EP3816431B1 - Fluidinjektor für einen verbrennungsmotor mit einem druckausgleichselement - Google Patents

Fluidinjektor für einen verbrennungsmotor mit einem druckausgleichselement Download PDF

Info

Publication number
EP3816431B1
EP3816431B1 EP19206326.1A EP19206326A EP3816431B1 EP 3816431 B1 EP3816431 B1 EP 3816431B1 EP 19206326 A EP19206326 A EP 19206326A EP 3816431 B1 EP3816431 B1 EP 3816431B1
Authority
EP
European Patent Office
Prior art keywords
ring
containment
fluid injector
pressure compensator
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19206326.1A
Other languages
English (en)
French (fr)
Other versions
EP3816431A1 (de
Inventor
Mauro Grandi
Valerio Polidori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies GmbH
Original Assignee
Vitesco Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitesco Technologies GmbH filed Critical Vitesco Technologies GmbH
Priority to EP19206326.1A priority Critical patent/EP3816431B1/de
Publication of EP3816431A1 publication Critical patent/EP3816431A1/de
Application granted granted Critical
Publication of EP3816431B1 publication Critical patent/EP3816431B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/20Closing valves mechanically, e.g. arrangements of springs or weights or permanent magnets; Damping of valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/26Fuel-injection apparatus with elastically deformable elements other than coil springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/50Arrangements of springs for valves used in fuel injectors or fuel injection pumps

