EP3809429B1 - Transformatoraufbau und traktionstransformator für lokomotive - Google Patents
Transformatoraufbau und traktionstransformator für lokomotive Download PDFInfo
- Publication number
- EP3809429B1 EP3809429B1 EP19801188.4A EP19801188A EP3809429B1 EP 3809429 B1 EP3809429 B1 EP 3809429B1 EP 19801188 A EP19801188 A EP 19801188A EP 3809429 B1 EP3809429 B1 EP 3809429B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- side yoke
- cross
- winding layer
- sectional area
- transformer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003137 locomotive effect Effects 0.000 title claims description 25
- 238000004804 winding Methods 0.000 claims description 48
- 238000010586 diagram Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000002966 varnish Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 229910052816 inorganic phosphate Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
- H01F27/245—Magnetic cores made from sheets, e.g. grain-oriented
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/34—Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
- H01F27/38—Auxiliary core members; Auxiliary coils or windings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F30/00—Fixed transformers not covered by group H01F19/00
- H01F30/06—Fixed transformers not covered by group H01F19/00 characterised by the structure
- H01F30/10—Single-phase transformers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
- H01F27/26—Fastening parts of the core together; Fastening or mounting the core on casing or support
- H01F27/263—Fastening parts of the core together
Definitions
- the present disclosure relates to the technical field of transformers, and in particular to a transformer structure and a traction transformer for a locomotive.
- the traction transformer is an important component of a traction system of a rail transit locomotive, which is used for converting the 25kV high voltage obtained on an overhead line system into a voltage suitable for being supplied for operation of a traction motor and other motors and electrical appliances.
- WO-A-2011/148468 describes a transformer with an asymmetrical core structure.
- GB-A-592020 relates to a transformer having a rotationally symmetric core structure.
- DE754870 describes a three-phase transformer with three-legged iron core, the leg ends of which are connected to one another by common yokes.
- US-A-2017/243688 describes a coil device provided with a coil component such as a choke coil or a transformer, and specifically to a heat dissipation technology in a coil device.
- An object of the present disclosure is to provide a transformer structure, which can at least effectively alleviate one of the technical problems that the space for the transformer structure in the prior art is greatly limited and the transformer cannot be placed.
- Another object of the present disclosure is to provide a traction transformer for a locomotive, which comprises the transformer structure described above and which has all the characteristics of the transformer structure
- An embodiment of the present disclosure provides a transformer structure, comprising: a core and a coil,
- the side yokes comprise a first side yoke, a second side yoke, a third side yoke, and a fourth side yoke; the first side yoke, the second side yoke, the third side yoke, and the fourth side yoke are sequentially connected in an end-to-end manner, and any two adjacent ones of the first side yoke, the second side yoke, the third side yoke, and the fourth side yoke are disposed perpendicular to each other, such that the accommodating region defined by the first side yoke, the second side yoke, the third side yoke, and the fourth side yoke is in a rectangular shape.
- the core limb has a circular cross-sectional shape, and each of the first side yoke, the second side yoke, the third side yoke, and the fourth side yoke has a rectangular cross-sectional shape.
- a cross-sectional area of the first side yoke is not equal to a cross-sectional area of the third side yoke.
- a cross-sectional area of the second side yoke is not equal to a cross-sectional area of the fourth side yoke.
- a sum of the cross-sectional area of the first side yoke and the cross-sectional area of the third side yoke is greater than or equal to the cross-sectional area of the core limb
- a sum of the cross-sectional area of the second side yoke and the cross-sectional area of the fourth side yoke is greater than or equal to the cross-sectional area of the core limb
- the cross-sectional area of the first side yoke or the third side yoke is greater than or equal to a quarter of the cross-sectional area of the core limb.
- the cross-sectional area of the second side yoke or the fourth side yoke is greater than or equal to a quarter of the cross-sectional area of the core limb.
- an outer corner at a position where any two of the first side yoke, the second side yoke, the third side yoke, and the fourth side yoke are connected is provided as a chamfer.
