has been separated from the plant and freed from cobs, shells, stalks, coats, hairs or the fruit flesh.
- seed which has been harvested, cleaned and dried to a moisture content of less than 15% by weight.
- Fluopyram can be applied directly, i.e. without containing any further components and without having been diluted. In general, it is preferable to apply Fluopyram, to the seed in the form of a suitable formulation. Suitable formulations and methods for seed treatment are known to those skilled in the art and are described, for example, in the following documents: US 4,272,417 A, US 4,245,432 A, US 4,808,430 A, US 5,876,739 A, US 2003/0176428 Al, WO 2002/080675 Al, WO 2002/028186 A2.
- Fluopyram can be converted to the customary seed dressing formulations, such as solutions, emulsions, suspensions, powders, foams, slurries or other coating materials for seed, and also ULV formulations.
- formulations are produced in a known manner, by mixing the active ingredients or active ingredient combinations with customary additives, for example customary extenders and solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, stickers, gibberellins and also water.
- customary additives for example customary extenders and solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, stickers, gibberellins and also water.
- Useful dyes which may be present in the seed dressing formulations usable in accordance with the invention are all dyes customary for such purposes. It is possible to use both sparingly water-soluble pigments and water-soluble dyes. Examples include the dyes known under the Rhodamine B, C.I. Pigment Red 112 and C.I. Solvent Red 1 names.
- the wetting agents which may be present in the seed dressing formulations usable in accordance with the invention include all substances which promote wetting and are customary for formulation of active agrochemical ingredients.
- Usable with preference are alkyl naphthalenesulphonates, such as diisopropyl or diisobutyl naphthalene sulphonate.
- the dispersants and/or emulsifiers which may be present in the seed dressing formulations usable in accordance with the invention include all nonionic, anionic and cationic disperants which are customary for formulation of active agrochemical ingredients. Usable with preference are nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants. Suitable nonionic dispersants include especially ethylene oxide- propylene oxide block polymers, alkylphenol polyglycol ethers and tristyrylphenol polyglycol ethers, and the phosphated or sulphated derivatives thereof. Suitable anionic dispersants are especially ligno sulphonate s, polyacrylic acid salts and arylsulphonate-formaldehyde condensates.
- defoamers which may be present in the seed dressing formulations usable in accordance with the invention include all foam-inhibiting substances customary for formulation of active agrochemical ingredients. Usable with preference are silicone defoamers and magnesium stearate.
- the preservatives which may be present in the seed dressing formulations usable in accordance with the invention include all substances usable for such purposes in agrochemical formulations. Examples include dichlorophene and benzyl alcohol hemiformal.
- Useful secondary thickeners which may be present in the seed dressing formulations usable in accordance with the invention include all substances usable for such purposes in agrochemical formulations.
- Preferred examples include cellulose derivatives, acrylic acid derivatives, xanthan, modified clays and finely divided silica.
- Useful stickers which may be present in the seed dressing formulations usable in accordance with the invention are all customary binders usable in seed dressing compositions.
- Preferred examples include polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and tylose.
- the gibberellins are known (cf. R. Wegler“Chemie der convinced fürschutz- und Schadlingsbekampfungsstoff” [Chemistry of Crop Protection and Pest Control Compositions], vol. 2, Springer Verlag, 1970, p. 401-412).
- the seed dressing formulations usable in accordance with the invention can be used to treat either directly or after preceding dilution with water.
- the seed dressing preparations usable in accordance with the invention or the dilute preparations thereof can also be used to dress seed of transgenic plants. In this case, it is also possible for additional synergistic effects to occur in interaction with substances formed by expression.
- the seed dressing procedure is to introduce the seed into a mixer, to add the particular desired amount of seed dressing formulations, either as such or after preceding dilution with water, and to mix until the formulation is distributed homogeneously on the seed. This may be followed by a drying operation.