Definitions

  • a fluid injector for an internal combustion engine comprising a pressure compensator element
  • the invention relates to a fluid injector for an internal combustion engine comprising a pressure compensator element, wherein the fluid injector comprises a valve housing and a valve needle assembly.
  • Fluid injectors are in widespread use, in particular for internal combustion engines, where they may be arranged in order to doze a fluid or fuel amount into an intake manifold of the internal combustion engine or directly into a combustion chamber of a cylinder of the internal combustion engine.
  • One possible starting point to reduce the pollutant emissions and in particular to reduce particle emissions is to increase the fluid pressure inside the fluid injector.
  • Conventional fluid injectors are designed to operate at a fluid pressure of below 10 MPa. If the fluid pressure inside the fluid injector is increased it is possible to reduce pollutant emissions caused by the internal combustion engine. The increased fluid pressure inside the fluid injectors requires a change of design of the fluid injector.
  • a valve needle is arranged which can be displaced away from a closing position to allow the fluid to flow out of the fluid injector. In the closing position the fluid flow out of the fluid injector is inhibited.
  • the valve needle is conventionally displaced away from the closing position by an actuator assembly.
  • US 2,538,658 A relates to resilient mountings designed to connect a supporting and a relatively movable supported member, the combination of a housing of general cylindrical form adapted to be mounted at one end on such supporting member, said housing having an inwardly directed flange at its other end, a member axially disposed within said housing and adapted to be connected to such support member.
  • US 2012/318885 A1 relates to a valve assembly for an injection valve which may include a valve body comprising a cavity with a fluid inlet portion and a fluid outlet, and a valve needle axially movable in the cavity, the valve needle preventing a fluid flow through the fluid outlet in a closing position and releasing the fluid flow through the fluid outlet in further positions, the valve needle comprising a radially extending protrusion and an electro-magnetic actuator unit configured to actuate the valve needle and comprising an armature in the cavity.
  • the armature comprises an armature cavity having a first stop surface and a second stop surface that faces the first stop surface.
  • An object of the present disclosure is to provide an element to improve a fluid injector of an internal combustion engine and to provide a fluid injector with the element, wherein the fluid injector is in particular configured to operate at high fluid pressure inside the fluid injector.
  • a fluid injector comprising a pressure compensator element.
  • Advantageous embodiments of the fluid injector are specified in the dependent claims.
  • a pressure compensator element for a fluid injector for an internal combustion engine is specified.
  • the pressure compensator element extends along a central longitudinal axis.
  • the pressure compensator element comprises a containment ring a first ring and a second ring.
  • the containment ring comprises an elastic material and is therefore configured to deform elastically when the pressure acting on the pressure compensator element changes.
  • the first ring is arranged at or in the containment ring at a first portion of the containment ring and extends out of the containment ring.
  • the second ring is arranged at or in the containment ring at a second portion of the containment ring and extends out of the containment ring.
  • the first portion and the second portion of the containment ring are areas of the containment ring which contact or engage with the first ring or the second ring respectively.
  • the containment ring, the first ring and the second ring are arranged coaxially with respect to each other.
  • the first portion and the second portion of the containment ring are arranged at different axial positions on the containment ring.
  • the first portion is for example arranged at one axial end of the containment ring and the second portion is arranged at the other axial end of the containment ring.
  • the elastic deformation of the containment ring due to a change of the pressure acting on the pressure compensator element results in a volume change of the containment ring. This volume change changes the axial position of the first portion of the containment ring with respect to the second portion of the containment ring.
  • the volume change of the containment ring results in an axial displacement of the first ring with respect to the second ring.
  • the first ring is, for example, arranged at one longitudinal end of the containment ring and the second ring is arranged at the other longitudinal end of the containment ring and the pressure acting on the pressure compensator element increases, than the volume of the containment ring will decrease which results in an axial displacement of the first ring towards the second ring and of the second ring towards the first ring if the pressure compensator element is fixed at its center.
  • the pressure compensator element it is possible to transform the pressure change of the pressure acting on the pressure compensator element into an axial displacement of the first ring with respect to the second ring or of the second ring with respect to the first ring.
  • the deformation of the containment ring is proportional to the pressure change of the pressure acting on the pressure compensator element. Therefore, also the axial displacement is proportional to the pressure change of the pressure acting on the pressure compensator element.
  • the first ring comprises a radial portion which extends in radial direction and an axial portion which extends in axial direction, wherein the axial portion extends from one radial end of the radial portion of the first ring.
  • the half section profile of a longitudinal section view of the first ring has a L-shape.
  • the second ring comprises a radial portion which extends in radial direction and an axial portion which extends in axial direction, wherein the axial portion extends from one radial end of the radial portion of the second ring.