- the first side yoke is detachably connected to the second side yoke and the fourth side yoke.
- the coil comprises a traction winding layer, a high-voltage winding layer, and an auxiliary winding layer; and the auxiliary winding layer is sleeved over the high-voltage winding layer, and in turn the high-voltage winding layer is sleeved over the traction winding layer, with the auxiliary winding layer is located at the outermost layer.
- a thickness of the auxiliary winding layer is less than a thickness of the traction winding layer; and/or the thickness of the auxiliary winding layer is less than a thickness of the high-voltage winding layer.
- two coils are provided, and the two coils are sequentially sleeved outside the core limb along a length direction of the core limb.
- the transformer structure further comprises an insulating ring piece, wherein the insulating ring piece is sleeved outside the core limb, and the insulating ring piece is located between the two coils and configured to separate the two coils.
- a traction transformer for a locomotive can also be provided.
- the present disclosure includes, for example, the following advantageous effects: since a transformer having a transformer structure needs to be placed in an oil tank, when the sum of the cross-sectional areas of the side yokes on any two sides of the core limb is greater than or equal to the cross-sectional area of the core limb, the transformer can be designed with different schemes according to different locomotives, the shape and area of the transformer structure can be adjusted for spatial limitations of different locomotives, and the cross-sectional areas of different side yokes are set by using the cross-sectional area of the core limb as a reference, so that it is easier to match a suitable oil tank, it can be better adapted to a vehicle body structure with great spatial limitation, and the technical problem can be effectively alleviated that the space for the transformer structure in the prior art is greatly limited so that the transformer cannot be placed, and therefore the transformer structure of the present disclosure is more suitable for popularization and use.
- Reference Numerals 100-core; 101-side yoke; 111-first side yoke; 121-second side yoke; 131-third side yoke; 141-fourth side yoke; 102-core limb; 200-coil; 201-traction winding layer; 202-high-voltage winding layer; 203-auxiliary winding layer; 300-accommodating region; 400-chamfer; 500-insulating ring piece.
- orientation or positional relationships indicated by the terms such as “inside” and “outside” are the orientation or positional relationships shown based on the drawings, or the orientation or positional relationships in which the inventive product is conventionally placed in use, and these terms are intended only to facilitate the description of the present disclosure and simplify the description, but not intended to indicate or imply that the referred devices or elements must be in a particular orientation or constructed or operated in the particular orientation, and therefore should not be construed as limiting the present disclosure.
- terms such as “first” and “second” are used for distinguishing the description only, and should not be understood as an indication or implication of relative importance.
- connection may be fixed connection or detachable connection or integral connection, may be mechanical connection or electric connection, or may be direct linking or indirect linking via an intermediate medium or internal communication between two elements.
- connection may be fixed connection or detachable connection or integral connection, may be mechanical connection or electric connection, or may be direct linking or indirect linking via an intermediate medium or internal communication between two elements.
- the transformer structure of the traction transformer in the prior art generally requires two core limbs 102, so that the transformer structure has a relatively large volume, and the space for the transformer will be greatly limited for some locomotive models, thus it will be impossible to place the prior art transformer; and due to the limited characteristics of the transformer structure, the above-mentioned transformer structure can only be applicable to a particular locomotive and is inconveniently popularized. Therefore, the present disclosure provides a transformer structure in response to the technical problems mentioned above.
- a transformer structure comprises: a core 100 and coils 200; the core 100 comprises side yokes 101 and a core limb 102, the side yokes 101 form an accommodating region 300 configured to close a magnetic circuit, the core limb 102 is disposed in the accommodating region 300, and the coil 200 is sleeved outside the core limb 102 so that the coil 200 is located in the accommodating region 300; and a sum of cross-sectional areas of the side yokes 101 on any two sides of the core limb 102 is greater than or equal to a cross-sectional area of the core limb 102.