- the application rate of seed dressing formulations usable in accordance with the invention may vary within a relatively wide range. It is guided by the particular content of the active ingredients in the formulations and by the seed.
- the application rates of seed treatment compositions comprising Fluopyram are generally between 0.1 and 5000 g per 100 kilogram of seed, preferably between 50 and 1000 g per 100 kilogram of seed, more preferably between 100 and 500 g per 100 kilogram of seed, most preferably between 150 and 400 g per kilogram of seed.
- Fluopyram 600 FS (600 g/L fluopyram) was applied as a seed treatment at 150 and 225 grams of active ingredient /100 kg canola seed in combination with Prosper Evergol (Bayer).
- Prosper Evergol contains the following active ingredients at those concentrations: Clothianidin 290 g/L; Penflufen 10.7 g/L; Trifloxystrobin 7.15 g/L; Metalaxyl 7.15 g/L.
- Prosper Evergol is applied at the following standard concentration: Clothianidin 406 g/ 100 kg seed; Penflufen 14.98 g/100 kg seed; Trifloxystrobin 10.01 g/100 kg seed; Metalaxyl 10.01 g/100 kg seed.
- Clothianidin 406 g/ 100 kg seed Penflufen 14.98 g/100 kg seed
- Trifloxystrobin 10.01 g/100 kg seed
- Metalaxyl 10.01 g/100 kg seed At the trial location over the last seven years different Canola hybrids as well as cereals/soybeans have been planted.
- Table 1 Efficacy of fluopyram against Root rot complex and/or seedling disease complex caused by Rhizoctonia solani, Fusarium species and Pythium species
- Fluopyram 600 FS 600 g/L fluopyram as a flowable substrate formulation
- Prosper Evergol contains the following active ingredients at those concentrations: Clothianidin 290 g/L; Penflufen 10.7 g/L; Trifloxystrobin 7.15 g/L; Metalaxyl 7.15 g/L.
- Prosper Evergol is applied at the following standard concentration: Clothianidin 406 g/ 100 kg seed; Penflufen 14.98 g/100 kg seed; Trifloxystrobin 10.01 g/100 kg seed; Metalaxyl 10.01 g/100 kg seed.
- Fluopyram FS 600 was applied as a foliar application before BBCH 30 (beginning of stem elongation).
- the seeds have been treated with the standard rate of Prosper Evergol.
- the trial locations showed disease pressure from the following group of pathogens including but not limited to the following pathogens: Verticillium longisporum, Phoma lingam, Fusarium spp., Rhizoctonia solani, Myrothecium roridum.
- Table 2a Yield expressed as % of Prosper Evergol Standard
- Prosper Evergol contains the following active ingredients at those concentrations: Clothianidin 290 g/L; Penflufen 10.7 g/L; Trifloxystrobin 7.15 g/L; Metalaxyl 7.15 g/L. Prosper Evergol is applied at the following standard concentration: Clothianidin 406 g/100 kg seed; Penflufen 14.98 g/100 kg seed; Trifloxystrobin 10.01 g/100 kg seed; Metalaxyl 10.01 g/100 kg seed.
- Lodging was assessed on a scale of 1 (no lodging) to 5 (severe lodging) 40 or 50 days after emergence.
- Fluopyram 600 FS 600 g/L fluopyram as a flowable substrate formulation was applied as a seed treatment at 15 g of active ingredient /100 kg canola seed, or 0.0075 mg of active ingredient per canola seed, or 0.01 mg of active ingredient per seed, in combination with Prosper Evergol (Bayer).
- Prosper Evergol contains the following active ingredients at those concentrations: Clothianidin 290 g/L; Penflufen 10.7 g/L; Trifloxystrobin 7.15 g/L; Metalaxyl 7.15 g/L. Prosper Evergol is applied at the following standard concentration: Clothianidin 406 g/100 kg seed; Penflufen 14.98 g/100 kg seed; Trifloxystrobin 10.01 g/100 kg seed; Metalaxyl 10.01 g/100 kg seed.