  • the half section profile of a longitudinal section view of the second ring has also a L-shape.
  • the angle between the radial portions and the axial portion could be for example between 70 degree or greater and 110 degree or smaller.
  • the radial portion of the first ring is arranged at least partially at or in the first portion of the containment ring and the radial portion of the second ring is arranged at least partially at or in the second portion of the containment ring.
  • the radial portions of the first ring and the second ring contact the containment ring.
  • the axial portion of the first ring and the axial portion of the second ring extend according to this embodiment in opposite directions. It is in particular possible according to this embodiment to transfer the volume change of the containment ring to the desired displacement of the first ring and the second ring.
  • the free axial ends of the axial portions can be used as stop surfaces and can therefore transfer the force generated by the pressure compensator element at the desired other parts in a particular simple way.
  • the axial portion of the first ring extends from the radial outer end of the radial portion of the first ring and the axial portion of the second ring extends from the radial inner end of the radial portion of the second ring.
  • the axial portion of the first ring is at least partially arranged outside of the radial outer edge of the containment ring and the axial portion of the second ring is arranged at least partially inside of the radial inner edge of the containment ring.
  • the free axial end of the axial portion of the first ring forms one axial end of the pressure compensator element in one axial direction and the free axial end of the axial portion of the second ring forms the other axial end of the pressure compensator element in the other axial direction.
  • the axial portion of the first ring is arranged partially at the first portion of the containment ring.
  • the axial portion of the first ring contacts the containment ring.
  • the second portion of the containment ring extends according to this embodiment further towards the free longitudinal end of the axial portion of the first ring than the first portion of the containment ring, which ensures that the movement between the first portion and the second portion of the containment ring is still possible.
  • the arrangement of the axial portion at the first portion of the containment ring improves the connection between the first ring and the containment ring.
  • the axial portion of the first ring is partially detached from an area of the containment ring, wherein the area extends from the axial end of the containment ring which faces towards the free end of the axial portion of the first ring to the other end of the axial portion of the first ring.
  • the deformation of the containment ring is in particular not inhibited by the first ring according to this embodiment.
  • the axial portion of the second ring is partially detached from an area of the containment ring, wherein the area extends from the axial end of the containment ring which faces towards the free end of the axial portion of the second ring to the other end of the axial portion of the second ring.
  • the deformation of the containment ring is in particular not inhibited by the second ring according to this emebodiment.
  • the axial portion of the second ring is arranged partially at the second portion of the containment ring.
  • the axial portion of the second ring contacts the containment ring.
  • the arrangement of the axial portion at the second portion of the containment ring improves the connection between the second ring and the containment ring.
  • the first ring and/or the second ring is / are partially embedded within the containment ring.
  • the containment ring is for example partially molded around the first ring and / or the second ring.
  • the containment ring consists of a material selected from a group which consists of a rubber material, a plastic material and an elastomeric material.
  • the rubber material is NBR (Acrylonitrile Butadiene Rubber) or HNBR (Hydrogenated Acrylonitrile Butadiene Rubber), these materials are preferred used when the fluid which surrounds the containment ring is water.
  • the elastomeric material is preferred used when the fluid which surrounds the containment ring is gasoline.
  • a fluid injector for internal combustion engine is specified.
  • the fluid injector is in particular a fuel injector. It may preferably by provided for injecting fuel directly in the combustion chamber of the internal combustion engine.
  • the fluid injector may be preferably provided for injecting gasoline or diesel fuel.
  • the fluid injector comprises a valve housing.
  • the valve housing extends along the central longitudinal axis and forms a valve cavity inside the valve housing.
  • the valve cavity comprises an inlet opening and an outlet opening.
  • the inlet opening is configured to allow fluid to flow into the valve cavity and the outlet opening is configured to allow the fluid to flow out of the valve cavity.
  • the fluid injector further comprises a valve needle assembly which comprises a valve needle and an armature and which is arranged inside the valve cavity.
  • the valve needle is displaceable with respect to the valve housing to inhibit or to allow the fluid to flow out of the fluid injector when the fluid injector is in operation.
  • the valve needle forms therefore with a part of the valve cavity of the fluid injector a sealing edge so that no fluid can flow out of the fluid injector when the valve needle is in the closing position.
  • the fluid injector further comprises an actuator assembly which is configured to displace the valve needle away from the closing position so that fluid can flow out of the fluid injector.
  • the fluid injector comprises a pressure compensator element.
  • the pressure compensator element is arranged in the valve cavity.
  • the first ring of the pressure compensator element is configured to engage with a valve cavity surface of the valve cavity.
  • the first ring is for example arranged to be in contact with the valve cavity surface.
  • the second ring of the pressure compensator element is configured to engage with the valve needle assembly.
  • the second ring be configured to contact the valve needle or a part which is rigidly fixed to the valve needle.