- the core 100 has a structure being in a shape of Chinese character " " (a structure shaped like two connected rectangles), a core limb 102 is disposed, and the core limb 102 is fixed in the accommodating region 300 of the side yokes 101, wherein the side yokes 101 are formed by superimposing a plurality of iron pieces in an overlapping manner and the side yokes are mainly used for closing the magnetic circuit, and then the coil 200 is sleeved outside the core limb 102.
- the shape and the cross-sectional area of the side yokes 101 are limited in the present disclosure, and the magnitude of the cross-sectional area of the side yokes 101 is determined under limitations from the specification of a particular locomotive in such a manner that a sum of the cross-sectional areas of the side yokes 101 on any two sides of the core limb 102 is greater than or equal to the cross-sectional area of the core limb 102, in other words, the core limb 102 is used as a reference for the design of the entire structure, therefore the shape of the core 100 can be adjusted for the locomotive so as to be capable of more easily matching a "suitable oil tank" and meeting the spatial requirements for the oil tanks of most of the locomotives.
- the invention includes the following advantageous effects: since a transformer having a transformer structure needs to be placed in an oil tank, when the sum of the cross-sectional areas of the side yokes 101 on any two sides of the core limb 102 is greater than or equal to the cross-sectional area of the core limb 102, the transformer can be designed with different schemes according to different locomotives, the shape and area of the transformer structure can be adjusted for spatial limitations of different locomotives, and the cross-sectional areas of different side yokes 101 are set by using the cross-sectional area of the core limb 102 as a reference, so that it is easier to match a suitable oil tank, it can be better adapted to a vehicle body structure with great spatial limitation, and the technical problem can be effectively alleviated that the space for the transformer structure in the prior art is greatly limited so that the transformer cannot be placed, and therefore the transformer structure of the present disclosure is more suitable for popularization and use.
- the side yokes 101 comprise a first side yoke 111, a second side yoke 121, a third side yoke 131, and a fourth side yoke 141; the first side yoke 111, the second side yoke 121, the third side yoke 131, and the fourth side yoke 141 are sequentially connected in an end-to-end manner, and any two adjacent ones of the first side yoke 111, the second side yoke 121, the third side yoke 131, and the fourth side yoke 141 are disposed perpendicular to each other, such that the accommodating region 300 defined by the first side yoke 111, the second side yoke 121, the third side yoke 131, and the fourth side yoke 141 is in a rectangular shape.
- the accommodating region 300 formed by the first side yoke 111, the second side yoke 121, the third side yoke 131, and the fourth side yoke 141 has a rectangular shape such that the first side yoke 111 is disposed perpendicular to the second side yoke 121, the second side yoke 121 is disposed perpendicular to the third side yoke 131, the third side yoke 131 is disposed perpendicular to the fourth side yoke 141, and the fourth side yoke 141 is disposed perpendicular to the first side yoke 111 to form a rectangular structure of the core 100, and further, the first side yoke 111 and the third side yoke 131 are located on two opposite sides, and the first side yoke 111 and the third side yoke 131 are disposed in parallel, and the second side yoke 121 and the fourth side yoke 141 are also disposed in parallel.
- the core limb 102 has a circular cross-sectional shape
- each of the first side yoke 111, the second side yoke 121, the third side yoke 131, and the fourth side yoke 141 has a rectangular cross-sectional shape.
- the cross-sectional area of the first side yoke 111 is not equal to the cross-sectional area of the third side yoke 131; and the cross-sectional area of the second side yoke 121 is not equal to the cross-sectional area of the fourth side yoke 141.
- the cross-sectional area of the first side yoke 111 may be set as Y1, and the cross-sectional area of the third side yoke 131 may be set as Y2; the cross-sectional area of the second side yoke 121 may be set as S1, and the cross-sectional area of the fourth side yoke 141 may be set as S2, wherein it should be noted that it is defined in the present invention that Y1 is not equal to Y2 and S1 is not equal to S2, but Y1 and S1 or S2 may be the same or different, which is not limited herein.
