EP3824227A1 - Systeme de chauffage d'eau a prechauffage par energie renouvelable avec complement par chauffage instantane - Google Patents

Systeme de chauffage d'eau a prechauffage par energie renouvelable avec complement par chauffage instantane

Info

Publication number
EP3824227A1
EP3824227A1 EP19790577.1A EP19790577A EP3824227A1 EP 3824227 A1 EP3824227 A1 EP 3824227A1 EP 19790577 A EP19790577 A EP 19790577A EP 3824227 A1 EP3824227 A1 EP 3824227A1
Authority
EP
European Patent Office
Prior art keywords
water
tank
temperature
heating system
heating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19790577.1A
Other languages
German (de)
English (en)
Inventor
Damien GARRIDO
Vincent BOGDAN
Pascal MONTGERMONT
Sébastien LE GAREC
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atlantic Industrie SAS
Original Assignee
Atlantic Industrie SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atlantic Industrie SAS filed Critical Atlantic Industrie SAS
Publication of EP3824227A1 publication Critical patent/EP3824227A1/fr
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0036Domestic hot-water supply systems with combination of different kinds of heating means
    • F24D17/0063Domestic hot-water supply systems with combination of different kinds of heating means solar energy and conventional heaters
    • F24D17/0068Domestic hot-water supply systems with combination of different kinds of heating means solar energy and conventional heaters with accumulation of the heated water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • F24D19/1057Arrangement or mounting of control or safety devices for water heating systems for domestic hot water the system uses solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/12Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
    • F24H1/121Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium using electric energy supply
    • F24H1/122Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium using electric energy supply combined with storage tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • F24H1/185Water-storage heaters using electric energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • F24H1/20Water-storage heaters with immersed heating elements, e.g. electric elements or furnace tubes
    • F24H1/208Water-storage heaters with immersed heating elements, e.g. electric elements or furnace tubes with tubes filled with heat transfer fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/174Supplying heated water with desired temperature or desired range of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • F24H15/37Control of heat-generating means in heaters of electric heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/08Electric heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/14Solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/08Storage tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/128Preventing overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/223Temperature of the water in the water storage tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/238Flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/281Input from user
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies

Definitions

  • the invention relates to a water heating system.
  • the sanitary water heating system comprises a renewable energy water heater of the thermodynamic water heater type.
  • Such water heaters have a tank in which the water is heated.
  • the user who wishes to take a shower takes hot water from the tank.
  • the temperature of the water taken must be around 70 ° C.
  • the present invention thus relates to a heating system comprising: - a renewable energy water heater which comprises at least one water storage tank comprising at least one tank containing water having a cold water inlet and a hot water outlet, and a device for preheating the water in the tank with renewable energy,
  • the water which is withdrawn by the user is for example heated in two stages:
  • the water is preheated by the water preheating device of the renewable energy water heater to a given temperature (for example 50 ° C) which is lower than the comfort or use temperature at which the user will use the water, and
  • the water already preheated undergoes additional heating, internal to the balloon of the water heater and out of the tank, via the instantaneous heating device, up to the desired comfort or use temperature (for example 70 ° C).
  • Preheating makes it possible to heat a given volume of water (eg 80L) from an initial temperature (for example between 5 and 30 ° C), to an intermediate temperature (for example 50 ° C), taking advantage of the gain energy of renewable energy in its maximum efficiency.
  • This also makes it possible to reduce the operating time mainly on thermodynamic water heaters whose heating time would be greater than 12 h to reach temperatures of the order of 70 ° C.
  • the best energy performance of a renewable energy water heater is achieved at the start of the heating operation and drops when the fluid reaches a certain temperature (for example 50 ° C).
  • the system according to the invention therefore exploits the energy performance of the renewable energy water heater in its phase where it is most efficient.
  • the installed power of the water heater can thus be reduced while maintaining a reasonable heating time of less than 10 h, and making it possible to reduce its cost (by selecting less energy-consuming components such as the fan and the compressor of the thermodynamic circuit), as well as the water storage volume of the tank.
  • the instantaneous heating device then provides additional heating (outside the tank) of the preheated water on the tank water outlet circuit from the intermediate temperature (for example 50 ° C) to the temperature of comfort or use (for example 70 ° C).
  • This instantaneous additional heating makes it possible to instantly raise the temperature of the water coming from the tank according to the flow of use and the power of the heating.
  • complementary for example 21.5 ° C for 4500 W with a flow rate of 3 l / min.
  • In renewable energy it takes a very long time to obtain the same result with low system yields. For example, for a thermodynamic water heater with a power of less than 400 W on an 80-liter tank, it takes more than 3 hours with COPs lower than 1.5 to go from 50 ° C to 70 ° C.
  • the user obtains hot water at the desired temperature (comfort or use) more quickly than with a conventional renewable energy water heater which would be used to carry out all of the heating.
  • the tank water is water which has been preheated (generally in the tank) to an intermediate temperature between the initial temperature and the comfort temperature
  • the temperature of the stored water is reduced compared to the desired temperature ( comfort or use).
  • the energy losses or static losses of the tank are therefore reduced compared to a configuration in which an electrical resistance would be placed inside the tank, would heat the water in the tank to the temperature desired by the user and would therefore be subject to heat loss while waiting to be used.
  • the additional instantaneous heating device is located outside the tank and it only heats the volume of water leaving the tank through the hot water outlet (in the case of drawing or drawing off by the user) in order to bring this volume of water to the desired temperature.
  • the volume of water thus heated is therefore not stored (it is therefore not subjected to heat losses and therefore retains its temperature) since it is directly used by the user.
  • this reduced storage temperature improves the life of certain components, in particular by reducing the operating time of critical components (eg pump, compressor, valves ...) and reduces the phenomena of scaling of the tank.
  • critical components eg pump, compressor, valves
  • the tank is made of enamelled steel, an improvement in the corrosion resistance of the tank can be observed due to this reduced storage temperature.
  • the internal enamel coating of the tank is therefore less likely to be degraded over time.
  • thermoplastic coatings can be envisaged to protect the tank.
  • Integrating the additional instantaneous heating device in the storage tank allows a one-piece solution, compared to a configuration in which the additional instantaneous heating device would be outside the storage tank.
  • the tank internally integrating the tank and the additional instantaneous heating device thus offers a compact and less bulky arrangement than with the external device. It also follows a simplified installation / installation.
  • a water storage tank in a heating system comprises one or more tanks containing water which are enclosed inside an external envelope or covering.
  • the renewable energy water heater is a thermodynamic water heater and the water is generally heated in the tank;
  • the renewable energy water heater is a solar water heater for example with thermosyphon or with recirculation pump and the water water is generally heated in the tank;
  • the instantaneous heating device is an electric instantaneous water heater
  • said at least one water storage tank comprises the tank and an internal part of the tank which is separate from the tank and which contains the additional instantaneous heating device; the separate part of the tank serving as a housing for the additional instantaneous heating device can thus form a separate compartment inside the same envelope containing the tank; the separate part of the tank and serving as a housing for the additional instantaneous heating device can be delimited by a cover or cover which is mounted on the tank and contains said device;
  • the separate part of the tank communicates with said tank by means of the hot water outlet from the tank; the additional instantaneous heating device is thus placed on the hot water outlet pipe or pipe leaving the tank and the water leaving the tank therefore passes necessarily in said device;
  • the system comprises a temperature reducer placed on the hot water outlet from the tank, upstream of the additional instantaneous heating device in the direction of circulation of the hot water; the temperature reducer is also placed outside the tank but in the flask and, for example, in the internal part of the flask which is separated from the tank; the temperature reducer makes it possible to avoid, in the event of too high a temperature of the water stored in the tank (depending for example on the countries where the tank is installed, the water in the tank can reach very high temperatures, for example of the order of 90 ° C), to engage the safety of the additional instantaneous heating device when the water leaving the tank enters the latter;
  • the temperature reducer is for example a water mixing device which is able to mix the hot water from the hot water outlet of the tank with cold water in order to reduce the temperature of the incoming water in the additional instantaneous heating device; by way of example, the cold water arriving on the mixing device is taken from the cold water inlet from the tank;
  • the heating system comprises a system for controlling or regulating the preheating actions by the device for preheating the water of the water heater and / or for additional heating of the water preheated by the additional instantaneous heating device.
  • the present invention also relates to an assembly comprising a sanitary installation and a water heating system connected to the sanitary installation.
  • the water heating system conforms to the heating system briefly outlined above.
  • the present invention further relates to a method for managing a water heating system in accordance with the heating system briefly described above.
  • the method is characterized in that it comprises the following steps: -comparison between the water temperature value Tes at the output of said complementary instantaneous heating device and a user set water temperature value for the complementary instantaneous heating device Tci, -activation of the complementary instantaneous heating device when the water temperature value Tes at the output of said additional instantaneous heating device is lower than the set water temperature value Tci and deactivation of the additional instantaneous heating device otherwise.
  • the comparison step occurs when a water withdrawal by the user is detected
  • the method comprises a step of comparison between the water temperature measured in the tank Tes and the set temperature of the tank Tcc in order to determine, as a function of the result of the comparison, whether the water heater should be activated / kept in operation or deactivated;
  • the method comprises a step of comparison between the water temperature measured in the Tes tank and the set temperature of the Tcc tank;
  • the process comprises a step of activating or keeping the water heater in operation in order to preheat the water which will be stored in the tank when the water temperature measured in the tank Tes is lower than the set temperature of the Tcc tank and a step to deactivate the water heater otherwise.
  • FIG. 1 is a general schematic view of a block diagram of a water heating system according to the invention
  • FIG. 2 illustrates an embodiment of the water heating system according to the invention showing the additional instantaneous heating device inside the envelope of the storage tank;
  • FIG. 3 illustrates an application of the water heating system according to the invention where the water heater is of the thermodynamic type
  • FIGS. 4a and 4b illustrate two applications of the water heating system where the water heater is of the solar thermosyphon type
  • FIG. 5 illustrates a possible application of a heating system according to the invention to a sanitary installation
  • FIG 6 is a more detailed view of the block diagram of the system of Figure 1 and which relates to the embodiment of Figure 2;
  • FIG. 7 illustrates in the form of functional blocks a water heating system according to an embodiment of the invention
  • FIGS. 8, 9 and 10 illustrate different possible modes of operation of a water heating system according to an embodiment of the invention
  • FIGS. 11 a, 11 b and 11 c illustrate three applications of the integrated system of FIG. 2 where the water heater is of the solar thermosyphon type or with a pump.
  • FIG. 1 schematically illustrates a block diagram of a water heating system 10 according to the invention and which comprises;
  • a renewable energy water heater 12 which comprises a sanitary water storage tank comprising a tank 14 provided with a cold water inlet 16 and a hot water outlet 18, and a known preheating device water contained in the tank (not shown in FIG. 1 and which can be formed by one or more heating resistors in steatite or not), a device 20 for instantaneous heating complementary to the preheated water which is arranged on the hot water outlet circuit outside the tank.
  • FIG 1 the device 20 is shown outside of the balloon 12 for the convenience of the presentation and explanation of the principle of the invention but it should be noted that the device 20 is generally contained in the balloon in the sense of the invention. It is the same for Figures 3, 4a-b, 5 and 6 where the additional instantaneous heating device has also been shown outside the balloon while it is integrated therein.
  • the balloon of the water heater 12 generally comprises at least one tank, that is to say that it can include one or more tanks which will be referred to simply as "tank” subsequently. It is the same for all the embodiments of the invention.
  • the tank is surrounded by an envelope or enclosure which constitutes the covering.
  • This covering may include a thermal insulator (eg polyurethane foam) around the tank and a sheet arranged around the insulator with a cover installed below the tank.
  • the additional instantaneous heating device is shown downstream of the hot water outlet 18 of the tank and it is generally always arranged inside the storage tank (outside the tank) , on the preheated water outlet circuit, as shown in Figure 2.
  • the balloon 13 of the renewable energy water heater 11 has inside a tank 13a provided, on the one hand, with a cold water inlet 15 which is connected at the inlet of the balloon and which extends inside said tank in the form of a pipe / pipe 13b which passes through part of the tank until it enters the tank 13a and, on the other hand, a hot water outlet 13c. All the characteristics of the balloon in Figure 1 also apply to the balloon in Figure 2.
  • the tank 13a contains or is associated with a known device for preheating the water contained therein (not shown in FIG. 2).
  • the water stored in the tank can be preheated in said tank or be preheated elsewhere and then be brought into this tank.
  • the tank 13 also includes a second part 13d separate from the tank 13a, arranged for example below the tank, communicating with the tank via a pipe or hydraulic connection element 13c which forms the outlet for hot water from the tank.
  • the preheated water which is contained in the first part 13a of the tank leaves this part through the element 13c and enters the second part 13d.
  • the lower part 13d is for example delimited by a cover which is fixed under the tank and to the latter by known means.
  • the lower part can thus form an internal compartment of the balloon which is physically separated from the tank and an envelope specific to the balloon can surround the tank and this other part (lower or not) or compartment separate from the tank.
  • the part 13d contains a device 19 for instantaneous heating complementary to the preheated water which is arranged on the hot water outlet circuit and, more particularly, is connected, on the one hand, to the element 13c to receive as input the preheated water stored (the connection between the outlet 13c and the inlet of the device 19 can be more or less long) and, on the other hand, at the hot water outlet 17 of the tank to deliver from the storage tank 13 of water heated to a given temperature desired by a user (the hot water outlet circuit of the tank includes the element 13c leaving the tank to the outlet 17 of the device 19 and also of the envelope of the balloon).
  • the device 19 which is integrated into the internal volume of the balloon (internal to its envelope) by being housed in a part or compartment separate from the storage tank thus gives the balloon a unitary monobloc appearance which is capable of being transported in one piece by an installer.
  • an additional instantaneous heating device arranged inside a balloon of water heaters with renewable energy but outside of the tank of this balloon are of course conceivable.
  • the part 13d containing the instantaneous heating device may not be located below the tank but above the tank (for example when the balloon is placed on the ground), or even it may be arranged along the tank (for example vertically) for reasons of space. Everything that has been described above about the game lower 13d of the balloon applies, whatever the configuration of this part and its arrangement in the balloon.
  • FIG. 3 illustrates a thermodynamic water heater known per se (heat pump) and FIGS. 4a and 4b illustrate solar water heaters with thermosyphon also known per se, with the exception of the presence of an additional instantaneous water heating device.
  • the complementary device 20 is represented on the outside of the storage tank as in FIG. 1 (for the sake of convenience of the description) but it is generally always placed inside this storage tank ( inside the envelope of the latter or of a specific casing) and outside the tank as in FIG. 2.
  • FIGS. 11 a-c more particularly illustrate the presence of an additional device for instantaneous heating of water inside the water storage tank.
  • thermodynamic water heater of FIG. 3 comprises a thermodynamic circuit in which a refrigerant circulates and which comprises, in known manner, successively in the direction of circulation of the fluid:
  • the condenser can be produced in the form of an annular belt comprising a plurality of channels parallel to each other and wound around the tank; alternatively, the condenser can be placed inside the tank);
  • a detent member C2 such as a regulator
  • an evaporator C3 which is for example in contact with outside air in order to extract calories therefrom;
  • a compressor C4 compressing the fluid before its condensation in the condenser C1 where the fluid transfers its calories to the water contained in the tank.
  • thermodynamic circuit via its condenser, forms the device for preheating the water in the tank.
  • the solar water heaters of Figures 4a and 4b respectively illustrate a thermodynamic solar water heater:
  • the instantaneous heating device is placed outside the water storage tank for the sake of convenience, but it is generally always placed inside the tank (inside the 'envelope of the balloon or a specific cover), as illustrated in Figures 11 ac.
  • the closed-type solar water heater (FIG. 4a) 30 comprises a storage tank which comprises a water storage tank 32 containing a heat exchanger not shown and a solar panel 34 connected to the inlet and at the outlet of the exchanger respectively by lines 36 and 38.
  • the tank 32 is equipped with a cold domestic water inlet pipe 40 and a hot domestic water outlet 42.
  • the heating system of FIG. 4a further comprises on the outlet 42, outside the tank 32, an instantaneous water heating device 44 similar to the device 20 of FIGS. 1 to 3 and which has the same advantages.