  • the first portion of the containment ring is according to this embodiment arranged further towards the inlet opening than the second portion of the containment ring so that the elastic deformation of the containment ring due to a change of the hydrostatic pressure of the fluid acting on the pressure compensator element inside the valve cavity results in a lifting force from the pressure compensator element to the valve needle assembly when the valve needle is in a closed position.
  • the containment ring is arranged in the valve cavity so that the containment ring is exposed to the fluid pressure inside the valve cavity.
  • the second ring and the first ring of the pressure compensator element are arranged at or in the containment ring so that the deformation of the containment ring will force the second ring and/or the first ring to move towards each other.
  • the deformation of the containment ring due to the increasing fluid pressure inside the valve cavity will therefore result in a force applied to the second ring and the first ring.
  • the first ring is engaged with the valve cavity and can for example not move with respect to the valve cavity.
  • the second ring is engaged with the valve needle assembly.
  • the second ring will therefore apply the lifting force caused by the deformation of the containment ring to the valve needle assembly.
  • the pressure compensator element will therefore apply the lifting force to the valve needle assembly which is proportional to the fluid pressure inside the valve cavity.
  • the lifting force created by the pressure compensator element is always smaller than the force which is necessary to displace the valve needle away from the closing position so that the valve needle cannot be displaced away from the closing position only by the lifting force created by the pressure compensator element.
  • the lifting force of the pressure compensator element helps the actuator assembly to displace the valve needle away from the closing position.
  • the actuator assembly does not need to provide the displacement force which is necessary to displace the valve needle away from the closing position alone.
  • the force which is necessary to displace the valve needle away from the closing position is provided according to this embodiment by the pressure compensator element and the actuator assembly. Therefore, it is possible to use a conventional actuator assembly in combination with the pressure compensator element to displace the valve needle away from the closing position even if the fluid pressure inside the valve cavity increases beyond conventional operating pressures.
  • the lifting force is proportional to the fluid pressure inside the valve cavity which means that even if the fluid pressure is increased even further the lifting force generated by the pressure compensator element will also increase which means that even at very high fluid pressures inside the valve cavity it is possible to operate the fluid injector with conventional actuator assemblies. It can be even possible to operate the fluid injector without the so-called free lift concept. Due to the proportionality between the fluid pressure inside the fluid injector and the lifting force generated by the pressure compensator element, the force provided by the actuator assembly to displace the valve needle away from the closing position can be over the range of fluid pressures inside the cavity. Overall the actuator assembly complexity can be reduced compared to an actuator assembly which normally has to handle with such high fluid pressure inside the fluid injector without the aid of the pressure compensator element.
  • the valve cavity along its axial extension two different diameters.
  • the smaller diameter of the two different diameters is arranged closer to the outlet opening than the larger diameter so that a ring surface is formed on the valve cavity surface between the larger diameter and the smaller diameter.
  • the ring surface can for example be a flat ring surface or a truncated cone surface.
  • the first ring of the pressure compensator element is according to this embodiment configured to engage with the ring surface.
  • the first ring is according to one embodiment fixed to the ring surface or rests on the ring surface when the pressure compensator element is arranged in the fluid injector.
  • the valve cavity comprises according to this embodiment for example a step or a tapering area where the first ring can engage with the valve cavity.
  • the surface of the valve needle assembly could be for example a surface of the valve needle, a surface of a disc element which is fixed to the valve needle or a surface of the armature.
  • the first ring of the pressure compensator element is coupled to the valve housing by a form fit connection or by a press fit connection.
  • the second ring of the pressure compensator element is according to another embodiment coupled to the valve needle assembly by a form fit connection or by a press fit connection.
  • the press fit connections or the form fit connections are in particular simple and fast connections between the first ring of the pressure compensator element and the valve housing and the second ring and the valve needle assembly so that the manufacturing of the fluid injector with the pressure compensator element is simplified.
  • the pressure compensator element is preloaded when assembled in the fluid injector and when the valve needle is in the closed position.
  • the lifting force from the pressure compensator element is according to this embodiment also applied to the valve needle even when no fluid or fluid with ambient pressure is inside the valve cavity.
  • the pressure compensator element according to this embodiment is held at its predefined position by the closing force of the valve needle applied to the valve needle by a calibration spring which is configured to urge the valve needle in the closed position, wherein the calibration spring is according to this embodiment also configured to push the second ring of the pressure compensator element towards the outlet opening of the valve housing which causes an elastic deformation of the containment ring and preloads therefore the pressure compensator element.