- Fluopyram FS 600 was applied as a foliar application at a rate of 150 grams of active ingredient per ha shortly before BBCH 30 (beginning of stem elongation).
- Prosper Evergol alone was applied at the standard concentration mentioned above.
- the trial locations showed disease pressure from the following group of pathogens including but not limited to the following pathogens: Verticillium longisporum, Phoma lingam, Fusarium spp., Rhizoctonia solani, Myrothecium roridum. Efficacy is measured as root rot severity from 0 to 100 with 0 showing no disease symptoms and 100 showing very severe symptoms.
- Prosper Evergol contains the following active ingredients at those concentrations: Clothianidin 290 g/L; Penflufen 10.7 g/L; Trifloxystrobin 7.15 g/L; Metalaxyl 7.15 g/L.
- Prosper Evergol is applied at the following standard concentration to the seds: Clothianidin 406 g/100 kg seed; Penflufen 14.98 g/100 kg seed; Trifloxystrobin 10.01 g/100 kg seed; Metalaxyl 10.01 g/100 kg seed.
- Fluopyram was applied as the foliar product Luna Privilege (500 g/1 SC formulation) at a rate of 150 grams of active ingredient per ha shortly before BBCH 30 (beginning of stem elongation).
- Prosper Evergol alone was applied at the standard concentration mentioned above.
- the trial locations showed disease pressure from the following group of pathogens including but not limited to the following pathogens: Verticillium longisporum, Phoma lingam, Fusarium spp., Rhizoctonia solani, Myrothecium roridum.
- Efficacy is measured as relative % Normalized Difference Vegetation Index (NDVI) as a parameter for biomass with Prosper Evergol being 100 %.
- NDVI Normalized Difference Vegetation Index
- Efficacy is measured as the combined value of % disease incidence of root rot complex and severity index for L252. The higher the value, the more disease is present.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Agronomy & Crop Science (AREA)
- Pest Control & Pesticides (AREA)
- Plant Pathology (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Dentistry (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Pretreatment Of Seeds And Plants (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18185924 | 2018-07-26 | ||
PCT/EP2019/069814 WO2020020895A1 (en) | 2018-07-26 | 2019-07-23 | Use of the succinate dehydrogenase inhibitor fluopyram for controlling root rot complex and/or seedling disease complex caused by rhizoctonia solani, fusarium species and pythium species in brassicaceae species |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3826466A1 true EP3826466A1 (de) | 2021-06-02 |
Family
ID=63079753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19742754.5A Withdrawn EP3826466A1 (de) | 2018-07-26 | 2019-07-23 | Verwendung von succinatdehydrogenasehemmerfluopyram zur kontrolle des wurzelfäulekomplexes und/oder des setzlingerkrankungskomplexes, die durch rhizoctonia-solani, fusarium-spezien und pythium-spezien in brassicaceae-spezies verursacht werden |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP3826466A1 (de) |
CN (1) | CN112689457A (de) |
AU (1) | AU2019309023A1 (de) |
CA (1) | CA3107382A1 (de) |
EA (1) | EA202190389A1 (de) |
UA (1) | UA128698C2 (de) |
