EP3815467A1 - Procédé de gestion de la puissance d'un module optique de projecteur à diode électroluminescente pour véhicule automobile - Google Patents

Procédé de gestion de la puissance d'un module optique de projecteur à diode électroluminescente pour véhicule automobile

Info

Publication number
EP3815467A1
EP3815467A1 EP19731769.6A EP19731769A EP3815467A1 EP 3815467 A1 EP3815467 A1 EP 3815467A1 EP 19731769 A EP19731769 A EP 19731769A EP 3815467 A1 EP3815467 A1 EP 3815467A1
Authority
EP
European Patent Office
Prior art keywords
temperature
optical module
threshold
equal
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19731769.6A
Other languages
German (de)
English (en)
Inventor
Michel Mahe
Paul-Henri MATHA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP3815467A1 publication Critical patent/EP3815467A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/28Controlling the colour of the light using temperature feedback
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/18Controlling the intensity of the light using temperature feedback
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/56Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits involving measures to prevent abnormal temperature of the LEDs

Definitions

  • the present invention relates, in general, to a headlight of a motor vehicle, and relates, in particular to a headlamp with light-emitting diode for a motor vehicle.
  • the invention relates to a method for managing the power of a light-emitting diode headlamp optical module for a motor vehicle.
  • a light emitting diode projector generally comprises, on the one hand, one or more optical modules, that is to say a light source, comprising one or more light emitting diodes and a reflector, and, on the other hand, a means of management of the power of the optical module.
  • a light-emitting diode is formed by the junction of two semiconductors, one doped "P”, the other doped “N”.
  • a temperature at the heart of the LED called junction temperature T, can be determined.
  • Each light-emitting diode is further characterized by a maximum junction temperature T max , that is to say a maximum operating temperature admissible by the diode, not to be exceeded so as not to alter it and thus guarantee its duration of life. This temperature is generally specified by the manufacturer.
  • a light emitting diode Under electrical excitation, a light emitting diode emits photons and heat which represents, respectively, approximately 20% and 80% of its dissipated power. When in operation, a light emitting diode therefore tends to heat up.
  • the power management means applies a nominal current to the optical module so that each light-emitting diode can operate correctly, under normal conditions.
  • the temperature of the light-emitting diode headlamps can quickly approach the maximum permissible junction temperature T max , in particular for headlamps located at the front of the vehicle, near the engine.
  • Such power management thus makes it possible to optimize the operation of the projector at high ambient temperatures while guaranteeing the integrity of the light-emitting diode.
  • the optical module receives a nominal current and the efficiency of each light-emitting diode is below its optimal capacities.
  • the present invention relates to a method for managing the power of the optical module of a projector making it possible to adapt and optimize the operation of light-emitting diodes when the ambient temperature is low.
  • a method for managing the power of an optical module of a light-emitting diode headlamp for a motor vehicle comprising: the application of a nominal current to the optical module; and reducing the current applied to the optical module when the temperature in the optical module is greater than or equal to a first threshold.
  • the current applied to the optical module is increased when the temperature in the optical module is less than or equal to a second threshold, the temperature of the second threshold being less than the temperature of the first threshold.
  • the value of the temperature of the first threshold and the value of the temperature of the second threshold are chosen as a function of a maximum admissible junction temperature of the light-emitting diode.
  • the temperature of the second threshold can be equal to 0 ° C.
  • the current applied to the optical module can be increased by a value equal to or greater than 50% of the nominal current.
  • the temperature of the first threshold is equal to 50 ° C.
  • the invention also relates to a headlight for a motor vehicle comprising: a light-emitting diode optical module comprising a temperature sensor; and an optical module power management means able to control the value of the current applied to the optical module, said management means being configured to apply a nominal current to the optical module, and configured to reduce the current applied to the optical module when the temperature in the optical module is greater than or equal to a first threshold.
  • the management means is configured to increase the current applied to the optical module when the temperature in the optical module is less than or equal to a second threshold, the temperature of the second threshold being less than the temperature of the first threshold.
  • the management means is configured to increase the current applied to the optical module when the temperature in the optical module is less than or equal to 0 ° C.
  • the management means can be configured to increase the current applied to the optical module by a value equal to or greater than 50% of the nominal current.
  • the management means is configured to reduce the current applied to the optical module when the temperature in the optical module is greater than or equal to 50 ° C.