  • the lifting force generated by the pressure compensator element between 0 Newton at 0 - 1 MPa of fluid pressure inside the valve cavity and 750 Newton at 150 MPa of fluid pressure inside the valve cavity.
  • the fluid injector comprising the pressure compensator element it is possible to operate the fluid injector at fluid pressures of 45 MPa or greater and of 200 MPa or lower. This is only possible because the pressure compensator element generates the lifting force which is proportional to the pressure inside the valve cavity.
  • Fig. 1 shows a fluid injector 100, wherein the fluid injector 100 comprises a valve housing 110, a valve needle assembly 115, an actuator assembly 140, and a disc part 150.
  • the valve needle assembly 115 comprises a valve needle 120 and an armature 130.
  • the valve housing 110 extends from an inlet opening 162 along a central longitudinal axis 180 to an outlet opening 164.
  • the valve housing 110 comprises a valve cavity 130 which defines a fluid path for fluid flowing through the valve housing 110 from the inlet opening 162 to the outlet opening 164.
  • the valve cavity 160 is defined by a valve cavity surface 170.
  • the valve cavity 160 is arranged coaxially with respect to the central longitudinal axis 118.
  • the valve cavity 160 further comprises along its axial extension at least two different diameters wherein the smaller one of the two diameters is arranged closer to the outlet opening 164 than the larger diameter. Therefore, the valve cavity surface 170 comprises a ring surface 172 which defines a step along the axial extension of the valve cavity 170.
  • the valve needle 120 is also arranged coaxially with respect to the central longitudinal axis 180.
  • the disc part 150 is arranged at the valve needle 120 and the disc part 150 is therefore part of the valve needle assembly 115.
  • the disc part 150 is for example a stop for the armature 130 when the armature 130 is not rigidly coupled to the valve needle 120.
  • the actuator assembly 140 is arranged to attract the armature 130 which will displace the valve needle 120 away from a closing position in which no fluid can flow out of the fluid injector 100.
  • the fluid injector 100 as shown in fig. 1 further comprises a pressure compensator element 200.
  • the pressure compensator element 200 is arranged in the valve cavity 160 and comprises a first ring 210, a second ring 220 and a containment ring 230.
  • the first ring 210 is configured to engage with the valve cavity surface 170. As shown in fig. 1 the first ring 210 contacts the ring surface 172 of the valve cavity surface 170.
  • the containment ring 230 is arranged at the first ring 210.
  • the containment ring 230 comprises an elastic material. As it can be seen in fig. 1 the containment ring 230 almost completely surrounds the first ring 210 except of the portion of the first ring 210 which is in contact with the valve cavity surface 170.
  • the first ring 210 as shown in fig.
  • the radial portion has the shape of a disc and the axial portion has the shape of a sleeve. Combined they have the shape of an L.
  • the radial portion extends from the radial inner end to the radial outer end.
  • the axial portion extends from the radial outer end of the radial portion towards the outlet opening 164 of the valve cavity 160, wherein one longitudinal end of the axial portion contacts the ring surface 172.
  • the second ring 220 as shown in fig. 1 comprises also a radial portion and an axial portion.
  • the radial portion extends from the radial outer end of the radial portion to the radial inner end of the radial portion, wherein the radial outer end of the radial portion of the second ring is arranged in the containment ring.
  • the axial portion extends from the radial inner end of the radial portion towards the fluid inlet opening 162 of the valve cavity 160, wherein one longitudinal end of the axial portion contacts the disc element 150.
  • the first ring 210 of the pressure compensator element 200 comprises a first contact surface 240 which is arranged to be in contact with the valve cavity surface 170.
  • the second ring 220 of the pressure compensator element 200 comprises a second contact surface 250 which is arranged to be in contact with the disc part 150 of the valve needle 120.
  • the pressure compensator element 200 is configured to force the second ring towards the inlet opening 162 of the valve cavity 160 when the containment ring 230 is deformed due to increasing fluid pressure inside the valve cavity 160.
  • Fig. 2 shows in a schematic manner a longitudinal section view of the pressure compensator element 200 according to a second exemplary embodiment.
  • the second exemplary embodiment shows that almost the entire second ring 220 of the pressure compensator element 200 is arranged in the containment ring 230. Only the portion of the second ring 220 which is arranged to engage with the valve needle assembly 115 is arranged outside of the containment ring 230.
  • FIG. 2 shows openings 260 in the second ring 220 and in the first ring 260 which are arranged to allow the fluid to flow from the inlet opening 162 of the valve cavity 160 through the openings 260 of the pressure compensator element 200 to the outlet opening 164 of the valve cavity.
  • Fig. 3 shows in a schematic manner a longitudinal section of a pressure compensator element 200 according to a third exemplary embodiment.
  • the third exemplary embodiment shows that the containment ring 230 of the pressure compensator element 200 is only arranged at the first ring 210 at the side of the radial portion of the first ring 210 which faces towards the outlet opening 164 of the valve cavity 160 when the pressure compensator element 200 is arranged in the valve cavity 160.
  • the containment ring 230 shown in fig. 3 is not arranged at the axial portion of the first ring 210 as for example shown in figs. 1 and 2 .
  • the arrangement of the containment ring on the first ring 210 of the pressure compensator element 200 is according to the embodiment shown in fig. 3 is particular simple. As it can be seen in fig. 3 only a portion of the radial portion of the second ring 220 of the pressure compensator element 200 is arranged in the containment ring 230. It is according to this embodiment in particular simple to transfer the deformation caused by the fluid pressure inside the valve cavity 160 to the second ring 220.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Claims (14)