- a sum of the cross-sectional area of the first side yoke 111 and the cross-sectional area of the third side yoke 131 is greater than or equal to the cross-sectional area of the core limb 102.
- a sum of the cross-sectional area of the second side yoke 121 and the cross-sectional area of the fourth side yoke 141 is greater than or equal to the cross-sectional area of the core limb 102.
- the cross-sectional area of the core limb 102 is set as C, and the core limb 102 and the first side yoke 111, the second side yoke 121, the third side yoke 131, and the fourth side yoke 141 have such a numerical relationship that it should be ensured that Y1 ⁇ Y2, S1 ⁇ S2, and Y1+Y2 ⁇ C, S1+S2 ⁇ C.
- the cross-sectional dimensions of Y1, Y2, S1, and S2 can be adjusted, so that it is easier to match a "suitable oil tank".
- the above design can meet the requirements of the magnetic circuit of the transformer.
- a magnetic field is generated after the coil 200 is energized, and magnetic lines form a magnetic circuit through the structure of the core 100, so that the strength of the magnetic field of the whole magnetic circuit is maximized to avoid magnetic leakage loss so as to fulfil the requirement of converting the 25kV high voltage obtained on an overhead line system into a voltage suitable for being supplied for operation of a traction motor and other motors and electrical appliances.
- the cross-sectional area of the first side yoke 111 or the third side yoke 131 is greater than or equal to a quarter of the cross-sectional area of the core limb 102.
- the cross-sectional area of the second side yoke 121 or the fourth side yoke 141 is greater than or equal to a quarter of the cross-sectional area of the core limb 102.
- the specific numerical values of Y1, Y2, S1, and S2 are set such that it should be ensured that Y1 ⁇ a quarter of C, Y2 ⁇ a quarter of C, S1 ⁇ a quarter of C, and S2 ⁇ a quarter of C, since the cross-sectional area C of the core limb 102 is used as a reference for the design of the transformer structure.
- the minimum value of Y2 should also be greater than or equal to three quarters of C, and similarly, when the magnitude of Y2 is a quarter of C, the minimum value of Y1 should also be greater than or equal to three quarters of C.
- the minimum value of S2 should also be greater than or equal to three quarters of C, and similarly, when the magnitude of S2 is a quarter of C, the minimum value of S1 should also be greater than or equal to three quarters of C.
- an outer corner at a position where any two of the first side yoke 111, the second side yoke 121, the third side yoke 131, and the fourth side yoke 141 are connected is provided as a chamfer 400.
- the four corners of the side yokes 101 may be chamfered to form the chamfers 400; preferably, in the case where the magnetic flux density is kept constant, the no-load loss can be reduced, and the weight of the core 100 can be reduced, so that a lightweight and more economical entire transformer structure is implemented.
- the first side yoke 111 is detachably connected to the second side yoke 121 and the fourth side yoke 141.
- the first side yoke is used as an openable end, so that when it is necessary to wind the coil 200, the first side yoke may be firstly pulled up, and the coil 200 and an insulating ring piece 500 described later are wrapped around the core limb 102, and then the first side yoke may be connected to the second side yoke 121 and the fourth side yoke 141 by a clamping device.
- the clamping device acts as a device for connection and fixation in the prior transformer, and therefore will not be described in detail here.
- the coil 200 comprises a traction winding layer 201, a high-voltage winding layer 202, and an auxiliary winding layer 203; the auxiliary winding layer 203 is sleeved over the high-voltage winding layer 202, and in turn the high-voltage winding layer 202 is sleeved over the traction winding layer 201, with the auxiliary winding layer 203 is located at the outermost layer.
- the thickness of the auxiliary winding layer 203 is less than the thickness of the traction winding layer 201; and/or the thickness of the auxiliary winding layer 203 is less than the thickness of the high-voltage winding layer 202.