  • FIG. 2 illustrates a method of managing the power of an optical module with light emitting diode for a motor vehicle according to the invention, when the temperature in the optical modules is between a first threshold and a second threshold;
  • FIG. 3 illustrates a method of managing the power of an optical module with light emitting diode for a motor vehicle according to the invention, when the temperature in the optical modules is greater than or equal to the first threshold;
  • FIG. 4 illustrates a method of managing the power of an optical module with light emitting diode for a motor vehicle according to the invention, when the temperature in the optical modules is less than or equal to the second threshold;
  • FIG. 5 is a graph illustrating the current and the junction temperature of the light emitting diodes as a function of the ambient temperature.
  • a headlamp 1 with light-emitting diode for a motor vehicle comprises at least one optical module 2 with light-emitting diode.
  • the optical module 2 can include one or more light-emitting diodes.
  • the headlamp 1 with light-emitting diode advantageously comprises three optical modules 2.
  • Each optical module 2 comprises a temperature sensor 3 configured to determine the temperature within the optical module with which it is associated.
  • the projector 1 also comprises a means for managing the power 4 of the optical modules 2, and therefore light-emitting diodes, capable of controlling the value of the current applied to the optical modules 2.
  • the power management means 4 of the optical modules 2 comprises a microcontroller.
  • the power management means 4 is configured to apply a nominal current to the optical modules 2.
  • the power management means 4 is configured to reduce the current applied to the optical modules 2 when the temperature T in the optical modules 2, determined by the temperature sensor 3, is greater than or equal to a first threshold Ti.
  • the power management means 4 is configured to increase the current applied to the optical modules 2 when the temperature T in the optical modules 2 is less than or equal to a second threshold T 2 .
  • the temperature of the second threshold T 2 is lower than the temperature of the first threshold Ti.
  • the value of the temperature of the first threshold T i and the value of the temperature of the second threshold T 2 are chosen as a function of the maximum admissible junction temperature T max of the light-emitting diode, so that the light-emitting diode does not exceed this maximum junction temperature T max .
  • FIGS. 2, 3 and 4 illustrate a method for managing the power of an optical module with a light-emitting diode for a motor vehicle.
  • the management method includes the application of a nominal current to the optical modules 2.
  • the current applied to the optical modules 2 is reduced.
  • the current applied to the optical modules 2 is increased.
  • the temperature of the second threshold T 2 is lower than the first threshold Ti.
  • the resulting power of the light-emitting diode, and therefore the power dissipated in the form of heat, is less.
  • the junction temperature T of the light-emitting diode is then lower than the maximum admissible junction temperature T max and the risk of impairing the operation of the diode is eliminated.
  • the junction temperature T of the light-emitting diode is very far from the maximum junction temperature T max admissible by the diode.
  • the value of the temperature of the first threshold, the value of the temperature of the second threshold as well as the proportion of increase and the proportion of decrease of the current applied to the optical modules 2, are then chosen as a function of the maximum junction temperature.
  • the power of the light-emitting diode is optimized while maintaining a temperature in the optical modules 2 lower than the maximum junction temperature T max admissible by the diode so as not to alter the latter.
  • FIG. 5 is a graph representing, in solid lines, the evolution of the current I as a function of the ambient temperature T and, in dotted lines, the evolution of the junction temperature T of the light-emitting diodes as a function of the ambient temperature T.
  • the maximum permissible junction temperature T max of the light-emitting diodes of the optical modules 2 is l 50 ° C.
  • the headlamp 1 illustrated is configured so that, when the ambient temperature T is greater than Ti, the current I is reduced, and more particularly, the more the ambient temperature T above the first threshold Ti increases, the more the current is increased.
  • the current I applied to the optical modules 2 is increased and, advantageously, the lower the ambient temperature T is below the second threshold T 2 , the greater the current applied. Since the more the current I increases, the greater the light flux of the light-emitting diodes, when the ambient temperature T is below the second threshold T 2 , the more the temperature decreases, the greater the light flux of the projector 1 and therefore its great lighting capacity.
  • the management means 4 illustrated is advantageously configured to increase the current applied to the optical modules 2 when the temperature T in the optical modules is less than or equal to 0 ° C., ie the second temperature threshold T 2 is equal at 0 ° C.
  • the management means is advantageously configured to increase the current applied to the optical modules 2 by a value equal to 50% of the nominal current.
  • the management means 4 is preferably configured to reduce the current applied to the optical modules 2 when the temperature in the optical modules 2 is greater than or equal to 50 ° C, ie the first temperature threshold Ti is equal to 50 ° vs.