WO (1) | WO2020020895A1 (de) |
Family Cites Families (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4272417A (en) | 1979-05-22 | 1981-06-09 | Cargill, Incorporated | Stable protective seed coating |
US4245432A (en) | 1979-07-25 | 1981-01-20 | Eastman Kodak Company | Seed coatings |
US4761373A (en) | 1984-03-06 | 1988-08-02 | Molecular Genetics, Inc. | Herbicide resistance in plants |
US5304732A (en) | 1984-03-06 | 1994-04-19 | Mgi Pharma, Inc. | Herbicide resistance in plants |
US5331107A (en) | 1984-03-06 | 1994-07-19 | Mgi Pharma, Inc. | Herbicide resistance in plants |
ES2018274T5 (es) | 1986-03-11 | 1996-12-16 | Plant Genetic Systems Nv | Celulas vegetales resistentes a los inhibidores de glutamina sintetasa, preparadas por ingenieria genetica. |
US5637489A (en) | 1986-08-23 | 1997-06-10 | Hoechst Aktiengesellschaft | Phosphinothricin-resistance gene, and its use |
US5276268A (en) | 1986-08-23 | 1994-01-04 | Hoechst Aktiengesellschaft | Phosphinothricin-resistance gene, and its use |
US5273894A (en) | 1986-08-23 | 1993-12-28 | Hoechst Aktiengesellschaft | Phosphinothricin-resistance gene, and its use |
US5013659A (en) | 1987-07-27 | 1991-05-07 | E. I. Du Pont De Nemours And Company | Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase |
US5378824A (en) | 1986-08-26 | 1995-01-03 | E. I. Du Pont De Nemours And Company | Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase |
US5605011A (en) | 1986-08-26 | 1997-02-25 | E. I. Du Pont De Nemours And Company | Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase |
US4808430A (en) | 1987-02-27 | 1989-02-28 | Yazaki Corporation | Method of applying gel coating to plant seeds |
US5638637A (en) | 1987-12-31 | 1997-06-17 | Pioneer Hi-Bred International, Inc. | Production of improved rapeseed exhibiting an enhanced oleic acid content |
GB8810120D0 (en) | 1988-04-28 | 1988-06-02 | Plant Genetic Systems Nv | Transgenic nuclear male sterile plants |
US5084082A (en) | 1988-09-22 | 1992-01-28 | E. I. Du Pont De Nemours And Company | Soybean plants with dominant selectable trait for herbicide resistance |
DE69034268D1 (de) | 1989-08-10 | 2011-03-03 | Bayer Bioscience Nv | Pflanzen mit modifizierten Blüten |
US5908810A (en) | 1990-02-02 | 1999-06-01 | Hoechst Schering Agrevo Gmbh | Method of improving the growth of crop plants which are resistant to glutamine synthetase inhibitors |
US5739082A (en) | 1990-02-02 | 1998-04-14 | Hoechst Schering Agrevo Gmbh | Method of improving the yield of herbicide-resistant crop plants |
AU639319B2 (en) | 1990-04-04 | 1993-07-22 | Pioneer Hi-Bred International, Inc. | Production of improved rapeseed exhibiting a reduced saturated fatty acid content |
US5198599A (en) | 1990-06-05 | 1993-03-30 | Idaho Resarch Foundation, Inc. | Sulfonylurea herbicide resistance in plants |
AU655197B2 (en) | 1990-06-25 | 1994-12-08 | Monsanto Technology Llc | Glyphosate tolerant plants |
FR2667078B1 (fr) | 1990-09-21 | 1994-09-16 | Agronomique Inst Nat Rech | Sequence d'adn conferant une sterilite male cytoplasmique, genome mitochondrial, mitochondrie et plante contenant cette sequence, et procede de preparation d'hybrides. |