- the coil 200 of the embodiment of the present disclosure is arranged in a "traction-high-voltage-auxiliary" manner, and the auxiliary winding layer 203 is placed outside the high-voltage winding layer 202 so that the auxiliary winding layer 203 can be prevented from being affected by a high frequency signal of the traction winding layer 201, and good electromagnetic compatibility is ensured.
- the auxiliary winding layer 203 is placed on the outermost side.
- the auxiliary winding layer 203 Since the auxiliary winding layer 203 has a lower voltage level, the auxiliary winding layer 203 requires a smaller insulation distance from the bottom or cover of the oil tank or the like, whereby the insulation configuration can be arranged more simply, and further the volume of the transformer to the oil tank can be reduced so as to be better adapted to a vehicle body structure with great spatial limitation, and the weight of the transformer structure is reduced.
- two coils 200 are provided, and the two coils 200 are sequentially sleeved outside the core limb 102 along the length direction of the core limb 102; further, the transformer structure according to the embodiment of the present disclosure further comprises an insulating ring piece 500; the insulating ring piece 500 is sleeved outside the core limb 102, and the insulating ring piece 500 is located between the two coils 200 and configured to separate the two coils 200.
- the insulating ring piece 500 may be sprayed with insulating varnish for the transformer structure, and the insulating varnish may be made of an inorganic phosphate film; or an insulating ring piece 500 made of an insulating material may be used, and any insulating ring piece 500 capable of achieving the insulating function of the transformer structure may be used and will not be described in detail here.
- a traction transformer for a locomotive can also be provided. Since the traction transformer for a locomotive is operated in a special environment of an electric locomotive, it has a series of characteristics different from an environment in which a general power transformer is operated, which will inevitably be reflected in the actual operation of the traction transformer of the electric locomotive, wherein there are relatively strict restrictions on the outer shape size and the weight, the space in the locomotive body for placement of electrical equipment is very limited, and there are high-power converter devices, high-power motors and the like inside the locomotive, and thus the traction transformer is operated in a strong electromagnetic environment.
- the traction transformer for a locomotive further comprises an oil tank, and the oil tank is generally divided into two layers, one of which is used for placement of a main transformer and the other of which is used for installation of other electric reactor equipment.
- the oil tank may also be equipped with auxiliary devices such as lifting lugs, valves, an oil drain plug, a pressure release valve, and a temperature measuring barrel to facilitate the operations such as lifting of the transformer and collection of an oil sample; and a magnetic isolation treatment should be performed between the upper oil tank and the lower oil tank to cut off a magnetic leakage path; and additionally, an oil protection device, a cooling system, a bushing, and transformer oil are also included; wherein the oil protection device, the cooling system, the bushing, and the transformer oil are all specific structures included in the prior art traction transformer for a locomotive and will not be described in detail here.
- the traction transformer for a locomotive according to the embodiment of the present disclosure comprises the transformer structure according to the above embodiment, therefore the cross-sectional dimensions of Y1, Y2, S1 and S2 can be adjusted in the case where the conditions Y1 ⁇ Y2, S1 ⁇ S2, and Y1+Y2 ⁇ C and S1+S2 ⁇ C are ensured, such that it is easier to match a "suitable oil tank", and it can be better adapted to a vehicle body structure with great spatial limitation, so that the traction transformer for a locomotive according to the embodiment of the present disclosure is more suitable for popularization.