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

Procédé de gestion de la puissance d'un module optique de projecteur (1) à diode électroluminescente pour véhicule automobile comprenant : l'application d'un courant nominal (5) au module optique; et la diminution (6) du courant appliqué au module optique lorsque la température dans le module optique est supérieure ou égale à un premier seuil (T1). En outre, on augmente (7) le courant appliqué au module optique lorsque la température dans le module optique est inférieure ou égale à un deuxième seuil (T2), la température du deuxième seuil (T2) étant inférieure à la température du premier seuil (T1).

Description

Procédé de gestion de la puissance d’un module optique de proj ecteur à diode électroluminescente pour véhicule automobile
La présente invention se rapporte, de manière générale, à un projecteur de véhicule automobile, et se rapporte, en particulier à un projecteur à diode électroluminescente pour véhicule automobile.
Plus précisément, l’invention concerne un procédé de gestion de la puissance d’un module optique de projecteur à diode électroluminescente pour véhicule automobile.
Un projecteur à diode électroluminescente comprend, en général, d’une part un ou plusieurs modules optiques, c’est-à-dire une source lumineuse, comportant une ou plusieurs diodes électroluminescentes et un réflecteur et, d’autre part, un moyen de gestion de la puissance du module optique.
Une diode électroluminescente ou LED (pour « Light-Emitting Diode », en anglais) est formée par la jonction de deux semi-conducteurs, l’un dopé « P », l’autre dopé « N ». Une température au cœur de la LED, nommée température de jonction T , peut être déterminée.
Chaque diode électroluminescente est en outre caractérisée par une température de jonction maximale T max, c’est-à-dire une température maximale de fonctionnement admissible par la diode, à ne pas dépasser afin de ne pas l’altérer et ainsi garantir sa durée de vie. Cette température est généralement spécifiée par le constructeur.
Sous excitation électrique, une diode électroluminescente émet des photons et de la chaleur ce qui représente, respectivement, environ 20% et 80% de sa puissance dissipée. Lorsqu’elle fonctionne, une diode électroluminescente a donc tendance à chauffer.
Classiquement, dans un véhicule automobile, le moyen de gestion de puissance applique un courant nominal au module optique de sorte que chaque diode électroluminescente puisse fonctionner correctement, dans des conditions normales. Lorsque la température ambiante est élevée, la température des projecteurs à diode électroluminescente peut rapidement s’approcher de la température de jonction maximale T max admissible, en particulier pour les projecteurs localisés à l’avant du véhicule, à proximité du moteur.
II est connu de configurer le moyen de gestion de puissance de telle sorte qu’il diminue le courant appliqué au module optique lorsque la température ambiante T est élevée.
De cette façon, la puissance dissipée sous forme de chaleur par la diode électroluminescente est diminuée et, par conséquent, sa température de jonction T également.
Une telle gestion de la puissance permet ainsi d’optimiser le fonctionnement du projecteur à hautes températures ambiantes tout en garantissant l’intégrité de la diode électroluminescente.
En revanche, à basse température ambiante T, le module optique reçoit un courant nominal et le rendement de chaque diode électroluminescente est en deçà de ses capacités optimales.
La présente invention concerne un procédé de gestion de la puissance du module optique d’un projecteur permettant d’adapter et d’optimiser le fonctionnement des diodes électroluminescentes lorsque la température ambiante est basse.
Il est donc proposé un procédé de gestion de la puissance d’un module optique de projecteur à diode électroluminescente pour véhicule automobile comprenant : l’application d’un courant nominal au module optique ; et la diminution du courant appliqué au module optique lorsque la température dans le module optique est supérieure ou égale à un premier seuil.
En outre, on augmente le courant appliqué au module optique lorsque la température dans le module optique est inférieure ou égale à un deuxième seuil, la température du deuxième seuil étant inférieure à la température du premier seuil.
Avantageusement, la valeur de la température du premier seuil et la valeur de la température du deuxième seuil sont choisies en fonction d’une température de jonction maximale admissible de la diode électroluminescente. Selon un mode de réalisation, la température du deuxième seuil peut être égale à 0°C.
De plus, lorsque la température dans le module optique est inférieure ou égale au deuxième seuil, le courant appliqué au module optique peut être augmenté d’une valeur égale ou supérieure à 50% du courant nominal.
De préférence, la température du premier seuil est égale à 50°C.