US5731180A (en) | 1991-07-31 | 1998-03-24 | American Cyanamid Company | Imidazolinone resistant AHAS mutants |
US6270828B1 (en) | 1993-11-12 | 2001-08-07 | Cargrill Incorporated | Canola variety producing a seed with reduced glucosinolates and linolenic acid yielding an oil with low sulfur, improved sensory characteristics and increased oxidative stability |
SG49845A1 (en) | 1993-03-25 | 2002-03-19 | Novartis Ag | Novel pesticidal proteins strains |
EP1329154A3 (de) | 1993-04-27 | 2004-03-03 | Cargill, Inc. | Nichthydriertes Rapsöl zur Nahrungsanwendung |
CA2150667C (en) | 1993-10-01 | 2007-01-09 | Mari Iwabuchi | A gene which determines cytoplasmic sterility and a method of producing hybrid plants using said gene |
AU692791B2 (en) | 1993-10-12 | 1998-06-18 | Agrigenetics, Inc. | Brassica napus variety AG019 |
US5853973A (en) | 1995-04-20 | 1998-12-29 | American Cyanamid Company | Structure based designed herbicide resistant products |
BR9604993B1 (pt) | 1995-04-20 | 2009-05-05 | dna mutante codificando uma proteìna ahas mutante de sìntese de ácido acetohidróxi e proteìnas ahas mutantes. | |
FR2734842B1 (fr) | 1995-06-02 | 1998-02-27 | Rhone Poulenc Agrochimie | Sequence adn d'un gene de l'hydroxy-phenyl pyruvate dioxygenase et obtention de plantes contenant un gene de l'hydroxy-phenyl pyruvate dioxygenase, tolerantes a certains herbicides |
GB9513881D0 (en) | 1995-07-07 | 1995-09-06 | Zeneca Ltd | Improved plants |
FR2736926B1 (fr) | 1995-07-19 | 1997-08-22 | Rhone Poulenc Agrochimie | 5-enol pyruvylshikimate-3-phosphate synthase mutee, gene codant pour cette proteine et plantes transformees contenant ce gene |
US5773704A (en) | 1996-04-29 | 1998-06-30 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Herbicide resistant rice |
US5876739A (en) | 1996-06-13 | 1999-03-02 | Novartis Ag | Insecticidal seed coating |
US5850026A (en) | 1996-07-03 | 1998-12-15 | Cargill, Incorporated | Canola oil having increased oleic acid and decreased linolenic acid content |
US5773702A (en) | 1996-07-17 | 1998-06-30 | Board Of Trustees Operating Michigan State University | Imidazolinone herbicide resistant sugar beet plants |
CA2193938A1 (en) | 1996-12-24 | 1998-06-24 | David G. Charne | Oilseed brassica containing an improved fertility restorer gene for ogura cytoplasmic male sterility |
FR2770854B1 (fr) | 1997-11-07 | 2001-11-30 | Rhone Poulenc Agrochimie | Sequence adn d'un gene de l'hydroxy-phenyl pyruvate dioxygenase et obtention de plantes contenant un tel gene, tolerantes aux herbicides |
FR2772789B1 (fr) | 1997-12-24 | 2000-11-24 | Rhone Poulenc Agrochimie | Procede de preparation enzymatique d'homogentisate |
DE19821614A1 (de) | 1998-05-14 | 1999-11-18 | Hoechst Schering Agrevo Gmbh | Sulfonylharnstoff-tolerante Zuckerrübenmutanten |
US6693185B2 (en) | 1998-07-17 | 2004-02-17 | Bayer Bioscience N.V. | Methods and means to modulate programmed cell death in eukaryotic cells |
US6503904B2 (en) | 1998-11-16 | 2003-01-07 | Syngenta Crop Protection, Inc. | Pesticidal composition for seed treatment |
US6323392B1 (en) | 1999-03-01 | 2001-11-27 | Pioneer Hi-Bred International, Inc. | Formation of brassica napus F1 hybrid seeds which exhibit a highly elevated oleic acid content and a reduced linolenic acid content in the endogenously formed oil of the seeds |