  • the system also optionally includes a temperature reducer 46 disposed on the outlet 42 upstream of the inlet 44a of the device 44.
  • the temperature reducer makes it possible to prevent excessively hot water from entering the device. instantaneous heating 44 and activates the safety of said device 44.
  • the cold water supply is also connected to the temperature reducer 46.
  • the reducer temperature 46 is here a mixing device or mixer which mixes the hot water leaving the tank with cold water.
  • the device 44 supplies domestic hot water at the final temperature desired by the user via the outlet pipe 44b.
  • the open-type solar water heater (FIG. 4b) 50 comprises a storage tank which comprises a water storage tank 52 and a solar panel 54 supplied as input by a cold domestic water supply 56 and which is connected in outlet to tank 52 via line 58.
  • the tank 52 is equipped with a sanitary hot water outlet 60 on which is optionally mounted a temperature reducer 62, upstream of the inlet 64a of an instantaneous water heating device 64.
  • the device 64 supplies domestic hot water at the final temperature desired by the user via the outlet pipe 64b.
  • the device for preheating the water in the tank using renewable energy comprises the solar panel (s) and the exchanger (when it is present) and the circuit with the pipes connecting these components between them.
  • a solar water heater equipped with an additional instantaneous heating device can also include a pump making it possible to circulate the water between the tank of the water heater and the solar panel (solar system with forced operation ).
  • the operation is identical to the thermodynamic version.
  • the additional instantaneous heating device 20 is for example an instantaneous water heater of the electric type.
  • the power of this device is sized according to the additional heating needs and in particular according to the capacity of the tank 14.
  • This device 20 is for example composed of an electrical resistance (the electrical power is for example between 3 and 4.5 KW although other values of electrical power can be envisaged) disposed inside an envelope or enclosure in which the water from outlet 18 (or outlet 13c in FIG. 2) circulates.
  • the water thus heated leaves the device 20 via outlet 20a (or via outlet 17 in FIG. 2) in order to be routed to an equipment where the user can use this hot water directly or else mixed with another water.
  • the device 20 can be of another type not shown here.
  • FIG. 5 represents a possible example of an assembly comprising, on the one hand, a sanitary installation IS which notably comprises an ID shower installation and, on the other hand, a water heating system such as that of FIG. 1 (or that of Figures 2, 3, 4a-b and 11 ac).
  • the system 10 of FIG. 1 is connected to the shower installation by a pipe 11.
  • This assembly includes upstream a source of water S (ex sanitary water network, etc.) which in particular feeds system 10 through a pipe I2.
  • S ex sanitary water network, etc.
  • the ID installation also includes two hot water supply points P1 and P2 (these can be taps for sinks, sinks, etc.) connected to system 10, downstream of it, just like the shower installation.
  • the instantaneous heating provided by the device 20 thus allows the user of the shower, as well as the user of the water points P1 and P2, to obtain hot water at the desired temperature more quickly than before. and with all the advantages described above (in particular before enumerating the figures) or below.
  • a system for controlling or managing the water heating system is provided in order to control the preheating actions by the preheating device of the renewable energy water heater and / or additional heating. by the device 20 or the like of the other figures. In other words, this system regulates the operating priorities between the two devices when desired.
  • This system can be mechanical (for example using a mechanical thermostat which determines the device to be activated for heating or which decides to activate both devices) or electronic (for example by using relays to control the power supply of the devices for their heating ).
  • FIG. 6 illustrates in more detail than FIG. 1 various internal components of the renewable energy water heater 12 and of the additional instantaneous heating device 20 which is generally always placed inside the storage tank and outside the tank ( all that is described with respect to the device 20 also applies to the device 19 of FIG. 2 as well as to the similar devices of the other FIGS. 3, 4a-b, 5 and 11 ac).
  • the geometric proportions between the water heater and the device 20 have been deliberately exaggerated in order to make visible the various components internal to the device which, generally, is of a reduced volume compared to that of the tank.
  • the water heater 12 which can alternatively be of the solar type comprises for example an electronic card 21 on which a temperature set point 22 (Tcc) can be fixed (in the factory) or adjustable by the user (by a wheel or keys setpoint changes) for preheating the water in the storage tank 14 of the tank.
  • Tcc temperature set point 22
  • a temperature probe 23 is placed inside or on the surface of the tank in order to measure the temperature of the water Tec therein.
  • the probe is arranged to allow the operation of the renewable energy preheating system and can provide an indication of the temperature Jec.
  • a second probe 23a is placed at the bottom, at the outlet of the storage tank of the tank (option 1) to indicate the exact temperature of entry into the instant heating system 10 or at the top ( option 2).
  • the second probe 23a connected to the electronic card will fulfill the same function as the probe 23 but with more precision due to its positioning.
  • a pre-set (optional) temperature reducer 24 is positioned on the outlet pipe 18 which connects the tank 14 of the flask to the device 20 .
  • the device 20 can more particularly comprise, and successively on the supply of water to the device, a flow detector 25, an internal water circulation circuit comprising at least one electrical resistance 26 and, downstream of the latter , a temperature probe 27, for example located inside the device, on the water which has been heated by the resistance, upstream of the outlet 20a.
  • the probe 27 measures a water temperature Tes at the outlet from the device 20 (water withdrawal or drawing temperature which corresponds substantially to the temperature of use of the water).
  • the device 20 may further comprise a thermal safety device 28 disposed on the tank comprising the electrical resistance or at the outlet of the water heating system.
  • the function of thermal safety is to cut off the heating function performed by the electrical resistance in the event of a predetermined temperature being exceeded.
  • the device 20 further comprises an electronic card 29 which is connected to various components of the device for its operation alone and / or in cooperation with the water heater 12.
  • the card 29 is not shown in conjunction with the components in Figure 6.
  • a setpoint C (setpoint temperature Tci) is also accessible to the user for adjusting the desired final temperature for the water leaving the device 20.
  • This setpoint is generally located outside the enclosure of the device 20 and can take the form of a man-machine interface with display or simple buttons or an adjustment wheel to raise or lower the setpoint temperature Tci.
  • FIG. 7 illustrates in the form of functional block diagrams of the possible interactions between the electronic cards of the instantaneous heating device and of the water heater as well as between each of the cards and certain components of the device and of the water heater.
  • the respective supplies of the instantaneous heating device and of the water heater are respectively denoted A1 and A2 and supply the electrical supply to each card as well as to certain components even if this is not shown in the figure.
  • the user indicates a desired temperature setpoint Tci on the instantaneous heating device 20 (of the device 19 of FIG. 2 or of similar devices of the other Figures 3, 4a-b and 11 ac).
  • Tci desired temperature setpoint
  • the following information is supplied to the electronic card 29 of the device 20:
  • a flow supplied by the flow detector or flow meter 25 (it can be a simple contact established by a float),
  • the information is supplied by the electronic card 29 of the device 20 to the electronic card 21 of the water heater 12 or to a relay.
  • the renewable energy water heater is shut down.
  • the renewable energy water heater can be turned on / off.
  • the temperature setpoint of the renewable energy water heater Tcc is lower than the temperature measured by the probe 23 (and possibly the probe 23a) of this water heater, then the latter can operate to heat the water of tank. Otherwise the water heater is stopped.
  • the two electronic cards of the instantaneous heating device and the water heater can be combined on a single electronic card.
  • thermosiphon solar water heater the two heating systems (solar and instantaneous) are independent for their operation, and one of the two systems does not have priority over the other.
  • FIGS. 8 to 10 different possible operating modes of the instant heating device and of the renewable energy water heater according to the invention and which apply to all the systems described above and below. after.
  • Figures 8 to 10 are presented in the form of steps of several algorithms.
  • FIG. 8 illustrates a procedure in which the complementary instantaneous heating device operates when the renewable energy water heater does not work and vice versa (with priority of heating to the instantaneous device).
  • the algorithm of FIG. 8 begins with a first step S1 of detection (for example controlled by the float 25 of the instantaneous water heater 20) of a drawing or drawing of water downstream of the heating system according to the invention (whether it is that of FIG. 5, for example at the level of the shower installation or of any one of the draw points P1, P2... or any of the systems previously described).
  • a first step S1 of detection for example controlled by the float 25 of the instantaneous water heater 20
  • a drawing or drawing of water downstream of the heating system according to the invention whether it is that of FIG. 5, for example at the level of the shower installation or of any one of the draw points P1, P2... or any of the systems previously described.
  • this step is followed by a step S2 of comparison between the withdrawal temperature Tes (Temperature Tes supplied for example by the probe 27 in the case of FIG. 6) and the set temperature Tci indicated by the user on the instant heater 20.
  • the preheater of the water heater 12 is deactivated in order to stop the water heater 12 and the instant heating device operates and regulates the temperature so that the temperature of water leaving the device reaches the setpoint Tci (step S3).
  • step S2 is followed by a comparison step S4 which occurs when no drawing is detected during the test of step S1.
  • step S4 it is determined whether the temperature measured in the tank Tec (temperature supplied for example by the probe 23 in the case of FIG. 6) is lower than the set temperature of the tank Tcc (for example 55 ° VS) . If so, this step is followed by a step S5 during which the instantaneous heating device is deactivated (no withdrawal) and the water heater preheating device operates.
  • Step S5 is followed by step S4 already described for regulating the water temperature of the tank 14.
  • step S4 is followed by a step S6 during which the device for preheating the water heater is thus deactivated. than the instant heater.
  • the maximum electrical power corresponds to the electrical power of the instantaneous heating device.
  • FIG. 9 illustrates a mode of operation in which the renewable energy water heater can operate or not when the complementary instantaneous heating device is operating (operating mode independent of the two heaters).
  • the algorithm of FIG. 9 begins with a first step S10 of detecting a drawing or drawing of water downstream of the heating system according to the invention (be it that of FIG. 5, for example at the level of l 'shower installation, or any of the draw points P1, P2 .... or any of the systems described above).
  • this step is followed by a step S11 of comparison between the withdrawal temperature Tes (temperature Tes supplied for example by the probe 27 in the case of FIG. 6) and the setpoint temperature Tci indicated by the user on the instant heater 20.
  • this step is followed by a step S12 of comparison between the temperature measured in the tank Tec (temperature supplied for example by the probe 23 in the case of FIG. 6) and the set temperature of the tank Tcc (for example 55 ° C).
  • this step is followed by a step S13 during which the preheater of the water heater operates and the instant heater can operate and the outlet temperature of this the latter is regulated so that the water temperature leaving the device reaches the setpoint Tci.
  • step S12 is followed by a step S14 during which the device heater preheating is deactivated (water heater 12 off) and the instant heating device can operate and the outlet temperature of the latter is regulated so that the water temperature at the outlet of the device reaches the value Tci setpoint.
  • step S11 when the temperature Tes is greater than or equal to the set temperature Tci, step S11 is followed by a comparison step S15 which occurs when no drawing is detected during the test from step S10.
  • step S15 it is determined whether the temperature measured in the tank Tec (temperature supplied for example by the probe 23 in the case of FIG. 6 and optionally 23a) is lower than the set temperature of the tank Tcc (by example 55 ° C).
  • step S16 this step is followed by a step S16 during which the instant heating device 20 is deactivated and the preheater of the water heater 12 operates.
  • Step S16 is followed by step S15 already described for regulating the water temperature of the tank.
  • step S15 is followed by a step S17 during which the device for preheating the water heater 12 is deactivated as well as the instantaneous heating device 20.
  • the maximum electric power corresponds to the sum of the electric power of the instantaneous heating device 20 and the electric power of the preheating device of the water heater 12.
  • FIG. 10 illustrates a procedure in which the complementary instantaneous heating device 20 operates in cooperation with a renewable energy water heater of the solar type with thermosiphon like those of FIGS. 4a-b and 11 ab.
  • the algorithm of FIG. 10 begins with a first step S20 of detecting a drawing or drawing of water downstream of the heating system according to the invention (be it that of FIG. 5, for example at the level of l 'shower installation, or any of the draw points P1, P2 .... or any of the systems described above).
  • this step is followed by a step S21 of comparison between the withdrawal temperature Tes (temperature Tes supplied for example by the probe 27 in the case of FIG. 6) and the set temperature Tci indicated by the user on the instant heater 20.
  • step S22 When the temperature Tes is lower than the set temperature Tci, this step is followed by a step S22 during which the instant heating device operates and the outlet temperature of the latter is regulated so that the water temperature in output of the device reaches the setpoint Tci.
  • step S21 is followed by a step S23 which occurs when no drawing is detected during the test of step S10 and which provides for the deactivation of the instant heating device.
  • thermosyphon solar water heater has an energy function (it is not regulated) and is autonomous.
  • FIGS. 1 to 10 also applies to the case of a heating system in which the renewable energy water heater comprises several storage tanks mounted in series, the instantaneous heating device being disposed on the outlet. hot water from the last tank in the order of circulation of the water in the circuit.
  • FIGS 11 a-c illustrate three applications of the integrated system of Figure 2 where the water heater is of the solar type.
  • FIG. 11a and 11b show the heating systems of Figures 4a and 4b, referenced here Sa and Sb, respectively with the additional instantaneous heating device inside the water storage tank.
  • the corresponding elements have the same references.
  • a hood or cover 45 in FIG. 11 a (46 in FIG. 11 b) mounted on the storage tank of the balloon contains inside the balloon in a separate housing or compartment the additional instantaneous heating device 44 in FIG. 11a (64 in Figure 1 1 b) and the optional temperature reducer 46 in Figure 1 1 a (62 in Figure 11 b).
  • FIG. 11 c illustrates a heating system 70 with a solar pump water heater in which the storage tank 72 contains a water storage tank 74 and, separately, inside a cover 76 or separate compartment, the additional instantaneous heating device 78 and an optional temperature reducer 80.
  • the system 70 also includes a circuit 82 which includes a solar panel 84, a heat exchanger 86 internal to the tank for preheating the water in the tank by the heat captured by the panel, a pump 88 for circulating circuit water and pipes or conduits connecting the various circuit components together.
  • a circuit 82 which includes a solar panel 84, a heat exchanger 86 internal to the tank for preheating the water in the tank by the heat captured by the panel, a pump 88 for circulating circuit water and pipes or conduits connecting the various circuit components together.
  • a cold water inlet pipe 90 is connected to the tank and is also connected to the inlet of the optional temperature reducer 80 so that the cold water mixes with the preheated water leaving the hot water outlet 75 from the tank, thus making it possible to bring hot water but at a reduced temperature (so as not to engage the security system of the complementary instantaneous heating device 78) at input 77 of the device 78.
  • the device for preheating the water of the tank by renewable energy comprises the solar panel or panels, the exchanger (when it is present), the pump (when it is present) as well than the circuit with the pipes connecting these components together.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