L’invention concerne également un projecteur pour véhicule automobile comprenant : un module optique à diode électroluminescente comprenant un capteur de température ; et un moyen de gestion de la puissance du module optique apte à contrôler la valeur du courant appliqué au module optique, ledit moyen de gestion étant configuré pour appliquer un courant nominal au module optique, et configuré pour diminuer le courant appliqué au module optique lorsque la température dans le module optique est supérieure ou égale à un premier seuil.
En outre, le moyen de gestion est configuré pour augmenter le courant appliqué au module optique lorsque la température dans le module optique est inférieure ou égale à un deuxième seuil, la température du deuxième seuil étant inférieure à la température du premier seuil.
Selon un mode de réalisation, le moyen de gestion est configuré pour augmenter le courant appliqué au module optique lorsque la température dans le module optique est inférieure ou égale à 0°C.
De plus, le moyen de gestion peut être configuré pour augmenter le courant appliqué au module optique d’une valeur égale ou supérieure à 50% du courant nominal.
De préférence, le moyen de gestion est configuré pour diminuer le courant appliqué au module optique lorsque la température dans le module optique est supérieure ou égale à 50°C.
D’autres buts, avantages et caractéristiques ressortiront de la description qui va suivre, donnée à titre d’exemple purement illustratif et faite en référence aux dessins annexés sur lesquels : - La figure 1 illustre un projecteur comprenant trois modules optiques à diode électroluminescente pour véhicule automobile selon l’invention ;
- La figure 2 illustre un procédé de gestion de la puissance d’un module optique à diode électroluminescente pour véhicule automobile selon l’invention, lorsque la température dans les modules optiques est comprise entre un premier seuil et un deuxième seuil ;
- La figure 3 illustre un procédé de gestion de la puissance d’un module optique à diode électroluminescente pour véhicule automobile selon l’invention, lorsque la température dans les modules optiques est supérieure ou égale au premier seuil ;
- La figure 4 illustre un procédé de gestion de la puissance d’un module optique à diode électroluminescente pour véhicule automobile selon l’invention, lorsque la température dans les modules optiques est inférieure ou égale au deuxième seuil ; et
- La figure 5 est un graphique illustrant le courant et la température de jonction des diodes électroluminescentes en fonction de la température ambiante.
Comme cela est illustré à la figure 1 , un projecteur 1 à diode électroluminescente pour véhicule automobile comprend au moins un module optique 2 à diode électroluminescente. Le module optique 2 peut comprendre une ou plusieurs diodes électroluminescentes.
Dans l’exemple illustré, le projecteur 1 à diode électroluminescente comprend avantageusement trois modules optiques 2.
Chaque module optique 2 comprend un capteur de température 3 configuré pour déterminer la température au sein du module optique auquel il est associé.
Le projecteur 1 comprend en outre un moyen de gestion de la puissance 4 des modules optiques 2, et donc des diodes électroluminescentes, apte à contrôler la valeur du courant appliqué aux modules optiques 2.
De préférence, le moyen de gestion de la puissance 4 des modules optiques 2 comprend un microcontrôleur. Le moyen de gestion de la puissance 4 est configuré pour appliquer un courant nominal aux modules optiques 2.
De plus, le moyen de gestion de la puissance 4 est configuré pour diminuer le courant appliqué aux modules optiques 2 lorsque la température T dans les modules optiques 2, déterminée par le capteur de température 3 , est supérieure ou égale à un premier seuil Ti .
En outre, le moyen de gestion 4 de puissance est configuré pour augmenter le courant appliqué aux modules optiques 2 lorsque la température T dans les modules optiques 2 est inférieure ou égale à un deuxième seuil T2.
La température du deuxième seuil T2 est inférieure à la température du premier seuil Ti .
Avantageusement, la valeur de la température du premier seuil T i et la valeur de la température du deuxième seuil T2 sont choisies en fonction de la température de jonction maximale T max admissible de la diode électroluminescente, de sorte que la diode électroluminescente ne dépasse pas cette température de jonction maximale T max.
Par ailleurs, les figures 2, 3 et 4 illustrent un procédé de gestion de la puissance de module optique à diode électroluminescente pour véhicule automobile.
Le procédé de gestion comprend l’application d’un courant nominal aux modules optiques 2.
Lorsque la température T dans les modules optiques est supérieure ou égale au premier seuil Ti , le courant appliqué aux modules optiques 2 est diminué.
En outre, lorsque la température T dans les modules optiques 2 est inférieure ou égale au deuxième seuil T2 , le courant appliqué aux modules optiques 2 est augmenté.