MXPA01010930A (es) | 1999-04-29 | 2003-06-30 | Syngenta Ltd | Plantas resistentes a herbicidas. |
CZ20013856A3 (cs) | 1999-04-29 | 2002-04-17 | Syngenta Ltd. | Herbicidně rezistentní rostliny |
AR025996A1 (es) | 1999-10-07 | 2002-12-26 | Valigen Us Inc | Plantas no transgenicas resistentes a los herbicidas. |
US6509516B1 (en) | 1999-10-29 | 2003-01-21 | Plant Genetic Systems N.V. | Male-sterile brassica plants and methods for producing same |
US6506963B1 (en) | 1999-12-08 | 2003-01-14 | Plant Genetic Systems, N.V. | Hybrid winter oilseed rape and methods for producing same |
WO2001065922A2 (en) | 2000-03-09 | 2001-09-13 | E. I. Du Pont De Nemours And Company | Sulfonylurea-tolerant sunflower plants |
DE60111613T2 (de) | 2000-03-09 | 2006-05-18 | Monsanto Technology Llc. | Verfahren zum herstellen von glyphosat-toleranten pflanzen |
AU2001287862B2 (en) | 2000-09-29 | 2006-12-14 | Syngenta Limited | Herbicide resistant plants |
US6660690B2 (en) | 2000-10-06 | 2003-12-09 | Monsanto Technology, L.L.C. | Seed treatment with combinations of insecticides |
FR2815969B1 (fr) | 2000-10-30 | 2004-12-10 | Aventis Cropscience Sa | Plantes tolerantes aux herbicides par contournement de voie metabolique |
IL155599A0 (en) | 2000-10-30 | 2003-11-23 | Maxygen Inc | Polynucleotides encoding proteins which catalyze acetylation of glyphosate |
AU2002230899B2 (en) | 2000-10-30 | 2006-11-09 | Monsanto Technology Llc | Canola event PV-BNGT04(RT73) and compositions and methods for detection thereof |
US20020134012A1 (en) | 2001-03-21 | 2002-09-26 | Monsanto Technology, L.L.C. | Method of controlling the release of agricultural active ingredients from treated plant seeds |
WO2003013226A2 (en) | 2001-08-09 | 2003-02-20 | Cibus Genetics | Non-transgenic herbicide resistant plants |
AR039501A1 (es) | 2002-04-30 | 2005-02-23 | Verdia Inc | Genes de glifosato n-acetil transferasa (gat) |
OA19202A (en) | 2002-08-12 | 2006-10-13 | Trinity Bay Equipment Holdings, LLC | Protector assembly for flexible pipe coils and method of using same. |
FR2844142B1 (fr) | 2002-09-11 | 2007-08-17 | Bayer Cropscience Sa | Plantes transformees a biosynthese de prenylquinones amelioree |
AU2003275859A1 (en) | 2002-10-29 | 2004-05-25 | Basf Plant Science Gmbh | Compositions and methods for identifying plants having increased tolerance to imidazolinone herbicides |
KR101104830B1 (ko) | 2003-04-09 | 2012-01-17 | 바이엘 바이오사이언스 엔.브이. | 스트레스 조건에 대한 식물의 내성을 증가시키기 위한 방법및 수단 |
EP2535414B1 (de) | 2003-04-29 | 2017-12-13 | Pioneer Hi-Bred International Inc. | Neue Glyphosat-N-Acetyltransferase-Gene (GAT) |
UA92716C2 (uk) | 2003-05-28 | 2010-12-10 | Басф Акциенгезелльшафт | Рослини пшениці з підвищеною толерантністю до імідазолінонових гербіцидів |
EP1493328A1 (de) | 2003-07-04 | 2005-01-05 | Institut National De La Recherche Agronomique | Verfahren zur Herstellung von doppel null fertilität-restaurations Linien von B. napus mit guter agromomischer Qualität |
WO2005020673A1 (en) | 2003-08-29 | 2005-03-10 | Instituto Nacional De Technologia Agropecuaria | Rice plants having increased tolerance to imidazolinone herbicides |