L'invention est relative à un système de chauffage comprenant : - un chauffe-eau à énergie renouvelable (11) qui comporte au moins un ballon de stockage d'eau comprenant au moins une cuve (13a) contenant de l'eau ayant une arrivée d'eau froide (15) et une sortie d'eau chaude (13c), et un dispositif de préchauffage de l'eau de la cuve, - un dispositif de chauffage instantané complémentaire (19) de l'eau préalablement préchauffée qui est disposé à l'intérieur dudit au moins un ballon de stockage d'eau (13), de manière séparée de la cuve et sur la sortie d'eau chaude de ladite cuve.

Description

SYSTEME DE CHAUFFAGE D'EAU A PRECHAUFFAGE PAR ENERGI E RENOUVELABLE AVEC COMPLEMENT PAR CHAUFFAGE INSTANTANE
L'invention est relative à un système de chauffage de l'eau.
On connaît des installations domestiques dans lesquelles le système de chauffage de l'eau sanitaire comprend un chauffe-eau à énergie renouvelable du type chauffe-eau thermodynamique.
De tels chauffe-eaux possèdent une cuve dans laquelle est chauffée l'eau. L'utilisateur qui souhaite prendre une douche prélève de l'eau chaude de la cuve. Dans certains pays, pour un bon confort d'utilisation, la température de l'eau prélevée doit avoisiner les 70°C.
Lorsque la capacité de stockage de la cuve est comprise entre 30 et 300 litres et que toute l'eau chaude de la cuve, ou la quasi-totalité, a été préalablement consommée par une ou plusieurs personnes, un nouvel utilisateur doit attendre que l'eau de la cuve se réchauffe à la température désirée avant de pouvoir disposer d'eau à la température souhaitée. Le temps d'attente peut aisément avoisiner les 30 mn pour les petites capacités et plusieurs heures pour les grosses capacités, ce qui peut s'avérer problématique pour le nouvel utilisateur en fonction de ses contraintes horaires.
I I existe donc un besoin de permettre à un utilisateur d'un tel système de chauffage de pouvoir obtenir plus rapidement qu'auparavant de l'eau chaude, notamment pour prendre une douche.
La présente invention a ainsi pour objet un système de chauffage comprenant : - un chauffe-eau à énergie renouvelable qui comporte au moins un ballon de stockage d'eau comprenant au moins une cuve contenant de l'eau ayant une arrivée d'eau froide et une sortie d'eau chaude, et un dispositif de préchauffage de l'eau de la cuve par l'énergie renouvelable,
- un dispositif de chauffage instantané complémentaire de l'eau préalablement préchauffée qui est disposé à l'intérieur dudit au moins un ballon de stockage d'eau, de manière séparée de la cuve et sur la sortie d'eau chaude de ladite cuve. Ainsi, l'eau qui est prélevée par l'utilisateur est par exemple chauffée en deux étapes :
-en premier lieu, l'eau est préchauffée par le dispositif de préchauffage de l'eau du chauffe-eau à énergie renouvelablejusqu'à une température donnée (par exemple 50°C) qui est inférieure à la température de confort ou d'utilisation à laquelle l'utilisateur va utiliser l'eau, et
-en second lieu, l'eau déjà préchauffée subit un chauffage complémentaire, interne au ballon du chauffe-eau et hors de la cuve, par l'intermédiaire du dispositif de chauffage instantané, jusqu'à la température de confort ou d'utilisation souhaitée (par exemple 70°C) .
Le préchauffage permet de chauffer un volume donné d'eau (ex : 80L) d'une température initiale (par exemple entre 5 et 30°C), jusqu'à une température intermédiaire (par exemple 50°C), en profitant du gain énergétique de l'énergie renouvelable dans son efficacité maximum. Ceci permet également de réduire le temps de fonctionnement principalement sur des chauffe-eaux thermodynamiques dont le temps de chauffage serait supérieur à 12 h pour atteindre des températures de l'ordre de 70°C. En effet, les meilleures performances énergétiques d'un chauffe-eau à énergie renouvelable sont réalisées au début de l'opération de chauffage et chutent lorsque le fluide atteint une certaine température (par exemple 50°C) . Le système selon l'invention exploite donc les performances énergétiques du chauffe-eau à énergie renouvelable dans sa phase où il est le plus efficace. La puissance installée du chauffe-eau peut ainsi être réduite tout en conservant un temps de chauffage raisonnable inférieur à 10 h, et en permettant de réduire son coût (en sélectionnant des composants moins énergivores tels que le ventilateur et le compresseur du circuit thermodynamique), de même que le volume de stockage d'eau de la cuve.
Le dispositif de chauffage instantané assure ensuite le chauffage complémentaire (hors de la cuve) de l'eau préchauffée sur le circuit de sortie de l'eau de la cuve depuis la température intermédiaire (par exemple 50°C)jusqu'à la température de confort ou d'utilisation (par exemple 70°C) . Ce chauffage complémentaire instantané permet d'élever instantanément la température de l'eau issu de la cuve selon le débit d'utilisation et la puissance du chauffage complémentaire (par exemple 21 ,5°C pour 4500 W avec un débit 3 l/mn) . En énergie renouvelable il faut un temps très long pour obtenir le même résultat avec des rendements faibles du système. Par exemple, pour un chauffe-eau thermodynamique de puissance inférieure à 400 W sur une cuve de 80 litres il faut plus de 3 h avec des COP inférieurs à 1 ,5 pour passer de 50°C à 70°C.
L'utilisateur obtient plus rapidement de l'eau chaude à la température souhaitée (de confort ou d'utilisation) qu'avec un chauffe-eau à énergie renouvelable conventionnel qui serait utilisé pour réaliser l'intégralité du chauffage.
Comme l'eau de la cuve est une eau qui a été préchauffée (généralement dans la cuve) à une température intermédiaire entre la température initiale et la température de confort, la température de l'eau stockée est réduite par rapport à la température souhaitée (de confort ou d'utilisation) . Les déperditions énergétiques ou pertes statiques de la cuve sont de ce fait réduites par rapport à une configuration dans laquelle une résistance électrique serait placée à l'intérieur de la cuve, chaufferait l'eau de la cuve jusqu'à la température souhaitée par l'utilisateur et serait donc soumise à des déperditions thermiques en attendant de pouvoir être utilisée. Grâce à l'invention, le dispositif de chauffage instantané complémentaire est situé hors de la cuve et il ne chauffe que le volume d'eau sortant de la cuve par la sortie d'eau chaude (cas de puisage ou soutirage par l'utilisateur) afin d'amener ce volume eau à la température souhaitée. Le volume d'eau ainsi chauffé n'est donc pas stocké (il n'est donc pas soumis à des déperditions thermiques et de ce fait conserve sa température) puisqu'il est directement utilisé par l'utilisateur.
En outre, cette température de stockage réduite améliore la durée de vie de certains composants, notamment en réduisant le temps de fonctionnement de composants critiques (ex : pompe, compresseur, vannes...) et réduit les phénomènes d'entartrage de la cuve.
Par ailleurs, lorsque la cuve est en acier émaillée une amélioration de la tenue à la corrosion de la cuve peut être constatée en raison de cette température de stockage réduite. Le revêtement en émail interne à la cuve est donc moins susceptible d'être dégradé avec le temps. Par ailleurs des revêtements thermoplastiques peuvent être envisagés pour protéger la cuve.
Le fait d'intégrer le dispositif de chauffage instantané complémentaire dans le ballon de stockage (mais en dehors de la cuve de stockage) permet d'avoir une solution monobloc, par rapport à une configuration dans laquelle le dispositif de chauffage instantané complémentaire serait extérieur au ballon de stockage. Le ballon intégrant de manière interne la cuve et le dispositif de chauffage instantané complémentaire offre ainsi un agencement compact et moins encombrant qu'avec le dispositif externe. Il s'ensuit également une mise en place/installation simplifiée.
De manière générale, un ballon de stockage d'eau dans un système de chauffage selon l'invention comprend une ou plusieurs cuves contenant de l'eau qui sont renfermées à l'intérieur d'une enveloppe externe ou habillage.
Selon d'autres caractéristiques possibles :
- le chauffe-eau à énergie renouvelable est un chauffe-eau thermodynamique et l'eau est généralement chauffée dans la cuve ;
- le chauffe-eau à énergie renouvelable est un chauffe-eau solaire par exemple à thermosiphon ou avec pompe de recirculation et l'eau l'eau est généralement chauffée dans la cuve ;
- le dispositif de chauffage instantané est un chauffe-eau instantané électrique ;
-ledit au moins un ballon de stockage d'eau comprend la cuve et une partie interne au ballon qui est séparée de la cuve et qui contient le dispositif de chauffage instantané complémentaire; la partie séparée de la cuve servant de logement au dispositif de chauffage instantané complémentaire peut ainsi former un compartiment séparé à l'intérieur d'une même enveloppe contenant la cuve ; la partie séparée de la cuve et servant de logement au dispositif de chauffage instantané complémentaire peut être délimitée par un capot ou couvercle qui est monté sur la cuve et renferme ledit dispositif ;
-la partie séparée de la cuve communique avec ladite cuve par l'intermédiaire de la sortie d'eau chaude de la cuve ; le dispositif de chauffage instantané complémentaire est ainsi placé sur la conduite ou canalisation de sortie d'eau chaude qui sort de la cuve et l'eau sortant de la cuve passe donc nécessairement dans ledit dispositif ;
-le système comprend un réducteur de température placé sur la sortie d'eau chaude de la cuve, en amont du dispositif de chauffage instantané complémentaire dans le sens de circulation de l'eau chaude ; le réducteur de température est également placé en dehors de la cuve mais dans le ballon et, par exemple, dans la partie interne au ballon qui est séparée de la cuve ; le réducteur de température permet d'éviter, en cas de température trop élevée de l'eau stockée dans la cuve (en fonction par exemple des pays où le ballon est installé l'eau de la cuve peut atteindre des températures très élevées, par exemple de l'ordre de 90°C), d'enclencher la sécurité du dispositif de chauffage instantané complémentaire lorsque l'eau sortant de la cuve pénètre dans ce dernier ;
-le réducteur de température est par exemple un dispositif de mélange d'eau qui est apte à mélanger l'eau chaude de la sortie d'eau chaude de la cuve avec de l'eau froide afin de réduire la température de l'eau entrant dans le dispositif de chauffage instantané complémentaire; à titre d'exemple, l'eau froide arrivant sur le dispositif de mélange est prélevée sur l'arrivée d'eau froide de la cuve ;
-le système de chauffage comporte un système de pilotage ou régulation des actions de préchauffage par le dispositif de préchauffage de l'eau du chauffe-eau et/ou de chauffage complémentaire de l'eau préchauffée par le dispositif de chauffage instantané complémentaire.
La présente invention a également pour objet un ensemble comprenant une installation sanitaire et un système de chauffage de l'eau raccordé à l'installation sanitaire. Le système de chauffage de l'eau est conforme au système de chauffage brièvement exposé ci-dessus.