La température du deuxième seuil T2 est inférieure au premier seuil Ti .
Ainsi, comme cela est illustré à la figure 2, lorsque la température T dans les modules optiques 2 est comprise entre le premier seuil Ti et le deuxième seuil T2, un courant nominal 5 est appliqué aux modules optiques 2 par le moyen de gestion de puissance 4. Chaque diode électroluminescente fonctionne ainsi à une puissance normale.
Lorsque la température ambiante, à l’extérieur du véhicule, est particulièrement élevée, le risque pour la diode électroluminescente d’atteindre sa température de jonction maximale T max admissible est grand, en particulier lorsque le projecteur 1 est situé à proximité du moteur à combustion interne du véhicule automobile. C’est pourquoi, comme cela est illustré à la figure 3 , lorsque la température dans les modules optiques 2 est supérieure ou égale au premier seuil Ti , une diminution 6 du courant appliqué aux modules optiques 2 est effectuée par le moyen de gestion de puissance 4.
La puissance résultante de la diode électroluminescente, et donc la puissance dissipée sous forme de chaleur, est moindre. La température de jonction T de la diode électroluminescente est alors inférieure à la température de jonction maximale T max admissible et le risque d’altérer le fonctionnement de la diode est écarté.
Au contraire, lorsque la température ambiante, à l’extérieur du véhicule, est particulièrement basse, la température de jonction T de la diode électroluminescente est très éloignée de la température de jonction maximale T max admissible par la diode.
Ainsi, comme cela est illustré à la figure 4, lorsque la température dans les modules optiques 2 est inférieure ou égale au deuxième seuil T2, une augmentation 7 du courant appliqué aux modules optiques 2 est effectuée par le moyen de gestion de puissance 4.
Plus le courant appliqué à la diode électroluminescente est grand, plus le flux lumineux qu’elle produit est grand, de sorte que lorsque le moyen de gestion de puissance 4 augmente le courant appliqué aux modules optiques 2, le flux lumineux produit par chaque diode électroluminescente des modules optiques 2 est augmenté et le projecteur 1 éclaire de mieux en mieux.
La valeur de la température du premier seuil, la valeur de la température du deuxième seuil ainsi que la proportion d’augmentation et la proportion de diminution du courant appliqué aux modules optiques 2, sont alors choisies en fonction de la température de jonction maximale T max admissible propre au modèle de diode électroluminescente utilisé, de façon que cette température de jonction maximale T max ne soit pas atteinte par la diode électroluminescente des modules optiques 2, quelle que soit la température dans les modules optiques 2.
Par conséquent, la puissance de la diode électroluminescente est optimisée tout en conservant une température dans les modules optiques 2 inférieure à la température de jonction maximale T max admissible par la diode afin de ne pas altérer cette dernière.
La figure 5 est un graphique représentant, en trait plein, l’évolution du courant I en fonction de la température ambiante T et, en pointillé, l’évolution de la température de jonction T des diodes électroluminescentes en fonction de la température ambiante T.
Dans le mode de réalisation illustré, la température de jonction maximale T max admissible des diodes électroluminescentes des modules optiques 2 est de l 50°C.
Comme on peut le voir sur le graphique, le projecteur 1 illustré est configuré de sorte que, lorsque la température ambiante T est supérieure à Ti , le courant I est diminué, et plus particulièrement, plus la température ambiante T au-dessus du premier seuil Ti augmente, plus le courant est augmenté. De plus, lorsque la température ambiante T est inférieure à T2, le courant I appliqué aux modules optiques 2 est augmenté et, avantageusement, plus la température ambiante T est inférieure au deuxième seuil T2, plus le courant appliqué est grand. Etant donné que plus le courant I augmente, plus le flux lumineux des diodes électroluminescentes est grand, lorsque la température ambiante T est au- dessous du deuxième seuil T2, plus la température diminue, plus le flux lumineux du projecteur 1 est grand et donc sa capacité à éclairer grande.
D’ une part, le moyen de gestion 4 illustré est avantageusement configuré pour augmenter le courant appliqué aux modules optiques 2 lorsque la température T dans les modules optiques est inférieure ou égale à 0°C, soit le deuxième seuil de température T2 est égal à 0°C.
D’autre part, le moyen de gestion est avantageusement configuré pour augmenter le courant appliqué aux modules optiques 2 d’une valeur égale à 50% du courant nominal. De plus, le moyen de gestion 4 est de préférence configuré pour diminuer le courant appliqué aux modules optiques 2 lorsque la température dans les modules optiques 2 est supérieure ou égale à 50°C, soit le premier seuil de température Ti est égal à 50°C.