GB0402106D0 (en) | 2004-01-30 | 2004-03-03 | Syngenta Participations Ag | Improved fertility restoration for ogura cytoplasmic male sterile brassica and method |
US7432082B2 (en) | 2004-03-22 | 2008-10-07 | Basf Ag | Methods and compositions for analyzing AHASL genes |
CA2570298A1 (en) | 2004-06-16 | 2006-01-19 | Basf Plant Science Gmbh | Polynucleotides encoding mature ahasl proteins for creating imidazolinone-tolerant plants |
UA97344C2 (uk) | 2004-07-30 | 2012-02-10 | Басф Агрокемікел Продактс Б.В. | Резистентні до імідазолінонових гербіцидів рослини соняшнику , полінуклеотиди, що кодують резистентні до гербіцидів великі субодиниці білків ацетогідроксикислотної синтази |
WO2006015376A2 (en) | 2004-08-04 | 2006-02-09 | Basf Plant Science Gmbh | Monocot ahass sequences and methods of use |
WO2006021972A1 (en) | 2004-08-26 | 2006-03-02 | Dhara Vegetable Oil And Foods Company Limited | A novel cytoplasmic male sterility system for brassica species and its use for hybrid seed production in indian oilseed mustard brassica juncea |
AR051690A1 (es) | 2004-12-01 | 2007-01-31 | Basf Agrochemical Products Bv | Mutacion implicada en el aumento de la tolerancia a los herbicidas imidazolinona en las plantas |
ES2331022T3 (es) | 2005-06-15 | 2009-12-18 | Bayer Bioscience N.V. | Metodos para aumentar la resistencia de las plantas a condiciones hipoxicas. |
AP2008004392A0 (en) | 2005-08-24 | 2008-04-30 | E I Du Pomt De Nemours And Com | Compositions providing tolerance to multiple herbicides and methods of use thereof |
KR101156893B1 (ko) | 2005-08-31 | 2012-06-21 | 몬산토 테크놀로지 엘엘씨 | 살충 단백질을 암호화하는 뉴클레오티드 서열들 |
EP2036438A1 (de) * | 2007-09-12 | 2009-03-18 | Bayer CropScience AG | Nachernte-behandlung |
EP2100506A2 (de) | 2009-01-23 | 2009-09-16 | Bayer CropScience AG | Verwendungen von Fluopyram |
KR101726206B1 (ko) | 2009-01-30 | 2017-04-12 | 바이엘 인텔렉쳐 프로퍼티 게엠베하 | 백분병의 일차 감염을 억제하기 위한 숙시네이트 데하이드로게나제 저해제의 용도 |
PL2437595T3 (pl) | 2009-06-02 | 2019-05-31 | Bayer Cropscience Ag | Zastosowanie fluopyramu do zwalczania Sclerotinia ssp. |
US8581046B2 (en) | 2010-11-24 | 2013-11-12 | Pioneer Hi-Bred International, Inc. | Brassica gat event DP-073496-4 and compositions and methods for the identification and/or detection thereof |
EP2575431B1 (de) | 2010-06-04 | 2018-03-14 | Monsanto Technology LLC | Transgenes brassica-ereignis mon88302 und verfahren zu dessen anwendung |
CA2806419C (en) * | 2010-07-26 | 2018-08-21 | Lorianne Fought | Use of succinate dehydrogenase inhibitors and/or respiratory chain complex iii inhibitors for improving the ratio of harmful to beneficial microorganisms |
CA2818918A1 (en) | 2010-11-24 | 2012-05-31 | Pioneer Hi-Bred International, Inc. | Brassica gat event dp-061061-7 and compositions and methods for the identification and/or detection thereof |
NZ722692A (en) * | 2012-02-22 | 2018-02-23 | Bayer Ip Gmbh | Use of succinate dehydrogenase inhibitors (sdhis) for controlling wood diseases in grape |
ES2770775T3 (es) * | 2012-12-03 | 2020-07-03 | Bayer Cropscience Ag | Procedimiento para el control de plagas aplicando una combinación de Paecilomyces lilacinus y Fluopyram |