  1. Fluidinjektor (100) für einen Verbrennungsmotor, wobei der Fluidinjektor (100) ein Ventilgehäuse (110), das einen Ventilhohlraum (160) innerhalb des Ventilgehäuses (110) bildet, der eine Einlassöffnung (162) und eine Auslassöffnung (164) für durch den Fluidinjektor (100) strömendes Fluid aufweist, wenn der Fluidinjektor (100) in Betrieb ist, eine Ventilnadelanordnung (115), die eine Armatur (130) und eine Ventilnadel (120) aufweist, die innerhalb des Ventilhohlraums (160) angeordnet ist und die in Bezug auf das Ventilgehäuse (120) verschiebbar ist, um den Fluidstrom aus dem Fluidinjektor (100) zu verhindern oder zu ermöglichen, und eine Aktuatoranordnung (140) aufweist, die zum Verschieben der Ventilnadel (120) ausgelegt ist,
    dadurch gekennzeichnet, dass
    der Fluidinjektor (100) ferner ein Druckausgleichselement (200) aufweist, wobei sich das Druckausgleichselement (200) entlang einer mittigen Längsachse (180) erstreckt und aufweist:
    - einen Einschließungsring (230), der ein elastisches Material aufweist und dazu ausgelegt ist, sich elastisch zu verformen, wenn sich der auf das Druckausgleichselement (200) wirkende Druck ändert;
    - einen ersten Ring (210), der an oder in dem Einschließungsring (230) an einem ersten Abschnitt des Einschließungsrings (230) angeordnet ist und sich aus dem Einschließungsring (230) heraus erstreckt;
    - einen zweiten Ring (220), der an oder in dem Einschließungsring (230) an einem zweiten Abschnitt des Einschließungsrings (230) angeordnet ist und sich aus dem Einschließungsring (230) heraus erstreckt, wobei der zweite Abschnitt des Einschließungsrings (230) an einer anderen axialen Position an dem Einschließungsring (230) als der erste Abschnitt des Einschließungsrings (230) angeordnet ist, sodass eine elastische Verformung des Einschließungsrings (230) aufgrund einer Änderung des auf das Druckausgleichselement (200) wirkenden Drucks zu einer axialen Verschiebung des ersten Abschnitts des Einschließungsrings (230) in Bezug auf den zweiten Abschnitt des Einschließungsrings (230) und damit zu einer axialen Verschiebung des ersten Rings (210) in Bezug auf den zweiten Ring (220) führt,
    wobei das Druckausgleichselement (200) in dem Ventilhohlraum (160) angeordnet ist, und
    wobei der erste Ring (210) des Druckausgleichselements (200) dazu ausgelegt ist, mit einer Ventilhohlraumfläche (170) in Eingriff zu kommen, und der zweite Ring (220) dazu ausgelegt ist, mit der Ventilnadelanordnung (115) in Eingriff zu kommen, wobei der erste Abschnitt des Einschließungsrings (230) weiter zur Einlassöffnung (162) hin als der zweite Abschnitt des Einschließungsrings (230) angeordnet ist, sodass die elastische Verformung des Einschließungsrings (230) aufgrund einer Änderung des Drucks des Fluids, das auf das Druckausgleichselement (200) innerhalb des Ventilhohlraums (160) wirkt, zu einer Hubkraft vom Druckausgleichselement (200) zur Ventilnadelanordnung (115) führt, wenn sich die Ventilnadel (120) in einer geschlossenen Stellung befindet.
  2. Fluidinjektor (100) gemäß Anspruch 1, wobei der erste Ring (210) einen radialen Abschnitt, der sich in radialer Richtung erstreckt, und einen axialen Abschnitt aufweist, der sich in axialer Richtung erstreckt, wobei sich der axiale Abschnitt von einem radialen Ende des radialen Abschnitts des ersten Rings (210) erstreckt,
    wobei der zweite Ring (220) einen radialen Abschnitt, der sich in radialer Richtung erstreckt, und einen axialen Abschnitt aufweist, der sich in axialer Richtung erstreckt, wobei sich der axiale Abschnitt von einem radialen Ende des radialen Abschnitts des zweiten Rings (220) erstreckt,
    wobei der radiale Abschnitt des ersten Rings (210) mindestens teilweise an oder in dem ersten Abschnitt des Einschließungsrings (230) angeordnet ist und der radiale Abschnitt des zweiten Rings (220) mindestens teilweise an oder in dem zweiten Abschnitt des Einschließungsrings (230) angeordnet ist, und
    wobei der axiale Abschnitt des ersten Rings (210) und der axiale Abschnitt des zweiten Rings (220) sich in entgegengesetzte Richtungen erstrecken.
  3. Fluidinjektor (100) gemäß einem der vorhergehenden Ansprüche, wobei sich der axiale Abschnitt des ersten Rings (210) vom radial äußeren Ende des radialen Abschnitts des ersten Rings (210) erstreckt und der axiale Abschnitt des zweiten Rings (220) vom radial inneren Ende des radialen Abschnitts des zweiten Rings (220) erstreckt, und