Claims

REVENDICATIONS
1 . Procédé de gestion de la puissance d’un module optique de projecteur ( 1 ) à diode électroluminescente pour véhicule automobile comprenant :
l’application d’un courant nominal (5) au module optique ; et
la diminution (6) du courant appliqué au module optique lorsque la température dans le module optique est supérieure ou égale à un premier seuil (T i ) ;
caractérisé en ce que l’on augmente (7) le courant appliqué au module optique lorsque la température dans le module optique est inférieure ou égale à un deuxième seuil (T2), la température du deuxième seuil (T2) étant inférieure à la température du premier seuil (Ti).
2. Procédé de gestion selon la revendication 1 , caractérisé en ce que la valeur de la température du premier seuil (Ti) et la valeur de la température du deuxième seuil (T2) sont choisies en fonction d’une température de jonction maximale (T max) admissible de la diode électroluminescente.
3. Procédé de gestion selon la revendication 1 ou 2, caractérisé en ce que la température du deuxième seuil (T2) est égale à 0°C.
4. Procédé de gestion selon l’une quelconque des revendications précédentes, caractérisé en ce que lorsque la température dans le module optique (2) est inférieure ou égale au deuxième seuil (T2), le courant appliqué au module optique (2) est augmenté d’une valeur égale ou supérieure à 50% du courant nominal.
5. Procédé de gestion selon l’une quelconque des revendications précédentes, caractérisé en ce que la température du premier seuil (T i ) est égale à 50°C.
6. Projecteur pour véhicule automobile comprenant :
un module optique à diode électroluminescente comprenant un capteur de température (3) ; et un moyen de gestion (4) de la puissance du module optique (2) apte à contrôler la valeur du courant appliqué au module optique (2), ledit moyen de gestion (4) étant configuré pour appliquer un courant nominal au module optique (2), et configuré pour diminuer le courant appliqué au module optique (2) lorsque la température dans le module optique (2) est supérieure ou égale à un premier seuil (Ti), caractérisé en ce que ledit moyen de gestion (4) est en outre configuré pour augmenter le courant appliqué au module optique (2) lorsque la température dans le module optique (2) est inférieure ou égale à un deuxième seuil (T2), la température du deuxième seuil (T2) étant inférieure à la température du premier seuil (Ti).
7. Projecteur selon la revendication 6, caractérisé en ce que ledit moyen de gestion (4) est configuré pour augmenter le courant appliqué au module optique (2) lorsque la température dans le module optique (2) est inférieure ou égale à 0°C .