La présente invention a en outre pour objet un procédé de gestion d'un système de chauffage d'eau conforme au système de chauffage brièvement exposé ci-dessus. Le procédé est caractérisé en ce qu'il comprend les étapes suivantes : -comparaison entre la valeur de température d'eau Tes en sortie dudit dispositif de chauffage instantané complémentaire et une valeur de température d'eau de consigne de l'utilisateur pour le dispositif de chauffage instantané complémentaire Tci, -activation du dispositif de chauffage instantané complémentaire lorsque la valeur de température d'eau Tes en sortie dudit dispositif de chauffage instantané complémentaire est inférieure à la valeur de température d'eau de consigne Tci et désactivation du dispositif de chauffage instantané complémentaire dans le cas contraire. Selon d'autres caractéristiques possibles :
-l'étape de comparaison intervient lorsqu'un puisage d'eau par l'utilisateur est détecté ;
- lorsque la valeur de température d'eau Tes en sortie dudit dispositif de chauffage instantané complémentaire est inférieure à la valeur de température d'eau de consigne Tci, le procédé comprend une étape de comparaison entre la température d'eau mesurée dans la cuve Tes et la température de consigne de la cuve Tcc afin de déterminer, en fonction du résultat de la comparaison, si le chauffe-eau doit être activé/maintenu en fonctionnement ou désactivé ;
-lorsqu'aucun puisage d'eau n'est détecté ou lorsque la valeur de température d'eau Tes en sortie dudit dispositif de chauffage instantané complémentaire est supérieure à la valeur de température d'eau de consigne Tci, le procédé comprend une étape de comparaison entre la température d'eau mesurée dans la cuve Tes et la température de consigne de la cuve Tcc ;
-le procédé comprend une étape d'activation ou de maintien en fonctionnement du chauffe-eau afin de préchauffer l'eau qui sera stockée dans la cuve lorsque la température d'eau mesurée dans la cuve Tes est inférieure à la température de consigne de la cuve Tcc et une étape de désactivation du chauffe-eau dans le cas contraire. D'autres caractéristiques et avantages apparaîtront au cours de la description qui va suivre, donnée uniquement à titre d'exemple et faite en référence aux dessins annexés, sur lesquels :
-la figure 1 est une vue schématique générale d'un schéma de principe d'un système de chauffage d'eau selon l'invention ;
-la figure 2 illustre une réalisation du système de chauffage d'eau selon l'invention montrant le dispositif de chauffage instantané complémentaire à l'intérieur de l'enveloppe du ballon de stockage ;
-la figure 3 illustre une application du système de chauffage d'eau selon l'invention où le chauffe-eau est de type thermodynamique;
-les figures 4a et 4b illustrent deux applications du système de chauffage d'eau où le chauffe-eau est de type solaire thermosiphon ;
-la figure 5 illustre une application possible d'un système de chauffage selon l'invention à une installation sanitaire ;
-la figure 6 est une vue plus détaillée du schéma de principe du système de la figure 1 et qui concerne la réalisation de la figure 2;
-la figure 7 illustre sous la forme de blocs fonctionnels un système de chauffage d'eau selon un mode de réalisation de l'invention ;
-les figures 8, 9 et 10 illustrent différents modes de fonctionnement possibles d'un système de chauffage d'eau selon un mode de réalisation de l'invention ;
-les figures 11 a, 11 b et 11 c illustrent trois applications du système intégré de la figure 2 où le chauffe-eau est de type solaire thermosiphon ou avec pompe.
La figure 1 illustre de manière schématique un schéma de principe d'un système de chauffage d'eau 10 selon l'invention et qui comprend ;
-un chauffe-eau à énergie renouvelable 12 qui comporte un ballon de stockage d'eau sanitaire comprenant une cuve 14 munie d'une arrivée d'eau froide 16 et d'une sortie d'eau chaude 18, et un dispositif connu de préchauffage de l'eau contenue dans la cuve (non représenté sur la figure 1 et qui peut être formé par une ou plusieurs résistances chauffantes en stéatite ou non), -un dispositif 20 de chauffage instantané complémentaire de l'eau préchauffée qui est disposé sur le circuit de sortie d'eau chaude à l'extérieur de la cuve.
Sur la figure 1 le dispositif 20 est représenté à l'extérieur du ballon 12 pour la commodité de l'exposé et l'explication du principe de l'invention mais il convient de noter que le dispositif 20 est généralement contenu dans le ballon au sens de l'invention. Il en est de même pour les figures 3, 4a-b, 5 et 6 où le dispositif de chauffage instantané complémentaire a également été représenté à l'extérieur du ballon alors qu'il est intégré à ce dernier.
Le ballon du chauffe-eau 12 comprend de manière générale au moins une cuve, c'est-à-dire qu'il peut comprendre une ou plusieurs cuves qui seront appelées « cuve » tout simplement par la suite. I l en est de même pour tous les modes de réalisation de l'invention. La cuve est entourée par une enveloppe ou enceinte qui constitue l'habillage. Cet habillage peut comprendre un isolant thermique (ex : mousse de polyuréthane) autour de la cuve et une tôle agencée autour de l'isolant avec un capotage installé en-dessous de la cuve.
Dans le schéma de principe de la figure 1 le dispositif de chauffage instantané complémentaire est représenté en aval de la sortie d'eau chaude 18 de la cuve et il est généralement toujours disposé à l'intérieur du ballon de stockage (hors de la cuve), sur le circuit de sortie d'eau préchauffée, comme représenté sur la figure 2.
Sur la figure 2 le ballon 13 du chauffe-eau à énergie renouvelable 11 comporte à l'intérieur une cuve 13a munie, d'une part, d'une arrivée d'eau froide 15 qui est raccordée en entrée du ballon et qui s'étend à l'intérieur dudit ballon sous la forme d'une conduite/canalisation 13b qui traverse une partie du ballon jusqu'à pénétrer dans la cuve 13a et, d'autre part, d'une sortie d'eau chaude 13c. Toutes les caractéristiques du ballon de la figure 1 s'appliquent également au ballon de la figure 2.
La cuve 13a renferme ou est associée à un dispositif connu de préchauffage de l'eau qui y est contenue (non représenté sur la figure 2) . L'eau stockée dans la cuve peut être préchauffée dans la dite cuve ou être préchauffée ailleurs et être ensuite amenée dans cette cuve. Le ballon 13 comporte également une deuxième partie 13d séparée de la cuve 13a, disposée par exemple en-dessous de la cuve, communiquant avec la cuve via un élément de conduite ou raccord hydraulique 13c qui forme la sortie d'eau chaude de la cuve. L'eau préchauffée qui est contenue dans la première partie 13a de cuve sort de cette partie par l'élément 13c et pénètre dans la deuxième partie 13d.
La partie inférieure 13d est par exemple délimitée par un capot qui vient se fixer sous la cuve et à cette dernière par des moyens connus. La partie inférieure peut ainsi former un compartiment interne du ballon qui est séparé physiquement de la cuve et une enveloppe propre au ballon peut entourer la cuve et cette autre partie (inférieure ou non) ou compartiment séparé de la cuve.
La partie 13d contient un dispositif 19 de chauffage instantané complémentaire de l'eau préchauffée qui est disposé sur le circuit de sortie d'eau chaude et, plus particulièrement, est raccordé, d'une part, à l'élément 13c pour recevoir en entrée l'eau préchauffée stockée (le raccord entre la sortie 13c et l'entrée du dispositif 19 peut être plus ou moins long) et, d'autre part, à la sortie d'eau chaude 17 du ballon pour délivrer hors du ballon de stockage 13 de l'eau chauffée à une température donnée souhaitée par un utilisateur (le circuit de sortie d'eau chaude du ballon inclut l'élément 13c sortant de la cuve jusqu'à la sortie 17 du dispositif 19 et aussi de l'enveloppe du ballon) . Le dispositif 19 qui est intégré au volume interne du ballon (interne à son enveloppe) en étant logé dans une partie ou compartiment séparé de la cuve de stockage confère ainsi au ballon un aspect monobloc unitaire qui est apte à être transporté d'un seul tenant par un installateur.
D'autres formes de réalisation d'un dispositif de chauffage instantané complémentaire disposé à l'intérieur d'un ballon de chauffe-eau à énergie renouvelable mais à l'extérieur de la cuve de ce ballon sont bien entendu envisageables. Par exemple, la partie 13d contenant le dispositif de chauffage instantané peut ne pas être située en dessous de la cuve mais au-dessus de la cuve (par exemple lorsque le ballon est posé au sol), voire elle peut être agencée le long de la cuve (par exemple verticalement) pour des raisons d'encombrement. Tout ce qui a été décrit ci-dessus à propos de la partie inférieure 13d du ballon s'applique, quelles que soient la configuration de cette partie et son agencement dans le ballon.
Dans la description de la figure 1 et de la figure 2 le chauffe-eau à énergie renouvelable peut être de n'importe quel type. À titre d'exemple, la figure 3 illustre un chauffe-eau thermodynamique connu en soi (pompe à chaleur) et les figures 4a et 4b illustrent des chauffe-eaux de type solaire à thermosiphon également connus en soi, à l'exception de la présence d'un dispositif complémentaire de chauffage instantané d'eau. Sur la figure 3, le dispositif complémentaire 20 est représenté à l'extérieur du ballon de stockage comme sur la figure 1 (par souci de commodité de l'exposé) mais il est généralement toujours disposé à l'intérieur de ce ballon de stockage (à l'intérieur de l'enveloppe de ce dernier ou d'un capotage spécifique) et hors de la cuve comme sur la figure 2. Il en est de même pour les systèmes de chauffage des figures 4a-b. Les figures 11 a-c illustrent plus particulièrement la présence d'un dispositif complémentaire de chauffage instantané d'eau à l'intérieur du ballon de stockage d'eau.
Plus particulièrement, le chauffe-eau thermodynamique de la figure 3 comprend un circuit thermodynamique dans lequel circule un fluide frigorigène et qui comporte, de manière connue, successivement dans le sens de circulation du fluide :
-un condenseur C1 disposé autour de la cuve du ballon 14 (dans un exemple de réalisation le condenseur peut être réalisé sous la forme d'une ceinture annulaire comprenant une pluralité de canaux parallèles entre eux et enroulés autour de la cuve ; alternativement, le condenseur peut être disposé à l'intérieur de la cuve) ;
-un organe de détente C2 tel qu'un détendeur ;
-un évaporateur C3 qui est par exemple en contact avec de l'air extérieur afin d'en extraire des calories ;
-un compresseur C4 compressant le fluide avant sa condensation dans le condenseur C1 où le fluide transfère ses calories à l'eau contenue dans la : cuve.
Le circuit thermodynamique, via son condenseur, forme le dispositif de préchauffage de l'eau de la cuve. Les chauffe-eaux solaires des figures 4a et 4b illustrent respectivement un chauffe-eau solaire thermodynamique :
-de type fermé (fig .4a) dans lequel l'eau d'un circuit primaire récupère les calories dans un panneau solaire et passe dans un échangeur (non représenté) dans une cuve ou autour de la cuve (dit double enveloppe) du ballon de stockage pour réchauffer l'eau sanitaire ;
-de type ouvert (fig.4b) dans lequel l'eau sanitaire circule dans le panneau solaire et va directement dans la cuve du ballon de stockage pour réchauffer l'eau sanitaire.
Ces deux systèmes de chauffe-eau fonctionnent sans pompe mais par gravité en utilisant la différence de densité entre eau chaude et eau froide.
Dans les deux systèmes illustrés le dispositif de chauffage instantané est disposé à l'extérieur du ballon de stockage d'eau par souci de commodité de l'exposé mais il est généralement toujours disposé à l'intérieur du ballon (à l'intérieur de l'enveloppe du ballon ou d'un capotage spécifique), comme illustré sur les figures 11 a-c.