    wobei sich der axiale Abschnitt des ersten Rings (210) in Richtung des zweiten Abschnitts des Einschließungsrings (230) über den Einschließungsring (230) und über den zweiten Ring (220) hinaus erstreckt und der axiale Abschnitt des zweiten Rings (220) in Richtung des ersten Abschnitts des Einschließungsrings (230) über den Einschließungsring (230) und über den ersten Ring (220) hinaus erstreckt.
  4. Fluidinjektor (100) gemäß Anspruch 3, wobei der axiale Abschnitt des ersten Rings (210) teilweise am ersten Abschnitt des Einschließungsrings (230) angeordnet ist, wobei sich der zweite Abschnitt des Einschließungsrings (230) weiter zum freien Längsende des axialen Abschnitts des ersten Rings (210) hin als der erste Abschnitt des Einschließungsrings (230) erstreckt, und/oder wobei der axiale Abschnitt des zweiten Rings (220) teilweise an dem zweiten Abschnitt des Einschließungsrings (230) angeordnet ist, wobei sich der erste Abschnitt des Einschließungsrings (230) weiter zum freien Längsende des axialen Abschnitts des zweiten Rings (210) hin als der zweite Abschnitt des Einschließungsrings (230) erstreckt.
  5. Fluidinjektor (100) gemäß einem der vorhergehenden Ansprüche, wobei der erste Ring (210) und/oder der zweite Ring (220) teilweise in den Einschließungsring (230) eingebettet ist/sind.
  6. Fluidinjektor (100) gemäß einem der vorhergehenden Ansprüche, wobei der Einschließungsring aus einem Material besteht, das aus einer Gruppe ausgewählt ist, die aus einem Gummimaterial, einem Kunststoffmaterial und einem Elastomermaterial besteht.
  7. Fluidinjektor (100) gemäß einem der Ansprüche 3 bis 6, wobei der Ventilhohlraum (160) entlang seiner axialen Erstreckung zwei unterschiedliche Durchmesser aufweist, wobei der kleinere Durchmesser näher an der Auslassöffnung (164) als der größere Durchmesser angeordnet ist, sodass auf der Ventilhohlraumfläche (170) zwischen dem größeren Durchmesser und dem kleineren Durchmesser eine Ringfläche (172) ausgebildet ist, wobei das Längsende des axialen Abschnitts des ersten Rings (210) des Druckausgleichselements (230), der sich über den zweiten Ring (220) hinaus erstreckt, die Ringfläche (172) berührt.
  8. Fluidinjektor (100) gemäß einem der Ansprüche 3 bis 6, wobei das Längende des axialen Abschnitts des zweiten Rings (220) des Druckausgleichselements (230), der sich über den ersten Ring (210) hinaus erstreckt, eine Oberfläche der Ventilnadelanordnung (115) berührt.
  9. Fluidinjektor (100) gemäß einem der vorhergehenden Ansprüche, wobei der erste Ring (210) des Druckausgleichselements (200) mit dem Ventilgehäuse (110) durch eine Formschlussverbindung oder durch eine Presspassung gekoppelt ist.
  10. Fluidinjektor (100) gemäß einem der vorhergehenden Ansprüche, wobei der zweite Ring (210) des Druckausgleichselements (200) mit der Ventilnadelanordnung (115) durch eine Formschlussverbindung oder durch eine Presspassungsverbindung gekoppelt ist.
  11. Fluidinjektor (100) gemäß einem der vorhergehenden Ansprüche, wobei die Ventilnadelanordnung (115) ein Scheibenelement (150) aufweist, das starr mit der Ventilnadel (120) gekoppelt ist, und wobei der zweite Ring (220) des Druckausgleichselements (200) dazu ausgelegt ist, mit dem Scheibenelement (150) der Ventilnadelanordnung (115) in Eingriff zu kommen.
  12. Fluidinjektor (100) gemäß einem der vorhergehenden Ansprüche, wobei das Druckausgleichselement (200) vorbelastet ist, wenn sich die Ventilnadel (120) in der geschlossenen Stellung befindet.
  13. Fluidinjektor (100) gemäß einem der vorhergehenden Ansprüche, wobei die durch das Druckausgleichselement (200) erzeugte Hubkraft zwischen 0 N bei einem Fluiddruck von 0-1 MPa innerhalb des Ventilhohlraums (160) und 750 N bei einem Fluiddruck von 150 MPa innerhalb des Ventilhohlraums (160) liegt.
  14. Fluidinjektor (100) gemäß einem der vorhergehenden Ansprüche, wobei der Fluidinjektor (100) dazu ausgelegt ist, bei Fluiddrücken von 45 MPa oder mehr und von 200 MPa oder weniger zu arbeiten.
EP19206326.1A 2019-10-30 2019-10-30 Fluidinjektor für einen verbrennungsmotor mit einem druckausgleichselement Active EP3816431B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19206326.1A EP3816431B1 (de) 2019-10-30 2019-10-30 Fluidinjektor für einen verbrennungsmotor mit einem druckausgleichselement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19206326.1A EP3816431B1 (de) 2019-10-30 2019-10-30 Fluidinjektor für einen verbrennungsmotor mit einem druckausgleichselement