8. Projecteur selon la revendication 6 ou 7, caractérisé en ce que ledit moyen de gestion (4) est configuré pour augmenter le courant appliqué au module optique (2) d’une valeur égale ou supérieure à 50% du courant nominal.
9. Projecteur selon l’une quelconque des revendications 6 à 8 , caractérisé en ce que ledit moyen de gestion (4) est configuré pour diminuer le courant appliqué au module optique (2) lorsque la température dans le module optique (2) est supérieure ou égale à 50°C.
EP19731769.6A 2018-06-29 2019-06-24 Procédé de gestion de la puissance d'un module optique de projecteur à diode électroluminescente pour véhicule automobile Withdrawn EP3815467A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1855962A FR3083340B1 (fr) 2018-06-29 2018-06-29 Procede de gestion de la puissance d'un module optique de projecteur a diode electroluminescente pour vehicule automobile
PCT/EP2019/066714 WO2020002264A1 (fr) 2018-06-29 2019-06-24 Procédé de gestion de la puissance d'un module optique de projecteur à diode électroluminescente pour véhicule automobile

Publications (1)

Publication Number Publication Date
EP3815467A1 true EP3815467A1 (fr) 2021-05-05

Family

ID=63896314

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19731769.6A Withdrawn EP3815467A1 (fr) 2018-06-29 2019-06-24 Procédé de gestion de la puissance d'un module optique de projecteur à diode électroluminescente pour véhicule automobile

Country Status (3)

Country Link
EP (1) EP3815467A1 (fr)
FR (1) FR3083340B1 (fr)
WO (1) WO2020002264A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021100092A1 (de) * 2021-01-06 2022-07-07 HELLA GmbH & Co. KGaA Scheinwerferanordnung und Beleuchtungsverfahren zum Beleuchten einer Umgebung eines Fahrzeugs
DE102021113177A1 (de) 2021-03-16 2022-09-22 HELLA GmbH & Co. KGaA Lichtkörper für eine Leuchte eines Fahrzeuges, Leuchte eines Fahrzeuges sowie Verfahren zum Einstellen eines elektrischen Stromes einer Lichtquelle eines Lichtkörpers
WO2022194582A1 (fr) * 2021-03-16 2022-09-22 HELLA GmbH & Co. KGaA Corps lumineux pour une unité d'éclairage d'un véhicule, unité d'éclairage d'un véhicule et procédé de réglage du courant électrique d'une source lumineuse d'un corps lumineux
JP2023008160A (ja) * 2021-07-05 2023-01-19 トヨタ自動車株式会社 ステアリングシステム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6982528B2 (en) * 2003-11-12 2006-01-03 Lutron Electronics Co., Inc. Thermal protection for lamp ballasts
DE102010006998A1 (de) * 2010-02-05 2011-08-11 Siteco Beleuchtungstechnik GmbH, 83301 Temperaturkompensation des Lichtstroms an LED-Leuchten
DE102012000623A1 (de) * 2012-01-14 2013-07-18 Volkswagen Aktiengesellschaft Temperaturüberwachung von Leuchtvorrichtungen
EP3389340B1 (fr) * 2017-04-13 2020-08-26 Valeo Iluminacion Ampoule d'automobile avec compensation du flux lumineux de la source de lumière