AU2016294956A1 (en) * | 2015-07-20 | 2018-02-15 | Bayer Cropscience Aktiengesellschaft | Use of the succinate dehydrogenase inhibitor fluopyram for controlling blackleg in brassicaceae species |
WO2017018464A1 (ja) * | 2015-07-27 | 2017-02-02 | 住友化学株式会社 | 植物病害防除組成物および植物病害防除方法 |
BR112019001766B1 (pt) * | 2016-07-29 | 2022-12-06 | Bayer Cropscience Aktiengesellschaft | Semente revestida tratada para melhorar o seu crescimento, seu método de tratamento, e método para melhorar crescimento de planta |
-
2019
- 2019-07-23 CN CN201980058515.8A patent/CN112689457A/zh active Pending
- 2019-07-23 EP EP19742754.5A patent/EP3826466A1/de not_active Withdrawn
- 2019-07-23 CA CA3107382A patent/CA3107382A1/en active Pending
- 2019-07-23 AU AU2019309023A patent/AU2019309023A1/en active Pending
- 2019-07-23 EA EA202190389A patent/EA202190389A1/ru unknown
- 2019-07-23 WO PCT/EP2019/069814 patent/WO2020020895A1/en active Application Filing
- 2019-07-23 UA UAA202100963A patent/UA128698C2/uk unknown
Also Published As
Publication number | Publication date |
---|---|
CA3107382A1 (en) | 2020-01-30 |
CN112689457A (zh) | 2021-04-20 |
EA202190389A1 (ru) | 2021-06-16 |
UA128698C2 (uk) | 2024-10-02 |
AU2019309023A1 (en) | 2021-02-18 |
WO2020020895A1 (en) | 2020-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9877482B2 (en) | Use of succinate dehydrogenase inhibitors for controlling Sclerotinia ssp | |
EP2224811A2 (de) | Verfahren zur reduzierung der mycotoxin-kontaminierung von mais | |
JP2013512935A (ja) | 殺害虫混合物 | |
JP2013512934A (ja) | 殺害虫混合物 | |
EA023771B1 (ru) | Комбинации активных соединений, содержащие производные соединения (тио)карбоксамида и инсектицидное, или акарицидное, или нематоцидное активное соединение | |
WO2016091675A1 (en) | Method for improving the health of a plant | |
EP3324741A1 (de) | Verwendung des succinat-dehydrogenase-inhibitors fluopyram zur bekämpfung der schwarzbeinigkeit bei kreuzblütlerspezien | |
RU2755433C2 (ru) | Применение инсектицидов для борьбы с проволочниками | |
US20220039383A1 (en) | Use of the Succinate Dehydrogenase Inhibitor Fluopyram for Controlling Claviceps Purpurea and Reducing Sclerotia in Cereals | |
CN111263587B (zh) | 异噻菌胺对抗巴拿马病的用途 | |
EP3826466A1 (de) | Verwendung von succinatdehydrogenasehemmerfluopyram zur kontrolle des wurzelfäulekomplexes und/oder des setzlingerkrankungskomplexes, die durch rhizoctonia-solani, fusarium-spezien und pythium-spezien in brassicaceae-spezies verursacht werden | |
US20220369638A1 (en) | Use of the succinate dehydrogenase inhibitor pydiflumetofen for controlling claviceps purpurea and reducing sclerotia in cereals | |
CN118140933A (zh) | 异噻菌胺用于防治斑马片病的用途 | |
EA044476B1 (ru) | Применение флуопирама ингибитора сукцинатдегидрогеназы для борьбы с claviceps purpurea и/или уменьшения количества склероциев в пшенице | |
WO2016173996A1 (en) | Use of 2-{3-[2-(1-{[3,5-bis(difluoromethyl)-1h-pyrazol-1-yl]acetyl}piperidin-4-yl)-1,3-thiazol-4-yl]-4,5-dihydro-1,2-oxazol-5-yl}-3-chlorophenyl methanesulfonate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210226 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230503 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20231127 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20240328 |