Plus particulièrement, le chauffe-eau solaire de type fermé (fig.4a) 30 comprend un ballon de stockage qui comporte une cuve de stockage d'eau 32 renfermant un échangeur de chaleur non représenté et un panneau solaire 34 raccordé à l'entrée et à la sortie de l'échangeur respectivement par des conduites 36 et 38.
La cuve 32 est équipée d'une conduite d'arrivée d'eau sanitaire froide 40 et d'une sortie d'eau sanitaire chaude 42.
Le système de chauffage de la figure 4a comporte en outre sur la sortie 42, à l'extérieur de la cuve 32, un dispositif de chauffage instantané d'eau 44 analogue au dispositif 20 des figures 1 à 3 et qui présente les mêmes avantages.
Le système comporte également, de manière optionnelle, un réducteur de température 46 disposé sur la sortie 42 en amont de l'entrée 44a du dispositif 44. Le réducteur de température permet d'éviter que de l'eau trop chaude pénètre dans le dispositif de chauffage instantané 44 et enclenche la sécurité dudit dispositif 44. I l convient de noter ici que l'arrivée d'eau froide est également raccordée au réducteur de température 46. Le réducteur de température 46 est ici un dispositif de mélange ou mélangeur qui mélange l'eau chaude sortant de la cuve avec de l'eau froide.
Le dispositif 44 fournit de l'eau chaude sanitaire à la température finale souhaitée par l'utilisateur via la conduite de sortie 44b.
Le chauffe-eau solaire de type ouvert (fig 4b) 50 comprend un ballon de stockage qui comporte une cuve de stockage d'eau 52 et un panneau solaire 54 alimenté en entrée par une arrivée d'eau froide sanitaire 56 et qui est raccordé en sortie à la cuve 52 par une conduite 58.
La cuve 52 est équipée d'une sortie d'eau chaude sanitaire 60 sur laquelle est monté, de façon optionnelle, un réducteur de température 62, en amont de l'entrée 64a d'un dispositif de chauffage instantané de l'eau 64.
Le dispositif 64 fournit de l'eau chaude sanitaire à la température finale souhaitée par l'utilisateur via la conduite de sortie 64b.
Dans les deux systèmes des figures 4a-b, le dispositif de préchauffage de l'eau de la cuve par énergie renouvelable comprend le ou les panneaux solaires et l'échangeur (lorsqu'il est présent) et le circuit avec les conduites raccordant ces composants entre eux.
À titre de variante non représentée, un chauffe-eau solaire équipé d'un dispositif de chauffage instantané complémentaire peut également comporter une pompe permettant de faire circuler l'eau entre la cuve du chauffe-eau et le panneau solaire (système solaire à fonctionnement forcé) . Le fonctionnement est identique à la version thermodynamique.
De retour aux figures 1 à 3, le dispositif de chauffage instantané complémentaire 20 est par exemple un chauffe-eau instantané de type électrique.
La puissance de ce dispositif est dimensionnée en fonction des besoins de chauffage complémentaires et notamment en fonction de la capacité de la cuve 14.
Ce dispositif 20 est par exemple composé d'une résistance électrique (la puissance électrique est par exemple comprise entre 3 et 4,5 KW bien que d'autres valeurs de puissance électrique peuvent être envisagées) disposée à l'intérieur d'une enveloppe ou enceinte dans laquelle circule l'eau provenant de la sortie 18 (ou de la sortie 13c sur la figure 2) . L'eau ainsi chauffée sort du dispositif 20 par la sortie 20a (ou par la sortie 17 sur la figure 2) afin d'être acheminéejusqu'à un équipement où l'utilisateur pourra se servir de cette eau chaude directement ou bien mélangée avec une autre eau.
Alternativement, le dispositif 20 peut être d'un autre type non représenté ici.
Ce qui précède concernant le dispositif 20 s'applique également au dispositif de chauffage instantané complémentaire des figures 4a et 4b et 11 a- c.
La figure 5 représente un exemple possible d'ensemble comprenant, d'une part, une installation sanitaire IS qui comprend notamment une installation de douche I D et, d'autre part, un système de chauffage d'eau tel que celui de la figure 1 (ou celui des figures 2, 3, 4a-b et 11 a-c) . Le système 10 de la figure 1 est raccordé à l'installation de douche par une conduite 11 .
Cet ensemble comporte en amont une source d'eau S (ex réseau d'eau sanitaire...) qui alimente notamment le système 10 par une conduite I2.
L'installation I D comporte également deux points de fourniture d'eau chaude P1 et P2 (il peut s'agir de robinets de lavabos, d'évier...) raccordés au système 10, en aval de celui-ci, tout comme l'installation de douche.
Le chauffage instantané procuré par le dispositif 20 permet ainsi à l'utilisateur de la douche, tout comme à l'utilisateur des points d'eau P1 et P2, d'obtenir de l'eau chaude à la température souhaitée plus rapidement qu'auparavant et avec tous les avantages décrits ci-dessus (notamment avant l'énumération des figures) ou ci-dessous.
Un système de pilotage ou de gestion du système de chauffage d'eau selon un mode de réalisation de l'invention est prévu afin de piloter les actions de préchauffage par le dispositif de préchauffage du chauffe-eau à énergie renouvelable et/ou de chauffage complémentaire par le dispositif 20 ou analogue des autres figures. En d'autres termes, ce système régule les priorités de fonctionnement entre les deux dispositifs lorsque cela est souhaité.
Ce système peut être de type mécanique (par exemple en utilisant un thermostat mécanique qui détermine le dispositif à activer pour la chauffe ou qui décide d'activer les deux dispositifs) ou électronique (par exemple en utilisant des relais pour commander l'alimentation des dispositifs en vue de leur chauffe...) .
La figure 6 illustre de manière plus détaillée que la figure 1 différents composants internes du chauffe-eau à énergie renouvelable 12 et du dispositif de chauffage instantané complémentaire 20 qui est généralement toujours disposé à l'intérieur du ballon de stockage et hors de la cuve (tout ce qui est décrit à propos du dispositif 20 s'applique également au dispositif 19 de la figure 2 ainsi qu'aux dispositifs analogues des autres figures 3, 4a-b, 5 et 11 a-c) . Les proportions géométriques entre le chauffe-eau et le dispositif 20 ont été volontairement exagérées afin de rendre visible les différents composants internes au dispositif qui, généralement, est d'un volume réduit par rapport à celui de la cuve.
Le chauffe-eau 12 qui peut alternativement être de type solaire comprend par exemple une carte électronique 21 sur laquelle une consigne de température 22 (Tcc) peut être fixée (en usine) ou réglable par l'utilisateur (par une molette ou des touches de changements consigne) pour le préchauffage de l'eau dans la cuve de stockage 14 du ballon.
Une sonde de température 23 est placée à l'intérieur ou en surface de la cuve afin de mesurer la température de l'eau Tec dans celle-ci. La sonde est disposée de manière à permettre le fonctionnement du système de préchauffage à énergie renouvelable et peut permettre de donner une indication sur la température Jec. Selon un mode de réalisation alternatif, une deuxième sonde 23a est placée en partie basse, en sortie de la cuve de stockage du ballon (option 1 ) pour indiquer la température exacte d'entrée dans le système de chauffage instantané 10 ou en partie haute (option 2) . La deuxième sonde 23a reliée à carte électronique remplira la même fonction que la sonde 23 mais avec plus de précision du fait de son positionnement.
Sur la conduite de sortie 18 qui relie la cuve 14 du ballon au dispositif 20 un réducteur de température pré-réglé (optionnel) 24 est positionné.
Le dispositif 20 peut comprendre plus particulièrement, et successivement sur l'arrivée d'eau dans le dispositif, un détecteur de débit 25, un circuit de circulation d'eau interne comprenant au moins une résistance électrique 26 et, en aval de celle-ci, une sonde de température 27, par exemple située à l'intérieur du dispositif, sur l'eau qui a été chauffée par la résistance, en amont de la sortie 20a. La sonde 27 mesure une température d'eau Tes en sortie du dispositif 20 (température de soutirage ou puisage de l'eau qui correspond sensiblement à la température d'utilisation de l'eau) .
Le dispositif 20 peut comprendre en outre une sécurité thermique 28 disposée sur la cuve comprenant la résistance électrique ou en sortie du système de chauffage de l'eau. La sécurité thermique a pour fonction de couper la fonction chauffage réalisée par la résistance électrique en cas de dépassement d'une température prédéterminée.
Le dispositif 20 comporte en outre une carte électronique 29 qui est reliée à différents composants du dispositif pour son fonctionnement seul et/ou en coopération avec le chauffe-eau 12. Afin de ne pas surcharger le dessin, la carte 29 n'est pas représentée en liaison avec les composants sur la figure 6.
Une consigne C (température de consigne Tci) est par ailleurs accessible à l'utilisateur pour le réglage de la température finale souhaitée pour l'eau sortant du dispositif 20. Cette consigne est généralement située à l'extérieur de l'enceinte du dispositif 20 et peut prendre la forme d'une interface homme- machine avec afficheur ou de simples boutons ou d'une molette de réglage pour monter ou descendre la température de consigne Tci.
On notera que certains des composants internes au dispositif 20 peuvent être omis ou agencés différemment à l'intérieur de l'enceinte du dispositif, voire à l'extérieur de l'enceinte pour certains composants.
La figure 7 illustre sous la forme de schémas bloc fonctionnels des interactions possibles entre les cartes électroniques du dispositif de chauffage instantané et du chauffe-eau ainsi qu'entre chacune des cartes et certains composants du dispositif et du chauffe-eau. Les alimentations respectives du dispositif de chauffage instantané et du chauffe-eau sont notées respectivement A1 et A2 et fournissent l'alimentation électrique à chaque carte ainsi qu'à certains composants même si cela n'est pas représenté sur la figure.
De manière générale, l'utilisateur indique une consigne de température souhaitée Tci sur le dispositif de chauffage instantané 20 (du dispositif 19 de la figure 2 ou des dispositifs analogues des autres figures 3, 4a-b et 11 a-c) . Comme illustré sur la figure 7, les informations suivantes sont fournies à la carte électronique 29 du dispositif 20 :
-un débit fourni par le détecteur de débit ou débitmètre 25 (il peut s'agir d'un simple contact établi par un flotteur),
-la consigne de température sélectionnée Tci,
-une température de sortie fournie par la sonde 27.
On notera que si aucun débit ou un débit trop faible est détecté par le détecteur 25 le dispositif 20 est arrêté.
Si la température de consigne Tci est inférieure à la température de sortie mesurée par la sonde 27, un processus de régulation du système se met en place.
Dans le cadre d'un fonctionnement du système avec priorité donnée au dispositif de chauffage instantané, l'information est fournie par la carte électronique 29 du dispositif 20 à la carte électronique 21 du chauffe-eau 12 ou à un relais.
Si le dispositif de chauffage instantané est en fonctionnement, le chauffe-eau à énergie renouvelable est arrêté.
Si le dispositif de chauffage instantané est à l'arrêt, le chauffe-eau à énergie renouvelable peut être activé/mis en fonctionnement.
Dans le cas où la consigne de température du chauffe-eau à énergie renouvelable Tcc est inférieure à la température mesurée par la sonde 23 (et éventuellement la sonde 23a) de ce chauffe-eau, alors ce dernier peut fonctionner pour réchauffer l'eau de la cuve. Dans le cas contraire le chauffe- eau est arrêté.