Also Published As

Publication number Publication date
WO2020002264A1 (fr) 2020-01-02
FR3083340A1 (fr) 2020-01-03
FR3083340B1 (fr) 2020-07-03

Similar Documents

Publication Publication Date Title
WO2020002264A1 (fr) Procédé de gestion de la puissance d'un module optique de projecteur à diode électroluminescente pour véhicule automobile
EP3367754B1 (fr) Procédé et module de commande pour sources lumineuses à flux lumineux pulsé d'un véhicule automobile
FR2986921A1 (fr) Systeme et procede de commande de l'alimentation d'une machine electrique en fonction de la temperature.
EP2549836A1 (fr) Circuit de commande d'un dispositif de signalisation ou d'éclairage à double fonction et procédé de commande correspondant
FR3066875A1 (fr) Dispositif de commande d'emission de lumiere et feu de vehicule
FR3023670A1 (fr) Systeme de pilotage de l'alimentation electrique et de gestion thermique de sources lumineuses
EP2514082B1 (fr) Procede de detection de panne d'une source de courant a decoupage et source de puissance correspondante
EP1686006A1 (fr) Système d'éclairage et/ou de signalisation pour véhicule avec commande d'actionneur perfectionnée
FR2843177A1 (fr) Protection d'un ensemble a demarreur/alternateur contre les manques de tension.
EP1365511A1 (fr) Commande d'une charge de puissance
FR3062883A1 (fr) Systeme et procede de repositionnement de rotor de moteur thermique
FR2976151A1 (fr) Dispositif de commutation d'une charge auxiliaire d'un bloc de leds.
FR3056679A1 (fr) Dispositif avec modules lumineux maitre et esclave
EP3515760B1 (fr) Projecteur pour véhicule automobile à fonction de code relevé
FR3020122A1 (fr) Procede de pilotage d'un feu de signalisation ou d'eclairage a diodes electroluminescentes pour vehicule automobile
FR3119665A1 (fr) Feu de signalisation pour véhicule automobile comprenant un support de réflecteur optique apte à dissiper la chaleur émise par une source lumineuse.
EP3557950B1 (fr) Procédé de contrôle d'un variateur
EP3802230B1 (fr) Gestion de l'alimentation d'un réseau électrique d'un véhicule automobile hybride
FR2949400A1 (fr) Dispositif de commande de l'alimentation d'un projecteur
FR3054375A1 (fr) Controle du flux lumineux d'une del
FR3096521A1 (fr) Réseau électrique de véhicule à convertisseur de tension pour au moins un organe électrique
FR3022401B1 (fr) Methode de controle de temperature d'une unite electrique de vehicule automobile
FR3115433A1 (fr) Procede de detection de defaut d’une source lumineuse pixelisée et dispositif d'éclairage automobile associé
FR3051620A1 (fr) Alimentation electrique de sources lumineuses d'un vehicule automobile a faible tension avec limitation de courant
FR3124444A1 (fr) Alimentation d’une matrice de sources lumineuses pour une fonction dynamique

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RENAULT S.A.S

17Q First examination report despatched

Effective date: 20220209

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RENAULT S.A.S

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20220820