Publications (2)

Publication Number Publication Date
EP3816431A1 EP3816431A1 (de) 2021-05-05
EP3816431B1 true EP3816431B1 (de) 2023-10-18

Family

ID=68424690

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19206326.1A Active EP3816431B1 (de) 2019-10-30 2019-10-30 Fluidinjektor für einen verbrennungsmotor mit einem druckausgleichselement

Country Status (1)

Country Link
EP (1) EP3816431B1 (de)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2538658A (en) * 1945-10-31 1951-01-16 Ohio Rubber Co Resilient mounting for motors and the like
US6752389B2 (en) * 2001-10-30 2004-06-22 Lord Corporation Mount having integrated damper and load carrying spring
EP2535552B1 (de) * 2011-06-15 2015-02-25 Continental Automotive GmbH Ventilanordnung für ein Einspritzventil und Einspritzventil
WO2014036131A1 (en) * 2012-08-28 2014-03-06 Lord Corporation Vibration isolation member

Also Published As

Publication number Publication date
EP3816431A1 (de) 2021-05-05

Similar Documents

Publication Publication Date Title
EP2771562B1 (de) Ventilanordnung für ein einspritzventil und einspritzventil
US9316191B2 (en) Valve assembly for an injection valve and injection valve
JP4116548B2 (ja) 燃料噴射弁
US9046066B2 (en) Valve assembly for an injection valve, injection valve and method for assembling a valve assembly of an injection valve
US11231001B2 (en) Fuel injector
US20080035762A1 (en) Fuel Injector
KR20050021538A (ko) 압전식 액추에이터 모듈 및 그 조립 방법
EP3482063B1 (de) Ventilanordnung für ein einspritzventil, einspritzventil und einspritzverfahren
EP3507483B1 (de) Flüssigkeitsinjektor und nadel für einen flüssigkeitsinjektor
EP3816431B1 (de) Fluidinjektor für einen verbrennungsmotor mit einem druckausgleichselement
US10107246B2 (en) Nozzle assembly for a fluid injector and fluid injector
KR20010101483A (ko) 연료 분사 밸브
JP4163962B2 (ja) 圧電式のアクチュエータモジュール
US8770498B2 (en) Fuel injector
JP4537401B2 (ja) 液体の制御のための弁
KR101824420B1 (ko) 적어도 부분적으로 원통형인 이동 부재를 구비한 밸브 장치
US7422006B2 (en) Fuel injector
EP2067981B1 (de) Ventilanordnung für ein Einspritzventil und Einspritzventil
KR101950577B1 (ko) 엘라스토머 밀봉부를 갖는 밸브 폐쇄 부재를 포함하는 밸브 조립체 및 유체 인젝터
US9080538B2 (en) Injector assembly for an injection valve
KR20170036815A (ko) 연료 분사 밸브용 조정 장치 및 연료 분사 시스템
KR101719813B1 (ko) 분사 밸브
CN112983706A (zh) 用于配量流体的阀、尤其是燃料喷射阀

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VITESCO TECHNOLOGIES GMBH

17P Request for examination filed

Effective date: 20211105

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230512

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019039493

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231110

Year of fee payment: 5

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231018

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1622687

Country of ref document: AT

Kind code of ref document: T

Effective date: 20231018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240218

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240119

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240118

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240219