Les deux cartes électroniques du dispositif de chauffage instantané et du chauffe-eau peuvent être regroupées sur une seule et même carte électronique.
On notera que ce qui vient d'être décrit en référence aux figures 6 et 7 s'applique à tous les systèmes décrits ci-dessus et ci-après et notamment à ceux concernant un chauffe-eau solaire à pompe. Dans le cas d'un chauffe-eau solaire thermosiphon les deux systèmes de chauffage (solaire et instantané) sont indépendants pour leur fonctionnement, et l'un des deux systèmes n'est pas prioritaire par rapport à l'autre. On va maintenant décrire en relation avec les figures 8 à 10 différents modes de fonctionnement possibles du dispositif de chauffage instantané et du chauffe-eau à énergie renouvelable selon l'invention et qui s'appliquent à tous les systèmes décrits ci-avant et ci-après. Les figures 8 à 10 se présentent sous la forme d'étapes de plusieurs algorithmes.
La figure 8 illustre un mode opératoire dans lequel le dispositif de chauffage instantané complémentaire fonctionne lorsque le chauffe-eau à énergie renouvelable ne fonctionne pas et inversement (avec priorité de chauffage au dispositif instantané) .
L'algorithme de la figure 8 débute par une première étape S1 de détection (par exemple pilotée par le flotteur 25 du chauffe-eau instantané 20) d'un puisage ou tirage d'eau en aval du système de chauffage selon l'invention (que ce soit celui de la figure 5, par exemple au niveau de l'installation de douche ou de l'un quelconque des points de puisage P1 , P2 ....ou l'un quelconque des systèmes précédemment décrits) .
En cas de détection, cette étape est suivie d'une étape S2 de comparaison entre la température de soutirage Tes (Température Tes fournie par exemple par la sonde 27 dans le cas de la figure 6) et la température de consigne Tci indiquée par l'utilisateur sur le dispositif de chauffage instantané 20.
Lorsque la température Tes est inférieure à la température de consigne Tci, le dispositif de préchauffage du chauffe-eau 12 est désactivé afin de mettre à l'arrêt le chauffe-eau 12 et le dispositif de chauffage instantané fonctionne et régule la température afin que la température d'eau en sortie du dispositif atteigne la valeur de consigne Tci (étape S3) .
Lorsque la température Tes est supérieure ou égale à la température de consigne Tci, l'étape S2 est suivie d'une étape de comparaison S4 qui intervient lorsqu'aucun puisage n'est détecté lors du test de l'étape S1 .
Au cours de l'étape S4 on détermine si la température mesurée dans la cuve Tec (température fournie par exemple par la sonde 23 dans le cas de la figure 6) est inférieure à la température de consigne de la cuve Tcc (par exemple 55° C) . Dans l'affirmative, cette étape est suivie d'une étape S5 au cours de laquelle le dispositif de chauffage instantané est désactivé (pas de soutirage) et le dispositif de préchauffage du chauffe-eau fonctionne.
L'étape S5 est suivie de l'étape S4 déjà décrite pour une régulation de la température d'eau de la cuve 14.
Dans le cas où la température mesurée dans la cuve est supérieure ou égale à la température de consigne de la cuve Tcc, l'étape S4 est suivie d'une étape S6 au cours de laquelle le dispositif de préchauffage du chauffe-eau est désactivé ainsi que le dispositif de chauffage instantané.
Dans ce mode opératoire la puissance électrique maximale correspond à la puissance électrique du dispositif de chauffage instantané.
La figure 9 illustre un mode opératoire dans lequel le chauffe-eau à énergie renouvelable peut fonctionner ou non lorsque le dispositif de chauffage instantané complémentaire fonctionne (mode de fonctionnement indépendant des deux chauffages) .
L'algorithme de la figure 9 débute par une première étape S10 de détection d'un puisage ou tirage d'eau en aval du système de chauffage selon l'invention (que ce soit celui de la figure 5, par exemple au niveau de l'installation de douche, ou l'un quelconque des points de puisage P1 , P2 ....ou l'un quelconque des systèmes précédemment décrits) .
En cas de détection, cette étape est suivie d'une étape S11 de comparaison entre la température de soutirage Tes (température Tes fournie par exemple par la sonde 27 dans le cas de la figure 6) et la température de consigne Tci indiquée par l'utilisateur sur le dispositif de chauffage instantané 20.
Lorsque la température Tes est inférieure à la température de consigne Tci, cette étape est suivie d'une étape S12 de comparaison entre la température mesurée dans la cuve Tec (température fournie par exemple par la sonde 23 dans le cas de la figure 6) et la température de consigne de la cuve Tcc (par exemple 55° C) .
Dans l'affirmative, cette étape est suivie d'une étape S13 au cours de laquelle le dispositif de préchauffage du chauffe-eau fonctionne et le dispositif de chauffage instantané peut fonctionner et la température de sortie de ce dernier est régulée afin que la température d'eau en sortie du dispositif atteigne la valeur de consigne Tci.
Dans le cas où la température mesurée dans la cuve (par la sonde 23 et optionnellement 23a) est supérieure ou égale à la température de consigne de la cuve Tcc, l'étape S12 est suivie d'une étape S14 au cours de laquelle le dispositif de préchauffage du chauffe-eau est désactivé (chauffe-eau 12 à l'arrêt) et le dispositif de chauffage instantané peut fonctionner et la température de sortie de ce dernier est régulée afin que la température d'eau en sortie du dispositif atteigne la valeur de consigne Tci.
De retour à l'étape S1 1 , lorsque la température Tes est supérieure ou égale à la température de consigne Tci, l'étape S11 est suivie d'une étape de comparaison S15 qui intervient lorsqu'aucun puisage n'est détecté lors du test de l'étape S10.
Au cours de l'étape S15 on détermine si la température mesurée dans la cuve Tec (température fournie par exemple par la sonde 23 dans le cas de la figure 6 et optionnellement 23a) est inférieure à la température de consigne de la cuve Tcc (par exemple 55° C) .
Dans l'affirmative, cette étape est suivie d'une étape S16 au cours de laquelle le dispositif de chauffage instantané 20 est désactivé et le dispositif de préchauffage du chauffe-eau 12 fonctionne.
L'étape S16 est suivie de l'étape S15 déjà décrite pour une régulation de la température d'eau de la cuve.
Dans le cas où la température mesurée dans la cuve est supérieure ou égale à la température de consigne de la cuve Tcc, l'étape S15 est suivie d'une étape S17 au cours de laquelle le dispositif dë préchauffage du chauffe-eau 12 est désactivé ainsi que le dispositif de chauffage instantané 20.
Dans ce mode opératoire la puissance électrique maximale correspond à la somme de la puissance électrique du dispositif de chauffage instantané 20 et de la puissance électrique du dispositif de préchauffage du chauffe-eau 12.
La figure 10 illustre un mode opératoire dans lequel le dispositif de chauffage instantané complémentaire 20 fonctionne en coopération avec un chauffe-eau à énergie renouvelable de type solaire à thermosiphon comme ceux des figures 4a-b et 11 a-b. L'algorithme de la figure 10 débute par une première étape S20 de détection d'un puisage ou tirage d'eau en aval du système de chauffage selon l'invention (que ce soit celui de la figure 5, par exemple au niveau de l'installation de douche, ou l'un quelconque des points de puisage P1 , P2 ....ou l'un quelconque des systèmes précédemment décrits) .
En cas de détection, cette étape est suivie d'une étape S21 de comparaison entre la température de soutirage Tes (température Tes fournie par exemple par la sonde 27 dans le cas de la figure 6) et la température de consigne Tci indiquée par l'utilisateur sur le dispositif de chauffage instantané 20.
Lorsque la température Tes est inférieure à la température de consigne Tci, cette étape est suivie d'une étape S22 au cours de laquelle le dispositif de chauffage instantané fonctionne et la température de sortie de ce dernier est régulée afin que la température d'eau en sortie du dispositif atteigne la valeur de consigne Tci.
Lorsque la température Tes est supérieure ou égale à la température de consigne Tci, l'étape S21 est suivie d'une étape S23 qui intervient lorsqu'aucun puisage n'est détecté lors du test de l'étape S10 et qui prévoit la désactivation du dispositif de chauffage instantané.
Dans ce mode opératoire la puissance électrique maximale correspond à la puissance électrique du dispositif de chauffage instantané. Le chauffe-eau solaire à thermosiphon a un fonctionnement énergétique (il n'est pas régulé) et est autonome.
On notera que la description des figures 1 à 10 s'applique de même au cas d'un système de chauffage dont le chauffe-eau à énergie renouvelable comporte plusieurs ballons de stockage montés en série, le dispositif de chauffage instantané étant disposé sur la sortie d'eau chaude du dernier ballon dans l'ordre de circulation de l'eau dans le circuit.
Les figures 11 a-c illustrent trois applications du système intégré de la figure 2 où le chauffe-eau est de type solaire.
Les figures 11 a et 11 b représentent les systèmes de chauffage des figures 4a et 4b, référencés ici Sa et Sb, respectivement avec le dispositif de chauffage instantané complémentaire à l'intérieur du ballon de stockage d'eau. Les éléments correspondants portent les mêmes références. Un capot ou couvercle 45 sur la figure 11 a (46 sur la figure 11 b) monté sur la cuve de stockage du ballon renferme à l'intérieur du ballon dans un logement ou compartiment séparé le dispositif de chauffage instantané complémentaire 44 sur la figure 11a (64 sur la figure 1 1 b) et le réducteur de température optionnel 46 sur la figure 1 1 a (62 sur la figure 11 b) .
La figure 11 c illustre un système de chauffage 70 avec chauffe-eau solaire à pompe dans lequel le ballon de stockage 72 renferme une cuve de stockage d'eau 74 et, séparément, à l'intérieur d'un capot 76 ou compartiment distinct, le dispositif de chauffage instantané complémentaire 78 et un réducteur de température optionnel 80.
Le système 70 comprend également un circuit 82 qui comporte un panneau solaire 84, un échangeur de chaleur 86 interne à la cuve pour le préchauffage de l'eau de la cuve par la chaleur captée par le panneau, une pompe 88 pour la mise en circulation de l'eau du circuit et des conduites ou canalisations reliant entre eux les différents composants du circuit.
Une conduite d'arrivée d'eau froide 90 est raccordée à la cuve et est également raccordée en entrée du réducteur de température optionnel 80 pour que l'eau froide se mélange à l'eau préchauffée sortant de la sortie d'eau chaude 75 de la cuve, permettant ainsi d'amener de l'eau chaude mais à une température réduite (pour ne pas enclencher le système de sécurité du dispositif de chauffage instantané complémentaire 78) en entrée 77 du dispositif 78.
Dans les systèmes des figures 11 a-c, le dispositif de préchauffage de l'eau de la cuve par énergie renouvelable comprend le ou les panneaux solaires, l'échangeur (lorsqu'il est présent), la pompe (lorsqu'elle est présente) ainsi que le circuit avec les conduites raccordant ces composants entre eux.
Tous les ballons de stockage des systèmes illustrés sur les figures 2 et 11 a-c permettent d'intégrer les dispositifs de chauffage instantané complémentaire et de les protéger dans une seule et même enveloppe. I l en est de même pour les systèmes illustrés sur les autres figures bien que les dispositifs de chauffage instantané complémentaire ne soient pas représentés dans le ballon de stockage.