- the transformer structure is set based on the cross-sectional area of a core limb in such a manner that the sum of the cross-sectional areas of side yokes on any two sides of the core limb is greater than or equal to the cross-sectional area of the core limb, so that the transformer structure can more easily match a suitable oil tank and can be better adapted to a vehicle body structure with great spatial limitation.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Coils Of Transformers For General Uses (AREA)
Claims (9)
- Transformatoraufbau, umfassend: einen Kern (100) und mindestens eine Spule (200),wobei der Kern (100) Seitenjoche (101) und einen Kernschenkel (102) umfasst, die Seitenjoche (101) einen Aufnahmebereich (300) definieren, der konfiguriert ist, um einen magnetischen Kreis zu schließen, der Kernschenkel (102) in dem Aufnahmebereich (300) angeordnet ist und die mindestens eine Spule (200) außerhalb des Kernschenkels (102) ummantelt ist, so dass die mindestens eine Spule (200) in dem Aufnahmebereich (300) angeordnet ist; undeine Summe der Querschnittsflächen der Seitenjoche (101) auf zwei beliebigen Seiten des Kernschenkels (102) größer oder gleich einer Querschnittsfläche des Kernschenkels (102) ist,wobei die Seitenjoche (101) ein erstes Seitenjoch (111), ein zweites Seitenjoch (121), ein drittes Seitenjoch (131) und ein viertes Seitenjoch (141) umfassen; unddas erste Seitenjoch (111), das zweite Seitenjoch (121), das dritte Seitenjoch (131) und das vierte Seitenjoch (141) aufeinanderfolgend Ende-an-Ende verbunden sind, und jeweils zwei benachbarte des ersten Seitenjochs (111), des zweiten Seitenjochs (121) des dritten Seitenjochs (131) und des vierten Seitenjochs (141) senkrecht zueinander angeordnet sind, so dass der Aufnahmebereich (300), der durch das erste Seitenjoch (111), das zweite Seitenjoch (121), das dritte Seitenjoch (131) und das vierte Seitenjoch (141) definiert ist, eine rechteckige Form aufweist,wobei jedes des ersten Seitenjochs (111), des zweiten Seitenjochs (121), des dritten Seitenjochs (131) und des vierten Seitenjochs (141) eine rechteckige Querschnittsform aufweist, eine Querschnittsfläche des ersten Seitenjochs (111) nicht einer Querschnittsfläche des dritten Seitenjochs (131) gleich ist und eine Querschnittsfläche des zweiten Seitenjochs (121) nicht einer Querschnittsfläche des vierten Seitenjochs (141) gleich ist,dadurch gekennzeichnet, dass der Kernschenkel (102) eine kreisförmige Querschnittsform aufweist.
- Transformatoraufbau nach Anspruch 1, wobei die Querschnittsfläche des ersten Seitenjochs (111) oder des dritten Seitenjochs (131) größer als oder gleich einem Viertel der Querschnittsfläche des Kernschenkels (102) ist.
- Transformatoraufbau nach Anspruch 1 oder 2, wobei die Querschnittsfläche des zweiten Seitenjochs (121) oder des vierten Seitenjochs (141) größer als oder gleich einem Viertel der Querschnittsfläche des Kernschenkels (102) ist.
- Transformatoraufbau nach einem der Ansprüche 1 bis 3, wobei eine äußere Ecke an einer Stelle, an der zwei beliebige Seitenjoche vom ersten Seitenjoch (111), zweiten Seitenjoch (121), dritten Seitenjoch (131) und vierten Seitenjoch (141) verbunden sind, als Fase (400) ausgebildet ist.
- Transformatoraufbau nach einem der Ansprüche 1 bis 4, wobei das erste Seitenjoch (111) abnehmbar mit dem zweiten Seitenjoch (121) und dem vierten Seitenjoch (141) verbunden ist.
- Transformatoraufbau nach einem der Ansprüche 1 bis 5, wobei die mindestens eine Spule (200) eine Traktionswicklungsschicht (201), eine Hochspannungswicklungsschicht (202) und eine Hilfswicklungsschicht (203) umfasst; und
die Hilfswicklungsschicht (203) über die Hochspannungswicklungsschicht (202) gestülpt ist und die Hochspannungswicklungsschicht (202) ihrerseits über die Traktionswicklungsschicht (201) gestülpt ist, wobei die Hilfswicklungsschicht (203) an einer äußersten Schicht angeordnet ist. - Transformatoraufbau nach Anspruch 6, wobei eine Dicke der Hilfswicklungsschicht (203) geringer ist als eine Dicke der Traktionswicklungsschicht (201); und/oder die Dicke der Hilfswicklungsschicht (203) geringer ist als die Dicke der Hochspannungswicklungsschicht (202).
- Transformatoraufbau nach einem der Ansprüche 1 bis 7, wobei zwei Spulen (200) bereitgestellt sind, und die beiden Spulen (200) nacheinander außerhalb des Kernschenkels (102) entlang einer Längsrichtung des Kernschenkels (102) ummantelt sind,
wobei der Transformatoraufbau ferner vorzugsweise ein isolierendes Ringstück (500) umfasst, wobei das isolierende Ringstück (500) außerhalb des Kernschenkels (102) ummantelt ist und das isolierende Ringstück (500) zwischen den beiden Spulen (200) angeordnet und konfiguriert ist, um die beiden Spulen (200) zu trennen. - Traktionstransformator für eine Lokomotive, dadurch gekennzeichnet, dass er den Transformatoraufbau nach einem der Ansprüche 1 bis 8 umfasst.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/103055 WO2021035574A1 (zh) | 2019-08-28 | 2019-08-28 | 变压器结构及机车牵引变压器 |
Publications (4)
Publication Number | Publication Date |
---|---|
EP3809429A4 EP3809429A4 (de) | 2021-04-21 |
EP3809429A1 EP3809429A1 (de) | 2021-04-21 |
EP3809429C0 EP3809429C0 (de) | 2024-03-27 |
EP3809429B1 true EP3809429B1 (de) | 2024-03-27 |
Family
ID=74683269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19801188.4A Active EP3809429B1 (de) | 2019-08-28 | 2019-08-28 | Transformatoraufbau und traktionstransformator für lokomotive |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3809429B1 (de) |
WO (1) | WO2021035574A1 (de) |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB592020A (en) * | 1945-03-28 | 1947-09-04 | Harold Wilfred Hardern | Improvements in and relating to magnetic core structures for transformers and like induction electric apparatus |
DE754870C (de) * | 1937-04-30 | 1953-08-03 | Siemens Schuckertwerke A G | Drehstromtransformator mit dreischenkeligem Eisenkern |
DE961462C (de) * | 1951-06-12 | 1957-04-04 | Siemens Ag | Mehrschenkliger lamellierter Eisenkern fuer Transformatoren u. dgl. |
JPS5691409A (en) * | 1979-12-26 | 1981-07-24 | Hitachi Ltd | Core type core for transformer |
JPS5885510A (ja) * | 1981-11-17 | 1983-05-21 | Toshiba Corp | 変圧器 |
CN2103195U (zh) * | 1991-09-24 | 1992-04-29 | 廖正明 | 微型交流电焊机 |
JP2009182115A (ja) * | 2008-01-30 | 2009-08-13 | Mitsubishi Electric Corp | 変圧器 |
WO2011148468A1 (ja) * | 2010-05-26 | 2011-12-01 | 三菱電機株式会社 | 変圧器 |
WO2012014250A1 (ja) * | 2010-07-26 | 2012-02-02 | 三菱電機株式会社 | トランス |
CN104025217B (zh) * | 2014-03-05 | 2017-05-10 | 深圳欣锐科技股份有限公司 | 一种磁芯、集成磁元件、有源钳位正反激电路及开关电源 |
CN203931739U (zh) * | 2014-05-06 | 2014-11-05 | 深圳市铂科磁材有限公司 | 一种er型三相电抗器 |
JP6397714B2 (ja) * | 2014-10-03 | 2018-09-26 | Fdk株式会社 | コイル装置 |
CN204946657U (zh) * | 2015-08-20 | 2016-01-06 | 沈阳昊诚电气有限公司 | 用于变压器的铁心和具有该铁心的变压器 |
DE102017205746A1 (de) * | 2017-04-04 | 2018-10-04 | Siemens Aktiengesellschaft | Aktivteil mit Klemmmitteln ohne Zugstangen |
CN208045269U (zh) * | 2018-02-08 | 2018-11-02 | 厦门昰能机电科技有限公司 | 一种圆轴多片叠加式变压器 |
-
2019
- 2019-08-28 EP EP19801188.4A patent/EP3809429B1/de active Active
- 2019-08-28 WO PCT/CN2019/103055 patent/WO2021035574A1/zh unknown
Also Published As
Publication number | Publication date |
---|---|
EP3809429C0 (de) | 2024-03-27 |
WO2021035574A1 (zh) | 2021-03-04 |
EP3809429A4 (de) | 2021-04-21 |
EP3809429A1 (de) | 2021-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7432699B2 (en) | Transformer with protection against direct current magnetization caused by zero sequence current | |
US8497755B2 (en) | Hybrid transformer with transformation and improved harmonics functions, unbalanced current, and a power supply system thereof | |
KR20180062388A (ko) | 인덕티브 장치 | |
US20230395313A1 (en) | Heat transfer from transformer windings | |
US10361024B2 (en) | Dry-type transformer core | |
JPS60154604A (ja) | 変圧器 | |
EP3809429B1 (de) | Transformatoraufbau und traktionstransformator für lokomotive | |
CN214505209U (zh) | 磁集成装置、直流-直流变换器及开关电源 | |
US20110148556A1 (en) | Power quality improvement device and power supply system | |
WO2020036507A1 (ru) | Сглаживающе-токоограничивающий реактор фильтр-устройства железнодорожной тяговой подстанции | |
EP2187408B1 (de) | Eisenkernreaktor | |
EP2998971B1 (de) | Leistungswandler mit induktivitätsvorrichtung mit abschirmung | |
EP3572846B1 (de) | Hochleistungstransformator und sender für geophysikalische messungen | |
CN213660189U (zh) | 一种新型干式试验变压器 | |
CN112955986B (zh) | 电气部件 | |
EP2187409B1 (de) | Doppelaktivteilestruktur eines reaktors | |
EP2573781B1 (de) | Hochspannungsstromspule | |
EP2819133A1 (de) | Elektrische Spulenvorrichtung für elektrotechnische und leistungselektronische Anwendungen | |
US11217386B2 (en) | Transformers, power converters having tranformers, and methods of converting electrical power | |
CN207852442U (zh) | 具有高导磁铁芯的变压器 | |
EP4099346A1 (de) | Schraubenförmige führung zur kühlung eines mittelfrequenztransformators | |
US20240013965A1 (en) | Magnetic core | |
CN203466024U (zh) | 油浸式变压器出油组件 | |
US10840004B2 (en) | Reducing reluctance in magnetic devices | |
JPH0423294Y2 (de) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17P | Request for examination filed |
Effective date: 20191119 |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20201204 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17Q | First examination report despatched |
Effective date: 20210331 |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01F 27/26 20060101ALN20231010BHEP Ipc: H01F 38/00 20060101ALI20231010BHEP Ipc: H01F 30/10 20060101ALI20231010BHEP Ipc: H01F 27/38 20060101ALI20231010BHEP Ipc: H01F 27/245 20060101ALI20231010BHEP Ipc: H01F 27/24 20060101AFI20231010BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01F 27/26 20060101ALN20231017BHEP Ipc: H01F 38/00 20060101ALI20231017BHEP Ipc: H01F 30/10 20060101ALI20231017BHEP Ipc: H01F 27/38 20060101ALI20231017BHEP Ipc: H01F 27/245 20060101ALI20231017BHEP Ipc: H01F 27/24 20060101AFI20231017BHEP |
|
INTG | Intention to grant announced |
Effective date: 20231120 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602019049119 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
U01 | Request for unitary effect filed |
Effective date: 20240424 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240627 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240627 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240628 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20240327 |
|
RAP4 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: JIANGSU ALSTOM NUG PROPULSION SYSTEM CO., LTD. |
|
U07 | Unitary effect registered |
Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI Effective date: 20240717 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240727 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 |