Claims

REVEND I CATIONS
1 . Système de chauffage (10) comprenant :
- un chauffe-eau à énergie renouvelable (11 ; 12 ; 30 ; 50) qui comporte au moins un ballon de stockage d'eau comprenant au moins une cuve (13 ; 14 ; 32 ; 52) contenant de l'eau ayant une arrivée d'eau froide (15 ;
16 ;40 ;56) et une sortie d'eau chaude (13c ; 18 ;42 ;60), et un dispositif de préchauffage de l'eau de la cuve par l'énergie renouvelable,
- un dispositif de chauffage instantané complémentaire (19 ; 20 ; 44 ; 64) de l'eau préalablement préchauffée qui est disposé à l'intérieur dudit au moins un ballon de stockage d'eau (13), de manière séparée de la cuve et sur la sortie d'eau chaude de ladite cuve.
2. Système de chauffage selon la revendication 1 , caractérisé en ce que le chauffe-eau à énergie renouvelable est un chauffe-eau thermodynamique (1 1 ; 1 2) .
3. Système de chauffage selon la revendication 1 , caractérisé en ce que le chauffe-eau à énergie renouvelable est un chauffe-eau solaire (30 ; 50) .
4. Système de chauffage selon l'une des revendications 1 à 3, caractérisé en ce que le dispositif de chauffage instantané complémentaire est un chauffe-eau instantané électrique (19 ; 20 ; 44 ; 64) .
5. Système de chauffage selon l'une des revendications 1 à 4, caractérisé en ce que ledit au moins un ballon de stockage d'eau comprend la cuve et une partie qui est séparée de la cuve et qui contient le dispositif de chauffage instantané complémentaire.
6. Système de chauffage selon la revendication 5, caractérisé en ce que la partie séparée de la cuve communique avec ladite cuve par l'intermédiaire de la sortie d'eau chaude de la cuve.
7. Système chauffage selon l'une des revendications 1 à 6, caractérisé en ce qu'il comprend un réducteur de température placé sur la sortie d'eau chaude de la cuve, en amont du dispositif de chauffage instantané complémentaire dans le sens de circulation de l'eau chaude.
8. Système de chauffage selon la revendication 7, caractérisé en ce que le réducteur de température est un dispositif de mélange d'eau qui est apte à mélanger l'eau chaude de la sortie d'eau chaude de la cuve avec de l'eau froide.
9. Système de chauffage selon l'une des revendications 1 à 8, caractérisé en ce qu'il comporte un système de pilotage des actions de préchauffage par le dispositif de préchauffage de l'eau du chauffe-eau et/ou de chauffage complémentaire de l'eau préchauffée par le dispositif de chauffage instantané complémentaire.
10. Ensemble comprenant une installation sanitaire et un système de chauffage de l'eau raccordé à l'installation sanitaire, le système de chauffage étant conforme à l'une des revendications 1 à 9.
11 . Procédé de gestion d'un système de chauffage d'eau selon l'une des revendications 1 à 9, caractérisé en ce qu'il comprend les étapes suivantes :
-comparaison entre la valeur de température d'eau Tes en sortie dudit dispositif de chauffage instantané complémentaire et une valeur de température d'eau de consigne de l'utilisateur pour le dispositif de chauffage instantané complémentaire Tci,
-activation du dispositif de chauffage instantané complémentaire lorsque la valeur de température d'eau Tes en sortie dudit dispositif de chauffage instantané complémentaire est inférieure à la valeur de température d'eau de consigne Tci et désactivation du dispositif de chauffage instantané complémentaire dans le cas contraire.
12. Procédé selon la revendication 11 , caractérisé en ce que l'étape de comparaison intervient lorsqu'un puisage d'eau par l'utilisateur est détecté.
EP19790577.1A 2018-07-20 2019-07-19 Systeme de chauffage d'eau a prechauffage par energie renouvelable avec complement par chauffage instantane Pending EP3824227A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1856746A FR3084142B1 (fr) 2018-07-20 2018-07-20 Systeme de chauffage d'eau a prechauffage par energie renouvelable avec complement par chauffage instantane
PCT/FR2019/000117 WO2020016489A1 (fr) 2018-07-20 2019-07-19 Systeme de chauffage d'eau a prechauffage par energie renouvelable avec complement par chauffage instantane

Publications (1)

Publication Number Publication Date
EP3824227A1 true EP3824227A1 (fr) 2021-05-26

Family

ID=63312163

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19790577.1A Pending EP3824227A1 (fr) 2018-07-20 2019-07-19 Systeme de chauffage d'eau a prechauffage par energie renouvelable avec complement par chauffage instantane

Country Status (3)

Country Link
EP (1) EP3824227A1 (fr)
FR (1) FR3084142B1 (fr)
WO (1) WO2020016489A1 (fr)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT400629B (de) * 1994-05-27 1996-02-26 Vaillant Gmbh Wasserheizer
FR2954472B1 (fr) * 2009-12-23 2012-03-09 Muller Et Cie Chauffe-eau solaire a double sonde thermique
US20120060827A1 (en) * 2011-03-07 2012-03-15 General Electric Company Control for a tankless water heater used with a solar water heating system
CN202008223U (zh) 2011-04-08 2011-10-12 文华能源科技有限公司 复合加热的热泵热水器
CN202204153U (zh) 2011-07-26 2012-04-25 奥特朗电器(广州)有限公司 热泵快热组合式电热水器
CN202204152U (zh) 2011-07-26 2012-04-25 奥特朗电器(广州)有限公司 热泵快热组合式电热水器
US20130042635A1 (en) * 2011-08-17 2013-02-21 General Electric Company Heat pump water heater in conjunction with gas water heater
CN203501473U (zh) 2013-09-02 2014-03-26 奥特朗电器(广州)有限公司 恒温式热泵电热水器
CN203501455U (zh) 2013-09-02 2014-03-26 奥特朗电器(广州)有限公司 恒温式热泵电热水器
WO2015063731A1 (fr) * 2013-10-31 2015-05-07 Hofmeyr Robert Mark Dispositif de commande de chauffe-eau solaire
CN204084852U (zh) 2014-08-25 2015-01-07 上海誉田节能环保设备有限公司 即热式空气源热泵热水器

Also Published As

Publication number Publication date
FR3084142A1 (fr) 2020-01-24
WO2020016489A1 (fr) 2020-01-23
FR3084142B1 (fr) 2022-02-04

Similar Documents

Publication Publication Date Title
EP3404334B2 (fr) Procede et installation de stockage d'energie utilisant un chauffe-eau
EP2247897B1 (fr) Installation de production d'eau chaude sanitaire
WO2013004972A1 (fr) Systeme d'echange thermique et procede de regulation d'une puissance thermique developpee par un tel systeme d'echange thermique
FR3074264B1 (fr) Systeme de chauffage d’eau sanitaire
EP3225922B1 (fr) Systeme de rafraichissement, climatisation ou chauffage
EP0719989B1 (fr) Chaudière murale mixte à gaz avec un mini-ballon accumulateur d'eau chaude sanitaire
WO2020016489A1 (fr) Systeme de chauffage d'eau a prechauffage par energie renouvelable avec complement par chauffage instantane
EP1450109B1 (fr) Installation solaire combinée comportant des moyens de gestion des surchauffes et procédé de contrôle de l'installation
EP0035486B1 (fr) Installation de chauffage par accumulation de chaleur
EP2792801A1 (fr) Installation, dispositif et methode d'elimination du gaspillage d'eau quand est ouvert le robinet d'eau froide
FR2813117A1 (fr) Procede et installation de chauffage a partir de l'energie solaire
WO2021110791A1 (fr) Systeme de distribution d'eau
WO2013093246A1 (fr) Procédé de gestion d'un système de pompe à chaleur, système de pompe à chaleur, et installation de chauffage comprenant un tel système
FR2999684A1 (fr) Dispositif de preparation d'eau chaude sanitaire
FR2679631A1 (fr) Dispositif de production d'eau chaude sanitaire a thermosiphon integre.
EP3581853B1 (fr) Module de transfert thermique pour la production d'eau chaude
FR2999687A1 (fr) Dispositif accumulateur d'eau chaude
EP2241828B1 (fr) Dispositif de chauffe-eau a volume variable ameliore
FR2468074A1 (fr) Installation perfectionnee a pompe a chaleur pour la production d'eau chaude
FR2817610A1 (fr) Circuit de preparation d'eau chaude sanitaire pour un chauffe-eau ou une chaudiere
FR3115098A1 (fr) Appareil de chauffage thermodynamique à régulation optimisée
EP2734787B1 (fr) Système de production d'eau chaude à l'aide de capteurs solaires thermiques à eau, dans lequel un même circuit met en relation un ballon d'eau chaude et les capteurs, incluant un dispositif de protection contre la surchauffe
WO1992012389A1 (fr) Dispositif de production d'eau chaude sanitaire ou de chauffage
EP2224176A1 (fr) Installation de chauffe-eau ameliorée
FR3089281A1 (fr) Appareil de régulation thermique d'un bâtiment

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210121

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20231115

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F24H 1/12 20060101ALI20240724BHEP

Ipc: F24H 15/37 20220101ALI20240724BHEP

Ipc: F24H 15/174 20220101ALI20240724BHEP

Ipc: F24D 19/10 20060101ALI20240724BHEP

Ipc: F24D 17/00 20060101ALI20240724BHEP

Ipc: F24H 1/20 20060101ALI20240724BHEP

Ipc: F24H 1/18 20060101AFI20240724BHEP

INTG Intention to grant announced

Effective date: 20240806

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS