EP3799556A1 - Odorless lid - Google Patents

Odorless lid

Info

Publication number
EP3799556A1
EP3799556A1 EP19756224.2A EP19756224A EP3799556A1 EP 3799556 A1 EP3799556 A1 EP 3799556A1 EP 19756224 A EP19756224 A EP 19756224A EP 3799556 A1 EP3799556 A1 EP 3799556A1
Authority
EP
European Patent Office
Prior art keywords
activated carbon
odor cover
core
shell
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19756224.2A
Other languages
German (de)
French (fr)
Inventor
Marie-Pierre SOM
Thu-Hoa Tran-Thi
Christophe Theron
William BAMOGO
Trung-Hieu Nguyen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Ethera SA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Centre National de la Recherche Scientifique CNRS
Commissariat a lEnergie Atomique CEA
Ethera SA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Commissariat a lEnergie Atomique CEA, Ethera SA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3799556A1 publication Critical patent/EP3799556A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J36/00Parts, details or accessories of cooking-vessels
    • A47J36/06Lids or covers for cooking-vessels
    • A47J36/062Lids or covers for cooking-vessels non-integrated lids or covers specially adapted for deep fat fryers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J36/00Parts, details or accessories of cooking-vessels
    • A47J36/02Selection of specific materials, e.g. heavy bottoms with copper inlay or with insulating inlay
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2055Carbonaceous material
    • B01D39/2058Carbonaceous material the material being particulate
    • B01D39/2062Bonded, e.g. activated carbon blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3272Polymers obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3293Coatings on a core, the core being particle or fiber shaped, e.g. encapsulated particles, coated fibers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols

Definitions

  • the present invention relates to the field of air filtration, in particular in cooking appliances such as for example fryers or frying pans.
  • the present invention relates to an anti-odor cover suitable for any container allowing odors or volatile compounds to escape and more particularly to a food cooking appliance, said anti-odor cover comprising particles having a heart-shell structure consisting of '' an activated carbon core surrounded by a shell of a silica-based mesoporous sol-gel material.
  • Air pollution control and in particular for pollutants such as volatile organic compounds (VOCs) via air purifiers or extractor hoods is essentially based on the use of activated carbon filters.
  • activated carbon filters indeed has a large adsorption capacity and low cost.
  • activated carbon very poorly traps small polar molecules present in indoor air such as formaldehyde, acetaldehyde, methyl and ethyl ketones, acetic acid, acrolein or even the acrylamide resulting from decomposition. superheated oil (such as for example fried foods).
  • the Applicant has demonstrated that particles having a core-shell structure in which the core is activated carbon and the shell comprises silica sol-gel, functionalized or not, makes it possible to effectively trap the cooking vapors , including frying.
  • the Applicant provides a filter material which is more effective than activated carbon and a simple and effective process for the preparation of this material.
  • the present invention therefore relates to an anti-odor cover, preferably for a cooking appliance, said anti-odor cover comprising an upper wall and a lower wall characterized in that the lower wall comprises a filtering material comprising core-shell particles made of '' an activated carbon core surrounded by a mesoporous sol-gel silica shell.
  • the core-shell particles are spherical and have a diameter of 20 to 400 nm.
  • the mesoporous sol-gel silica shell comprises a siloxane formed from at least one organosilicate precursor chosen from tetramethoxysilane (TMIQS), tetraethoxysilane (TEOS), phenyltrimethoxysilane (PhTMOS), phenyltriethoxysilane PhTEOS), (2-phenylethyl) triethoxysilane, 3-aminopropyitriethoxysilane (APTES), (3-giycidyloxypropyl) trimethoxysilane (GPTMOS), (3-glycidyloxypropyl) triethyoxysilane (OPTES), N- (2-aminoethyl) - 3- (trimethoxysilyl) propylamine (NH2-TMOS), N-
  • organosilicate precursor chosen from tetramethoxysilane (TMIQS), tetraethoxysilane (TEOS),
  • the organosilicon precursor is tetramethoxysilane or tetraethoxysilane.
  • the organosiliated precursor is a mixture of tetramethoxysilane and of a functionalized organosiliated precursor, advantageously chosen from phenyltrimethoxysilane (PhTMOS), phenyltriethoxysilane (PhTEOS), (2-phenylethyl) triethoxysilane.
  • APTES 3-aminopropyltriethoxysilane
  • GPTMOS (3-glycidyloxypropyl) trimethoxysilane
  • OPTES (3-glycidyloxypropyl) triethoxysilane
  • N- (2-Aminoethyl) -3- (trimethoxysilyl) propylarmne (NH2-TMOS) , the N-
  • AETMS ureidopropyltriethoxysilane
  • UPTS ureidopropyltriethoxysilane
  • SCPTS 3- (4- semiearhazidyl) propyltriethoxysilane
  • the activated carbon is in the form of rods of millimeter size.
  • the lower wall comprises a housing in which the filtering material is arranged.
  • the upper wall comprises at least one exhaust opening communicating with the housing of the lower wall comprising the filtering material.
  • the anti-odor cover further comprises a window.
  • the present invention also relates to a food cooking appliance comprising an anti-odor cover as described above.
  • the food cooking appliance comprises a tank for a cooking bath; preferably the food cooking appliance is a fryer.
  • “Lid” relates to a moving part which adapts to the opening of a container to close it.
  • Anti-odor refers to a material or element capable of partially or totally trapping odors, preferably from cooking.
  • “Cooking appliance” relates to any container suitable for cooking food.
  • the cooking appliance is a saucepan, a frying pan, a pressure cooker or a fryer.
  • Frtering material relates to any material capable of filtering a quantity or a flow of air.
  • the present invention relates to a process for the preparation of a filter material, preferably an anti-odor material.
  • the present invention relates to a process for preparing a hybrid core-shell material consisting of an activated carbon core surrounded by a shell of a mesoporous sol-gel material based on silica, said process comprising the formation of a mesoporous sol-gel silica shell around activated carbon particles and the recovery of the hybrid core-shell material thus obtained.
  • the alkoxy groups (OR) are hydrolyzed into silanol groups (Si-OH). These condense to form siloxane bonds (Si-O-Si-).
  • silicate precursors in low concentration in an organic solvent are added dropwise to a basic aqueous solution, particles of size generally less than 1 mhi are formed, which remain in suspension without precipitating.
  • the porosity of the silica nanoparticles can be varied by adding a surfactant.
  • the mesoporous sol-gel silica shell is formed from at least one organosilicate precursor. It is thus possible to use a single organosilicon precursor or a mixture of organosilicon precursors.
  • the at least one organosilicate precursor is advantageously chosen from tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), phenyltrimethoxysilane (PhTMOS), phenyltriethoxysilane (PhTEOS), (2-phenylethyl) triethoxysilane, 3-aminopropyl , (3-glycidyloxypropyl) trimethoxysilane (GPTMOS), (3-glycidyloxypropyl) triethoxysilane (GPTES), N- (2-Aminoethyl) -3- (trimethoxysilyl) propyamine (NH2-TMOS), N-
  • TMOS tetramethoxysi
  • the organosilicate precursor is tetraethoxysilane or tetramethoxysilane, preferably tetraethoxysilane.
  • the organosilicon precursor is a mixture of tetramethoxysilane or tetramethoxysilane and of a functionalized organosilicon precursor.
  • these are amine, friend of, urea, acid or aryl functions.
  • the functionalized organosilicon precursor may in particular be chosen from phenyltrimethoxysilane (PhTMOS), phenyltriethoxysilane (PhTEOS), (2-phenylethyl) trietboxysilane, 3-aminopropyltriethoxysilane (APTES), (3-giycidyloxypropyl) trimethoxys
  • GPTMOS (3-glycidyloxypropyl) triethoxysilane
  • GPTES (3-glycidyloxypropyl) triethoxysilane
  • NH2-TMOS N- (2-Aminoethyl) -3- (trimethoxysilyl) propylamine
  • AETMS rureidopropyltriethoxysilane
  • UPTS rureidopropyltriethoxysilane
  • SCPTS 3- (4-semicarbazidyl) propyltriethoxysilane
  • PhTMOS phenyltrimethoxysilane
  • PhTEOS phenyltriethoxysilane
  • APTES 3-aminopropyltrethoxysilane
  • APTES N- (Trimethoxysilylpropyl) ethylenediaminetriacetate, racetoxyethyltrimethoxysilane (AETMS), 3- (4azid ) propyltriethoxysilane (SCPTS) and mixtures thereof.
  • TEOS tetraethoxysilane
  • NH2-TMOS N- (2-Aminoethyl) -3- (trimethoxysilyl) propylamine
  • NH2-TMOS N- (2-Aminoethyl) -3- (trimethoxysilyl) propylamine
  • SCPTS 3- (4-semicarbazidyl) propyltriethoxysilane
  • TMOS tetramethoxysilane
  • APTES ammopropyltrietlioxysilane
  • PhTMOS phenyltrimethoxysilane
  • OPTES phenyltriethoxysane
  • the molar proportions of tetramethoxysilane (TMGS) / other (s) organosilicate precursors can be varied between 100 / 0 and 50/50, preferably between 100/0 and 75/25, more preferably between 97/3 and 75/25 or between 98/2 and 89/11.
  • the activated carbon used for the present invention can be of vegetable or animal origin. Those skilled in the art will choose it according to the desired properties, in particular filtration. Thus, it is possible to use different forms of activated carbon, such as, for example, balls, powder, granules, fibers or sticks. Preferably, use will be made of an activated carbon with a large specific adsorption surface, in particular from 800 to 1500 m 2 / g.
  • the activated carbon can be mixed at different concentrations with the coating composition (sol-gel composition) to modulate the quantity of core / shell.
  • the method of the invention is characterized in that the formation of a mesoporous sol-gel silica shell around the activated carbon particles comprises: a) the formation of a sol-gel nanoparticle shell around particles of activated carbon in basic aqueous solution from at least one organosilicate precursor, the aqueous solution containing ammonia (NHaOH) and a surfactant, b) recovery of the activated carbon surrounded by the shell of sol-gel material prepared in step a), c) G elimination of any residual surfactant of the activated carbon surrounded by the shell of sol-gel material to release the pores of the sol-gel material formed in step a), and characterized in that in step a), a basic aqueous solution containing ammonia, the surfactant and the activated carbon is first supplied, then at least one organosilicate precursor is added, this precursor being dissolved in an organic solvent .
  • the method for preparing a core-shell hybrid material consisting of activated carbon heart 'surrounded by a sol-gel silica mesoporous shell comprises the following steps: a) forming a shell of sol-gel nanoparticles around particles of activated carbon in basic aqueous solution from at least one organosilicate precursor, the aqueous solution containing ammonia (NH40H) and a surfactant, b) recovery of the activated carbon surrounded by the sol-gel silica shell prepared in step a), c) the elimination of any surfactant residues of the activated carbon surrounded by the shell of sol-gel material to release the pores of the sol-gel material formed at l 'step a), d) recovering the hybrid core-shell material consisting of an activated carbon core ' surrounded by a mesoporous sol-gel silica shell obtained in step c), characterized in that in step a), first provides a basic aqueous solution containing ammonia,
  • this embodiment gives rise to discrete core-shell particles, the silica nanoparticles having weak agglomeration with one another.
  • a organic solvent such as ethanol
  • the amounts of ethanol and water vary between 1 to 8 mol / L and 3 to 14 mol / L, respectively and according to the concentration of the precursor in solution in ethanol, the authors obtain diameters of silica nanoparticles varying between 30 and 460 nm.
  • the synthesis is carried out in aqueous solution and the contribution of the organic solvent for the solubilization of the organosilicate precursors is very low relative to the volume of the final sol.
  • the amount of organic solvent is from 1 to 5% by volume, preferably from 1.5 to 4% by volume and more preferably still from 1.8 to 3% by volume relative to the final sol (ie that is to say the whole aqueous solution containing the ammonia, the surfactant and the activated carbon plus the organosilicate precursor solubilized in the organic solvent).
  • the basic aqueous solution supplied in step a) is free of organic solvent and the organic solvent is only supplied with the organosilicate precursors.
  • the organic solvent used to dissolve the organosilicon precursor (s) will be chosen by a person skilled in the art as a function of the organosilicon precursor or of the mixture of organosilicon precursors used, in particular among polar, protic or aprotic organic solvents.
  • This organic solvent can for example be chosen from linear C1 to C4 aliphatic alcohols, in particular methanol, ethanol and propan-ol.
  • the organic solvent is ethanol.
  • the organosilicon precursors and the activated carbon which can be used in this embodiment are those detailed above.
  • at least one organosiliated precursor is chosen from tetraethoxysilane (TEQS), phenyltrimethoxysilane (PhTMOS), phenyltriethoxysilane (PhTEOS), (2-phenylethyl) triethoxysilane, 3-aminopropyltriethoxysilane (APTES), ) trimethoxysilane (GPTMOS), (3-glycidyloxypropyl) triethoxysilane (OPTES), N ⁇ (2-Aminoethyl) -3- (trimĂ©tlioxysilyl) propylamine (NH2-TMOS), N-
  • tetraethoxysilane with N- (2-Aminoethyl) -3- (trimethoxysilyl) propylamine NEb-TMOS
  • N-TMOS Trimethoxysilylpropyl
  • PhTMOS phenyltrimethoxysilane
  • the activated carbon is preferably in the form of powder, in particular of micrometric size.
  • the molar proportions of tetramethoxysilane (TM OS) or tetraethoxysilane (TEOS) / other organosilicate precursor (s) can be varied between 100/0 and 50/50, preferably between 100/0 and 75/25, more preferably between 97/3 and 75/25 or between 98/2 and 89/1 1.
  • the basic aqueous solution used in step a) is preferably an aqueous ammonia solution at a concentration of 0.8 to 3.2 mol / L, preferably from 2.0 to 2.3 mol / L.
  • the basic aqueous solution used in step a) may contain a small amount of organic solvent, in particular polar, protic or aprotic.
  • This organic solvent can for example be chosen from linear C1 to C4 aliphatic alcohols, in particular methanol, ethanol and propan-1-ol.
  • the organic solvent is ethanol.
  • the content of organic solvent does not exceed 5% by volume. More preferably, the basic aqueous solution is free of organic solvent.
  • the role of the surfactant used during step a) of the first embodiment is on the one hand to promote the interaction between the surface of the activated carbon and the precursors if licensed and on the other hand part of structuring the silica network to make it mesoporous.
  • the surfactant used in step a) is preferably an ionic surfactant, more preferably a quaternary ammonium compound.
  • This quaternary ammonium compound is advantageously a cetyltrimethyl ammonium halide, preferably cetyftrimethyiammonium bromide or cetyltrimethylammonium chloride more preferably cetyltrimethyiammonium bromide
  • the recovery of the core-shell material of activated carbon surrounded by the shell of sol-gel material in step b) of the first embodiment can for example be carried out by separation, by any known means and in particular by centrifugation or filtration, of the mixture obtained during step a).
  • the core-shell material is recovered by centrifugation in the first method.
  • the removal of any residual surfactant present in the core-shell material in step c) can be carried out by any known means and in particular by washing, for example with hydrochloric acid and ethanol, preferably by a succession of washes with hydrochloric acid and ethanol.
  • the recovery of the core-shell material of activated carbon surrounded by the shell of sol-gel material in step b) can for example be carried out by separation, by any known means and in particular by centrifugation or filtration, of the mixture obtained during step a).
  • the core-shell material is recovered by centrifugation. Removal of the surfactant frees the pores from the material obtained in step b. after this elimination step, the hybrid core-shell material consisting of an activated carbon core surrounded by a shell of silica-based mesoporous sol-gel nanoparticles is thus obtained.
  • This hybrid core-shell material is recovered in step d).
  • This recovery can for example be carried out by separation, by any known means and in particular by centrifugation or filtration, of the mixture obtained during step a).
  • the hybrid core-shell material is recovered by centrifugation.
  • step a) of forming the mesoporous sol-gel silica shell comprises the preparation of a soil for mixing at least one organosilicate precursor in an aqueous solution containing an organic solvent followed by coating the activated carbon with this sol.
  • a thin film of mesoporous sol-gel silica, preferably functionalized, is thus formed around the activated carbon particles.
  • the soil is free of surfactant.
  • the organic solvent is preferably a polar, protic or aprotic organic solvent. It can for example be chosen from linear aliphatic alcohols, C 1 to C 4, in particular methanol, ethanol and propan-ol. Preferably, the organic solvent is methanol.
  • the volume proportion of the organic solvent relative to the volume of the soil can vary between 30 to 50%.
  • the volume proportion of water to the volume of the soil can vary between 15 and 30%.
  • the organosilated precursors and the activated carbon which can be used in this embodiment are those detailed above with respect to the process according to the invention in general.
  • the at least one organosilicate precursor is chosen from tetramethoxysilane (TMOS), phenyltrimethoxysilane (PhTMOS), phenyltriethoxysilane (PhTEOS), (2 ⁇ phenylethyi) triethoxysiiane, 3-aminopropyltriethoxysilane (APTES), -glycidyloxypropyl) trimethoxysilane (GPTMOS), (3-glycidyloxypropyl) triethoxysilane (OPTES), N- (2-Aminoetbyl) -3- (trimethoxysilyl) propylamine (NH2-TMOS), N-
  • TMOS tetramethoxysilane
  • PhTMOS phenyltrimethoxysilane
  • PhTEOS phenyltriethoxysilane
  • APTES 3-aminopropyltriethoxysilane
  • Trimethoxysiiylpropyl ethylenediarninetriacĂ©t.ate, acetoxyethyitrimethoxysilane (AETMS), urideopropyltriethoxysilane (UPTS), 3- (4-semicarbazidyl) propyltriethoxysilane (SCPTS) and their mixtures, more preferentially among tetriane-tetriane (APTES), phenyltrimethoxysilane (PhTMOS), phenyltriethoxysilane (PhTEOS), acetoxyethyltrimethoxysilane (AETMS), (3-glycidyfoxypropyl) triethoxysilane (OPTES) and 3- (4-semicarbazidyl) propyltriethox.
  • APTES tetriane-tetriane
  • PhTMOS phenyltrimethoxysilane
  • TMOS tetramethoxysilane
  • APTES 3-aminopropyltriethoxysilane
  • PhTMOS phenyltrimethoxysilane
  • PhTEOS phenyltriethoxysilane
  • AETMS acetoxyethyltrimethoxysilane
  • OPTES octoxypropyl triethoxysilane
  • SCPTS 3- (4-semicarbazidyl) propyltriethoxysilane
  • the molar proportions of tetramethoxysilane (TMOS) / other organosilicate precursor (s) can be varied between 100/0 and 50/50, preferably between 100/0 and 75/25, more preferably between 97/3 and 75/25.
  • the activated carbon is in the form of particles, in particular granules or sticks, of millimeter size and the coating is carried out by soaking them in the self and then removing the soil or pouring the soil over the particles through a sieve.
  • the core-shell particles thus obtained are advantageously dried, for example in an oven, to remove residual solvents.
  • sticks of activated carbon will be used, in particular of millimeter size.
  • Particular preference will be given to the casting method to form a thin film of functionalized sol-gel material around the activated carbon core. This rapid process is easily transposable on an industrial scale and is well suited to activated carbon in granules or sticks.
  • the activated carbon is in the form of powder and the coating is carried out by adding activated carbon powder to the soil, then the mixture obtained is poured into molds.
  • the molds thus filled are advantageously dried under an inert gas flow to remove the residual solvents before demoulding the blocks of core-shell material. This process can easily be transposed to an industrial scale.
  • the silica shell preferably functionalized, surrounding the activated carbon core, in the form of nanoparticles or a thin film, must have a small thickness and a mesoporosity to allow the pollutants to diffuse quickly in the porous network and reach the silica-activated carbon interface It is at this interface of the hybrid compound that a “mixed” environment favors the trapping of polar molecules that only the activated carbon or the silica hardly or not trap at all alone.
  • Another object of the invention is a hybrid core-shell material consisting of an activated carbon core surrounded by a mesoporous sol-gel silica shell.
  • the hybrid core-shell material is obtained by the coating method according to the invention described above.
  • the hybrid core-shell material according to the invention is in particular characterized in that it contains an activated carbon core, in particular of micrometric size, preferably with a large specific adsorption surface, in particular of 800 to 1500 nrVg, the surface of which is covered with a shell formed of mesoporous sol-gel silica. This shell is thin. Its mesoporosity allows pollutants to diffuse rapidly in the porous network and reach the silica-activated carbon interface.
  • the ratio (Mass of silica / Mass of activated carbon) determined by Differential Thermal Analysis (ATG) preferably varies between 0.05 and 6, preferably between 0.05 and 2 and more preferably between 0.05 and 0.2 .
  • the shell of the hybrid core-shell material according to the invention consists of nanoparticles of mesoporous sol-gel silica. These nanoparticles are advantageously spherical in shape, in particular having a diameter of 20 to 400 nm and preferably between 50 and 100 nm.
  • the size of the silica nanoparticles can be determined by transmission electron microscopy.
  • the ratio (mass of silica / mass of activated carbon) determined by differential thermal analysis (ATG) preferably varies between 0.05 and 0.2.
  • the hybrid shell-core material of this embodiment can be prepared according to the first embodiment of the method of the invention described above.
  • the shell of the hybrid core-shell material according to the invention consists of a thin film of mesoporous sol-gel silica.
  • the hybrid shell core material of this embodiment can be prepared according to the second embodiment of the method of the invention described above.
  • the ratio (mass of silica / mass of activated carbon) determined by differential thermal analysis (ATG) preferably varies between 0.05 and 0.2. However, in the case of hybrid materials synthesized - by mixing activated carbon with a soil, this ratio is higher and varies between -4 and 6, but could be reduced to lower values for better efficiency ⁇
  • the materials according to the invention find a particular application in the field of air filtration and in particular in the field of food cooking appliances.
  • the invention also relates to an air filtering system comprising the core-shell material as described above.
  • the invention also relates to an anti-odor cover.
  • the anti-odor cover of the invention is useful for containers allowing odors and / or volatile organic compounds to escape.
  • the anti-odor cover of the invention is useful for chemical treatment tanks, such as for example fabric and / or leather treatment tanks, or paint tanks. According to one embodiment, the anti-odor cover of the invention is useful for partially or totally trapping corrosive, irritant and / or toxic products.
  • the anti-odor cover of the invention is particularly suitable for cooking appliances, whether or not comprising a tank intended to contain a cooking bath such as an oil bath.
  • the container can be an enclosure or a food preparation tank. According to one embodiment, the container relates to any household or professional cooking appliance.
  • the anti-odor cover 100 has a ton suitable for closing a cooking appliance such as, for example, a pan, a frying pan, a pressure cooker, an oil bath, or a fryer .
  • the anti-odor cover 100 has a square, rectangular, round or ovoid ton.
  • the anti-odor cover 100 comprises or consists of a material resistant to food cooking temperatures, preferably resistant to frying temperatures. According to one embodiment, the anti-odor cover 100 comprises or consists of metal, glass and / or polymer. According to one embodiment, the anti-odor cover 100 comprises an upper wall 110 and a lower wall 120, said lower wall 120 being directed towards the interior of the cooking appliance on which the anti-odor cover 100 is disposed.
  • the anti-odor cover 100 comprises a filtering material 200 including core-shell particles comprising or consisting of an activated carbon core surrounded by a shell of sol-gel silica, preferably mesoporous.
  • the filtering material of the invention makes it possible to trap cooking odors, and in particular makes it possible to trap small polar molecules resulting from the decomposition of superheated oil (frying and others) such as for example, formaldehyde, acetaldehyde , methyl and ethyl ketones, acetic acid, acrolein or acrylamide.
  • the upper wall 110 comprises a means for gripping the anti-odor cover such as for example a button, a handle or a handle.
  • the upper wall 110 comprises an opening or a means for viewing the interior of the cooking appliance on which the anti-odor cover is disposed.
  • the means for viewing the interior of the cooking appliance on which the anti-odor cover is arranged is a porthole.
  • the upper and lower walls of the odor cover are transparent.
  • the anti-odor cover 100 comprises a seal such as for example an annular seal, on the part intended to be brought into contact with the cooking appliance.
  • a seal such as for example an annular seal, on the part intended to be brought into contact with the cooking appliance.
  • the seal makes it possible to improve the tightness of the system formed by the cover disposed on the cooking appliance, and to avoid and / or limit the escape of cooking vapors, in particular cooking odors.
  • the anti-odor cover 100 further comprises a system for fixing and / or anchoring to the food cooking appliance 5.
  • the lower wall 120 comprises a housing 121 capable of receiving the filter material of the invention 200 or a filtration system comprising said filter material 200, such as for example a filter cartridge.
  • the filter cartridge comprises a flame-retardant fabric in order to prevent the particles of the invention from falling into the cooking appliance.
  • this configuration makes it possible to trap cooking odors when the cover is used on a cooking appliance in operation.
  • the housing 121 is arranged between the upper wall 110 and the lower wall 120.
  • the housing 121 comprises the filtering material 200 on the side of the lower wall 120 and comprises at least one exhaust opening 111 of the side of the upper wall 110, in order to allow the passage of a flow of vapor through the odor-preventing cover 100.
  • the invention also relates to a food cooking appliance 300 comprising a filtering material as described above.
  • the food cooking appliance 300 is a cooking appliance comprising a tank designed to contain a cooking bath such as an oil bath.
  • the food cooking appliance 300 is a pan, a frying pan, a pressure cooker, an oil bath, or a fryer. According to one embodiment, the food cooking appliance 300 has a square, rectangular, round or ovoid shape. According to one embodiment, the food cooking appliance 300 is an electric fryer, with oil or without oil with pulsed hot air. According to one embodiment, the food cooking appliance 300 is not an electric fryer. According to one embodiment, the food cooking appliance 300 is a traditional fryer composed of an oil bath and a basket. According to one embodiment, the fryer does not include an oil bath. According to one embodiment, the fryer does not include a basket.
  • the food cooking appliance 300 comprises or consists of a material resistant to food cooking temperatures, preferably resistant to frying temperatures. According to one embodiment, the food cooking appliance 300 comprises or consists of metal, glass and / or polymer.
  • the invention also relates to any container allowing odors and / or volatile organic compounds (VOCs) to escape, comprising a filtering material as described above.
  • VOCs volatile organic compounds
  • Figure 1 is a schematic representation of the synthesis of core / shell materials.
  • Figure 2 (A) is a MET image of the hybrid core-shell material of Example 1.
  • Figure 3 is a MET image of activated carbon W35. Magnification on the surface.
  • Figure 4 (A) is a MET image of the hybrid core-shell material of Example 2. (B) is a MET image of the hybrid core-shell material of Example 2. Magnification on the surface.
  • Figure 5 are TEM images of the hybrid core-shell materials of complement example 2 with different proportions of NH2-TMOS: (A) 10 pL, (B) enlargement of the material prepared with 10 pL, (C) 20 pL, (D) 50 pL, (E) 100 pL, (F) 200 pL.
  • Figure 6 is a MET image of the hybrid core-shell material of Example 3.
  • Figure 7 is a TEM image of the hybrid core-shell material of Example 4.
  • Figure 8 is a TEM image of the hybrid core-shell material of Example 5.
  • Figure 9 is a MET image of a CA stick (Darco-KGB) coated with hybrid sol-gel of Example 6.
  • Figure 11 is an infrared spectrum of the hybrid material of Example 2 compared to activated carbon alone.
  • Figure 12 is an infrared spectrum of the hybrid material of Example 3 compared to activated carbon alone.
  • Figure 13 is an infrared spectrum of the hybrid material of Example 4 compared to activated carbon alone.
  • Figure 14 is a differential thermal analysis of the product of Example 6. The sample is heated from 40 ° C to 1500 ° C at the rate of 50 ° C / min. The successive slope variations indicate the successive mass losses of the residual water, of the aminopropyl chains of the functionalized material, of activated carbon lastly the silica.
  • Figure 15 shows an example application for an air filter. Adsorption of toluene by the silica particles alone as a function of time.
  • Figure 16 shows an example of an air filter application. Adsorption of toluene by activated carbon W35 as a function of time.
  • Figure 17 presents an example application for an air filter. Adsorption of toluene by Example 4 as a function of time.
  • Figure 18 shows an example of an air filter application. Superimposition of the graphs of activated carbon W35 alone, of the silica nanoparticles alone of S1O2 and of Example 4, as a function of time.
  • Figure 19 is a thermogravimetric analysis of the material of Example 22.
  • Figure 20 is a schematic representation of the device used for establishing drilling curves.
  • FIG. 21 is a comparison of the adsorption capacities of the various powder filters (50 mg, material of Example 18, the activated carbon W35 and of the silica sol-gel SiOa-NHa corresponding to the silica sol-gel of the material of Example 18) exposed to a gas flow of 300 ml / min containing 25 ppm of hexaldehyde.
  • Figure 22 is a comparison of the adsorption capacities of the various rod filters (Ig, material of Example 18 and 18p, sol-gel silica S1O2-NH2 corresponding to the sol-gel silica of the material of Example 18) exposed at a gas flow of 300 mL / min containing 25 ppm of hexaldehyde.
  • Figure 23 is a comparison of G adsorption efficiency of hexaidehyde by two materials carrying amine functions and differentiating by amine groups with different proportions of APTES.
  • Figure 24 is a comparison of the adsorption efficiency of hexaidehyde by hybrid materials functionalized by amine groups with different proportions of A PT E S.
  • Figure 25 is a comparison of the adsorption efficiency of hexaldebyde by hybrid materials functionalized by primary amine groups of APTES and by primary / secondary amine groups (NH2-TMOS).
  • Figure 26 shows the trapping efficiency of various pollutants (E-2-heptenal, acetone acetaldehyde) with example 18p.
  • Figure 27 is a schematic representation of the experimental device for the detection of total VOCs generated by cooking oil.
  • Figure 28 is a comparison of the trapping efficiency of total VOCs during cooking of oil by various filters.
  • FIG. 29 is a comparison of the efficiency of trapping total VOCs during cooking of oil by various filters differentiating by the nature of the activated carbon (example 18p and 24p) or by the functionalization of the silicate (examples 18p and 22p).
  • Figure 30 is a representation of a first embodiment of a lOOia odor cover
  • Figure 30A is a top view of the odor cover 100 comprising an upper wall 110 on which are arranged a porthole 112 and a housing 121 comprising several exhaust openings 111.
  • FIG. 30B is a view from below of an anti-odor cover 100 comprising a bottom wall 120 on which are arranged a porthole 112 and a housing 121 comprising the filtering material 200.
  • Figure 31 is a representation of a second embodiment of an anti-odor cover 100
  • Figure 31A is a top view of the anti-odor cover 100 comprising a top wall 110 on which is arranged a porthole 112.
  • Figure 31B is a bottom view of an odor cover 100 comprising a bottom wall 120 on which are arranged a porthole 112 and a housing 121 comprising the filtering material
  • SOFRALAB
  • SOFRALAB Activ
  • SOFRALAB
  • the surfactant is removed by a succession of washing with hydrochloric acid and with ethanol before being stored in the latter. Before use, the materials are recovered by centrifugation (12,000 rpm for 12 min) then dried in an oven at 60 ° C for 2 h.
  • Examples 7A and 7B Synthesis of active carbon sticks coated with functionalized silica with amine groups
  • Example 10 Synthesis of Hybrid Materials by Mixing Activated Charcoals with a Sol of Precursors of Silicon One of Which is Functionalized with Glycidylloxy Groups
  • Example 12 Synthesis of Hybrid Materials by Mixing Activated Charcoals with Sol Sol Precursors of which Pun is Functionalized with Amide and Amine Groups
  • Reagents Activated carbon powder Darco KG-B (Sigma-Aldricb), Tetramethyl orthosilicate (TMOS, purity 99%.
  • ultra-pure deionized water 28% aqueous ammonia solution.
  • the activated carbon is in this case in powder form, Activated Carbon W35 (SOFRALAB) (0.7507 g). jl
  • TMOS T etramethylortho silicate
  • TMGS Tetramethylorthosilicate
  • the activated carbon is in this case_ in powder form, Activated Carbon W35 (SOFRALAB) (0.5159 g).
  • the materials prepared in Examples 1 to 5 were characterized by transmission electron microscopy (TEM).
  • MET grids are prepared as follows: img of materials is suspended in InxL of ethanol and then vortexed for a few seconds. 10 mE of solution are placed on a grid and the grid is left to dry in the open air for a few minutes before use.
  • the MET images of the activated carbon W35 ( Figure 3) and of the various materials synthesized in Examples 1 to 5 show that the activated carbon is completely covered with the sol-gel material, thus highlighting the obtaining of a hybrid material core-shell consisting of an activated carbon core surrounded by a sol-gel material ( Figures 2A, 2B, 4A, 4B, 5, 6, 7 and K).
  • MET images of activated carbon encapsulated in different functionalized sol-gel silicas show that the addition of a silica co-precursor allows the adhesion of silica nanoparticles around the materials in addition to their covering by the latter.
  • Scanning Electron Microscopy is a powerful technique for observing the topography of surfaces. It is based mainly on the detection of secondary electrons emerging from the surface under the impact of a very fine brush of primary electrons which scans the observed surface and makes it possible to obtain images with a separating power often less than 5 nm and a great depth of field.
  • the instrument makes it possible to form an almost parallel, very fine brush (up to a few nanometers), of electrons strongly accelerated by adjustable voltages from 0.1 to 30 keY, to focus it on the area to be examined and to sweep it gradually.
  • Appropriate detectors make it possible to collect significant signals when scanning the surface and to form various significant images thereof.
  • the images of the samples were taken with the SEM "Ultra 55" from Zeiss. Conventionally, the samples are observed directly without any particular deposit (metal, carbon).
  • Figure 9 shows SEM images of an activated carbon stick covered with a thin film of sol-gel material and successive enlargements of the surface showing the cracks in the silicate layer.
  • Fourrer Transform InfraRed spectroseopy is an analytical technique useful for determining, identifying or confirming the structure of known and unknown products.
  • An infrared spectrum makes it possible to easily highlight the presence of certain functional groups, and can serve as a “spectroscopic identity card” for a molecule or a material.
  • the ATR (Attenuated Total Reflectance) module is installed on the IR spectrometer ( Figure 10). The principle consists in bringing a crystal (ZnSe or diamond) into contact with the sample to be analyzed.
  • the IR beam propagates in the crystal; if the refractive index of the crystal is higher than that of the sample, then the beam undergoes total reflections beyond a certain angle of incidence at the sample / crystal interface with the exception of a wave , called evanescent wave which emerges from the crystal and is absorbed by the sample. It is this evanescent wave which is responsible for the IR spectrum observed.
  • the penetration depth is of the order of 1 to 2 micrometers, which therefore provides surface information. This is particularly interesting for the analysis of pure samples (without dilution in a KBr matrix) since the risk of seeing the peaks saturate is very low. In addition, at low energies, the resolution is generally better than for a “classic” spectrum in transmission.
  • the IR spectra were performed with the FTIR-ATR "Alpha-P" module from Bruker.
  • the infrared spectra of the various materials synthesized in Examples 1 to 4 clearly show the presence of silica in the materials by the peak at 1050-1100 cm 1 corresponding to the vibrations of elongation of the Si-0 bonds ( Figures 10-13).
  • Thermogravimetric analysis consists of placing a sample in an oven under a controlled atmosphere and measuring mass variations as a function of the temperature. The gradual increase in temperature, or temperature ramp, induces the evaporation of the solvents and the proper degradation of each of the organic constituents of the sample. The reduction in mass corresponding to these losses makes it possible to quantify the proportions of each constituent in the material.
  • a Setaram type TGA - 92-1750 type device is used for a double measurement of each sample. The protocol is as follows: approximately 10 mg of monolith are finely ground, weighed and placed in the balance of the apparatus. The whole is placed in the oven and placed under a flow of synthetic air of 1 10 mL.min-l of quality F. LD. The oven initially at 40 ° C is heated to 1500 ° C with a ramp of 50 ° C. min-l. After 10 minutes at 1500 ° C, the temperature is reduced to ambient at a speed of -90 ° C. min 1 .
  • FIG. 14 shows the ATG of Example 6. From the losses of material at different temperatures (H2O, Aminopropyl chains, CA), it is possible to deduce the mass of the CA and of the silicate whose proportions are 85, 4 and 14.6% respectively for turnover and functionalized silica.
  • Figure 19 shows the ATG of the material of Example 22.
  • Example 4 An example of use of Example 4 is shown for the retention of toluene.
  • a drilling curve for the material was made ( Figure 15).
  • a 10 mL syringe, fitted with 2 tips, is filled with 100 mg of Example 4, then is exposed to a flow of 350 mL / min of a gas mixture (N2 + toluene) containing 1 ppm. (3.77 mg / m3) of toluene.
  • the toluene content upstream of the syringe is measured and that of ava1 is followed over time.
  • the measurement of the toluene content is carried out with a PID detector, ppbRAE
  • the piercing curve shown below, indicates that the nanoparticles alone retain very little toluene. Indeed, traces of the latter are observed from the first minutes of the experiment and the concentration of toluene bases is found at the outlet of syringes after 19b.
  • the device used for establishing the drilling curve is shown in Figure 20.
  • the generation of calibrated gas mixture is obtained by scanning the vapor phase of pure hexanal 1 contained in a washing bottle 1 maintained at -40 ° € using an ethanolic bath 2. At this temperature, the gas mixture contains 25 ppm of hexaldehyde (102 mg / nf)
  • a filter 3 consisting of a 6 L syringe fitted with 2 tips filled with 50 mg of the material to be tested is exposed to the flow of gas mixture.
  • NORIT W35 activated carbon being in the form of micrometric powder, the functionalized silicate matrices and the hybrid materials were also ground into micrometric powder.
  • the content of hexaldehyde upstream of the syringe is measured and that downstream is monitored over time. The measurement of the hexaldehyde content is carried out with a PID detector, ppbRAE 4.
  • silica material functionalized with amine groups shows a low efficiency quite similar to that of activated carbon over long periods ( Figure 21).
  • the hybrid material functionalized with amine groups (Example 18), which combines the adsorption capacity of activated carbon and the irreversible adsorption capacity of functionalized silica, is the most effective.
  • the effect of the shape of materials on the trapping capacity of hexaldehyde is studied.
  • the materials are in the form of cylindrical rods.
  • the adsorption capacity of the materials was determined for hexaldehyde with the device of fig. 20.
  • a 6 mL syringe, fitted with 2 tips, is filled with 1 g of material and then exposed to a flow of 300 mL / min of a gas mixture (N2 + h exaldehyde) containing 25 ppm (102 mg / m3) of bexaldehyde.
  • the content of hexaldehyde upstream of the syringe is measured and that downstream is monitored over time.
  • silica material alone functionalized with amine groups has a much less efficient adsorption than activated carbon alone and hybrid materials (Figure 22).
  • Examples 18 and 18p show a more efficient adsorption of hexaldehyde than NORIT RBBAA-3 activated carbon even if the granules of activated carbon are smaller. From this study, it appears that the size of the materials influences the trapping of pollutant. The smaller the size of the sticks, the denser the filter will be, with an increase in the tortuosity of the path of the gas flow which promotes the trapping of the pollutant.
  • the effect of a decrease in the proportion of activated carbon has been studied for the filter comprising 5% of APTES.
  • the adsorption capacity of the materials was determined from their exposure to a calibrated flow of hexaldehyde.
  • a 6 mL syringe, fitted with 2 tips, is filled with 1 g of stick material, then is exposed to a flow of 300 mL / min of a gaseous mixture (N2 + hexaldehyde) containing 25 ppm (102 mg / nf) of hexaldehyde.
  • the content of hexaldehyde upstream of the syringe is measured and that downstream is monitored over time.
  • the measurement of the hexaldehyde content is carried out with a PIB detector, ppbRAE.
  • the upstream ([Hexaldehyde] - ⁇ hexaldehyde ⁇ downstream) * 100 / [upstream hexaldehyde] ratio allows the quantity trapped by the material to be deduced (Figure 23).
  • APTES primary amine groups
  • the measurement of the hexaldehyde content is carried out with a PIB detector, ppbRAE.
  • the upstream ratio ( ⁇ H ex aldehyde ]— [hexaldehyde ⁇ avai) * 100 / [hexaldehydejamont makes it possible to deduce the quantity trapped by the material (Figure 24).
  • the percentage of silica precursor functionalized by amine groups has an impact on the adsorption capacity.
  • the results indicate that the more the proportion of the amino groups increases the more the trapping capacity of the hexanal decreases. This phenomenon is probably due to the increase in the intrinsic basicity of the material which disadvantages the reaction between the amines and Fhexanaf. Indeed, the reaction between amines and aldehydes is favored in an acid medium.
  • the optimized percentage of silica precursor functionalized with amine groups is 5% for the trapping of an aldehyde.
  • Application example 6 Adsorption of hexaldehyde by hybrid materials functionalized with primary amine groups (APTES) and with
  • the effect of the nature of amino precursor was studied for the filter comprising 5% of APTES and 5% of TMPED.
  • the adsorption capacity of the materials was determined from their exposure to a calibrated flow of hexaldehyde.
  • a 6 mL syringe, fitted with 2 tips, is filled with lg of material and then is exposed to a flow of 300 mL / min of a gaseous mixture (N2 + hexaldehyde) containing 25 ppm (102 mg / nr) of hexaldehyde.
  • the content of hexaldehyde upstream of the syringe is measured and that downstream is monitored over time.
  • the measurement of the hexaldehyde content is carried out with a PIB detector, ppbRAE.
  • the ratio ([hexaldehydejamont- [hexaldehyde] avar) * 100 / [hexaldehyde] upstream makes it possible to deduce the quantity trapped by the material (Figure 25).
  • Example 18 has a more efficient adsorption capacity than Example 22 because the intrinsic basicity of the matrix of Example 18 is less important.
  • Application example 7 Adsorption of acetaldehyde, acetone and E-2-heptenal by the functional hybrid material with amine groups (Example 18)
  • example 18p An example of use of example 18p is shown for the retention of acetaldehyde, acetone and GE-2-heptenaL
  • the adsorption capacity of the materials was determined from their exposure to a calibrated flux. of a pollutant
  • a 6 mL syringe, fitted with 2 tips is filled with Ig of granules from Example 18p, then is exposed to a flow of 300 mL / min of a gaseous mixture (N2 + hex aldehyde) containing 20 ppm E-2-heptcnal, i.e. 75 ppm acetone or 3 ppm acetaldehyde.
  • the pollaunt content upstream of the syringe is measured and that downstream is monitored over time.
  • the measurement of the hexaldehyde content is carried out with a PIB detector, ppbRAE.
  • the ratio ([pollutant] upstream- [pollutant] downstream) * 100 / [pollutant] upstream makes it possible to deduce the quantity trapped by the material (Figure 26).
  • the material of example 18p traps P eptenal very well, but slightly less acetone and acetaldehyde which are small. The trapping rates of acetone and acetaldehyde still remain high after 5 hours of exposure (> 80%).
  • Application example 8 Test to trap total VOCs from 1 ’(oxidation of P oil by different filters (frying odors)
  • Oxidation leads to the formation, at first, of very unstable primary products (hydroperoxides, free radicals, conjugated dienes) and rapidly broken down into secondary products (aldehydes, ketones, alcohols, acids, etc.).
  • the device used for cooking oil and recovering total volatile organic compounds is shown schematically in Figure 27. It is a pressure cooker 11 operating on an induction hob 12 with a tight cover comprising an air inlet 13 and a central opening 14 of 1 1 cm in diameter on which rests a funnel 15 of 15 cm in diameter.
  • the air inlet allows sweeping to 500 mL / min the headspace in order to recover the VOCs for measurement.
  • the VOCs are collected using the funnel and the gas mixture is diluted with dry air (1 L / min) before being drawn into a three-necked flask 16 of 500 ml.
  • the gas mixture is drawn out at 1.5 ml / min using a peristaltic pump 17 in order to homogenize the atmosphere in the flask.
  • VOCs The measurement of VOCs is carried out with a photoionization detector (P1D) 18 whose head is held in the flask.
  • P1D photoionization detector
  • 2 liters of sunflower oil for frying were continuously heated to! 80 ° C for 4h.
  • the filter compartment 19 is filled with 30 g of material (example 18 p or NORIT RBAA-3 active carbon) or with a commercial filter (foam impregnated with active carbon, Ref .: SEB-SS984689).
  • the content of total VOCs downstream of the filter is monitored over time using the PID detector, ppbRAE
  • Figure 28 shows the comparative performance of the various filters during oil cooking.
  • the commercial filter retains very little total VOCs.
  • the adsorption of total VOCs by NORIT RBAA-3 activated carbon is also less effective than the hydride composite material even if these two materials exhibit similar adsorption in the case of the study of the monopollutant adoption.
  • Application example 9 Tests for trapping total VOCs from the oxidation of oil by functionalized hybrid materials (example 18p and 24p) differentiating by the nature of activated carbon or by the functionalization of the matrix (examples 18p and 22p)
  • Figure 29 shows the comparative performance of the various filters during oil cooking.
  • 2 liters of sunflower oil for frying were continuously heated for 4 hours at 180 ° C.
  • the filter compartment is filled with 30g of material (examples 18p, 22p and 24p).
  • the device shown in Figure 27 is used for the collection of total VOCs downstream of the various filters.
  • Fryer cover Fryers are food cooking devices which generate unpleasant frying odors during operation.
  • the Applicant has developed an anti-odor cover making it possible to limit and / or avoid the escape of odors from deep-frying frying.
  • Two embodiments are presented in Figures 3QA & 30B, and 31A & 31 B.
  • the Applicant has integrated one of the materials of the invention comprising core-shell particles with an activated carbon core coated with a layer of silica sol-gel, functionalized or not, in a filter cartridge.
  • the latter is arranged in the housing 121 of the lower wall 12 of the cover 1 so that during cooking, the frying vapors are trapped in the core-shell nanoparticles of G invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Frying-Pans Or Fryers (AREA)
  • Cookers (AREA)

Abstract

The present invention relates to the field of air filtration, in particular in cooking appliances, such as for example deep fryers. In particular, the present invention relates to an odorless lid (100) suitable for any container that allows odors or volatile compounds to escape and more particularly for any food cooking appliance, said odorless lid (100) comprises a filtering material (200) consisting of particles having a core-shell structure, wherein the activated carbon core is surrounded by a shell of a mesoporous sol-gel material based on functionalized or non-functionalized silica.

Description

COUVERCLE ANTI-ODEUR  ANTI-ODOR COVER
DOMAINE DE L’INVENTION FIELD OF THE INVENTION
La prĂ©sente invention concerne le domaine de la filtration d’air, notamment dans des appareils de cuisson tels que par exemple les friteuses ou les poĂȘles Ă  frire. En particulier, la prĂ©sente invention concerne un couvercle anti-odeur adaptĂ© Ă  tout rĂ©cipient laissant Ă©chapper des odeurs ou des composĂ©s volatils et plus particuliĂšrement Ă  un appareil de cuisson alimentaire, ledit couvercle anti-odeur comprenant des particules ayant une structure cƓur-coquille constituĂ©e d’un cƓur de charbon actif entourĂ© d’une coquille d’un matĂ©riau sol-gel mĂ©soporeux Ă  base de silice. The present invention relates to the field of air filtration, in particular in cooking appliances such as for example fryers or frying pans. In particular, the present invention relates to an anti-odor cover suitable for any container allowing odors or volatile compounds to escape and more particularly to a food cooking appliance, said anti-odor cover comprising particles having a heart-shell structure consisting of '' an activated carbon core surrounded by a shell of a silica-based mesoporous sol-gel material.
ÉTAT DE LA TECHNIQUE STATE OF THE ART
La dĂ©pollution de l’air et en particulier pour des polluants tels que les composĂ©s organiques volatils (COV) via les Ă©purateurs d’air ou de hottes aspirantes repose essentiellement sur l’utilisation de filtres Ă  base de charbon actif. Ce dernier prĂ©sente en effet une capacitĂ© d’adsorption importante et coĂ»t peu Ă©levĂ©. Cependant, le charbon actif piĂšge trĂšs mal les petites molĂ©cules polaires prĂ©sentes dans l’air intĂ©rieure telles que le formaldĂ©hyde, l’acĂ©taldĂ©hyde, les cĂ©tones mĂ©thylique et Ă©thylique, l’acide acĂ©tique, l’acrolĂ©ine ou encore l’acrylamide issu de la dĂ©composition d’huile surchauffĂ©e (tel que par exemple les fritures). Air pollution control and in particular for pollutants such as volatile organic compounds (VOCs) via air purifiers or extractor hoods is essentially based on the use of activated carbon filters. The latter indeed has a large adsorption capacity and low cost. However, activated carbon very poorly traps small polar molecules present in indoor air such as formaldehyde, acetaldehyde, methyl and ethyl ketones, acetic acid, acrolein or even the acrylamide resulting from decomposition. superheated oil (such as for example fried foods).
Afin de pallier cette inefficacitĂ© de piĂ©geage des COVs de petite taille et polaires par le charbon actif, celui-ci est souvent imprĂ©gnĂ© de rĂ©actifs aptes Ă  rĂ©agir avec les polluants cible. Or un inconvĂ©nient des matĂ©riaux imprĂ©gnĂ©s est le relargage dans l’air des rĂ©actifs d’imprĂ©gnation ou des produits issus de leur rĂ©action. Par consĂ©quent, il existe un besoin de fournir de nouveaux matĂ©riaux filtrants de l’air alliant haute capacitĂ© de filtration de diffĂ©rents types de molĂ©cules polaire et apolaires du matĂ©riau avec un procĂ©dĂ© de prĂ©paration simple et efficace. , In order to compensate for this ineffective trapping of small and polar VOCs by activated carbon, the latter is often impregnated with reagents capable of reacting with the target pollutants. However, a drawback of the impregnated materials is the release into the air of the impregnating reagents or of the products resulting from their reaction. Therefore, there is a need to provide new air filtering materials combining high filtration capacity of different types of polar and nonpolar molecules of the material with a simple and efficient preparation process. ,
Dans le domaine plus particulier des appareils de cuisson alimentaire, les industriels sont toujours à la recherche de solution innovante permettant de limiter et/ou de s’affranchir des odeurs de cuisson, notamment des odeurs de friture. In the more specific field of food cooking appliances, manufacturers are always looking for an innovative solution that makes it possible to limit and / or get rid of cooking odors, in particular frying odors.
De maniĂšre surprenante, la Demanderesse a mis en Ă©vidence que des particules ayant une structure cƓur-coquille dans laquelle le cƓur est du charbon actif et la coquille comprend de la silice sol-gel, fonctionnalisĂ©e ou non, permet de piĂ©ger efficacement les vapeurs de cuisson, et notamment de friture. Avantageusement, la Demanderesse fournit un matĂ©riau filtrant plus efficace que le charbon actif et un procĂ©dĂ© simple et efficace de prĂ©paration de ce matĂ©riau. Surprisingly, the Applicant has demonstrated that particles having a core-shell structure in which the core is activated carbon and the shell comprises silica sol-gel, functionalized or not, makes it possible to effectively trap the cooking vapors , including frying. Advantageously, the Applicant provides a filter material which is more effective than activated carbon and a simple and effective process for the preparation of this material.
La prĂ©sente invention concerne donc un couvercle anti-odeur, de prĂ©fĂ©rence pour appareil de cuisson, ledit couvercle anti-odeur comprenant une paroi supĂ©rieure et une paroi infĂ©rieure caractĂ©risĂ©e en ce que la paroi infĂ©rieure comprend un matĂ©riau filtrant comprenant des particules cƓur-coquille constituĂ©es d’un cƓur de charbon actif entourĂ© d’une coquille de silice sol-gel mĂ©soporeuse.  The present invention therefore relates to an anti-odor cover, preferably for a cooking appliance, said anti-odor cover comprising an upper wall and a lower wall characterized in that the lower wall comprises a filtering material comprising core-shell particles made of '' an activated carbon core surrounded by a mesoporous sol-gel silica shell.
Selon un mode de rĂ©alisation, les particules cƓur-coquille sont sphĂ©riques et prĂ©sentent un diamĂštre de 20 Ă  400 nm. According to one embodiment, the core-shell particles are spherical and have a diameter of 20 to 400 nm.
Selon un mode de rĂ©alisation, la coquille de silice sol-gel mĂ©soporeuse comprend un siloxane formĂ© Ă  partir d’au moins un prĂ©curseur organosilicĂ© choisi parmi le tĂ©tramĂ©thoxysilane (TMIQS), le tĂ©traĂ©thoxysilane (TEOS), le phĂ©nyltrimĂ©thoxysilane (PhTMOS), le phĂ©nyltriĂ©thoxysilane (PhTEOS), le (2-phĂ©nylĂ©thyl)triĂ©thoxysilane, le 3- aminopropyitriĂ©thoxysilane (APTES), le (3-giycidyloxypropyl)trimĂ©thoxysilane (GPTMOS), le (3-glycidyloxypropyl)triĂ©thyoxysilane (OPTES), la N-(2-aminoĂ©thyl)-3- (trimĂ©thoxysilyl)propylamine (NH2-TMOS), le N-According to one embodiment, the mesoporous sol-gel silica shell comprises a siloxane formed from at least one organosilicate precursor chosen from tetramethoxysilane (TMIQS), tetraethoxysilane (TEOS), phenyltrimethoxysilane (PhTMOS), phenyltriethoxysilane PhTEOS), (2-phenylethyl) triethoxysilane, 3-aminopropyitriethoxysilane (APTES), (3-giycidyloxypropyl) trimethoxysilane (GPTMOS), (3-glycidyloxypropyl) triethyoxysilane (OPTES), N- (2-aminoethyl) - 3- (trimethoxysilyl) propylamine (NH2-TMOS), N-
(trimĂ©thoxysiiylpropyl)Ă©thylĂšnediammetriacĂ©tate, l’acĂ©toxyĂ©thyltrimĂ©thoxysilane(trimethoxysiiylpropyl) ethylenediammetriacetate, acetoxyethyltrimethoxysilane
(AETMS), l’urĂ©idopropyltriĂ©thoxysilane (UPTS), le 3-(4- semicarbazidyl)propyltriĂ©thoxysilane (SCPTS) et leurs mĂ©langes ; de prĂ©fĂ©rence le prĂ©curseur organosiliciĂ© est du tĂ©tramĂ©thoxysilane ou du tĂ©traĂ©thoxysilane. Selon un mode de rĂ©alisation, le prĂ©curseur organosilieĂ© est un mĂ©lange de tĂ©tramĂ©thoxysilane et d’un prĂ©curseur organosilieĂ© fonctionnalisĂ©, avantageusement choisi parmi le phĂ©nyltrimĂ©thoxysilane (PhTMOS), le phĂ©nyltriĂ©thoxysilane (PhTEOS), le (2-phĂ©nylĂ©thyl)triĂ©thoxysilane. le 3-aminopropyltriĂ©thoxysilane (APTES), le (3- glycidyloxypropyl)trimĂ©thoxysilane (GPTMOS), le (3- glycidyloxypropyl)triĂ©thoxysilane (OPTES), la N-(2-AminoĂ©thyl)-3- (trimĂ©thoxysilyl)propylarmne (NH2-TMOS), le N-(AETMS), ureidopropyltriethoxysilane (UPTS), 3- (4-semicarbazidyl) propyltriethoxysilane (SCPTS) and their mixtures; preferably the organosilicon precursor is tetramethoxysilane or tetraethoxysilane. According to one embodiment, the organosiliated precursor is a mixture of tetramethoxysilane and of a functionalized organosiliated precursor, advantageously chosen from phenyltrimethoxysilane (PhTMOS), phenyltriethoxysilane (PhTEOS), (2-phenylethyl) triethoxysilane. 3-aminopropyltriethoxysilane (APTES), (3-glycidyloxypropyl) trimethoxysilane (GPTMOS), (3-glycidyloxypropyl) triethoxysilane (OPTES), N- (2-Aminoethyl) -3- (trimethoxysilyl) propylarmne (NH2-TMOS) , the N-
(TrimĂ©thoxysilylpropyl)Ă©thylĂšnediaminetriaeĂ©tate, l’ acĂ©toxyĂ©thyltrimĂ©thoxysilane(Trimethoxysilylpropyl) ethylenediaminetriaeetate, acetoxyethyltrimethoxysilane
(AETMS), l’urĂ©idopropyltriĂ©thoxysilane (UPTS), le 3-(4- semiearhazidyl)propyltriĂ©thoxysilane (SCPTS) et leurs mĂ©langes. (AETMS), ureidopropyltriethoxysilane (UPTS), 3- (4- semiearhazidyl) propyltriethoxysilane (SCPTS) and their mixtures.
Selon un mode de réalisation, le charbon actif se présente sous forme de bùtonnets de taille millimétrique. According to one embodiment, the activated carbon is in the form of rods of millimeter size.
Selon un mode de rĂ©alisation, la paroi infĂ©rieure comprend un logement dans lequel est agencĂ© le matĂ©riau filtrant. Selon un mode de rĂ©alisation, la paroi supĂ©rieure comprend au moins une ouverture d’échappement communiquant avec le logement de la paroi infĂ©rieure comprenant le matĂ©riau filtrant. According to one embodiment, the lower wall comprises a housing in which the filtering material is arranged. According to one embodiment, the upper wall comprises at least one exhaust opening communicating with the housing of the lower wall comprising the filtering material.
Selon un mode de réalisation, le couvercle anti-odeur comprend en outre un hublot. According to one embodiment, the anti-odor cover further comprises a window.
La présente invention concerne également un appareil de cuisson alimentaire comprenant un couvercle anti-odeur tel que décrit précédemment. The present invention also relates to a food cooking appliance comprising an anti-odor cover as described above.
Selon un mode de rĂ©alisation, l’appareil de cuisson alimentaire comprend une cuve pour bain de cuisson ; de prĂ©fĂ©rence l’appareil de cuisson alimentaire est une friteuse. According to one embodiment, the food cooking appliance comprises a tank for a cooking bath; preferably the food cooking appliance is a fryer.
DEFINITIONS Dans la présente invention, les termes ci-dessous sont définis de la maniÚre suivante : DEFINITIONS In the present invention, the terms below are defined as follows:
« Couvercle » concerne une piĂšce mobile s’adaptant Ă  l’ouverture d’un rĂ©cipient pour le fermer. « Anti-odeur » se rĂ©fĂšre Ă  un matĂ©riau ou un Ă©lĂ©ment apte Ă  piĂ©ger partiellement ou totalement des odeurs, de prĂ©fĂ©rence de cuisson. "Lid" relates to a moving part which adapts to the opening of a container to close it. "Anti-odor" refers to a material or element capable of partially or totally trapping odors, preferably from cooking.
« Appareil de cuisson » concerne tout rĂ©cipient apte Ă  faire cuire des aliments. Selon un mode de rĂ©alisation, l’appareil de cuisson est une casserole, une poĂȘle Ă  frire, un autocuiseur ou une friteuse.  "Cooking appliance" relates to any container suitable for cooking food. According to one embodiment, the cooking appliance is a saucepan, a frying pan, a pressure cooker or a fryer.
« MatĂ©riau filtrant » concerne tout matĂ©riau apte Ă  filtrer une quantitĂ© ou un flux d’air. ProcĂ©dĂ© "Filtering material" relates to any material capable of filtering a quantity or a flow of air. Process
La prĂ©sente invention concerne un procĂ©dĂ© de prĂ©paration d’un matĂ©riau filtrant, de prĂ©fĂ©rence un matĂ©riau anti-odeur. The present invention relates to a process for the preparation of a filter material, preferably an anti-odor material.
Selon un mode de rĂ©alisation, la prĂ©sente invention porte sur un procĂ©dĂ© de prĂ©paration d’un matĂ©riau hybride cƓur-coquille constituĂ© d’un cƓur de charbon actif entourĂ© d’une coquille d’un matĂ©riau sol-gel mĂ©soporeux Ă  base de silice, ledit procĂ©dĂ© comprenant la formation d’une coquille de silice sol-gel mĂ©soporeuse autour de particules charbon actif et la rĂ©cupĂ©ration du matĂ©riau hybride cƓur-coquille ainsi obtenu. According to one embodiment, the present invention relates to a process for preparing a hybrid core-shell material consisting of an activated carbon core surrounded by a shell of a mesoporous sol-gel material based on silica, said process comprising the formation of a mesoporous sol-gel silica shell around activated carbon particles and the recovery of the hybrid core-shell material thus obtained.
Un matĂ©riau sol gel est un matĂ©riau obtenu par un procĂ©dĂ© sol-gel consistant Ă  utiliser comme prĂ©curseurs des alcoxydes mĂ©talliques de formule M(OR)xR’n-x ou M est un mĂ©tal, notamment le silicium, R un groupement alkyle et R’ un groupement porteur d’une ou de plusieurs fonctions avec n= 4 et x pouvant varier entre 2 et 4. En prĂ©sence d’eau, les groupements alkoxy (OR) sont hydrolysĂ©s en groupements silanols (Si-OH). Ces derniers se condensent en formant des liaisons siloxane (Si-O-Si-). Lorsque les prĂ©curseurs silicĂ©s en faible concentration dans un solvant organique sont ajoutĂ©s goutte Ă  goutte dans une solution aqueuse basique, il se forme des particules de taille gĂ©nĂ©ralement infĂ©rieure Ă  1 mhi, qui restent en suspension sans prĂ©cipiter. Selon les conditions de synthĂšse, il est possible d’obtenir des nanoparticules monodisperses ou polydisperses, de fomie sphĂ©rique, et dont les diamĂštres peuvent varier entre quelques nanomĂštres Ă  2 iim. La porositĂ© des nanoparticuies de silice (microporositĂ© ou mĂ©soporositĂ©) peut ĂȘtre variĂ©e par ajout d’un surfactant. A sol gel material is a material obtained by a sol-gel process consisting in using metal alkoxides of formula M (OR) xR'n-x as precursors or M is a metal, in particular silicon, R an alkyl group and R ' a group carrying one or more functions with n = 4 and x which can vary between 2 and 4. In the presence of water, the alkoxy groups (OR) are hydrolyzed into silanol groups (Si-OH). These condense to form siloxane bonds (Si-O-Si-). When the silicate precursors in low concentration in an organic solvent are added dropwise to a basic aqueous solution, particles of size generally less than 1 mhi are formed, which remain in suspension without precipitating. Depending on the synthesis conditions, it is possible to obtain monodisperse or polydisperse nanoparticles, of spherical shape, and whose diameters can vary between a few nanometers to 2 iim. The porosity of the silica nanoparticles (microporosity or mesoporosity) can be varied by adding a surfactant.
Dans la prĂ©sente invention, la coquille de silice sol-gel mĂ©soporeuse est formĂ©e Ă  partir d’au moins un prĂ©curseur organosilicĂ©. On peut ainsi utiliser un prĂ©curseur organosilicĂ© unique ou un mĂ©lange de prĂ©curseurs organosilicĂ©s. L’au moins un prĂ©curseur organosilicĂ© est avantageusement choisi parmi le tĂ©tramĂ©thoxysilane (TMOS), le tĂ©traĂ©thoxysilane (TEOS), le phĂ©nyltrimĂ©thoxysilane (PhTMOS), le phĂ©nyltriĂ©thoxysilane (PhTEOS), le (2-phĂ©nylĂ©thyl)triĂ©thoxysilane, le 3- aminopropyltriĂ©thoxysilane (APTES), le (3-glycidyloxypropyl)trimĂ©thoxysilane (GPTMOS), le (3-glycidyloxypropyl)triĂ©thoxysilane (GPTES), la N-(2-AminoĂ©thyl)-3- (trimĂ©thoxysilyl)propy lamine (NH2-TMOS), le N-In the present invention, the mesoporous sol-gel silica shell is formed from at least one organosilicate precursor. It is thus possible to use a single organosilicon precursor or a mixture of organosilicon precursors. The at least one organosilicate precursor is advantageously chosen from tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), phenyltrimethoxysilane (PhTMOS), phenyltriethoxysilane (PhTEOS), (2-phenylethyl) triethoxysilane, 3-aminopropyl , (3-glycidyloxypropyl) trimethoxysilane (GPTMOS), (3-glycidyloxypropyl) triethoxysilane (GPTES), N- (2-Aminoethyl) -3- (trimethoxysilyl) propyamine (NH2-TMOS), N-
(Triméthoxysilylpropyl)éthylÚnediaminetriacetate, G acétoxyéthyltrimethoxysilane (AETMS), Turéidopropyltriéthoxysilane (UPTS), le 3-(4- semicarbazidyljpropyltriéthoxysilane (SCPTS) et leurs mélanges, de préférence parmi le tétraméthoxysilane (TMOS), le tétraéthoxysilane (TEOS), le phényltriméthoxysilane (PhTMOS), le phényltriéthoxysilane (PhTEOS), le (3-glyeidyioxypropyl)triéthoxysßlane (GPTES), la N-(2-Aminoéthyl)-3-(triméthoxysilyl)propylamme (NH2-TMOS), le 3- ammopropyltriéthoxysilane (APTES), le N-(Triméthoxysilylpropyl) éthy lÚnediaminetriacétate, Pacétoxyéthyltriméthoxysilane (AETMS), le 3-(4~ semiearhazidyljpropyltriéthoxysßlane (SCPTS) et leurs mélanges. (Trimethoxysilylpropyl) ethylenediaminetriacetate, G acetoxyethyltrimethoxysilane (AETMS), Turéidopropyltriéthoxysilane (UPTS), 3- (4- semicarbazidyljpropyltriethoxysilane (SCPTS) and their mixtures, preferably among tetramethiloxetane, phenyl) , phenyltriethoxysilane (PhTEOS), (3-glyeidyioxypropyl) triethoxysilane (GPTES), N- (2-Aminoethyl) -3- (trimethoxysilyl) propylam (NH2-TMOS), 3- ammopropyltriethoxysilane (APTES), N- (Trimethoxysilylpropyl) ethy lenediaminetriacetate, Acetoxyethyltrimethoxysilane (AETMS), 3- (4 ~ semiearhazidyljpropyltriethoxysilane (SCPTS) and their mixtures.
Selon un mode de rĂ©alisation, le prĂ©curseur organosilicĂ© est du tĂ©traĂ©thoxysilane ou du tĂ©tramĂ©thoxysilane, de prĂ©fĂ©rence du tĂ©traĂ©thoxysilane. Dans un autre mode de rĂ©alisation le prĂ©curseur organosilicĂ© est un mĂ©lange de tĂ©tramĂ©thoxysilane ou de tĂ©tramĂ©thoxysilane et d’un prĂ©curseur organosilicĂ© fonctionnalisĂ©. Avantageusement, il s’agit de fonctions amines, ami des, urĂ©es, acides ou aryles. Le prĂ©curseur organosilicĂ© fonctionnalisĂ© peut notamment ĂȘtre choisi parmi le phĂ©nyltrimĂ©thoxysilane (PhTMOS), le phĂ©nyltriĂ©thoxysilane (PhTEOS), le (2-phĂ©nylĂ©thyl)triĂ©tboxysilane, le 3- aminopropyltriĂ©thoxysilane (APTES), le (3-giycidyloxypropyl)trimĂ©thoxysilaneAccording to one embodiment, the organosilicate precursor is tetraethoxysilane or tetramethoxysilane, preferably tetraethoxysilane. In another embodiment, the organosilicon precursor is a mixture of tetramethoxysilane or tetramethoxysilane and of a functionalized organosilicon precursor. Advantageously, these are amine, friend of, urea, acid or aryl functions. The functionalized organosilicon precursor may in particular be chosen from phenyltrimethoxysilane (PhTMOS), phenyltriethoxysilane (PhTEOS), (2-phenylethyl) trietboxysilane, 3-aminopropyltriethoxysilane (APTES), (3-giycidyloxypropyl) trimethoxys
(GPTMOS), le (3-glycidyloxypropyl)triéthoxysilane (GPTES), la N-(2-Aminoéthyl)-3- (triméthoxysilyl)propylamine (NH2-TMOS), le N- (5 (GPTMOS), (3-glycidyloxypropyl) triethoxysilane (GPTES), N- (2-Aminoethyl) -3- (trimethoxysilyl) propylamine (NH2-TMOS), N- (5
(Trimethoxysilylpropyr)Ă©thylenediaminetriacetate, 1’ acĂ©toxyĂ©thy ltrimethoxysilane(Trimethoxysilylpropyr) ethylenediaminetriacetate, 1 ’acetoxyethyltrimethoxysilane
(AETMS), rurĂ©idopropyltriĂ©thoxysilane (UPTS), le 3-(4- semicarbazidyl)propyltriethoxysilane (SCPTS) et leurs mĂ©langes, de prĂ©fĂ©rence parmi le phĂ©nyltrimĂ©thoxysilane (PhTMOS), le phĂ©nyltriĂ©thoxysilane (PhTEOS), le (3- glycidyioxypropyl)triĂ©thoxysilane (OPTES), la N-(2~AminoĂ©thyl)~3~ (trimĂ©thoxysilyl)propylamine (NH2-TMOS), le 3-aminopropyltrĂ©thoxysilane (APTES), le N-(TrimĂ©thoxysilylpropyl) Ă©thylĂšnediaminetriacetate, racĂ©toxyĂ©thyltrimethoxysÏlane (AETMS), le 3-(4-semicarbazidyl)propyltriĂ©thoxysilane (SCPTS) et leurs mĂ©langes. (AETMS), rureidopropyltriethoxysilane (UPTS), 3- (4-semicarbazidyl) propyltriethoxysilane (SCPTS) and their mixtures, preferably among phenyltrimethoxysilane (PhTMOS), phenyltriethoxysilane (PhTEOS), (3-glycidyioxyyl) propane , N- (2 ~ Aminoethyl) ~ 3 ~ (trimethoxysilyl) propylamine (NH2-TMOS), 3-aminopropyltrethoxysilane (APTES), N- (Trimethoxysilylpropyl) ethylenediaminetriacetate, racetoxyethyltrimethoxysilane (AETMS), 3- (4azid ) propyltriethoxysilane (SCPTS) and mixtures thereof.
Des mélanges de précurseurs organosilicés préférés comprennent les mélanges de tétraéthoxysilane (TEOS) avec de la N-(2-Aminoéthyl)-3-(triméthoxysilyl)propylamine (NH2-TMOS), avec du N-(Triméthoxysilylpropyl)éthylÚnediaminetriacétate, avec du phényltriméthoxysilane (PhTMOS) et avec du 3-(4-semicarbazidyl)propyltriéthoxysilane (SCPTS) ainsi que des mélanges de tétraméthoxysilane (TMOS) avec de la 3- ammopropyltriétlioxysilane (APTES), avec du phényltriméthoxysilane (PhTMOS), avec du phényltriéthoxysilane (PhTEOS), avec de P acétoxyéthy Itriméthoxysilane (AETMS), avec du (3-glycidyloxypropyl)triéthoxysilane (OPTES) et avec du 3-(4- semicarbazidyl)propyltriéthoxysilane (SCPTS). Mixtures of preferred organosilicate precursors include mixtures of tetraethoxysilane (TEOS) with N- (2-Aminoethyl) -3- (trimethoxysilyl) propylamine (NH2-TMOS), with N- (Trimethoxysilylpropyl) ethylenediaminetriacetate, with phenyltrimethoxysane PhTMOS) and with 3- (4-semicarbazidyl) propyltriethoxysilane (SCPTS) as well as mixtures of tetramethoxysilane (TMOS) with 3- ammopropyltrietlioxysilane (APTES), with phenyltrimethoxysilane (PhTMOS), with phenyltriethoxysane) of acetoxyethytrimethoxysilane (AETMS), with (3-glycidyloxypropyl) triethoxysilane (OPTES) and with 3- (4-semicarbazidyl) propyltriethoxysilane (SCPTS).
Selon un mode de rĂ©alisation, lors de T utilisation d’un mĂ©lange de tĂ©tramĂ©thoxysilane et d’un ou plusieurs autres prĂ©curseurs organosilicĂ©s, les proportions molaires de tĂ©tramĂ©thoxysilane (TMGS)/autre(s) prĂ©curseurs) organosilicĂ©(s) peuvent ĂȘtre variĂ©es entre 100/0 et 50/50, de prĂ©fĂ©rence entre 100/0 et 75/25, de prĂ©fĂ©rence encore entre 97/3 et 75/25 ou entre 98/2 et 89/11. According to one embodiment, when using a mixture of tetramethoxysilane and one or more other organosilicate precursors, the molar proportions of tetramethoxysilane (TMGS) / other (s) organosilicate precursors can be varied between 100 / 0 and 50/50, preferably between 100/0 and 75/25, more preferably between 97/3 and 75/25 or between 98/2 and 89/11.
Selon un mode de rĂ©alisation, le charbon actif utilisĂ© pour la prĂ©sente invention peut ĂȘtre d’origine vĂ©gĂ©tale ou animale. L’homme du mĂ©tier le choisira en fonction des propriĂ©tĂ©s recherchĂ©es, notamment de filtration. Ainsi, il est possible d’utiliser diffĂ©rentes formes de charbon actif, comme par exemple des billes, de la poudre, des granulĂ©s, des fibres ou des bĂątonnets. De prĂ©fĂ©rence, on utilisera un charbon actif Ă  grande surface spĂ©cifique d’adsorption, notamment de 800 Ă  1500 m2/g. Le charbon actif peut ĂȘtre mĂ©langĂ© Ă  diffĂ©rentes concentrations avec la composition de revĂȘtement (composition sol-gel) pour moduler la quantitĂ© de cƓur/coquille. Selon un mode de rĂ©alisation, le procĂ©dĂ© de l’invention est caractĂ©risĂ© en ce que la formation d’une coquille de silice sol-gel mĂ©soporeuse autour des particules charbon actif comprend : a) la formation d’une coquille de nanoparticules sol-gel autour de particules de charbon actif en solution aqueuse basique Ă  partir d’au moins un prĂ©curseur organosilicĂ©, la solution aqueuse contenant de l’ammoniaque (NHaOH) et un tensioactif, b) la rĂ©cupĂ©ration du charbon actif entourĂ© de la coquille de matĂ©riau sol-gel prĂ©parĂ© Ă  l’étape a), c) G Ă©limination d’éventuels restes de tensioactif du charbon actif entourĂ© de la coquille de matĂ©riau sol-gel pour libĂ©rer les pores du matĂ©riau sol-gel formĂ© Ă  l’étape a), et caractĂ©risĂ© en ce qu’à l’étape a), on fournit d’abord une solution aqueuse basique contenant l’ammoniaque, le tensioactif et le charbon actif, puis on ajoute l’au moins un prĂ©curseur organosilicĂ©, ce prĂ©curseur Ă©tant solubilisĂ© dans un solvant organique. According to one embodiment, the activated carbon used for the present invention can be of vegetable or animal origin. Those skilled in the art will choose it according to the desired properties, in particular filtration. Thus, it is possible to use different forms of activated carbon, such as, for example, balls, powder, granules, fibers or sticks. Preferably, use will be made of an activated carbon with a large specific adsorption surface, in particular from 800 to 1500 m 2 / g. The activated carbon can be mixed at different concentrations with the coating composition (sol-gel composition) to modulate the quantity of core / shell. According to one embodiment, the method of the invention is characterized in that the formation of a mesoporous sol-gel silica shell around the activated carbon particles comprises: a) the formation of a sol-gel nanoparticle shell around particles of activated carbon in basic aqueous solution from at least one organosilicate precursor, the aqueous solution containing ammonia (NHaOH) and a surfactant, b) recovery of the activated carbon surrounded by the shell of sol-gel material prepared in step a), c) G elimination of any residual surfactant of the activated carbon surrounded by the shell of sol-gel material to release the pores of the sol-gel material formed in step a), and characterized in that in step a), a basic aqueous solution containing ammonia, the surfactant and the activated carbon is first supplied, then at least one organosilicate precursor is added, this precursor being dissolved in an organic solvent .
Ainsi selon ce mode de rĂ©alisation, le procĂ©dĂ© de prĂ©paration d’un matĂ©riau hybride cƓur- coquille constituĂ© d’un cƓur de charbon actif' entourĂ© d’une coquille silice sol-gel mĂ©soporeuse comprend les Ă©tapes suivantes : a) la formation d’une coquille de nanoparticules sol-gel autour de particules de charbon actif en solution aqueuse basique Ă  partir d’au moins un prĂ©curseur organosilicĂ©, la solution aqueuse contenant de l’ammoniaque (NH40H) et un tensioactif, b) la rĂ©cupĂ©ration du charbon actif entourĂ© de la coquille de silice sol-gel prĂ©parĂ© Ă  l’étape a), c) l’élimination d’éventuels restes de tensioactif du charbon actif entourĂ© de la coquille de matĂ©riau sol-gel pour libĂ©rer les pores du matĂ©riau sol-gel formĂ© Ă  l’étape a), d) la rĂ©cupĂ©ration du matĂ©riau hybride cƓur-coquille constituĂ© d’un cƓur de charbon actif' entourĂ© d’une coquille silice sol-gel mĂ©soporeuse obtenu Ă  l’étape c), caractĂ©risĂ© en ce qu’à l’étape a), on fournit d’abord une solution aqueuse basique contenant G ammoniaque, le tensioactif et le charbon actif, puis on ajoute l’au moins un prĂ©curseur organosilicĂ©, ce prĂ©curseur Ă©tant solubilisĂ© dans un solvant organique. Thus, according to this embodiment, the method for preparing a core-shell hybrid material consisting of activated carbon heart 'surrounded by a sol-gel silica mesoporous shell comprises the following steps: a) forming a shell of sol-gel nanoparticles around particles of activated carbon in basic aqueous solution from at least one organosilicate precursor, the aqueous solution containing ammonia (NH40H) and a surfactant, b) recovery of the activated carbon surrounded by the sol-gel silica shell prepared in step a), c) the elimination of any surfactant residues of the activated carbon surrounded by the shell of sol-gel material to release the pores of the sol-gel material formed at l 'step a), d) recovering the hybrid core-shell material consisting of an activated carbon core ' surrounded by a mesoporous sol-gel silica shell obtained in step c), characterized in that in step a), first provides a basic aqueous solution containing ammonia, the surfactant and the activated carbon, then at least one organosilicate precursor is added, this precursor being dissolved in an organic solvent.
De façon surprenante, ce mode de rĂ©alisation donne lieu Ă  des particules cƓur-coquille discrets, les nanoparticules de silice prĂ©sentant une faible agglomĂ©ration entre elles. Au vu de la littĂ©rature (voir par exemple Rahman et al., Journal of nanomaterials, Vol. 2012), l’homme du mĂ©tier pensait jusqu’à prĂ©sent qu’il Ă©tait nĂ©cessaire d’effectuer la synthĂšse des nanoparticules sol-gel dans un solvant organique comme l’éthanol pour d’une part former des nanoparticules monodisperses de petite taille et d’autre part d’éviter l’agglomĂ©ration des nanoparticules entre elles. Dans les expĂ©riences de Journal of Colloid and Interface Science, 289(1), 125-131, 2005 par exemple, les quantitĂ©s d’éthanol et d’eau varient entre 1 Ă  8 mol/L et 3 Ă  14 mol/L, respectivement et selon la concentration du prĂ©curseur en solution dans l’éthanol, les auteurs obtiennent des diamĂštres de nanoparticules de silice variant entre 30 et 460 nm. Surprisingly, this embodiment gives rise to discrete core-shell particles, the silica nanoparticles having weak agglomeration with one another. In view of the literature (see for example Rahman et al., Journal of nanomaterials, Vol. 2012), those skilled in the art have until now thought that it was necessary to carry out the synthesis of sol-gel nanoparticles in a organic solvent such as ethanol on the one hand to form small monodisperse nanoparticles and on the other hand to avoid agglomeration of the nanoparticles together. In the experiments of Journal of Colloid and Interface Science, 289 (1), 125-131, 2005 for example, the amounts of ethanol and water vary between 1 to 8 mol / L and 3 to 14 mol / L, respectively and according to the concentration of the precursor in solution in ethanol, the authors obtain diameters of silica nanoparticles varying between 30 and 460 nm.
Or, dans ce mode de rĂ©alisation, la synthĂšse est effectuĂ©e en solution aqueuse et l’apport du solvant organique pour la solubilisation des prĂ©curseurs organosilicĂ©s est trĂšs faible par rapport au volume du sol final. Avantageusement, la quantitĂ© de solvant organique est de 1 Ă  5 % en volume, de prĂ©fĂ©rence de 1,5 Ă  4% en volume et plus prĂ©fĂ©rentiellement encore de 1,8 Ă  3% en volume par rapport au sol final (c’est-Ă -dire l’ensemble solution aqueuse contenant l’amoniaque, le tensioactif et le charbon actif plus le prĂ©curseur organosilicĂ© solubilisĂ© dans le solvant organique). De maniĂšre avantageuse, la solution aqueuse basique fournie Ă  l’étape a) est exempt de solvant organique et le solvant organique est uniquement apportĂ© avec les prĂ©curseurs organosilicĂ©s. Sans vouloir ĂȘtre liĂ©s par une quelconque thĂ©orie, les inventeurs pensent que c’est la sĂ©quence d’addition des diffĂ©rents rĂ©actifs qui permet d’éviter G agglomĂ©ration des nanoparticules malgrĂ© l’utilisation d’un solvant aqueux. Il semble en effet essentiel d’ajouter le prĂ©curseur organosilicĂ© en dernier. Selon un mode de rĂ©alisation, le solvant organique utilisĂ© pour solubiliser le ou les prĂ©curseurs organosilicĂ©s sera choisi par l’homme du mĂ©tier en fonction du prĂ©curseur organosilieĂ© ou du mĂ©lange de prĂ©curseurs organosilicĂ©s utilisĂ©s, notamment parmi les solvants organiques polaires, protiques ou aprotiques. Ce solvant organique peut par exemple ĂȘtre choisi parmi les alcools aliphatiques linĂ©aires en Cl Ă  C4, notamment le mĂ©thanol, l’éthanol et le propan- l-ol. De prĂ©fĂ©rence, le solvant organique est l’éthanol. However, in this embodiment, the synthesis is carried out in aqueous solution and the contribution of the organic solvent for the solubilization of the organosilicate precursors is very low relative to the volume of the final sol. Advantageously, the amount of organic solvent is from 1 to 5% by volume, preferably from 1.5 to 4% by volume and more preferably still from 1.8 to 3% by volume relative to the final sol (ie that is to say the whole aqueous solution containing the ammonia, the surfactant and the activated carbon plus the organosilicate precursor solubilized in the organic solvent). Advantageously, the basic aqueous solution supplied in step a) is free of organic solvent and the organic solvent is only supplied with the organosilicate precursors. Without wishing to be bound by any theory, the inventors believe that it is the sequence of addition of the various reagents which makes it possible to avoid agglomeration of the nanoparticles despite the use of an aqueous solvent. It seems essential to add the organosilicate precursor last. According to one embodiment, the organic solvent used to dissolve the organosilicon precursor (s) will be chosen by a person skilled in the art as a function of the organosilicon precursor or of the mixture of organosilicon precursors used, in particular among polar, protic or aprotic organic solvents. This organic solvent can for example be chosen from linear C1 to C4 aliphatic alcohols, in particular methanol, ethanol and propan-ol. Preferably, the organic solvent is ethanol.
Selon un mode de rĂ©alisation, les prĂ©curseurs organosilicĂ©s et le charbon actif pouvant ĂȘtre utilisĂ©s dans ce mode de rĂ©alisation sont ceux dĂ©taillĂ©s ci-dessus. De prĂ©fĂ©rence, Tau moins un prĂ©curseur organosilieĂ© est choisi parmi le tĂ©traĂ©thoxysilane (TEQS), le phĂ©nyltrimĂ©thoxysilane (PhTMOS), le phĂ©nyltriĂ©thoxysilane (PhTEOS), le (2- phĂ©nylĂ©thyl)triĂ©thoxysilane, le 3-aminopropyltriĂ©thoxysilane (APTES), le (3- glycĂŻdyloxypropyl)trimĂ©thoxysilane (GPTMOS), le (3- glycidyloxypropyl )triĂ©thoxysilane (OPTES), la N~(2-AminoĂ©thyl)-3- (trimĂ©tlioxysilyl)propylamine (NH2-TMOS), le N-According to one embodiment, the organosilicon precursors and the activated carbon which can be used in this embodiment are those detailed above. Preferably, at least one organosiliated precursor is chosen from tetraethoxysilane (TEQS), phenyltrimethoxysilane (PhTMOS), phenyltriethoxysilane (PhTEOS), (2-phenylethyl) triethoxysilane, 3-aminopropyltriethoxysilane (APTES), ) trimethoxysilane (GPTMOS), (3-glycidyloxypropyl) triethoxysilane (OPTES), N ~ (2-Aminoethyl) -3- (trimĂ©tlioxysilyl) propylamine (NH2-TMOS), N-
(TrirnĂ©thoxysiiylpropyl)Ă©thylĂšnediaminetriacĂ©t.ate, l’acĂ©toxyethyltrimĂ©thoxysilane (AETMS), 1’urĂ©idopropyltriĂ©thoxysilane (UPTS), le 3-(4- semicarbazidyl)propyltriĂ©thoxysÎiane (8CPTS) et leurs mĂ©langes, de prĂ©fĂ©rence parmi le tĂ©traĂ©thoxysilane (T'EQS), la N-(2-AminoĂ©thyl)-3-(trimĂ©thoxysilyl)propylamme (NĂźh- TMOS), le N-(TrimĂ©thoxysilylpropyl)Ă©thylĂšnediaminetriacĂ©tate, le phĂ©nyltrimĂ©thoxysi lane (PhTMOS), le 3-(4-semicarbazidyl)propyltriĂ©thoxysilane (SCPTS) et leurs mĂ©langes. Lorsque l’on utilise un mĂ©lange de tĂ©traĂ©thoxysilane et d’un prĂ©curseur organosilieĂ© fonctionalisĂ©, les mĂ©langes suivants sont prĂ©fĂ©rĂ©s : tĂ©traĂ©thoxysilane avec de la N-(2-AminoĂ©thyl)-3-(trimĂ©thoxysilyl)propylamine (NEb- TMOS), avec du N-(TrimĂ©thoxysilylpropyl)Ă©thylĂšnediaminetriacĂ©tate, avec du phĂ©nyltrimĂ©thoxysilane (PhTMOS) et avec du 3-(4-semicarbazidyl)propyltriĂ©thoxysilane (TrirnĂ©thoxysiiylpropyl) Ă©thylĂšnediaminetriacĂ©t.ate the acĂ©toxyethyltrimĂ©thoxysilane (AETMS) 1'urĂ©idopropyltriĂ©thoxysilane (UPTS), 3- (4- semicarbazidyl) propyltriĂ©thoxysÎiane (8CPTS) and mixtures thereof, preferably from tetraethoxysilane (T 'EQS), N - (2-Aminoethyl) -3- (trimethoxysilyl) propylamme (NĂźh- TMOS), N- (Trimethoxysilylpropyl) ethylenediaminetriacetate, phenyltrimethoxysilane (PhTMOS), 3- (4-semicarbazidyl) propyltriethoxysilane and their mixtures (SCPTS). When using a mixture of tetraethoxysilane and a functionalized organosilicon precursor, the following mixtures are preferred: tetraethoxysilane with N- (2-Aminoethyl) -3- (trimethoxysilyl) propylamine (NEb-TMOS), with N - (Trimethoxysilylpropyl) ethylenediaminetriacetate, with phenyltrimethoxysilane (PhTMOS) and with 3- (4-semicarbazidyl) propyltriethoxysilane
Le charbon actif est de préférence sous forme de poudre, notamment de taille micrométrique.  The activated carbon is preferably in the form of powder, in particular of micrometric size.
Selon un mode de rĂ©alisation, lors de l’utilisation d’un mĂ©lange de tĂ©tramĂ©thoxysilane ou de tĂ©traĂ©thoxysilane, de prĂ©fĂ©rence tĂ©traĂ©thoxysilane, et d’un ou plusieurs prĂ©curseurs organosilicĂ©s fonctionnalisĂ©s, les proportions molaires de tĂ©tramĂ©thoxysilane (TM OS) ou tĂ©traĂ©thoxysilane (TEOS)/autre(s) prĂ©curseurs) organosilicĂ©(s) peuvent ĂȘtre variĂ©es entre 100/0 et 50/50, de prĂ©fĂ©rence entre 100/0 et 75/25, de prĂ©fĂ©rence encore entre 97/3 et 75/25 ou entre 98/2 et 89/1 1 . According to one embodiment, when using a mixture of tetramethoxysilane or tetraethoxysilane, preferably tetraethoxysilane, and one or more functionalized organosilicate precursors, the molar proportions of tetramethoxysilane (TM OS) or tetraethoxysilane (TEOS) / other organosilicate precursor (s) can be varied between 100/0 and 50/50, preferably between 100/0 and 75/25, more preferably between 97/3 and 75/25 or between 98/2 and 89/1 1.
Selon un mode de rĂ©alisation, la solution aqueuse basique mis en Ɠuvre Ă  l’étape a) est de prĂ©fĂ©rence une solution aqueuse d’ammoniaque Ă  une concentration de 0,8 Ă  3,2 mol/L, de prĂ©fĂ©rence de 2,0 Ă  2,3 mol/L. According to one embodiment, the basic aqueous solution used in step a) is preferably an aqueous ammonia solution at a concentration of 0.8 to 3.2 mol / L, preferably from 2.0 to 2.3 mol / L.
Selon un mode de rĂ©alisation, la solution aqueuse basique mis en Ɠuvre Ă  l’étape a) peut contenir une faible quantitĂ© de solvant organique, notamment polaire, protique ou aprotique. Ce solvant organique peut par exemple ĂȘtre choisi parmi les alcools aliphatiques linĂ©aires en Cl Ă  C4, notamment le mĂ©thanol, l’éthanol et le propan-l-ol. De prĂ©fĂ©rence, le solvant organique est de l’éthanol. De prĂ©fĂ©rence, la teneur en solvant organique n’excĂšde pas 5% en volume. Plus prĂ©fĂ©rentiellement, la solution aqueuse basique est exempte de solvant organique. According to one embodiment, the basic aqueous solution used in step a) may contain a small amount of organic solvent, in particular polar, protic or aprotic. This organic solvent can for example be chosen from linear C1 to C4 aliphatic alcohols, in particular methanol, ethanol and propan-1-ol. Preferably, the organic solvent is ethanol. Preferably, the content of organic solvent does not exceed 5% by volume. More preferably, the basic aqueous solution is free of organic solvent.
Selon un mode de rĂ©alisation, le rĂŽle du tensioaetif mis en Ɠuvre lors de l’étape a) du premier mode de rĂ©alisation est d’une part de favoriser l’interaction entre la surface du charbon actif et les prĂ©curseurs si licĂ©s et d’autre part de structurer le rĂ©seau de la silice pour la rendre mĂ©soporeuse. Le tensioaetif mis en Ɠuvre Ă  l’étape a) est de prĂ©fĂ©rence un tensioaetif ionique, plus prĂ©fĂ©rentiellement un composĂ© d’ammonium quaternaire. Ce composĂ© d’ammonium quaternaire est avantageusement un halogĂ©nure de cĂ©tyltrimĂ©thyl ammonium, de prĂ©fĂ©rence du bromure de cĂ©tyftrimĂ©thyiammonium ou du chlorure de cĂ©tyltrimĂ©thylammonium plus prĂ©fĂ©rentiellement du bromure de cĂ©tyltrimĂ©thyiammoniu According to one embodiment, the role of the surfactant used during step a) of the first embodiment is on the one hand to promote the interaction between the surface of the activated carbon and the precursors if licensed and on the other hand part of structuring the silica network to make it mesoporous. The surfactant used in step a) is preferably an ionic surfactant, more preferably a quaternary ammonium compound. This quaternary ammonium compound is advantageously a cetyltrimethyl ammonium halide, preferably cetyftrimethyiammonium bromide or cetyltrimethylammonium chloride more preferably cetyltrimethyiammonium bromide
Selon un mode de rĂ©alisation, la rĂ©cupĂ©ration du matĂ©riau cƓur-coquille de charbon actif entourĂ© de la coquille de matĂ©riau sol-gel Ă  l’étape b) du premier mode de rĂ©alisation peut par exemple ĂȘtre effectuĂ©e par sĂ©paration, par tout moyen connu et notamment par centrifugation ou filtration, du mĂ©lange obtenu lors de l’étape a). De prĂ©fĂ©rence, le matĂ©riau cƓur-coquille est rĂ©cupĂ©rĂ© par centrifugation dans le premier procĂ©dĂ©. Selon un mode de rĂ©alisation, l’élimination d’éventuels restes de tensioactif prĂ©sents dans le matĂ©riau cƓur-coquille Ă  l’étape c) peut ĂȘtre effectuĂ©e par tout moyen connu et notamment par lavage, par exemple Ă  l’acide chlorhydrique et l’éthanol, de prĂ©fĂ©rence par une succession de lavages Ă  l’acide chlorhydrique et l’éthanol. According to one embodiment, the recovery of the core-shell material of activated carbon surrounded by the shell of sol-gel material in step b) of the first embodiment can for example be carried out by separation, by any known means and in particular by centrifugation or filtration, of the mixture obtained during step a). Preferably, the core-shell material is recovered by centrifugation in the first method. According to one embodiment, the removal of any residual surfactant present in the core-shell material in step c) can be carried out by any known means and in particular by washing, for example with hydrochloric acid and ethanol, preferably by a succession of washes with hydrochloric acid and ethanol.
Selon un mode de rĂ©alisation, la rĂ©cupĂ©ration du matĂ©riau cƓur-coquille de charbon actif entourĂ© de la coquille de matĂ©riau sol-gel Ă  l’étape b) peut par exemple ĂȘtre effectuĂ©e par sĂ©paration, par tout moyen connu et notamment par centrifugation ou filtration, du mĂ©lange obtenu lors de l’étape a). De prĂ©fĂ©rence, le matĂ©riau cƓur-coquille est rĂ©cupĂ©rĂ© par centrifugation. L’élimination du tensioactif permet de libĂ©rer les pores du matĂ©riau obtenu Ă  l’étape b. on obtient donc aprĂšs cette Ă©tape d’élimination le matĂ©riau hybride cƓur-coquille constituĂ© d’un cƓur de charbon actif entourĂ© d’une coquille de nanoparticules sol-gel mĂ©soporeux Ă  base de silice. According to one embodiment, the recovery of the core-shell material of activated carbon surrounded by the shell of sol-gel material in step b) can for example be carried out by separation, by any known means and in particular by centrifugation or filtration, of the mixture obtained during step a). Preferably, the core-shell material is recovered by centrifugation. Removal of the surfactant frees the pores from the material obtained in step b. after this elimination step, the hybrid core-shell material consisting of an activated carbon core surrounded by a shell of silica-based mesoporous sol-gel nanoparticles is thus obtained.
Ce matĂ©riau hybride cƓur-coquille est rĂ©cupĂ©rĂ© Ă  l’étape d). Cette rĂ©cupĂ©ration peut par exemple ĂȘtre effectuĂ©e par sĂ©paration, par tout moyen connu et notamment par centrifugation ou filtration, du mĂ©lange obtenu lors de l’étape a). De prĂ©fĂ©rence, le matĂ©riau hybride cƓur-coquille est rĂ©cupĂ©rĂ© par centrifugation. This hybrid core-shell material is recovered in step d). This recovery can for example be carried out by separation, by any known means and in particular by centrifugation or filtration, of the mixture obtained during step a). Preferably, the hybrid core-shell material is recovered by centrifugation.
Dans un deuxiĂšme mode de rĂ©alisation, le procĂ©dĂ© de l’invention est caractĂ©risĂ© en ce que l’étape a) de formation de la coquille de silice sol-gel mĂ©soporeuse comprend la prĂ©paration d’un sol de mĂ©lange d’au moins un prĂ©curseur organosilicĂ© dans une solution aqueuse contenant un solvant organique suivie de l’enrobage du charbon actif avec ce sol. Il se forme ainsi un film mince de silice sol-gel mĂ©soporeuse, de prĂ©fĂ©rence fonctionnalisĂ©e, autour des particules de charbon actif. De prĂ©fĂ©rence, le sol est exempt de tensioactif. In a second embodiment, the method of the invention is characterized in that step a) of forming the mesoporous sol-gel silica shell comprises the preparation of a soil for mixing at least one organosilicate precursor in an aqueous solution containing an organic solvent followed by coating the activated carbon with this sol. A thin film of mesoporous sol-gel silica, preferably functionalized, is thus formed around the activated carbon particles. Preferably, the soil is free of surfactant.
Le solvant organique est de prĂ©fĂ©rence un solvant organique polaire, protique ou aprotique. Il peut par exemple ĂȘtre choisi parmi les alcools aliphatiques linĂ©aires en CI Ă  C4, notamment le mĂ©thanol, l’éthanol et le propan- l-ol. De prĂ©fĂ©rence, le solvant organique est le mĂ©thanol. La proportion volumique du solvant organique par rapport au volume du sol peut varier entre 30 Ă  50%. La proportion volumique de l’eau par rapport au volume du sol peut varier entre 15 et 30%. Les prĂ©curseurs organosilieĂ©s et le charbon actif pouvant ĂȘtre utilisĂ©s dans ce mode de rĂ©alisation sont ceux dĂ©taillĂ©s ci-dessus par rapport au procĂ©dĂ© selon l’invention en gĂ©nĂ©ral. De prĂ©fĂ©rence, l’au moins un prĂ©curseur organosilicĂ© est choisi parmi le tĂ©tramĂ©thoxysilane (TMOS), le phĂ©nyltrimĂ©thoxysilane (PhTMOS), le phĂ©nyltriĂ©thoxysilane (PhTEOS), le (2~phĂ©nylĂ©thyi)triĂ©thoxysiiane, le 3- aminopropyltriĂ©thoxysilane (APTES), le (3-glycidyloxypropyl)trimĂ©thoxysilane (GPTMOS), le (3-glycidyloxypropyl)triĂ©thoxysilane (OPTES), la N-(2-AminoĂ©tbyl)-3- (trimĂ©thoxysilyl)propylamine (NH2-TMOS), le N-The organic solvent is preferably a polar, protic or aprotic organic solvent. It can for example be chosen from linear aliphatic alcohols, C 1 to C 4, in particular methanol, ethanol and propan-ol. Preferably, the organic solvent is methanol. The volume proportion of the organic solvent relative to the volume of the soil can vary between 30 to 50%. The volume proportion of water to the volume of the soil can vary between 15 and 30%. The organosilated precursors and the activated carbon which can be used in this embodiment are those detailed above with respect to the process according to the invention in general. Preferably, the at least one organosilicate precursor is chosen from tetramethoxysilane (TMOS), phenyltrimethoxysilane (PhTMOS), phenyltriethoxysilane (PhTEOS), (2 ~ phenylethyi) triethoxysiiane, 3-aminopropyltriethoxysilane (APTES), -glycidyloxypropyl) trimethoxysilane (GPTMOS), (3-glycidyloxypropyl) triethoxysilane (OPTES), N- (2-Aminoetbyl) -3- (trimethoxysilyl) propylamine (NH2-TMOS), N-
(Trimethoxysiiylpropyl)Ă©thylĂšnediarninetriacĂ©t.ate, i’acĂ©toxyĂ©thyitrimĂ©thoxysilane (AETMS), 1’urĂ©idopropyltriĂ©thoxysilane (UPTS), le 3-(4- semicarbazidyl)propyltriĂ©thoxysilane (SCPTS) et leurs mĂ©langes, plus prĂ©fĂ©rentiellement parmi le tĂ©tramĂ©thoxysilane (TMOS), la 3-ammopropyitriĂ©thoxysilane (APTES), le phĂ©nyltrimĂ©thoxysilane (PhTMOS), le phĂ©nyltriĂ©thoxysilane (PhTEOS), le l’acĂ©toxyĂ©thyltrimĂ©thoxysilane (AETMS), le (3-glycidyfoxypropyl)triĂ©thoxysilane (OPTES) et le 3-(4-semicarbazidyl)propyltriĂ©thoxysilane (SCPTS). Lorsque l’on utilise un mĂ©lange de tĂ©tramĂ©thoxysilane et d’un prĂ©curseur organosilicĂ© fonctionalisĂ©, les mĂ©langes suivants sont prĂ©fĂ©rĂ©s : tĂ©tramĂ©thoxysilane (TMOS) avec de la 3- aminopropyltriĂ©thoxysilane (APTES), avec du phĂ©nyltrimĂ©thoxysilane (PhTMOS), avec du phĂ©nyltriĂ©thoxysilane (PhTEOS), avec de l’ acĂ©toxyĂ©thyltrimĂ©thoxysilane (AETMS), avec du (3-glycidyloxypropyl)triĂ©thoxysilane (OPTES) et avec du 3-(4- semicarbazidyl)propyltriĂ©thoxysilane (SCPTS). (Trimethoxysiiylpropyl) ethylenediarninetriacĂ©t.ate, acetoxyethyitrimethoxysilane (AETMS), urideopropyltriethoxysilane (UPTS), 3- (4-semicarbazidyl) propyltriethoxysilane (SCPTS) and their mixtures, more preferentially among tetriane-tetriane (APTES), phenyltrimethoxysilane (PhTMOS), phenyltriethoxysilane (PhTEOS), acetoxyethyltrimethoxysilane (AETMS), (3-glycidyfoxypropyl) triethoxysilane (OPTES) and 3- (4-semicarbazidyl) propyltriethox. When using a mixture of tetramethoxysilane and a functionalized organosilicate precursor, the following mixtures are preferred: tetramethoxysilane (TMOS) with 3-aminopropyltriethoxysilane (APTES), with phenyltrimethoxysilane (PhTMOS), with phenyltriethoxysilane (PhTEOS) , with acetoxyethyltrimethoxysilane (AETMS), with (3-glycidyloxypropyl) triethoxysilane (OPTES) and with 3- (4-semicarbazidyl) propyltriethoxysilane (SCPTS).
Lors de l’utilisation d’un mĂ©lange de tĂ©tramĂ©thoxysilane et d’un ou plusieurs prĂ©curseurs organosilieĂ©s fonctionnalisĂ©s, les proportions molaires de tĂ©tramĂ©thoxysilane (TMOS)/autre(s) prĂ©curseur(s) organosilicĂ©(s) peuvent ĂȘtre variĂ©es entre 100/0 et 50/50, de prĂ©fĂ©rence entre 100/0 et 75/25, de prĂ©fĂ©rence encore entre 97/3 et 75/25. When using a mixture of tetramethoxysilane and one or more functionalized organosilated precursors, the molar proportions of tetramethoxysilane (TMOS) / other organosilicate precursor (s) can be varied between 100/0 and 50/50, preferably between 100/0 and 75/25, more preferably between 97/3 and 75/25.
Selon une premiĂšre variante de ce deuxiĂšme mode de rĂ©alisation, le charbon actif se prĂ©sente sous forme de particules, notamment de granulĂ©s ou de bĂątonnets, de taille millimĂ©trique et l’enrobage est rĂ©alisĂ© par trempage de ceux-ci dans le soi puis retrait du le sol ou coulage du sol sur les particules Ă  travers d’un tamis. Les particules cƓur- coquille ainsi obtenu sont avantageusement sĂ©chĂ©es, par exemple dans un four, pour enlever les solvants rĂ©siduels. De prĂ©fĂ©rence, on utilisera des bĂątonnets de charbon actif, notamment de taille millimĂ©trique. On privilĂ©giera en particulier le mode de coulage pour former un film mince de matĂ©riau sol-gel fonctionnalisĂ© autour du cƓur de charbon actif. Ce procĂ©dĂ© rapide est facilement transposable Ă  l’échelle industrielle et est bien adaptĂ© au charbon actif en granulĂ©s ou en bĂątonnets. According to a first variant of this second embodiment, the activated carbon is in the form of particles, in particular granules or sticks, of millimeter size and the coating is carried out by soaking them in the self and then removing the soil or pouring the soil over the particles through a sieve. The core-shell particles thus obtained are advantageously dried, for example in an oven, to remove residual solvents. Preferably, sticks of activated carbon will be used, in particular of millimeter size. Particular preference will be given to the casting method to form a thin film of functionalized sol-gel material around the activated carbon core. This rapid process is easily transposable on an industrial scale and is well suited to activated carbon in granules or sticks.
Selon une deuxiĂšme variante de ce deuxiĂšme mode de rĂ©alisation, le charbon actif se prĂ©sente sous forme de poudre et l’enrobage est rĂ©alisĂ© par ajout de la poudre de charbon actif dans le sol, puis le mĂ©lange obtenu est versĂ© dans des moules. Les moules ainsi remplis sont avantageusement sĂ©chĂ©es sous flux gazeux inerte pour enlever les solvants rĂ©siduels avant de dĂ©mouler les blocs de matĂ©riau cƓur-coquille. Ce procĂ©dĂ© peut facilement ĂȘtre transposĂ© Ă  l’échelle industrielle. According to a second variant of this second embodiment, the activated carbon is in the form of powder and the coating is carried out by adding activated carbon powder to the soil, then the mixture obtained is poured into molds. The molds thus filled are advantageously dried under an inert gas flow to remove the residual solvents before demoulding the blocks of core-shell material. This process can easily be transposed to an industrial scale.
Dans les deux modes de rĂ©alisation dĂ©crits prĂ©cĂ©demment, la coquille de silice, de prĂ©fĂ©rence fonctionnalisĂ©e, entourant le cƓur de charbon actif, sous forme de nanoparticules ou d’un film mince, doit prĂ©senter une faible Ă©paisseur et une mĂ©soporositĂ© pour permettre aux polluants de diffuser rapidement dans le rĂ©seau poreux et atteindre l’interface silice-charbon actif C’est Ă  cette interface du composĂ© hybride qu’un environnement « mixte » favorise le piĂ©geage des molĂ©cules polaires que piĂšgent difficilement ou pas du tout le charbon actif seul ou la silice seule. In the two embodiments described above, the silica shell, preferably functionalized, surrounding the activated carbon core, in the form of nanoparticles or a thin film, must have a small thickness and a mesoporosity to allow the pollutants to diffuse quickly in the porous network and reach the silica-activated carbon interface It is at this interface of the hybrid compound that a “mixed” environment favors the trapping of polar molecules that only the activated carbon or the silica hardly or not trap at all alone.
Un autre objet de l’invention est un matĂ©riau hybride cƓur-coquille constituĂ© d’un cƓur de charbon actif entourĂ© d’une coquille de silice sol-gel mĂ©soporeuse. Selon un mode de rĂ©alisation, le matĂ©riau hybride cƓur-coquille est obtenu par le procĂ©dĂ© de revĂȘtement selon l’invention dĂ©crit ci-dessus. Another object of the invention is a hybrid core-shell material consisting of an activated carbon core surrounded by a mesoporous sol-gel silica shell. According to one embodiment, the hybrid core-shell material is obtained by the coating method according to the invention described above.
Toutes les prĂ©cisions et modes de rĂ©alisation exposĂ©s ci-dessus par rapport Ă  la nature du matĂ©riau sol-gel et du charbon actif sont Ă©galement valables pour le matĂ©riau hybride cƓur-coquille selon l’invention. Le matĂ©riau hybride cƓur-coquille selon l’invention est notamment caractĂ©risĂ© en ce qu’il contient un cƓur de charbon actif, notamment de taille micromĂ©trique, de prĂ©fĂ©rence Ă  grande surface spĂ©cifique d’adsorption, notamment de 800 Ă  1500 nrVg, dont la surface est recouverte d’une coquille formĂ©e de silice sol-gel mĂ©soporeuse. Cette coquille est de faible Ă©paisseur. Sa mĂ©soporositĂ© permet aux polluants de diffuser rapidement dans le rĂ©seau poreux et atteindre l’interface silice-charbon actif. C’est Ă  cette interface du composĂ© hybride qu’un environnement « mixte » favorise le piĂ©geage des molĂ©cules polaires que piĂšgent difficilement ou pas du tout le charbon actif seul ou la silice seule. Le rapport (Masse de silice/Masse de charbon actif) dĂ©terminĂ© par Analyse Thermique DiffĂ©rentielle (ATG) varie de prĂ©fĂ©rence entre 0,05 et 6, de prĂ©fĂ©rence entre 0,05 et 2 et de prĂ©fĂ©rence encore entre 0,05 et 0,2. All the details and embodiments set out above with respect to the nature of the sol-gel material and of the activated carbon are also valid for the hybrid core-shell material according to the invention. The hybrid core-shell material according to the invention is in particular characterized in that it contains an activated carbon core, in particular of micrometric size, preferably with a large specific adsorption surface, in particular of 800 to 1500 nrVg, the surface of which is covered with a shell formed of mesoporous sol-gel silica. This shell is thin. Its mesoporosity allows pollutants to diffuse rapidly in the porous network and reach the silica-activated carbon interface. It is at this interface of the hybrid compound that a “mixed” environment favors the trapping of polar molecules that hardly or not at all trap the activated carbon alone or the silica alone. The ratio (Mass of silica / Mass of activated carbon) determined by Differential Thermal Analysis (ATG) preferably varies between 0.05 and 6, preferably between 0.05 and 2 and more preferably between 0.05 and 0.2 .
Dans un premier mode de rĂ©alisation, la coquille du matĂ©riau hybride cƓur-coquille selon l’invention est constituĂ©e de nanoparticules de silice sol-gel mĂ©soporeuse. Ces nanoparticules sont avantageusement de forme sphĂ©rique, prĂ©sentant notamment un diamĂštre de 20 Ă  400 nm et prĂ©fĂ©rentiellement entre 50 et 100 nm La taille des nanoparticules de silice peut ĂȘtre dĂ©terminĂ©e par microscopie Ă©lectronique de transmission. Le rapport (Masse de silice/Masse de charbon actif) dĂ©terminĂ© par Analyse Thermique DiffĂ©rentielle (ATG) varie de prĂ©fĂ©rence entre 0,05 et 0,2. Le matĂ©riau hybride cƓur coquille de ce mode de rĂ©alisation peut ĂȘtre prĂ©parĂ© selon le premier mode de rĂ©alisation du procĂ©dĂ© de G invention dĂ©crit ci-dessus. In a first embodiment, the shell of the hybrid core-shell material according to the invention consists of nanoparticles of mesoporous sol-gel silica. These nanoparticles are advantageously spherical in shape, in particular having a diameter of 20 to 400 nm and preferably between 50 and 100 nm. The size of the silica nanoparticles can be determined by transmission electron microscopy. The ratio (mass of silica / mass of activated carbon) determined by differential thermal analysis (ATG) preferably varies between 0.05 and 0.2. The hybrid shell-core material of this embodiment can be prepared according to the first embodiment of the method of the invention described above.
Dans un deuxiĂšme mode de rĂ©alisation, la coquille du matĂ©riau hybride cƓur-coquille selon l’invention est constituĂ©e d’un film mince de silice sol-gel mĂ©soporeuse. Le matĂ©riau hybride cƓur coquille de ce mode de rĂ©alisation peut ĂȘtre prĂ©parĂ© selon le deuxiĂšme mode de rĂ©alisation du procĂ©dĂ© de l’invention dĂ©crit ci-dessus. Le rapport (Masse de silice/Masse de charbon actif) dĂ©terminĂ© par Analyse Thermique DiffĂ©rentielle (ATG) varie de prĂ©fĂ©rence entre 0,05 et 0,2. Toutefois, dans le cas des matĂ©riaux hybrides synthĂ©tisĂ©s-par mĂ©lange du charbon actif avec un sol, ce rapport est plus Ă©levĂ© et varie entre-4 et 6, mais pourrait ĂȘtre ramenĂ© Ă  des valeurs plus faibles pour une meilleure efficacité· In a second embodiment, the shell of the hybrid core-shell material according to the invention consists of a thin film of mesoporous sol-gel silica. The hybrid shell core material of this embodiment can be prepared according to the second embodiment of the method of the invention described above. The ratio (mass of silica / mass of activated carbon) determined by differential thermal analysis (ATG) preferably varies between 0.05 and 0.2. However, in the case of hybrid materials synthesized - by mixing activated carbon with a soil, this ratio is higher and varies between -4 and 6, but could be reduced to lower values for better efficiency ·
Selon un mode de rĂ©alisation, les matĂ©riaux selon l’invention trouvent une application particuliĂšre dans le domaine de la filtration d’air et en particulier dans le domaine des appareils de cuisson alimentaire. L’invention concerne Ă©galement un systĂšme filtrant d’air comprenant le matĂ©riau cƓur-coquille tel que dĂ©crit prĂ©cĂ©demment. According to one embodiment, the materials according to the invention find a particular application in the field of air filtration and in particular in the field of food cooking appliances. The invention also relates to an air filtering system comprising the core-shell material as described above.
Couvercle anti-odeur 100 Anti-odor cover 100
L’invention concerne Ă©galement un couvercle anti-odeur. Selon un premier mode de rĂ©alisation, le couvercle anti-odeur de l’invention est utile pour des rĂ©cipients laissant Ă©chapper des odeurs et/ou des composĂ©s volatils organiquesThe invention also relates to an anti-odor cover. According to a first embodiment, the anti-odor cover of the invention is useful for containers allowing odors and / or volatile organic compounds to escape.
(COVs). (VOCs).
Selon un mode de rĂ©alisation, le couvercle anti-odeur de l’invention est utile pour des cuves de traitement chimique, telles que par exemple des cuves de traitements de tissus et/ou de cuirs, ou des cuves de peintures. Selon un mode de rĂ©alisation, le couvercle anti odeur de l’invention est utile pour piĂ©ger partiellement ou totalement des produits corrosifs, irritants et/ou toxiques. According to one embodiment, the anti-odor cover of the invention is useful for chemical treatment tanks, such as for example fabric and / or leather treatment tanks, or paint tanks. According to one embodiment, the anti-odor cover of the invention is useful for partially or totally trapping corrosive, irritant and / or toxic products.
Selon un second mode de rĂ©alisation, le couvercle anti-odeur de l’invention est particuliĂšrement adaptĂ© aux appareils de cuisson, comprenant ou non une cuve prĂ©vue pour contenir un bain de cuisson tel qu’un bain d’huile. According to a second embodiment, the anti-odor cover of the invention is particularly suitable for cooking appliances, whether or not comprising a tank intended to contain a cooking bath such as an oil bath.
Selon un mode de rĂ©alisation, le rĂ©cipient peut ĂȘtre une enceinte ou une cuve de prĂ©paration alimentaire. Selon un mode de rĂ©alisation, le rĂ©cipient concerne tout appareil de cuisson mĂ©nager ou professionnel. According to one embodiment, the container can be an enclosure or a food preparation tank. According to one embodiment, the container relates to any household or professional cooking appliance.
Selon un mode de rĂ©alisation, le couvercle anti-odeur 100 a une tonne adaptĂ©e Ă  la fermeture d’un appareil de cuisson tel que par exemple, une casserole, une poĂȘle Ă  frire, un autocuiseur, un bain d’huile, ou une friteuse. Selon un mode de rĂ©alisation, le couvercle anti-odeur 100 a une tonne carrĂ©e, rectangulaire, ronde ou ovoĂŻde. According to one embodiment, the anti-odor cover 100 has a ton suitable for closing a cooking appliance such as, for example, a pan, a frying pan, a pressure cooker, an oil bath, or a fryer . According to one embodiment, the anti-odor cover 100 has a square, rectangular, round or ovoid ton.
Selon un mode de rĂ©alisation, le couvercle anti-odeur 100 comprend ou est constituĂ© d’une matiĂšre rĂ©sistant Ă  des tempĂ©ratures de cuisson d’aliment, de prĂ©fĂ©rence rĂ©sistant Ă  des tempĂ©ratures de friture. Selon un mode de rĂ©alisation, le couvercle anti-odeur 100 comprend ou est constituĂ© de mĂ©tal, de verre et/ou de polymĂšre. Selon un mode de rĂ©alisation, le couvercle anti-odeur 100 comprend une paroi supĂ©rieure 110 et une paroi infĂ©rieure 120, ladite paroi infĂ©rieure 120 Ă©tant dirigĂ©e vers l’intĂ©rieur de l’appareil de cuisson sur lequel est disposĂ© le couvercle anti-odeur 100. According to one embodiment, the anti-odor cover 100 comprises or consists of a material resistant to food cooking temperatures, preferably resistant to frying temperatures. According to one embodiment, the anti-odor cover 100 comprises or consists of metal, glass and / or polymer. According to one embodiment, the anti-odor cover 100 comprises an upper wall 110 and a lower wall 120, said lower wall 120 being directed towards the interior of the cooking appliance on which the anti-odor cover 100 is disposed.
Selon un mode de rĂ©alisation, le couvercle anti-odeur 100 comprend un matĂ©riau filtrant 200 incluant des particules cƓur-coquille comprenant ou Ă©tant constituĂ©es d’un cƓur de charbon actif entourĂ© d’une coquille de silice sol-gel, de prĂ©fĂ©rence mĂ©soporeuse. Avantageusement, le matĂ©riau filtrant de l’invention permet de piĂ©ger les odeurs de cuisson, et notamment permet de piĂ©ger des petites molĂ©cules polaires issues de la dĂ©composition d’huile surchauffĂ©e (friture et autres) telles que par exemple, le formaldĂ©hyde, l’acĂ©taldĂ©hyde, les cĂ©tones mĂ©thyliques et Ă©thylique, l’acide acĂ©tique, l’acrolĂ©ine ou Pacrylamide. According to one embodiment, the anti-odor cover 100 comprises a filtering material 200 including core-shell particles comprising or consisting of an activated carbon core surrounded by a shell of sol-gel silica, preferably mesoporous. Advantageously, the filtering material of the invention makes it possible to trap cooking odors, and in particular makes it possible to trap small polar molecules resulting from the decomposition of superheated oil (frying and others) such as for example, formaldehyde, acetaldehyde , methyl and ethyl ketones, acetic acid, acrolein or acrylamide.
Selon un mode de réalisation, la paroi supérieure 110 comprend un moyen de préhension du couvercle anti-odeur tel que par exemple un bouton, une poignée ou un manche. According to one embodiment, the upper wall 110 comprises a means for gripping the anti-odor cover such as for example a button, a handle or a handle.
Selon un mode de rĂ©alisation, la paroi supĂ©rieure 110 comprend une ouverture ou un moyen pour visualiser l’intĂ©rieur de l’appareil de cuisson sur lequel est disposĂ© le couvercle anti-odeur. Selon un mode de rĂ©alisation, le moyen pour visualiser l’intĂ©rieur de l’appareil de cuisson sur lequel est disposĂ© le couvercle anti-odeur, est un hublot. Selon un mode de rĂ©alisation, les parois supĂ©rieure et infĂ©rieure du couvercle anti-odeur sont transparentes. According to one embodiment, the upper wall 110 comprises an opening or a means for viewing the interior of the cooking appliance on which the anti-odor cover is disposed. According to one embodiment, the means for viewing the interior of the cooking appliance on which the anti-odor cover is arranged, is a porthole. According to one embodiment, the upper and lower walls of the odor cover are transparent.
Selon un mode de rĂ©alisation, le couvercle anti-odeur 100 comprend un joint tel que par exemple un joint annulaire d’étanchĂ©itĂ©, sur la partie destinĂ©e Ă  ĂȘtre mise en contact avec l’appareil de cuisson. Avantageusement, le joint permet d’amĂ©liorer l’étanchĂ©itĂ© du systĂšme formĂ© par le couvercle disposĂ© sur l’appareil de cuisson, et d’éviter et/ou de limiter l’échappement des vapeurs de cuisson, notamment des odeurs de cuisson. According to one embodiment, the anti-odor cover 100 comprises a seal such as for example an annular seal, on the part intended to be brought into contact with the cooking appliance. Advantageously, the seal makes it possible to improve the tightness of the system formed by the cover disposed on the cooking appliance, and to avoid and / or limit the escape of cooking vapors, in particular cooking odors.
Selon un mode de rĂ©alisation, le couvercle anti-odeur 100 comprend en outre un systĂšme de fixation et/ou d’ancrage Ă  l’appareil de cuisson alimentaire 5. According to one embodiment, the anti-odor cover 100 further comprises a system for fixing and / or anchoring to the food cooking appliance 5.
Selon un mode de rĂ©alisation, la paroi infĂ©rieure 120 comprend un logement 121 apte Ă  recevoir le matĂ©riau filtrant de l’invention 200 ou un systĂšme de filtration comprenant ledit matĂ©riau filtrant 200, tel que par exemple une cartouche filtrante. Selon un mode de rĂ©alisation, la cartouche filtrante comprend un tissu ignifugĂ© afin d’éviter que les particules de l’invention ne tombent dans l’appareil de cuisson. Avantageusement, cette configuration permet de piĂ©ger les odeurs de cuisson lors de rutilisation du couvercle sur un appareil de cuisson en fonctionnement. According to one embodiment, the lower wall 120 comprises a housing 121 capable of receiving the filter material of the invention 200 or a filtration system comprising said filter material 200, such as for example a filter cartridge. According to one embodiment, the filter cartridge comprises a flame-retardant fabric in order to prevent the particles of the invention from falling into the cooking appliance. Advantageously, this configuration makes it possible to trap cooking odors when the cover is used on a cooking appliance in operation.
Selon un mode de rĂ©alisation, le logement 121 est agencĂ© entre la paroi supĂ©rieure 110 et la paroi infĂ©rieure 120. Avantageusement, le logement 121 comprend le matĂ©riau filtrant 200 du cĂŽtĂ© de la paroi infĂ©rieure 120 et comprend au moins une ouverture d’échappement 111 du cĂŽtĂ© de la paroi supĂ©rieure 110, afin de permettre le passage d’un flux de vapeur Ă  travers le couvercle anti-odeur 100. According to one embodiment, the housing 121 is arranged between the upper wall 110 and the lower wall 120. Advantageously, the housing 121 comprises the filtering material 200 on the side of the lower wall 120 and comprises at least one exhaust opening 111 of the side of the upper wall 110, in order to allow the passage of a flow of vapor through the odor-preventing cover 100.
Appareil de cuisson/Friteuse 300 Cooking appliance / fryer 300
L’invention concerne Ă©galement un appareil de cuisson alimentaire 300 comprenant un matĂ©riau filtrant tel que dĂ©crit prĂ©cĂ©demment. The invention also relates to a food cooking appliance 300 comprising a filtering material as described above.
Selon un mode de rĂ©alisation, l’appareil de cuisson alimentaire 300 est un appareil de cuisson comprenant une cuve prĂ©vue pour contenir un bain de cuisson tel qu’un bain d’huile. According to one embodiment, the food cooking appliance 300 is a cooking appliance comprising a tank designed to contain a cooking bath such as an oil bath.
Selon un mode de rĂ©alisation, l’appareil de cuisson alimentaire 300 est une casserole, une poĂȘle Ă  frire, un autocuiseur, un bain d’huile, ou une friteuse. Selon un mode de rĂ©alisation, l’appareil de cuisson alimentaire 300 a une forme carrĂ©e, rectangulaire, ronde ou ovoĂŻde. Selon un mode de rĂ©alisation, l’appareil de cuisson alimentaire 300 est une friteuse Ă©lectrique, avec huile ou sans huile Ă  air chaud pulsĂ©. Selon un mode de rĂ©alisation, l’appareil de cuisson alimentaire 300 n’est pas une friteuse Ă©lectrique. Selon un mode de rĂ©alisation, l’appareil de cuisson alimentaire 300 est une friteuse traditionnelle composĂ©e d’un bain d’huile et d’un panier. Selon un mode de rĂ©alisation, la friteuse ne comprend pas de bain d’huile. Selon un mode de rĂ©alisation, la friteuse ne comprend pas de panier. According to one embodiment, the food cooking appliance 300 is a pan, a frying pan, a pressure cooker, an oil bath, or a fryer. According to one embodiment, the food cooking appliance 300 has a square, rectangular, round or ovoid shape. According to one embodiment, the food cooking appliance 300 is an electric fryer, with oil or without oil with pulsed hot air. According to one embodiment, the food cooking appliance 300 is not an electric fryer. According to one embodiment, the food cooking appliance 300 is a traditional fryer composed of an oil bath and a basket. According to one embodiment, the fryer does not include an oil bath. According to one embodiment, the fryer does not include a basket.
Selon un mode de rĂ©alisation, l’appareil de cuisson alimentaire 300 comprend ou est constituĂ© d’une matiĂšre rĂ©sistant Ă  des tempĂ©ratures de cuisson d’aliment, de prĂ©fĂ©rence rĂ©sistant Ă  des tempĂ©ratures de friture. Selon un mode de rĂ©alisation, l’appareil de cuisson alimentaire 300 comprend ou est constituĂ© de mĂ©tal, de verre et/ou de polymĂšre. According to one embodiment, the food cooking appliance 300 comprises or consists of a material resistant to food cooking temperatures, preferably resistant to frying temperatures. According to one embodiment, the food cooking appliance 300 comprises or consists of metal, glass and / or polymer.
Autres appareils Other devices
L’invention concerne Ă©galement tout rĂ©cipient laissant s’échapper des odeurs et/ou des composĂ©s volatils organiques (COVs) comprenant un matĂ©riau filtrant tel que dĂ©crit prĂ©cĂ©demment. The invention also relates to any container allowing odors and / or volatile organic compounds (VOCs) to escape, comprising a filtering material as described above.
Bien que divers modes de rĂ©alisation aient Ă©tĂ© dĂ©crits et illustrĂ©s, la description dĂ©taillĂ©e ne doit pas ĂȘtre considĂ©rĂ©e comme Ă©tant limitĂ©e aux Ă  ces derniers. Diverses modifications peuvent ĂȘtre apportĂ©es aux modes de rĂ©alisation par l'homme du mĂ©tier sans s’écarter du vĂ©ritable esprit et de la portĂ©e de la divulgation telle que dĂ©finie par les revendications. Although various embodiments have been described and illustrated, the detailed description should not be considered as being limited to the latter. Various modifications can be made to the embodiments by those skilled in the art without departing from the true spirit and scope of the disclosure as defined by the claims.
BRÈVE DESCRIPTION DES FIGURES BRIEF DESCRIPTION OF THE FIGURES
Figure 1 est une reprĂ©sentation schĂ©matique de la synthĂšse des matĂ©riaux cƓur/coquil le. Figure 1 is a schematic representation of the synthesis of core / shell materials.
Figure 2 (A) : est une image MET du matĂ©riau hybride cƓur-coquille de l’exemple 1. Figure 2 (A): is a MET image of the hybrid core-shell material of Example 1.
Figure 2 (B) : est une image MET du matĂ©riau hybride cƓur-coquille de l’exemple 1, agrandissement sur la surface. Figure 2 (B): is a TEM image of the hybrid core-shell material of Example 1, enlargement on the surface.
Figure 3 est une image MET de charbon actif W35. Agrandissement sur la surface. Figure 3 is a MET image of activated carbon W35. Magnification on the surface.
Figure 4 : (A) est une image MET du matĂ©riau hybride cƓur-coquille de l’exemple 2. (B) est une image MET du matĂ©riau hybride cƓur-coquille de l’exemple 2. Agrandissement sur la surface. Figure 4: (A) is a MET image of the hybrid core-shell material of Example 2. (B) is a MET image of the hybrid core-shell material of Example 2. Magnification on the surface.
Figure 5 sont des images MET des matĂ©riaux hybrides cƓur-coquille du complĂ©ment exemple 2 avec diffĂ©rentes proportions de NH2-TMOS : (A) 10 pL, (B) agrandissement du matĂ©riau prĂ©parĂ© avec 10 pL, (C) 20 pL, (D) 50 pL, (E) 100 pL, (F) 200 pL. Figure 5 are TEM images of the hybrid core-shell materials of complement example 2 with different proportions of NH2-TMOS: (A) 10 pL, (B) enlargement of the material prepared with 10 pL, (C) 20 pL, (D) 50 pL, (E) 100 pL, (F) 200 pL.
Figure 6 est une image MET du matĂ©riau hybride cƓur-coquille de l’exemple 3. Figure 6 is a MET image of the hybrid core-shell material of Example 3.
Figure 7 : est une image MET du matĂ©riau hybride cƓur-coqui lle de l’exemple 4. Figure 8 : est une image MET du matĂ©riau hybride cƓur-coquille de l’exemple 5. Figure 7: is a TEM image of the hybrid core-shell material of Example 4. Figure 8: is a TEM image of the hybrid core-shell material of Example 5.
Figure 9 : est une image MET d’un bĂątonnet de CA (Darco-KGB) enrobĂ© de sol-gel hybride de l’exemple 6. A) vue du bĂątonnet. B) Zoom sur sa surface, C) Agrandissement de la surface, D Estimation de l’épaisseur de sol-gel Figure 10 : est un spectre infrarouge du matĂ©riau hybride de l’exemple 1 comparĂ© au charbon actif seul. Figure 9: is a MET image of a CA stick (Darco-KGB) coated with hybrid sol-gel of Example 6. A) view of the stick. B) Zoom on its surface, C) Magnification of the surface, D Estimation of the thickness of sol-gel Figure 10: is an infrared spectrum of the hybrid material of example 1 compared to activated carbon alone.
Figure 11 : est un spectre infrarouge du matĂ©riau hybride de l’exemple 2 comparĂ© au charbon actif seul. Figure 11: is an infrared spectrum of the hybrid material of Example 2 compared to activated carbon alone.
Figure 12 : est un spectre infrarouge du matĂ©riau hybride de l’exemple 3 comparĂ© au charbon actif seul. Figure 12: is an infrared spectrum of the hybrid material of Example 3 compared to activated carbon alone.
Figure 13 : est un spectre infrarouge du matĂ©riau hybride de l’exemple 4 comparĂ© au charbon actif seul. Figure 13: is an infrared spectrum of the hybrid material of Example 4 compared to activated carbon alone.
Figure 14 : est une analyse thermique diffĂ©rentielle du produit de l’exemple 6. L’échantillon est chauffĂ© de 40°C Ă  1500°C Ă  la vitesse de 50°C/min. Les variations de pente successives indiquent les pertes de masse successives de l’eau rĂ©siduelle, des chaĂźnes aminopropyle du matĂ©riau fonctionnalisĂ©, du charbon actif en en dernier la silice. Figure 14: is a differential thermal analysis of the product of Example 6. The sample is heated from 40 ° C to 1500 ° C at the rate of 50 ° C / min. The successive slope variations indicate the successive mass losses of the residual water, of the aminopropyl chains of the functionalized material, of activated carbon lastly the silica.
Figure 15 : prĂ©sente un exemple d’application pour filtre Ă  air. Adsorption du toluĂšne par les particules de silice seules en fonction du temps. Figure 15: shows an example application for an air filter. Adsorption of toluene by the silica particles alone as a function of time.
Figure 16 : prĂ©sente un exemple d’application pour filtre Ă  air. Adsorption du toluĂšne par le charbon actif W35 en fonction du temps. Figure 16: shows an example of an air filter application. Adsorption of toluene by activated carbon W35 as a function of time.
Figure 17 ; prĂ©sente un exemple d’application pour filtre Ă  air. Adsorption du toluĂšne par l’exemple 4 en fonction du temps. Figure 17; presents an example application for an air filter. Adsorption of toluene by Example 4 as a function of time.
Figure 18 : prĂ©sente un exemple d’application pour filtre Ă  air. Superposition des graphiques du charbon actif W35 seul, des nanoparticules de silice seules S1O2 et de l’exemple 4, en fonction du temps. Figure 19 est une analyse thermogravimĂ©trique du matĂ©riau de l’exemple 22. Figure 18: shows an example of an air filter application. Superimposition of the graphs of activated carbon W35 alone, of the silica nanoparticles alone of S1O2 and of Example 4, as a function of time. Figure 19 is a thermogravimetric analysis of the material of Example 22.
Figure 20 est une reprĂ©sentation schĂ©matique du dispositif utilisĂ© pour l’établissement de courbes de perçage. Figure 20 is a schematic representation of the device used for establishing drilling curves.
Figure 21 est ime comparaison des capacitĂ©s d’adsorption des divers filtres en poudre (50 mg, matĂ©riau de l’exemple 18, le charbon actif W35 et de la silice sol-gel SiOa-NHa correspondant Ă  la silice sol-gel du matĂ©riau de l’exemple 18) exposĂ©s Ă  un flux gazeux de 300 mL/min contenant 25 ppm d’hexaldĂ©hyde. FIG. 21 is a comparison of the adsorption capacities of the various powder filters (50 mg, material of Example 18, the activated carbon W35 and of the silica sol-gel SiOa-NHa corresponding to the silica sol-gel of the material of Example 18) exposed to a gas flow of 300 ml / min containing 25 ppm of hexaldehyde.
Figure 22 est une comparaison des capacitĂ©s d’adsorption des divers filtres en bĂątonnets (Ig, matĂ©riau de l’exemple 18 et 18p, silice sol-gel S1O2-NH2 correspondant Ă  la silice sol-gel du matĂ©riau de l’exemple 18) exposĂ©s Ă  un flux gazeux de 300 mL/min contenant 25 ppm d’hexaldĂ©hyde. Figure 22 is a comparison of the adsorption capacities of the various rod filters (Ig, material of Example 18 and 18p, sol-gel silica S1O2-NH2 corresponding to the sol-gel silica of the material of Example 18) exposed at a gas flow of 300 mL / min containing 25 ppm of hexaldehyde.
Figure 23 est une comparaison de G efficacitĂ© d’adsorption de l’hexaidĂ©hyde par deux matĂ©riaux porteurs de fonctions amine et se diffĂ©rentiant par des groupements amines avec diffĂ©rentes proportions d’APTES. Figure 24 est une comparaison de l’efficacitĂ© d’adsorption de i’hexaidĂ©hyde par des matĂ©riaux hybrides fonctionnalisĂ©s par des groupements amines avec diffĂ©rentes proportions d’ A PT E S . Figure 23 is a comparison of G adsorption efficiency of hexaidehyde by two materials carrying amine functions and differentiating by amine groups with different proportions of APTES. Figure 24 is a comparison of the adsorption efficiency of hexaidehyde by hybrid materials functionalized by amine groups with different proportions of A PT E S.
Figure 25 est une comparaison de l’efficacitĂ© d’adsorption de l’hexaldĂ©byde par des matĂ©riaux hybrides fonctionnalisĂ©s par des groupements amines primaires d’APTES et par des groupements amines primaires /secondaires (NH2-TMOS). Figure 25 is a comparison of the adsorption efficiency of hexaldebyde by hybrid materials functionalized by primary amine groups of APTES and by primary / secondary amine groups (NH2-TMOS).
Figure 26 montre l’efficacitĂ© de piĂ©geage de divers polluants (E-2-heptenal, acĂ©tone acĂ©taldĂ©hyde) avec l’exemple 18p. Figure 26 shows the trapping efficiency of various pollutants (E-2-heptenal, acetone acetaldehyde) with example 18p.
Figure 27 est une reprĂ©sentation schĂ©matique du dispositif expĂ©rimental pour la dĂ©tection de COVs totaux gĂ©nĂ©rĂ©s par la cuisson d’huile. Figure 28 est une comparaison de l’efficacitĂ© de piĂ©geage des COVs totaux au cours d’une cuisson d’huile par divers filtres. Figure 29 est une comparaison de l’efficacitĂ© de piĂ©geage des COVs totaux au cours d’une cuisson d’huile par divers filtres se diffĂ©rentiant par la nature du charbon actif (exemple 18p et 24p) ou par la fonctionnalisation du silicate (exemples 18p et 22p). Figure 27 is a schematic representation of the experimental device for the detection of total VOCs generated by cooking oil. Figure 28 is a comparison of the trapping efficiency of total VOCs during cooking of oil by various filters. FIG. 29 is a comparison of the efficiency of trapping total VOCs during cooking of oil by various filters differentiating by the nature of the activated carbon (example 18p and 24p) or by the functionalization of the silicate (examples 18p and 22p).
Figure 30 est une reprĂ©sentation d’un premier mode de rĂ©alisation d’un couvercle anti- odeur lOOia Figure 30A est une vue de-dessus du couvercle anti-odeur 100 comprenant une paroi supĂ©rieure 110 sur laquelle sont agencĂ©s un hublot 112 et un logement 121 comprenant plusieurs ouvertures d’échappement 111. La Figure 3ÛB est une vue de- dessous d’un couvercle anti-odeur 100 comprenant une paroi infĂ©rieure 120 sur laquelle sont agencĂ©s un hublot 112 et un logement 121 comprenant le matĂ©riau filtrant 200. Figure 30 is a representation of a first embodiment of a lOOia odor cover Figure 30A is a top view of the odor cover 100 comprising an upper wall 110 on which are arranged a porthole 112 and a housing 121 comprising several exhaust openings 111. FIG. 30B is a view from below of an anti-odor cover 100 comprising a bottom wall 120 on which are arranged a porthole 112 and a housing 121 comprising the filtering material 200.
Figure 31 est une reprĂ©sentation d’un second mode de rĂ©alisation d’un couvercle anti odeur 100 La Figure 31A est une vue de-dessus du couvercle anti-odeur 100 comprenant une paroi supĂ©rieure 110 sur laquelle est agencĂ© un hublot 112. La Figure 31B est une vue de-dessous d’un couvercle anti-odeur 100 comprenant une paroi infĂ©rieure 120 sur laquelle sont agencĂ©s un hublot 112 et un logement 121 comprenant le matĂ©riau filtrant Figure 31 is a representation of a second embodiment of an anti-odor cover 100 Figure 31A is a top view of the anti-odor cover 100 comprising a top wall 110 on which is arranged a porthole 112. Figure 31B is a bottom view of an odor cover 100 comprising a bottom wall 120 on which are arranged a porthole 112 and a housing 121 comprising the filtering material
REFERENCES REFERENCES
1 - Flacon laveur 1 - Washer bottle
2 - Bain Ă©thanolique 2 - Ethanolic bath
3 --- Filtre 3 --- Filter
4 - DĂ©tecteur PID 4 - PID detector
11 -Autocuiseur 11 - Pressure cooker
12 - Plaque Ă  induction 12 - Induction hob
13 - EntrĂ©e d’air 13 - Air intake
14 - Ouverture centrale 14 - Central opening
15 - Entonnoir 15 - Funnel
1(5 - Ballon trieol 79 1 (5 - Trieol balloon 79
17 - Pompe péristaltique 17 - Peristaltic pump
18 - Détecteur à photoionisation  18 - Photoionization detector
19 - Compartiment filtre  19 - Filter compartment
100 - Couvercle anti-odeur 100 - Odor cover
110 - Paroi supérieure 110 - Upper wall
111 - Ouverture d’échappement  111 - Exhaust opening
112- Hublot 112- Porthole
113 - Moyen de préhension  113 - Gripping means
120 - Paroi inférieure 120 - Lower wall
121 - Logement 121 - Housing
122 - Joint  122 - Seal
200 - Matériau filtrant 200 - Filter material
300 - Appareil de cuisson alimentaire  300 - Food cooking appliance
EXEMPLES EXAMPLES
A. SynthÚse de charbons actifs enrobés de silice selon ie premier mode de réalisation A. Synthesis of activated carbon coated with silica according to the first embodiment
Exemple 1 : SynthÚse de charbons actifs enrobés non fonctionnalisés Example 1: Synthesis of non-functionalized coated activated carbon
Réactifs : Charbon Actif W35 (SGFRALAB), Tétraéthyl orthosilicate (TEOS, CAS : 78- 10-4, Masse molaire = 208,33 g/mol et densité d ::: 0,933), Méthanol (MeOH, CAS : 67- 56-1, Masse molaire = 32,04 g/mol et densité d = 0,791), Bromure de cétyltri éthylammonium (CT AB, CAS : 57-09-0, Masse molaire = 364,45 g/moi), Ammoniaque (NKUOH, CAS : 1336-21-6, Masse molaire = 35,05 g/mol et densité d = 0,9) Reagents: Activated Carbon W35 (SGFRALAB), Tetraethyl orthosilicate (TEOS, CAS: 78-10-4, Molar mass = 208.33 g / mol and density d ::: 0.933), Methanol (MeOH, CAS: 67-56- 1, Molar mass = 32.04 g / mol and density d = 0.791), Cetyltri ethylammonium bromide (CT AB, CAS: 57-09-0, Molar mass = 364.45 g / me), Ammonia (NKUOH, CAS : 1336-21-6, Molar mass = 35.05 g / mol and density d = 0.9)
Mode opĂ©ratoire : (Cf Figure 1) Dans un flacon sont mĂ©langĂ©s 0,64 g de charbon actif W35, 0,29 g de CTAB et 150 mL d’une solution aqueuse de NH4OH prĂ©alablement prĂ©parĂ©e Ă  une concentration de 2,Q48M. La solution est laissĂ©e sous agitation magnĂ©tique Ă  tempĂ©rature ambiante pendant lh. 6,5 mL de TEOS Ă©thanolique Ă  une concentration de 1,025 M.L 1 sont ensuite ajoutĂ©s goutte Ă  goutte et la solution est laissĂ©e sous agitation pendant une nouvelle heure Ă  tempĂ©rature ambiante. L’agitation est ensuite coupĂ©e et la solution est laissĂ©e Ă  maturation pendant une nuit Ă  50°C. La solution est ensuite rĂ©cupĂ©rĂ©e par centrifugation (12000 rpm pendant 12 mn). Le surfactant est enlevĂ© par une succession de lavage Ă  l’acide chlorhydrique et Ă  l’éthanol avant d’ĂȘtre conservĂ© dans ce dernier. Avant utilisation, les matĂ©riaux sont rĂ©cupĂ©rĂ©s par centrifugation (12000 rpm pendant 12 mn) puis sĂ©chĂ©s dans un four Ă  60°C pendant 2h. Procedure: (Cf Figure 1) In a bottle are mixed 0.64 g of activated carbon W35, 0.29 g of CTAB and 150 ml of an aqueous NH 4 OH solution beforehand prepared at a concentration of 2, Q48M. The solution is left under magnetic stirring at room temperature for 1 h. 6.5 mL of ethanolic TEOS at a concentration of 1.025 ML 1 are then added dropwise and the solution is left stirring for another hour at room temperature. The stirring is then stopped and the solution is left to mature overnight at 50 ° C. The solution is then recovered by centrifugation (12,000 rpm for 12 min). The surfactant is removed by a succession of washing with hydrochloric acid and ethanol before being stored in the latter. Before use, the materials are recovered by centrifugation (12,000 rpm for 12 min) then dried in an oven at 60 ° C for 2 h.
Exemple 2 : SynthÚse de charbons actifs enrobés de silice fonctionnalisée avec des groupements amines Example 2 Synthesis of Activated Charcoals Coated with Silica Functionalized with Amine Groups
Réactifs : Charbon Actif W35 (SOFRALAB), Tétraéthyl orthosilicate (TEOS, CAS : 78- 10-4, Masse molaire = 208,33 g/mol et densité d = 0,933), Méthanol (MeOH, CAS : 67- 56-1 , Masse molaire = 32,04 g/moi et densité d = 0,791), Bromure de cétyltriméthylammonium (CTAB, CAS : 57-09-0, Masse molaire = 364,45 g/mol), Ammoniaque (NEUOH, CAS : 1336-21-6, Masse molaire = 35,05 g/mol et densité d = 0,9), N-(2-Aminoethyl)-3-(triméthoxysilyl)propy lamine (NH2-TMOS, CAS : 1760-24-3, Masse molaire :::: 222,36 g/mol et densité d ::: 1,028). Reagents: Activated Carbon W35 (SOFRALAB), Tetraethyl orthosilicate (TEOS, CAS: 78-10-4, Molar mass = 208.33 g / mol and density d = 0.933), Methanol (MeOH, CAS: 67-56-1, Molar mass = 32.04 g / month and density d = 0.791), Cetyltrimethylammonium bromide (CTAB, CAS: 57-09-0, Molar mass = 364.45 g / mol), Ammonia (NEUOH, CAS: 1336-21 -6, Molar mass = 35.05 g / mol and density d = 0.9), N- (2-Aminoethyl) -3- (trimethoxysilyl) propylamine (NH2-TMOS, CAS: 1760-24-3, Mass molar :::: 222.36 g / mol and density d ::: 1.028).
Mode opĂ©ratoire : (Cf. Figure 1) Dans un flacon en plastique sont mĂ©langĂ©s 0,64 g de charbon actif W35, 0,29 g de CTAB et 150 mL d’une solution aqueuse de NHaOH prĂ©alablement prĂ©parĂ©e Ă  une concentration de 2,048 M. La solution est laissĂ©e sons agitation magnĂ©tique Ă  tempĂ©rature ambiante pendant l h. 20 pL de NH2-TMOS sont ensuite ajoutĂ©s suivis de 6,5 mL de TEOS Ă©thanolique Ă  une concentration de 1,025 M.L 1 et la solution est laissĂ©e sous agitation pendant une nouvelle heure Ă  tempĂ©rature ambiante. L’agitation est ensuite coupĂ©e et la solution est laissĂ©e Ă  maturation pendant une nuit Ă  50°C. La solution est ensuite rĂ©cupĂ©rĂ©e par centrifugation (12000 rpm pendant 12 mn). Le surfactant est enlevĂ© par une succession de lavage Ă  l’acide chlorhydrique et Ă  l’éthanol avant d’ĂȘtre conservĂ© dans ce dernier. Avant utilisation, les matĂ©riaux sont rĂ©cupĂ©rĂ©s par centrifugation (12000 rpm pendant 12 mn) puis sĂ©chĂ©s dans un four Ă  60°C pendant 2h. ComplĂ©ment Exemple 2 : Variation de la quantitĂ© de fonctions Amine Procedure: (See Figure 1) In a plastic bottle are mixed 0.64 g of activated carbon W35, 0.29 g of CTAB and 150 ml of an aqueous NHaOH solution previously prepared at a concentration of 2.048 M. The solution is left under magnetic stirring at room temperature for 1 h. 20 ÎŒL of NH2-TMOS are then added followed by 6.5 ml of ethanolic TEOS at a concentration of 1.025 ML 1 and the solution is left under stirring for another hour at room temperature. The stirring is then stopped and the solution is left to mature overnight at 50 ° C. The solution is then recovered by centrifugation (12,000 rpm for 12 min). The surfactant is removed by a succession of washing with hydrochloric acid and ethanol before being stored in the latter. Before use, the materials are recovered by centrifugation (12,000 rpm for 12 min) then dried in an oven at 60 ° C for 2 h. Complement Example 2: Variation in the quantity of Amine functions
Selon le protocole de l’exemple 2, la quantitĂ© de N-(2-AminoĂ©thyl)-3- (trimĂ©thoxysilyl)propylamine a Ă©tĂ© utilisĂ© avec divers ratios suivant le tableau 1. According to the protocol of Example 2, the amount of N- (2-Aminoethyl) -3- (trimethoxysilyl) propylamine was used with various ratios according to Table 1.
Tableau 1: Ratio de NH2-TMOS par rapport au TEOS Table 1: Ratio of NH2-TMOS to TEOS
Exemple 3 : SynthÚse de charbons actifs enrobés de silice fonctionnalisée avec des Example 3 Synthesis of Activated Carbon Coated with Silica Functionalized with
Réactifs : Charbon Actif W35 (SOFRALAB), Tetraéthyl orthosilicate (TEOS, CAS : 78- 10-4, Masse molaire = 208,33 g/mol et densité d = 0,933), Méthanol (MeOH, CAS : 67- 56-1, Masse molaire ::: 32,04 g/mol et densité d :::: 0,791), Bromure de cétyltriméthylammonium (CT AB, CAS : 57-09-0, Masse molaire = 364,45 g/moi), Ammoniaque (NELOH, CAS : 1336-21-6, Masse molaire = 35,05 g/mol et densité d = 0,9), N-(Triméthoxysily!propyl)étliylÚnediaminetriacétate, sel trisodique (COOH- TMOS, CAS : 128850-89-5, Masse molaire = 462,42 g/moi et densité d = 1,26). Reagents: Activated Carbon W35 (SOFRALAB), Tetraethyl orthosilicate (TEOS, CAS: 78-10-4, Molar mass = 208.33 g / mol and density d = 0.933), Methanol (MeOH, CAS: 67-56-1, Molar mass ::: 32.04 g / mol and density d :::: 0.791), Cetyltrimethylammonium bromide (CT AB, CAS: 57-09-0, Molar mass = 364.45 g / me), Ammonia (NELOH , CAS: 1336-21-6, Molar mass = 35.05 g / mol and density d = 0.9), N- (Trimethoxysily! Propyl) etliylenediaminetriacetate, trisodium salt (COOH- TMOS, CAS: 128850-89-5 , Molar mass = 462.42 g / me and density d = 1.26).
Mode opĂ©ratoire : (Cf. Figure 1) Dans un flacon en plastique sont mĂ©langĂ©s 0,64 g de charbon actif W35, 0,29 g de CT AB et 150 mL d’une solution aqueuse de NBUQH prĂ©alablement prĂ©parĂ©e Ă  une concentration de 2,048M. La solution est laissĂ©e sous agitation magnĂ©tique Ă  tempĂ©rature ambiante pendant Ih. 20 m de COQH-TMOS sont ensuite ajoutĂ©s suivis de 6,5 mL de TEOS Ă©thanolique Ă  une concentration de 1,025 M.L 1 et la solution est laissĂ©e sous agitation pendant une nouvelle heure Ă  tempĂ©rature ambiante. L’agitation est ensuite coupĂ©e et la solution est laissĂ©e Ă  maturation pendant une nuit Ă  50°C. La solution est ensuite rĂ©cupĂ©rĂ©e par centrifugation (12000 rpm pendant 12 mn). Le surfactant est enlevĂ© par une succession de lavage Ă  l’acide chlorhydrique et Ă  l’éthanol avant d’ĂȘtre conservĂ© dans ce dernier. Avant utilisation, les matĂ©riaux sont rĂ©cupĂ©rĂ©s par centrifugation (12000 rpm pendant 12 mn) puis sĂ©chĂ©s dans un four Ă  60°C pendant 2h Procedure: (See Figure 1) In a plastic bottle are mixed 0.64 g of activated carbon W35, 0.29 g of CT AB and 150 mL of an aqueous solution of NBUQH previously prepared at a concentration of 2.048M . The solution is left under magnetic stirring at room temperature for 1 h. 20 m of COQH-TMOS are then added followed by 6.5 ml of ethanolic TEOS at a concentration of 1.025 ML 1 and the solution is left under stirring for another hour at room temperature. The stirring is then stopped and the solution is left to mature overnight at 50 ° C. The solution is then recovered by centrifugation (12,000 rpm for 12 min). The surfactant is removed by a succession of washing with hydrochloric acid and ethanol before being stored in the latter. Before use, materials are recovered by centrifugation (12,000 rpm for 12 min) then dried in an oven at 60 ° C for 2 h
Exemple 4 : SynthÚse de charbons actifs enrobés de silice fonctionnalisée avec des groupements aromatiques EXAMPLE 4 Synthesis of Activated Charcoals Coated with Silica Functionalized with Aromatic Groups
Réactifs : Charbon Actif W35 (SOFRALAB), Tétraéthyl orthosilicate (TEOS, CAS : 78- 10-4, Masse molaire = 208,33 g/moi et densité d = 0,933), Méthanol (MeOH, CAS : 67- 56-1, Masse molaire ::: 32,04 g/mol et densité d :::: 0,791), Bromure de cétyltriméthylammonium (CT AB, CAS : 57-09-0, Masse molaire = 364,45 g/mol), Ammoniaque (NiLOH, CAS : 1336-21-6, Masse molaire :::: 35,05 g/mol et densité d ::: 0,9), Triméthoxyphénylsilane (Ar-TMOS, CAS : 2996-92-1, Masse molaire = 198,29 g/mol et densité d :::: 1,062). Reagents: Activated Carbon W35 (SOFRALAB), Tetraethyl orthosilicate (TEOS, CAS: 78-10-4, Molar mass = 208.33 g / me and density d = 0.933), Methanol (MeOH, CAS: 67-56-1, Molar mass ::: 32.04 g / mol and density d :::: 0.791), Cetyltrimethylammonium bromide (CT AB, CAS: 57-09-0, Molar mass = 364.45 g / mol), Ammonia (NiLOH , CAS: 1336-21-6, Molar mass :::: 35.05 g / mol and density d ::: 0.9), Trimethoxyphenylsilane (Ar-TMOS, CAS: 2996-92-1, Molar mass = 198 , 29 g / mol and density d :::: 1.062).
Mode opĂ©ratoire : (Cf. Figure 1) Dans un flacon en plastique sont mĂ©langĂ©s 0,64 g de charbon actif W35, 0,29 g de CT AB et 150 mL d’une solution aqueuse de NHUOH prĂ©alablement prĂ©parĂ©e Ă  une concentration de 2,048M. La solution est laissĂ©e sous agitation magnĂ©tique Ă  tempĂ©rature ambiante pendant l h. 20 mT de Ar-TMOS sont ensuite ajoutĂ©s suivis de 6,5 mL de TEOS Ă©thanolique Ă  une concentration de 1 ,025 M.L 1 et la solution est laissĂ©e sous agitation pendant une nouvelle heure Ă  tempĂ©rature ambiante. L’agitation est ensuite coupĂ©e et la solution est laissĂ©e Ă  maturation pendant une nuit Ă  50°C La solution est ensuite rĂ©cupĂ©rĂ©e par centrifugation (12000 rpm pendant 12 mn). Le surfactant est enlevĂ© par une succession de lavage Ă  l’acide chlorhydrique et Ă  l’éthanol avant d’ĂȘtre conservĂ© dans ce dernier. Avant utilisation, les matĂ©riaux sont rĂ©cupĂ©rĂ©s par centrifugation (12000 rpm pendant 12 mn) puis sĂ©chĂ©s dans un four Ă  60°C pendant 2h Procedure: (See Figure 1) In a plastic bottle are mixed 0.64 g of activated carbon W35, 0.29 g of CT AB and 150 ml of an aqueous NHUOH solution previously prepared at a concentration of 2.048M . The solution is left under magnetic stirring at room temperature for 1 h. 20 mT of Ar-TMOS are then added followed by 6.5 ml of ethanolic TEOS at a concentration of 1.025 ML 1 and the solution is left under stirring for another hour at room temperature. The stirring is then stopped and the solution is left to mature overnight at 50 ° C. The solution is then recovered by centrifugation (12,000 rpm for 12 min). The surfactant is removed by a succession of washing with hydrochloric acid and ethanol before being stored in the latter. Before use, the materials are recovered by centrifugation (12,000 rpm for 12 min) then dried in an oven at 60 ° C for 2 h
Exemple 5 : SynthÚse de charbons actifs enrobés de silice fonctionnalisée avec des groupements urées Example 5 Synthesis of Activated Charcoals Coated with Silica Functionalized with Urea Groups
Réactifs : Charbon Actif W35 (SOFRALAB), Tétraéthyl orthosilicate (TEOS, CAS : 78- 10-4, Masse molaire = 208,33 g/mol et densité d = 0,933), Méthanol (MeOH, CAS : 67- 56-1, Masse molaire ::: 32,04 g/mol et densité d :::: 0,791), Bromure de cétyltriméthylammonium (CT AB, CAS : 57-09-0, Masse molaire = 364,45 g/moi), Ammoniaque (NH4QH, CAS : 1336-21-6, Masse molaire = 35,05 g/mol et densité d = 0,9), 3-(4-Semicarbazidyl)propyltriéthoxysilane (SCPTS, CAS : 106868-88-6, Masse molaire := 279,41 g/mol et densité d := 1,08). Reagents: Activated Carbon W35 (SOFRALAB), Tetraethyl orthosilicate (TEOS, CAS: 78-10-4, Molar mass = 208.33 g / mol and density d = 0.933), Methanol (MeOH, CAS: 67-56-1, Molar mass ::: 32.04 g / mol and density d :::: 0.791), Cetyltrimethylammonium bromide (CT AB, CAS: 57-09-0, Molar mass = 364.45 g / me), Ammonia (NH4QH, CAS: 1336-21-6, Molar mass = 35.05 g / mol and density d = 0.9), 3- (4-Semicarbazidyl) propyltriethoxysilane (SCPTS, CAS: 106868-88-6, Mass molar : = 279.41 g / mol and density d : = 1.08).
Mode opĂ©ratoire : (Cf. Figure 1 ) Dans un flacon en plastique sont mĂ©langĂ©s 0,64 g de charbon actif W35, 0,29 g de CTAB et 150 mL d’une solution aqueuse de NH40H prĂ©alablement prĂ©parĂ©e Ă  une concentration entre 1 et 3 mol/L, prĂ©fĂ©rentiellement 2,05 mol/L. La solution est laissĂ©e sous agitation magnĂ©tique Ă  tempĂ©rature ambiante pendant Ih. 20 mΐ, de Ur-TEOS sont ensuite ajoutĂ©s suivis de 6,5 mL de TEOS Ă©thanolique prĂ©parĂ©e Ă  une concentration entre 1 et 2 M.L 1, prĂ©fĂ©rentiellement 1,025 M.L l et la solution est laissĂ©e sous agitation pendant une nouvelle heure Ă  tempĂ©rature ambiante. L’agitation est ensuite coupĂ©e et la solution est laissĂ©e Ă  maturation pendant une nuit Ă  50°C. La solution est ensuite rĂ©cupĂ©rĂ©e par centrifugation (12000 rpm pendant 12 mn). Le surfactant est enlevĂ© par une succession de lavage Ă  I’ acide chlorhydrique et Ă  G Ă©thanol avant d’ĂȘtre conservĂ© dans ce dernier. Avant utilisation, les matĂ©riaux sont rĂ©cupĂ©rĂ©s par centrifugation (12000 rpm pendant 12 mn) puis sĂ©chĂ©s dans un four Ă  60°C pendant 2h. Procedure: (See Figure 1) In a plastic bottle are mixed 0.64 g of activated carbon W35, 0.29 g of CTAB and 150 mL of an aqueous solution of NH40H previously prepared at a concentration between 1 and 3 mol / L, preferably 2.05 mol / L. The solution is left under magnetic stirring at room temperature for 1 h. 20 mΐ of Ur-TEOS are then added followed by 6.5 ml of ethanolic TEOS prepared at a concentration between 1 and 2 ML 1 , preferably 1.025 ML l and the solution is left stirring for another hour at room temperature. The stirring is then stopped and the solution is left to mature overnight at 50 ° C. The solution is then recovered by centrifugation (12,000 rpm for 12 min). The surfactant is removed by a succession of washing with hydrochloric acid and with ethanol before being stored in the latter. Before use, the materials are recovered by centrifugation (12,000 rpm for 12 min) then dried in an oven at 60 ° C for 2 h.
Lors des synthĂšses, le 3-(4-Semicarbazidyl)propyltriethoxysilane a Ă©galement Ă©tĂ© utilisĂ© comme prĂ©curseur pour la fonctionnai! sation par des groupements urĂ©es. Celui-ci peut ĂȘtre substituĂ© par n’importe quel triethoxy ou methoxy silane portant un ou plusieurs groupements urĂ©es tels que l’ureidopropyltriethoxysilane. B. SynthĂšse de charbons actifs enrobĂ©s de silice selon le deuxiĂšme mode de rĂ©alisation During syntheses, 3- (4-Semicarbazidyl) propyltriethoxysilane was also used as a precursor for function! sation by urea groups. This can be substituted by any triethoxy or methoxy silane carrying one or more urea groups such as ureidopropyltriethoxysilane. B. Synthesis of activated carbon coated with silica according to the second embodiment
Exemple 6 : SynthÚse de charbons actifs en bùtonnet enrobés de silice fonctionnalisée avec des groupements amine Example 6 Synthesis of Active Charcoals in Rods Coated with Silica Functionalized with Amine Groups
Réactifs : Charbon Actif Norit RBBA-3 en bùtonnets (Sigma-Aldrich), Tetramethyl orthosilicate (TMQS, CAS : 681-84-5, pureté : 99%, Masse molaire = 152,22 g/mol et densité d :::: 1,023), Méthanol (MeOH, CAS : 67-56-1, pureté 99,9%, Masse molaire 32.04 g/mol et densité d ::: 0,791 g/cm3), 3-aminopropyltriéthoxysilane (APTES, CAS 919-30-2:, pureté 99%, Masse molaire = 221,37 g/mol et densité d = 0,946). Eau déionisée ultra-pure. Reagents: Norit RBBA-3 Activated Carbon in sticks (Sigma-Aldrich), Tetramethyl orthosilicate (TMQS, CAS: 681-84-5, purity: 99%, Molar mass = 152.22 g / mol and density d :::: 1.023), Methanol (MeOH, CAS: 67-56-1, purity 99.9%, Molar mass 32.04 g / mol and density d ::: 0.791 g / cm 3 ), 3-aminopropyltriethoxysilane (APTES, CAS 919-30-2 :, 99% purity, Molar mass = 221.37 g / mol and density d = 0.946). Ultra-pure deionized water.
Mode opĂ©ratoire : Dans un flacon de 60 mL contenant 14,22 mL de mĂ©thanol, sont ajoutĂ©s 10,23 ml, de TMOS et 0,5 mL d’ APTES. Le mĂ©lange est laissĂ© sous agitation pour l’obtention d’une solution homogĂšne. 5,05 mL d’eau sont ajoutĂ©s au mĂ©lange et la solution est agitĂ©e vigoureusement. Les proportions molaires du mĂ©lange ainsi obtenu sont TMOS/APTES/MeOH/eau = 0,97/0,03/5/4. Le sol gĂ©lifiant au bout de 8 min, Un Ă  trois coulages son t rĂ©alisĂ©s au bout de 1 min sur des bĂątonnets de charbon actif positionnĂ©s sur un tamis. Les bĂątonnets recouverts d’un film de matĂ©riau sol-gel sont sĂ©chĂ©s Ă  l’étuve Ă  80°. Procedure: 10.23 ml of TMOS and 0.5 ml of APTES are added to a 60 ml bottle containing 14.22 ml of methanol. The mixture is left under stirring to obtain a homogeneous solution. 5.05 mL of water is added to the mixture and the solution is stirred vigorously. The molar proportions of the mixture thus obtained are TMOS / APTES / MeOH / water = 0.97 / 0.03 / 5/4. The soil gelling after 8 min, One to three flows are made after 1 min on sticks of activated carbon positioned on a sieve. The sticks covered with a film of sol-gel material are dried in an oven at 80 °.
Exemples 7A et 7B : SynthÚse de charbons actifs en bùtonnet enrobés de silice fonctionnalisée avec des groupements amine Examples 7A and 7B: Synthesis of active carbon sticks coated with functionalized silica with amine groups
Réactifs : Charbon Actif Norit RBBA-3 (Sigma-Aldrich), Tetramethy! orthosilicate (TMOS, CAS 681-84-5, Masse molaire = 152,22 g/mol et densité d = 1,023), Ethanol (EtOH, CAS : 64- 17-5, Masse molaire = 46,07 g/mol et densité d ::: 0,789), 3- aminopropyltriéthoxysilane( APTES, CAS 919-30-2:, Masse molaire = 221,37 g/mol et densité d :::: 0,946). Reagents: Norit RBBA-3 Activated Carbon (Sigma-Aldrich), Tetramethy! orthosilicate (TMOS, CAS 681-84-5, Molar mass = 152.22 g / mol and density d = 1.023), Ethanol (EtOH, CAS: 64-17-5, Molar mass = 46.07 g / mol and density d ::: 0.789), 3- aminopropyltriethoxysilane (APTES, CAS 919-30-2 :, Molar mass = 221.37 g / mol and density d :::: 0.946).
Mode opĂ©ratoire : Dans un flacon de 60 mL contenant 14,13 mL d’éthanol, sont ajoutĂ©s 9,86 ml, de TMOS et 0,99 ml, d’APTES. Le mĂ©lange est laissĂ© sous agitation pour l’obtention d’une solution homogĂšne. 5,02 mL d’eau sont ajoutĂ©s au mĂ©lange et la solution est agitĂ©e vigoureusement. Les proportions molaires du mĂ©lange ainsi obtenu sont TMOS/APTES/EtOH/eau = 0,94/0,06/5/4. Le sol gĂ©lifiant au bout de 8 min, le coulage est rĂ©alisĂ© au bout de 1 min sur des bĂątonnets de charbon actif positionnĂ©s sur un tamis (matĂ©riau 6A). (masse de charbon actif 0,7428 g). Procedure: 9.86 ml of TMOS and 0.99 ml of APTES are added to a 60 ml bottle containing 14.13 ml of ethanol. The mixture is left under stirring to obtain a homogeneous solution. 5.02 mL of water is added to the mixture and the solution is stirred vigorously. The molar proportions of the mixture thus obtained are TMOS / APTES / EtOH / water = 0.94 / 0.06 / 5/4. The soil gelling after 8 min, pouring is carried out after 1 min on activated carbon sticks positioned on a sieve (material 6A). (mass of activated carbon 0.7428 g).
Le sol restant est laissĂ© Ă  maturation pendant 2 min supplĂ©mentaires au bout desquelles un nou veau coulage est rĂ©alisĂ© sur de nouveaux bĂątonnets de charbon actif (matĂ©riau 6B) (masse de charbon actif 0,7315 g). Les bĂątonnets recouverts d’un film de matĂ©riau sol- gel sont sĂ©chĂ©s Ă  l’étuve Ă  80°. C. SynthĂšse de charbons actifs hybrides enrobĂ©s de silice fonctionnalisĂ©e par simple mĂ©lange d’un sol et du charbon actif selon le deuxiĂšme mode de rĂ©alisation The remaining soil is left to mature for an additional 2 min, at the end of which a new pouring is carried out on new sticks of activated carbon (material 6B) (mass of activated carbon 0.7315 g). The sticks covered with a film of sol-gel material are dried in an oven at 80 °. C. Synthesis of hybrid active carbon coated with functionalized silica by simple mixing of a sol and activated carbon according to the second embodiment
Exemple 8 : SynthĂšse de matĂ©riaux hybrides par mĂ©lange de charbons actifs Ă  nn sol de prĂ©curseurs de silicium dont l’un est fonctionnalisĂ© avec des groupements acĂ©toxy Example 8 Synthesis of Hybrid Materials by Mixing Activated Charcoals with a Sol of Precursors of Silicon One of Which is Functionalized with Acetoxy Groups
RĂ©actifs : Charbon Actif en poudre Darco KG-B (Sigma-Aldrieh), Tetramethyl orthosilicate (TMOS, CAS 681-84-5, puretĂ© 99%, Masse molaire = 152,22 g/mol et densitĂ© d = 1,023), mĂ©thanol (MeOH, CAS : 67-56-1, puretĂ© 99,9%, Masse molaire = 32,04 g/mol et densitĂ© d = 0,791),, AcĂ©toxyĂ©tbyltrimĂ©thoxysilane (AETMS, CAS :72878- 29-6 , puretĂ© 95%, Masse molaire = 250,36 g/mol et densitĂ© d = 0,983), eau dĂ©ionisĂ©e ultra-pure, solution aqueuse d’ammoniaque Ă  28%. Reagents: Darco KG-B (Sigma-Aldrieh) Activated Carbon powder, Tetramethyl orthosilicate (TMOS, CAS 681-84-5, purity 99%, Molar mass = 152.22 g / mol and density d = 1.023), methanol ( MeOH, CAS: 67-56-1, purity 99.9%, Molar mass = 32.04 g / mol and density d = 0.791) ,, Acetoxyetbyltrimethoxysilane (AETMS, CAS: 72878-29-6, purity 95%, Mass molar = 250.36 g / mol and density d = 0.983), ultra-pure deionized water, 28% aqueous ammonia solution.
Mode opĂ©ratoire : Dans un flacon de 60 mL contenant 14,13 mL de mĂ©thanol, sont ajoutĂ©s 10,29 mL de TMOS et 0,55 mL d’ AETMS. Le mĂ©lange est laissĂ© sous agitation pour l’obtention d’une solution homogĂšne. 4,73 mL d’eau sont ajoutĂ©s au mĂ©lange sous agitation et 0,3 mL d’une solution aqueuse d’ammoniaque Ă  28% est ajoutĂ©e en dernier. Le charbon actif (0,7514 g) est ajoutĂ© 20 s aprĂšs sous agitation vigoureuse pendant 10 s, puis le Sol est coulĂ© dans un moule Ă  nids d’abeille. Les proportions molaires du mĂ©lange ainsi obtenu sont TMOS/AETMS/MeOH/eau = 0,98/0,02/5/4 avec une concentration de NH4QH de 0,148 M. AprĂšs gĂ©lification, le moule est sĂ©chĂ© sous flux gazeux inerte. AprĂšs dĂ©moulage, on obtient des granulĂ©s noirs de forme cylindrique de dimensions 0 , 7(L) * 0 , 3 (diamĂštre) cm. Procedure: 10.29 mL of TMOS and 0.55 mL of AETMS are added to a 60 mL bottle containing 14.13 mL of methanol. The mixture is left under stirring to obtain a homogeneous solution. 4.73 mL of water is added to the mixture with stirring and 0.3 mL of a 28% aqueous ammonia solution is added last. The activated carbon (0.7514 g) is added 20 s after with vigorous stirring for 10 s, then the soil is poured into a honeycomb mold. The molar proportions of the mixture thus obtained are TMOS / AETMS / MeOH / water = 0.98 / 0.02 / 5/4 with a NH4QH concentration of 0.148 M. After gelling, the mold is dried under inert gas flow. After demolding, black granules of cylindrical shape with dimensions 0.7 (L) * 0.3 (diameter) cm are obtained.
Exemple 9 : SynthĂšse de matĂ©riaux hybrides par mĂ©lange de charbons actifs Ă  un sol de prĂ©curseurs de silicium dont l’un est fonctionnalisĂ© avec des groupements acĂ©toxy Example 9 Synthesis of Hybrid Materials by Mixing Activated Carbon with a Sol of Precursor Silicon One of which is Functionalized with Acetoxy Groups
MĂȘme synthĂšse que dans l’exemple 8. Le charbon actif' est sous forme de poudre, Charbon Actif W35 (SOFRALAB) (0,7539 g). Exemple 10 : SynthĂšse de matĂ©riaux hybrides par mĂ©lange de charbons actifs Ă  nn sol de prĂ©curseurs de silicium dont l’un est fonctionnalisĂ© avec des groupements glycidylloxy Same synthesis as in Example 8. The activated carbon is in powdered form, Activated Carbon W35 (SOFRALAB) (0.7539 g). Example 10 Synthesis of Hybrid Materials by Mixing Activated Charcoals with a Sol of Precursors of Silicon One of Which is Functionalized with Glycidylloxy Groups
RĂ©actifs : Charbon Actif en poudre Darco KG-B (Sigma-Aldricb), Tetramethyl orthosilicate (TMQS, CAS 681-84-5, puretĂ© 99%, Masse molaire = 152,22 g/mol et densitĂ© d = 1,023), (MeOH, CAS : 67-56-1 , puretĂ© 99,9%, Masse molaire = 32,04 g/moi et densitĂ© d = 0,791), 3-glycidyloxypropylltriĂ©thoxysilane (GPTES, CAS : 2602-34-8, Masse molaire = 278,42 g/mol et densitĂ© d = 1,004). eau dĂ©ionisĂ©e ultra-pure, solution aqueuse d’ammoniaque Ă  28%. Reagents: Darco KG-B (Sigma-Aldricb) Activated Carbon powder, Tetramethyl orthosilicate (TMQS, CAS 681-84-5, purity 99%, Molar mass = 152.22 g / mol and density d = 1.023), (MeOH , CAS: 67-56-1, purity 99.9%, Molar mass = 32.04 g / me and density d = 0.791), 3-glycidyloxypropylltriethoxysilane (GPTES, CAS: 2602-34-8, Molar mass = 278, 42 g / mol and density d = 1.004). ultra-pure deionized water, 28% aqueous ammonia solution.
Mode opĂ©ratoire : Dans un flacon de 60 mL contenant 14, 13 mL de mĂ©thane!, sont ajoutĂ©s 10,25 ml. de TMOS et 0,59 mL d’GPTES. Le mĂ©lange est laissĂ© sous agitation pour l’obtention d’une solution homogĂšne. 4,73 mL d’eau sont ajoutĂ©s au mĂ©lange sous agitation et 0,3 mL d’une solution aqueuse d’ammoniaque Ă  28% est ajoutĂ©e en dernier. Le charbon actif (0,7505 g) est ajoutĂ© 20 s aprĂšs sous agitation vigoureuse pendant 10 s, puis le Sol est coulĂ© dans un moule Ă  nids d’abeille. Les proportions molaires du mĂ©lange ainsi obtenu sont TMOS/GPTES/MeOH/eau ::: 0,967/0,023/5/4 avec une concentration de NH4OH de 0,148 M. AprĂšs gĂ©lification, le moule est sĂ©chĂ© sous flux gazeux inerte. AprĂšs dĂ©moulage, on obtient des granulĂ©s noirs de forme cylindrique de dimensions 0,7(L)* 0,3 (diamĂštre) cm. Procedure: 10.25 ml are added to a 60 mL bottle containing 14.13 mL of methane! of TMOS and 0.59 mL of GPTES. The mixture is left under stirring to obtain a homogeneous solution. 4.73 ml of water are added to the mixture with stirring and 0.3 ml of a 28% aqueous ammonia solution is added last. The activated charcoal (0.7505 g) is added 20 s after with vigorous stirring for 10 s, then the soil is poured into a honeycomb mold. The molar proportions of the mixture thus obtained are TMOS / GPTES / MeOH / water ::: 0.967 / 0.023 / 5/4 with a NH4OH concentration of 0.148 M. After gelation, the mold is dried under inert gas flow. After demolding, black cylindrical granules are obtained with dimensions 0.7 (L) * 0.3 (diameter) cm.
Soi de prĂ©curseurs de silicium dont l’un est fonctionnalisĂ© avec des groupements Self of silicon precursors, one of which is functionalized with groups
MĂȘme synthĂšse que dans l’exemple 10. Le charbon actif est dans ce cas_sous forme de poudre, Charbon Actif W35 (SOFRALAB) (0,7527 g). Exemple 12 : SynthĂšse de matĂ©riaux hybrides par mĂ©lange de charbons actifs Ă  nn Sol de prĂ©curseurs de silicium dont Pun est fonctionnalisĂ© avec des groupements amide et amine Same synthesis as in Example 10. In this case, the activated carbon is in powder form, Activated Carbon W35 (SOFRALAB) (0.7527 g). Example 12 Synthesis of Hybrid Materials by Mixing Activated Charcoals with Sol Sol Precursors of which Pun is Functionalized with Amide and Amine Groups
RĂ©actifs : Charbon Actif en poudre Darco KG-B (Sigma-Aldricb), Tetramethyl orthosilicate (TMOS, puretĂ© 99%. CAS : ,681-84-5, Masse molaire = 152,22 g/mol et densitĂ© d = 1,023), (MeOH, CAS : 67-56-1 , puretĂ© 99,9%, Masse molaire = 32,04 g/moi et densitĂ© d = 0,791), 3-(4,semicarbazido)propyltriethoxysilane (SCPTS), CAS : 106868- 88-6, puretĂ© 95%, , Masse molaire ::: 279,41 g/mol et densitĂ© d :::: 1,08). eau dĂ©ionisĂ©e ultra-pure, solution aqueuse d’ammoniaque Ă  28%. Reagents: Activated carbon powder Darco KG-B (Sigma-Aldricb), Tetramethyl orthosilicate (TMOS, purity 99%. CAS:, 681-84-5, Molar mass = 152.22 g / mol and density d = 1.023), (MeOH, CAS: 67-56-1, purity 99.9%, Molar mass = 32.04 g / me and density d = 0.791), 3- (4 , semicarbazido) propyltriethoxysilane (SCPTS), CAS: 106868- 88 -6, purity 95%,, Molar mass ::: 279.41 g / mol and density d :::: 1.08). ultra-pure deionized water, 28% aqueous ammonia solution.
Mode opĂ©ratoire : Dans un flacon de 60 mL contenant 14, 14 mL de mĂ©thanol, sont ajoutĂ©s 10,27 mL de TMOS et 0,56 mL de SCPTS. Le mĂ©lange est laissĂ© sous agitation pour l’obtention d’une solution homogĂšne. 4,73 mL d’eau sont ajoutĂ©s au mĂ©lange sous agitation et 0,3 mL d’une solution aqueuse d’ammoniaque Ă  28% est ajoutĂ©e en dernier. Le charbon actif 0,7506 g) est ajoutĂ© 20 s aprĂšs sous agitation vigoureuse pendant 10 s, puis le Sol est coulĂ© dans un moule Ă  nids d’abeille. Les proportions molaires du mĂ©lange ainsi obtenu sont TMOS/SCPTS/MeOH/eau = 0,977/0,023/5/4 avec une concentration de NH40H de 0,148 M. AprĂšs gĂ©lification, le moule est sĂ©chĂ© sous flux gazeux inerte. AprĂšs dĂ©moulage, on obtient des granulĂ©s noirs de forme cylindrique de dimensions 0,7(L)* 0,3 (diamĂštre) cm. Procedure: 10.27 mL of TMOS and 0.56 mL of SCPTS are added to a 60 mL bottle containing 14.14 mL of methanol. The mixture is left under stirring to obtain a homogeneous solution. 4.73 mL of water is added to the mixture with stirring and 0.3 mL of a 28% aqueous ammonia solution is added last. Activated carbon 0.7506 g) is added 20 s after with vigorous stirring for 10 s, then the soil is poured into a honeycomb mold. The molar proportions of the mixture thus obtained are TMOS / SCPTS / MeOH / water = 0.977 / 0.023 / 5/4 with a NH40H concentration of 0.148 M. After gelling, the mold is dried under inert gas flow. After demolding, black cylindrical granules are obtained with dimensions 0.7 (L) * 0.3 (diameter) cm.
Exemple 13 : SynthĂšse de matĂ©riaux hybrides par mĂ©lange de charbons actifs Ă  un Sol de prĂ©curseurs de silicium dont l’un est fonctionnalisĂ© avec des groupements amide et amine Example 13 Synthesis of Hybrid Materials by Mixing Activated Charcoals with a Sol of Silicon Precursors, One of Which is Functionalized with Amide and Amine Groups
MĂȘme synthĂšse que dans l’exemple 12. Le charbon actif est dans ce cas sous forme de poudre, Charbon Actif W35 (SOFRALAB) (0,7507 g). j l Same synthesis as in Example 12. The activated carbon is in this case in powder form, Activated Carbon W35 (SOFRALAB) (0.7507 g). jl
Exemple 14 : SynthÚse de matériaux hybrides par mélange de charbons actifs à nn Sol de précurseurs de silicium dont Fun est fonctionnalisé avec des groupements aromatiques (PhTMOS) Example 14 Synthesis of Hybrid Materials by Mixing Activated Carbon with Sol Sol Precursors of which Fun is Functionalized with Aromatic Groups (PhTMOS)
RĂ©actifs : Charbon Actif en poudre Darco KG-B (Sigma-Aldrich), Tetramethyl orthosilicate (TMOS, puretĂ© 99%. CAS : ,681-84-5, Masse molaire = 152,22 g/mol et densitĂ© d = 1,023), (MeOH, CAS : 67-56-1 , puretĂ© 99,9%, Masse molaire = 32,04 g/moi et densitĂ© d = 0,791), (PhTMOS), CAS : 2996-92-1, puretĂ© 98%, Masse molaire = 198,29 g/moi et densitĂ© d 1.062 g/cm3) eau dĂ©ionisĂ©e ultra-pure, solution aqueuse d’ammoniaque Ă  28%. Reagents: Darco KG-B powder activated carbon (Sigma-Aldrich), Tetramethyl orthosilicate (TMOS, purity 99%. CAS:, 681-84-5, Molar mass = 152.22 g / mol and density d = 1.023), (MeOH, CAS: 67-56-1, purity 99.9%, Molar mass = 32.04 g / me and density d = 0.791), (PhTMOS), CAS: 2996-92-1, purity 98%, Mass molar = 198.29 g / me and density d 1.062 g / cm 3 ) ultra-pure deionized water, 28% aqueous ammonia solution.
Mode opĂ©ratoire : Dans un flacon de 60 mL contenant 14,25 mL de mĂ©thanol, sont ajoutĂ©s 10,27 mL de TMOS et 0,4 mL de PhTMOS Le mĂ©lange est laissĂ© sous agitation pour l’obtention d’une solution homogĂšne. 4,78 mL d’eau sont ajoutĂ©s au mĂ©lange sous agitation et 0,3 mL d’une solution aqueuse d’ammoniaque Ă  28% est ajoutĂ©e en dernier. Le charbon actif (0,75 g) est ajoutĂ© 20 s aprĂšs sous agitation vigoureuse pendant 10 s, puis le Sol est coulĂ© dans un moule Ă  nids d’abeille. Les proportions molaires du mĂ©lange ainsi obtenu sont TMOS/PhTMQS/MeQH/eau :::: 0,977/0,023/5/4 avec une concentration de NH40H de 0,148 M. AprĂšs gĂ©lification, le moule est sĂ©chĂ© sous flux gazeux inerte. AprĂšs dĂ©moulage, on obtient des granulĂ©s noirs de forme cylindrique de dimensionsO,7(L) * 0,3 (diamĂštre) cm. Procedure: 10.27 ml of TMOS and 0.4 ml of PhTMOS are added to a 60 ml flask containing 14.25 ml of methanol. The mixture is stirred to obtain a homogeneous solution. 4.78 ml of water are added to the mixture with stirring and 0.3 ml of a 28% aqueous ammonia solution is added last. The activated carbon (0.75 g) is added 20 s after with vigorous stirring for 10 s, then the soil is poured into a honeycomb mold. The molar proportions of the mixture thus obtained are TMOS / PhTMQS / MeQH / water :::: 0.977 / 0.023 / 5/4 with an NH40H concentration of 0.148 M. After gelling, the mold is dried under inert gas flow. After demolding, black granules of cylindrical shape of dimensions O, 7 (L) * 0.3 (diameter) cm are obtained.
Exemple 15 : SynthĂšse de matĂ©riaux hybrides par mĂ©lange de charbons actifs Ă  un sol de prĂ©curseurs de silicium dont l’un est fonctionnalisĂ© avec des groupements aromatiques (PhTEQS) Example 15 Synthesis of Hybrid Materials by Mixing Active Carbon with a Sol of Precursor Silicon, One of Which Is Functionalized with Aromatic Groups (PhTEQS)
RĂ©actifs : Charbon Actif en poudre Darco KG-B (Sigma-Aldrich), T etramĂ©thylortho silicate (TMOS, puretĂ© 99%, CAS :, 681-84-5, Masse molaire = 152,22 g/mol et densitĂ© d := 1 ,023), (MeOH, CAS : 67-56-1 , puretĂ© 99,9%, Masse molaire = 32,04 g/mol et densitĂ© d = 0,791), (PhTEQS), CAS :780-69-8 , puretĂ© 98%, Masse molaire = 240,37g/mol et densitĂ© d =0,996 g/cm3 eau dĂ©ionisĂ©e ultra-pure, solution aqueuse d’ammoniaque Ă  28%. Mode opĂ©ratoire : Dans un flacon de 60 mL contenant 14,2 mL de mĂ©thanol, sont ajoutĂ©s 10,23 mL de TMGS et 0,52 mL de PhTEOS Le mĂ©lange est laissĂ© sous agitation pour l’obtention d’une solution homogĂšne. 4,75 ml, d’eau sont ajoutĂ©s au mĂ©lange sous agitation et 0,3 mL d’une solution aqueuse d’ammoniaque Ă  28% est ajoutĂ©e en dernier. Le charbon actif (0,75 g) est ajoutĂ© 20 s aprĂšs sous agitation vigoureuse pendant 10 s, puis le Soi est coulĂ© dans un moule Ă  nids d’abeille. Les proportions molaires du mĂ©lange ainsi obtenu sont TMQS/PbTEQS/MeOH/eau = 0,977/0,023/5/4 avec une concentration de NH4GH de 0,148 M. AprĂšs gĂ©lification, le moule est sĂ©chĂ© sous flux gazeux inerte. AprĂšs dĂ©moulage, on obtient des granulĂ©s noirs de forme cylindrique de dimensions 0,7(L)* 0,3 (diamĂštre) cm. Reagents: Activated carbon powder Darco KG-B (Sigma-Aldrich), T etramethylortho silicate (TMOS, purity 99%, CAS:, 681-84-5, Molar mass = 152.22 g / mol and density d : = 1 , 023), (MeOH, CAS: 67-56-1, purity 99.9%, Molar mass = 32.04 g / mol and density d = 0.791), (PhTEQS), CAS: 780-69-8, purity 98%, Molar mass = 240.37 g / mol and density d = 0.996 g / cm 3 ultra-pure deionized water, 28% aqueous ammonia solution. Procedure: 10.23 ml of TMGS and 0.52 ml of PhTEOS are added to a 60 ml flask containing 14.2 ml of methanol. The mixture is stirred to obtain a homogeneous solution. 4.75 ml of water are added to the mixture with stirring and 0.3 ml of a 28% aqueous ammonia solution is added last. The activated charcoal (0.75 g) is added 20 s after with vigorous stirring for 10 s, then the self is poured into a honeycomb mold. The molar proportions of the mixture thus obtained are TMQS / PbTEQS / MeOH / water = 0.977 / 0.023 / 5/4 with a NH4GH concentration of 0.148 M. After gelling, the mold is dried under inert gas flow. After demolding, black cylindrical granules are obtained with dimensions 0.7 (L) * 0.3 (diameter) cm.
Exemple 16 : SynthÚse de matériaux hybrides par mélange de charbons actifs à en Example 16 Synthesis of Hybrid Materials by Mixing Active Carbon
Réactifs : Charbon Actif en poudre Darco KG -B (Sigma-Aldrich), Tetraméthylorthosilicate (TMGS, pureté 99%, CAS 681-84-5, Masse molaire = 152,22 g/mol et densité d :::: 1,023), (MeOH, CAS : 67-56-1, pureté 99,9%, Masse molaire ::: 32,04 g/mol et densité d = 0,791), 3-aminopropyltriéthoxysilane(APTES, CAS 919-30-2:, Masse molaire = 221 ,37 g/mol et densité d = 0,946).. eau déionisée ultra-pure. Reagents: Activated carbon powder Darco KG -B (Sigma-Aldrich), Tetramethylorthosilicate (TMGS, purity 99%, CAS 681-84-5, Molar mass = 152.22 g / mol and density d :::: 1,023), (MeOH, CAS: 67-56-1, purity 99.9%, Molar mass ::: 32.04 g / mol and density d = 0.791), 3-aminopropyltriethoxysilane (APTES, CAS 919-30-2 :, Mass molar = 221, 37 g / mol and density d = 0.946) .. ultra-pure deionized water.
Mode opĂ©ratoire : Dans un flacon de 100 mL contenant 23,67 ml. de mĂ©thanol, sont ajoutĂ©s 17,07 mL de TMGS et 0,833 mL d’ APTES Le mĂ©lange est laissĂ© sous agitation pour l’obtention d’une solution homogĂšne. 8,43 mL d’eau sont ajoutĂ©s au mĂ©lange sous agitation. Le charbon actif (0,5152 g) est ajoutĂ© 1 min s aprĂšs sous agitation vigoureuse pendant 30 s, puis le Sol est coulĂ© dans un moule Ă  nids d’abeille. Les proportions molaires du mĂ©lange ainsi obtenu sont TM OS/APTES/M eOH/eau =: 0,977/0,023/5/4. AprĂšs gĂ©lification, le moule est sĂ©chĂ© sous flux gazeux inerte. AprĂšs dĂ©moulage, on obtient des granulĂ©s noirs de forme cylindrique de dimensions 0,6(L)*0,3(diamĂštre) cm. JJ Procedure: In a 100 ml bottle containing 23.67 ml. of methanol, 17.07 ml of TMGS and 0.833 ml of APTES are added. The mixture is left under stirring to obtain a homogeneous solution. 8.43 ml of water are added to the mixture with stirring. The activated carbon (0.5152 g) is added 1 min s after with vigorous stirring for 30 s, then the soil is poured into a honeycomb mold. The molar proportions of the mixture thus obtained are TM OS / APTES / M eOH / water = : 0.977 / 0.023 / 5/4. After gelation, the mold is dried under an inert gas flow. After demolding, black granules of cylindrical shape are obtained with dimensions 0.6 (L) * 0.3 (diameter) cm. not a word
Exemple 17 : SynthĂšse de matĂ©riaux hybrides par mĂ©lange de charbons actifs Ă  nn sol de prĂ©curseurs de silicium dont l’un est fonctionalisĂ© avec des groupements and ne Example 17 Synthesis of Hybrid Materials by Mixing Activated Charcoals with Nn Sol of Precursor of Silicon One of which is Functionalized with Groups and Ne
MĂȘme synthĂšse que dans l’exemple 16. Le charbon actif est dans ce cas_sous forme de poudre, Charbon Actif W35 (SOFRALAB) (0,5159 g). Same synthesis as in example 16. The activated carbon is in this case_ in powder form, Activated Carbon W35 (SOFRALAB) (0.5159 g).
D, Caractérisation des matériaux D, Characterization of materials
Âź Microscopie Electronique Ă  Transmission Âź Transmission Electron Microscopy
Afin de mettre en Ă©vidence le fait que le charbon actif est intĂ©gralement enrobĂ© (encapsulĂ©) d’une couche de matĂ©riau sol-gel nano-poreux, les matĂ©riaux prĂ©parĂ©s aux exemples 1 Ă  5 ont Ă©tĂ© caractĂ©risĂ©s par microscopie Ă©lectronique Ă  transmission (MET). In order to highlight the fact that the activated carbon is completely coated (encapsulated) with a layer of nanoporous sol-gel material, the materials prepared in Examples 1 to 5 were characterized by transmission electron microscopy (TEM).
Les grilles MET sont prĂ©parĂ©es de la façon suivante : img de matĂ©riaux est mis en suspension dans InxL d’éthanol puis vortexĂ© pendant quelques secondes. 10 mE de solution sont dĂ©posĂ©s sur une grille puis la grille est laissĂ©e sĂ©cher Ă  l’air libre pendant quelques minutes avant son utilisation. Les images MET du charbon actif W35 (Figure 3) et des diffĂ©rents matĂ©riaux synthĂ©tisĂ©s aux Exempl es 1 Ă  5 montrent que le charbon actif est intĂ©gralement recouvert du matĂ©riau sol-gel, mettant ainsi en Ă©vidence P obtention d’un matĂ©riau hybride cƓur-coquille constituĂ© d’un cƓur de charbon actif entourĂ© d’un matĂ©riau sol-gel (Figures 2A, 2B, 4A, 4B, 5, 6, 7 et K). Les images MET du charbon actif encapsulĂ© dans diffĂ©rentes silices sol- gel fonctionnalisĂ©es montrent que l’ajout d’un co-prĂ©curseur de silice permet l’adhĂ©sion de nanoparticules de silice autour des matĂ©riaux en plus de leur recouvrement par celle- ci. MET grids are prepared as follows: img of materials is suspended in InxL of ethanol and then vortexed for a few seconds. 10 mE of solution are placed on a grid and the grid is left to dry in the open air for a few minutes before use. The MET images of the activated carbon W35 (Figure 3) and of the various materials synthesized in Examples 1 to 5 show that the activated carbon is completely covered with the sol-gel material, thus highlighting the obtaining of a hybrid material core-shell consisting of an activated carbon core surrounded by a sol-gel material (Figures 2A, 2B, 4A, 4B, 5, 6, 7 and K). MET images of activated carbon encapsulated in different functionalized sol-gel silicas show that the addition of a silica co-precursor allows the adhesion of silica nanoparticles around the materials in addition to their covering by the latter.
La Microscopie Electronique Ă  Balayage (MEB) est une technique puissante d’observation de la topographie des surfaces. Elle est fondĂ©e principalement sur la dĂ©tection des Ă©lectrons secondaires Ă©mergents de la surface sous l’impact d’un trĂšs fin pinceau d’électrons primaires qui balaye la surface observĂ©e et permet d’obtenir des images avec un pouvoir sĂ©parateur souvent infĂ©rieur Ă  5 nm et une grande profondeur de champ. L’instrument permet de former un pinceau quasi parallĂšle, trĂšs fin (jusqu’à quelques nanomĂštres), d’électrons fortement accĂ©lĂ©rĂ©s par des tensions rĂ©glables de 0,1 Ă  30 keY, de le focaliser sur la zone Ă  examiner et de la balayer progressivement. Des dĂ©tecteurs appropriĂ©s permettent de recueillir des signaux significatifs lors du balayage de la surface et d’en former diverses images significatives. Les images des Ă©chantillons ont Ă©tĂ© rĂ©alisĂ©es avec le MEB « Ultra 55 » de Zeiss. Classiquement, les Ă©chantillons sont observĂ©s directement sans dĂ©pĂŽt particulier (mĂ©tal, carbone). Scanning Electron Microscopy (SEM) is a powerful technique for observing the topography of surfaces. It is based mainly on the detection of secondary electrons emerging from the surface under the impact of a very fine brush of primary electrons which scans the observed surface and makes it possible to obtain images with a separating power often less than 5 nm and a great depth of field. The instrument makes it possible to form an almost parallel, very fine brush (up to a few nanometers), of electrons strongly accelerated by adjustable voltages from 0.1 to 30 keY, to focus it on the area to be examined and to sweep it gradually. Appropriate detectors make it possible to collect significant signals when scanning the surface and to form various significant images thereof. The images of the samples were taken with the SEM "Ultra 55" from Zeiss. Conventionally, the samples are observed directly without any particular deposit (metal, carbon).
La figure 9 montre les images MEB d’un bĂątonnet de charbon actif recouvert d’un film mince de matĂ©riau sol-gel et les agrandissements successifs de la surface montrant les craquelures de la couche de silicate. Figure 9 shows SEM images of an activated carbon stick covered with a thin film of sol-gel material and successive enlargements of the surface showing the cracks in the silicate layer.
Ÿ Spectroscopie infrarouge Ÿ Infrared spectroscopy
La spectroscopie infrarouge Ă  transformĂ©e de Fourrer FTIR (Fourier Transform InfraRed spectroseopy) est une technique d’analyse utile pour la dĂ©termination, l’identification ou la confirmation de structure de produits connus ou non. Un spectre infrarouge permet en effet de mettre facilement en Ă©vidence la prĂ©sence de certains groupements fonctionnels, et peut servir de « carte d’identitĂ© spectroscopique » pour une molĂ©cule ou un matĂ©riau. Le module ATR (Attenuated Total RĂ©flectance) est installĂ© sur le spectromĂštre IR (Figure 10). Le principe consiste Ă  mettre en contact un cristal (ZnSe ou diamant) avec l’échantillon Ă  analyser. Le faisceau IR se propage dans le cristal ; si l’indice de rĂ©fraction du cristal est supĂ©rieur Ă  celui de l’échantillon, alors le faisceau subit des rĂ©flexions totales au-delĂ  d’un certain angle d’incidence Ă  l’interface Ă©chantillon/cristal Ă  l’exception d’une onde, dite onde Ă©vanescente qui Ă©merge du cristal et est absorbĂ©e par l’échantillon. C’est cette onde Ă©vanescente qui est responsable du spectre IR observĂ©. La profondeur de pĂ©nĂ©tration est de l’ordre de 1 Ă  2 micromĂštres ce qui fournit donc une information de surface. Ceci est particuliĂšrement intĂ©ressant pour l’analyse des Ă©chantillons purs (sans dilution dans une matrice KBr) puisque le risque de voir les pics saturer est trĂšs faible. De plus, aux basses Ă©nergies, la rĂ©solution est en gĂ©nĂ©ral meilleure que pour un spectre « classique » en transmission. Les spectres IR ont Ă©tĂ© rĂ©alisĂ©s avec le module FTIR-ATR « Alpha-P » de Bruker. Les spectres infrarouges des diffĂ©rents matĂ©riaux synthĂ©tisĂ©s aux Exemples 1 Ă  4 montrent clairement la prĂ©sence de la silice dans les matĂ©riaux par le pic Ă  1050- 1100 cm 1 correspondant aux vibrations d’élongation des liaisons Si-0 (Figures 10-13). Fourrer Transform InfraRed spectroseopy (Fourrer Transform InfraRed spectroseopy) is an analytical technique useful for determining, identifying or confirming the structure of known and unknown products. An infrared spectrum makes it possible to easily highlight the presence of certain functional groups, and can serve as a “spectroscopic identity card” for a molecule or a material. The ATR (Attenuated Total Reflectance) module is installed on the IR spectrometer (Figure 10). The principle consists in bringing a crystal (ZnSe or diamond) into contact with the sample to be analyzed. The IR beam propagates in the crystal; if the refractive index of the crystal is higher than that of the sample, then the beam undergoes total reflections beyond a certain angle of incidence at the sample / crystal interface with the exception of a wave , called evanescent wave which emerges from the crystal and is absorbed by the sample. It is this evanescent wave which is responsible for the IR spectrum observed. The penetration depth is of the order of 1 to 2 micrometers, which therefore provides surface information. This is particularly interesting for the analysis of pure samples (without dilution in a KBr matrix) since the risk of seeing the peaks saturate is very low. In addition, at low energies, the resolution is generally better than for a “classic” spectrum in transmission. The IR spectra were performed with the FTIR-ATR "Alpha-P" module from Bruker. The infrared spectra of the various materials synthesized in Examples 1 to 4 clearly show the presence of silica in the materials by the peak at 1050-1100 cm 1 corresponding to the vibrations of elongation of the Si-0 bonds (Figures 10-13).
L’analyse thermogravimĂ©trique consiste Ă  placer un Ă©chantillon dans un four sous atmosphĂšre contrĂŽlĂ©e et Ă  mesurer les variations de masse en fonction de 1a tempĂ©rature. L’augmentation progressive de la tempĂ©rature, ou rampe de tempĂ©rature, induit l’évaporation des solvants et la dĂ©gradation propre de chacun des constituants organiques de l’échantillon. La diminution de masse correspondant Ă  ces pertes permet de quantifier les proportions de chaque constituant dans le matĂ©riau. Un appareil de type TGA - 92- 1750 de marque Setaram est utilisĂ© pour une double mesure de chaque Ă©chantillon. Le protocole est le suivant : environ 10 mg de monolithe sont finement broyĂ©s, pesĂ©s et dĂ©posĂ©s dans la balance de l’appareil. L’ensemble est placĂ© dans le four et mis sous un flux d’air synthĂ©tique de 1 10 mL.min-l de qualitĂ© F. LD. Le four initialement Ă  40 °C est chauffĂ© jusqu’à 1500 °C avec une rampe de 50 °C.min-l. AprĂšs un pallier de 10 minutes Ă  1500 °C, la tempĂ©rature est rediminuĂ©e jusqu’à l’ambiante Ă  la vitesse de -90°C.min 1. Thermogravimetric analysis consists of placing a sample in an oven under a controlled atmosphere and measuring mass variations as a function of the temperature. The gradual increase in temperature, or temperature ramp, induces the evaporation of the solvents and the proper degradation of each of the organic constituents of the sample. The reduction in mass corresponding to these losses makes it possible to quantify the proportions of each constituent in the material. A Setaram type TGA - 92-1750 type device is used for a double measurement of each sample. The protocol is as follows: approximately 10 mg of monolith are finely ground, weighed and placed in the balance of the apparatus. The whole is placed in the oven and placed under a flow of synthetic air of 1 10 mL.min-l of quality F. LD. The oven initially at 40 ° C is heated to 1500 ° C with a ramp of 50 ° C. min-l. After 10 minutes at 1500 ° C, the temperature is reduced to ambient at a speed of -90 ° C. min 1 .
La figure 14 montre l’ATG de l’exemple 6. A partir des pertes de matiĂšre Ă  diffĂ©rentes tempĂ©rature (H20, ChaĂźnes aminopropyle, CA), il est possible de dĂ©duire la masse du CA et du silicate dont les proportions sont de 85,4 et 14,6 % respectivement pour le CA et la silice fonctionnalisĂ©e. La figure 19 montre l’ATG du matĂ©riau de l’exemple 22. FIG. 14 shows the ATG of Example 6. From the losses of material at different temperatures (H2O, Aminopropyl chains, CA), it is possible to deduce the mass of the CA and of the silicate whose proportions are 85, 4 and 14.6% respectively for turnover and functionalized silica. Figure 19 shows the ATG of the material of Example 22.
Un exemple d’utilisation de l’exemple 4 est montrĂ© pour la rĂ©tention du toluĂšne. Une courbe de perçage du matĂ©riau a Ă©tĂ© rĂ©alisĂ©e (Figure 15). A cet effet, une seringue de 10 mL, munie de 2 embouts, est remplie avec 100 mg de l’exemple 4, puis est exposĂ© Ă  un flux de 350 mL/min d’un mĂ©lange gazeux (N2 + toluĂšne) contenant 1 ppm (3,77 mg/m3) de toluĂšne. La teneur de toluĂšne en amont de la seringue est mesurĂ©e et celle en ava1 est suivie au cours du temps. La mesure de la teneur de toluĂšne est rĂ©alisĂ©e avec un dĂ©tecteur PID, ppbRAE An example of use of Example 4 is shown for the retention of toluene. A drilling curve for the material was made (Figure 15). For this purpose, a 10 mL syringe, fitted with 2 tips, is filled with 100 mg of Example 4, then is exposed to a flow of 350 mL / min of a gas mixture (N2 + toluene) containing 1 ppm. (3.77 mg / m3) of toluene. The toluene content upstream of the syringe is measured and that of ava1 is followed over time. The measurement of the toluene content is carried out with a PID detector, ppbRAE
La courbe de perçage, montrĂ©e, ci-dessous, indique que les nanoparticules seules ne retiennent que trĂšs peu le toluĂšne. En effet, des traces de ce dernier sont observĂ©es dĂšs les premiĂšres minutes de l’expĂ©rience et la concentration de bases de toluĂšne est retrouvĂ©e en sortie de seringues aprĂšs 19b. The piercing curve, shown below, indicates that the nanoparticles alone retain very little toluene. Indeed, traces of the latter are observed from the first minutes of the experiment and the concentration of toluene bases is found at the outlet of syringes after 19b.
Dans le cas du Charbon Actif seul (Figure 16), celui-ci adsorbe complĂštement le toluĂšne pendant 83h avant de le laisser passer graduellement. Ce n’est qu’ aprĂšs 151 h que l’on observe la mĂȘme concentration de toluĂšne en sortie qu’en entrĂ©e de la seringue. Enfin, dans le cas de l’exemple 4 (Figure 17), on constate sur la courbe de perçage que l’apparition du toluĂšne en sortie de seringue n’intervient qu’ aprĂšs 123h et que la concentration d’origine de toluĂšne n’est retrouvĂ©e qu’aprĂšs 178h. Ce rĂ©sultat dĂ©montre que nos matĂ©riaux ont un pouvoir adsorbant bien plus important que le charbon actif seul et ont une utilitĂ© dans de possibles applications en tant que filtre Ă  air. La figure 18 permet de comparer les efficacitĂ©s de piĂ©geage du toluĂšne des diffĂ©rents matĂ©riaux. In the case of Activated Carbon alone (Figure 16), it completely adsorbs toluene for 83 hours before allowing it to pass gradually. It is only after 151 h that the same concentration of toluene is observed at the outlet as at the inlet of the syringe. Finally, in the case of Example 4 (FIG. 17), it can be seen on the piercing curve that the appearance of toluene at the outlet of the syringe only occurs after 123 hours and that the original concentration of toluene does not is found only after 178h. This result shows that our materials have a much higher adsorption capacity than activated carbon alone and are useful in possible applications as an air filter. FIG. 18 makes it possible to compare the trapping efficiencies of toluene of the different materials.
Exemple d'application 2 : Adsorption de l’hexaldĂ©hyde par les matĂ©riaux sous Application example 2: Adsorption of hexaldehyde by materials under
Une comparaison de l’efficacitĂ© des matĂ©riaux composites hybrides avec celles du charbon actif NORIT W35 et des matrices de silicate fonctionnalisĂ©es (S1O2-NH2, exemple 18, matĂ©riau hybride et silice sol-gel seule est rĂ©alisĂ©e avec un monopolluant, l’hexaldĂ©hyde. Ce composĂ© est prĂ©sent Ă  la fois dans l’air intĂ©rieur (Ă©mission de meubles en pin) et abondamment Ă©mis lors de la dĂ©composition de l’huile surchauffĂ©e des fritures. La capacitĂ© d’ adsorption des matĂ©riaux exposĂ©s Ă  un flux calibrĂ© de l’hexaldĂ©hyde a Ă©tĂ© dĂ©terminĂ©e avec nr Ă©tablissement des couvres de perçage. A comparison of the effectiveness of hybrid composite materials with those of NORIT W35 active carbon and of functionalized silicate matrices (S1O2-NH2, example 18, hybrid material and sol-gel silica alone is carried out with a monopollutant, hexaldehyde. compound is present both in indoor air (emission of pine furniture) and abundantly emitted during the decomposition of the superheated oil of fried foods. The adsorption capacity of materials exposed to a calibrated flow of hexaldehyde has was determined with our establishment of drilling covers.
Le dispositif utilisĂ© pour l’établissement de courbe de perçage est montrĂ©e dans la Figure 20. La gĂ©nĂ©ration de mĂ©lange gazeux calibrĂ© est obtenue en balayant la phase vapeur de l’hexanal 1 pur contenu dans un flacon laveur 1 maintenu Ă  -40°€ Ă  l’aide d’un bain Ă©thanolique 2. A cette tempĂ©rature, le mĂ©lange gazeux contient 25 ppm d’hexaldĂ©hyde (102 mg/nf) Un filtre 3 constituĂ© d’une seringue de 6 L munie de 2 embouts remplie de 50 mg du matĂ©riau Ă  tester est exposĂ© au flux de mĂ©lange gazeux. Le charbon actif NORIT W35 Ă©tant sous forme de poudre micromĂ©trique, les matrices de silicate fonctionnalisĂ©es et les matĂ©riaux hybrides ont Ă©tĂ© Ă©galement broyĂ©es en poudre micromĂ©trique. La teneur de PhexaldĂ©hyde en amont de la seringue est mesurĂ©e et celle en aval est suivie au cours du temps. La mesure de la teneur de l’hexaldĂ©hyde est rĂ©alisĂ©e avec un dĂ©tecteur PID, ppbRAE 4. The device used for establishing the drilling curve is shown in Figure 20. The generation of calibrated gas mixture is obtained by scanning the vapor phase of pure hexanal 1 contained in a washing bottle 1 maintained at -40 ° € using an ethanolic bath 2. At this temperature, the gas mixture contains 25 ppm of hexaldehyde (102 mg / nf) A filter 3 consisting of a 6 L syringe fitted with 2 tips filled with 50 mg of the material to be tested is exposed to the flow of gas mixture. NORIT W35 activated carbon being in the form of micrometric powder, the functionalized silicate matrices and the hybrid materials were also ground into micrometric powder. The content of hexaldehyde upstream of the syringe is measured and that downstream is monitored over time. The measurement of the hexaldehyde content is carried out with a PID detector, ppbRAE 4.
Le rapport ([Hexaldéhyde]amont-[hexaldéhyde]aval)* 100/[hexaldéhyde]amont permet de déduire la quantité piégée par le matériau (Figure 21). The ratio ([Hexaldehyde] upstream- [hexaldehyde] downstream) * 100 / [hexaldehyde] upstream makes it possible to deduce the quantity trapped by the material (Figure 21).
Le matĂ©riau de silice fonctionnalisĂ©e avec des groupements amines (SiCb-NLb) montre une faible efficacitĂ© assez semblable Ă  celle du charbon actif sur les longues durĂ©es (Figure 21). Le matĂ©riau hybride fonctionnalisĂ© par des groupements amines (exemple 18), qui combine la capacitĂ© d’adsorption du charbon actif et la capacitĂ© d’adsorption irrĂ©versible de la silice fonctionnalisĂ©e, est le plus performant. The silica material functionalized with amine groups (SiCb-NLb) shows a low efficiency quite similar to that of activated carbon over long periods (Figure 21). The hybrid material functionalized with amine groups (Example 18), which combines the adsorption capacity of activated carbon and the irreversible adsorption capacity of functionalized silica, is the most effective.
Exemple d’application 3 : Adsorption de i’hexaldĂ©hyde par les matĂ©riaux de forme cylindrique Application example 3: Adsorption of hexaldehyde by cylindrical materials
L’effet de la forme des matĂ©riaux sur la capacitĂ© de piĂ©geage de l’hexaldĂ©hyde est Ă©tudiĂ©. Les matĂ©riaux sont sous forme de bĂątonnets cylindriques. La capacitĂ© d’adsorption des matĂ©riaux a Ă©tĂ© dĂ©terminĂ©e pour l’hexaldĂ©hyde avec le dispositif de la figue 20. A cet effet, une seringue de 6 mL, munie de 2 embouts est remplie avec 1g de matĂ©riau puis est exposĂ©e Ă  un flux de 300 mL/min d’un mĂ©lange gazeux (N2+h exaldĂ©hyde) contenant 25 ppm (102 mg/m3) d’bexaldĂ©hyde. La teneur de l’hexaldĂ©hyde en amont de la seringue est mesurĂ©e et celle en avala est suivie au cours du temps. La mesure de la teneur de l’hexaldĂ©hyde est rĂ©alisĂ©e avec un dĂ©tecteur PII), ppbRAE Le rapport {[HexaldĂ©hydejamont— [hexaldĂ©hyde]aval) * 100 /[hexaldĂ©hyde]amont permet de dĂ©duire la quantitĂ© piĂ©gĂ©e par le matĂ©riau (Figure 22). Les matĂ©riaux testĂ©s sont listĂ©s dans le Tableau 2 ci-dessous : The effect of the shape of materials on the trapping capacity of hexaldehyde is studied. The materials are in the form of cylindrical rods. The adsorption capacity of the materials was determined for hexaldehyde with the device of fig. 20. For this purpose, a 6 mL syringe, fitted with 2 tips, is filled with 1 g of material and then exposed to a flow of 300 mL / min of a gas mixture (N2 + h exaldehyde) containing 25 ppm (102 mg / m3) of bexaldehyde. The content of hexaldehyde upstream of the syringe is measured and that downstream is monitored over time. The measurement of the hexaldehyde content is carried out with a PII detector), ppbRAE The ratio {[Hexaldehydejamont— [hexaldehyde] downstream) * 100 / [hexaldehyde] upstream makes it possible to deduce the quantity trapped by the material (Figure 22). The materials tested are listed in Table 2 below:
Le matĂ©riau de silice seul fonctionnalisĂ© avec des groupements amines prĂ©sente une adsorption nettement moins efficace que le charbon actif seul et les matĂ©riaux hybrides (Figure 22). Les exemples 18 et 18p prĂ©sentent une adsorption d’hexaldĂ©hyde plus efficace que le charbon actif NORIT RBBAA-3 mĂȘme si les granulĂ©es de charbon actif sont plus petits. De cette Ă©tude, il apparaĂźt que la taille des matĂ©riaux influe sur le piĂ©geage de polluant. Plus la taille des bĂątonnets est petite, plus le filtre sera dense avec une augmentation de la tortuositĂ© du parcours du flux gazeux qui favorise le piĂ©geage du polluant. The silica material alone functionalized with amine groups has a much less efficient adsorption than activated carbon alone and hybrid materials (Figure 22). Examples 18 and 18p show a more efficient adsorption of hexaldehyde than NORIT RBBAA-3 activated carbon even if the granules of activated carbon are smaller. From this study, it appears that the size of the materials influences the trapping of pollutant. The smaller the size of the sticks, the denser the filter will be, with an increase in the tortuosity of the path of the gas flow which promotes the trapping of the pollutant.
L’effet d’une diminution de la proportion de charbon actif a Ă©tĂ© Ă©tudiĂ© pour le filtre comportant 5% d’APTES. La capacitĂ© d’ adsorption des matĂ©riaux a Ă©tĂ© dĂ©terminĂ©e Ă  partir de leur exposition Ă  un flux calibrĂ© d’hexaldĂ©hyde. A cet effet, une seringue de 6 mL, munie de 2 embouts est remplie avec 1g de matĂ©riau en bĂątonnet, puis est exposĂ© Ă  un flux de 300 mL/min d’un mĂ©lange gazeux (N2+hexaldĂ©hyde) contenant 25 ppm (102 mg/nf ) d’hexaldĂ©hyde. La teneur d’hexaldĂ©hyde en amont de la seringue est mesurĂ©e et celle en aval est suivie au cours du temps. La mesure de la teneur d’hexaldĂ©hyde est rĂ©alisĂ©e avec un dĂ©tecteur PIB, ppbRAE. Le rapport ([HexaldĂ©hyde] amont -- \hexaldĂ©hyde\aval ) * 100 /[hexaldĂ©hy de] amont permet de dĂ©duire la quantitĂ© piĂ©gĂ©e par le matĂ©riau (Figure 23). The effect of a decrease in the proportion of activated carbon has been studied for the filter comprising 5% of APTES. The adsorption capacity of the materials was determined from their exposure to a calibrated flow of hexaldehyde. For this purpose, a 6 mL syringe, fitted with 2 tips, is filled with 1 g of stick material, then is exposed to a flow of 300 mL / min of a gaseous mixture (N2 + hexaldehyde) containing 25 ppm (102 mg / nf) of hexaldehyde. The content of hexaldehyde upstream of the syringe is measured and that downstream is monitored over time. The measurement of the hexaldehyde content is carried out with a PIB detector, ppbRAE. The upstream ([Hexaldehyde] - \ hexaldehyde \ downstream) * 100 / [upstream hexaldehyde] ratio allows the quantity trapped by the material to be deduced (Figure 23).
Les matériaux testés sont listés dans le Tableau 3 ci-dessous : Tableau 3 The materials tested are listed in Table 3 below: Table 3
L’augmentation de la proportion de charbon actif de 148,4 Ă  222,6 g/L amĂ©liore la performance du filtre. La quantitĂ© optimale de CA W35 dans le sol est 222,6 g/L (Figure 23). Exemple d'application 5 : Adsorption de l’hexaldĂ©hyde par les matĂ©riaux hybrides fonctionnalisĂ©s par des groupements amines primaires se diffĂ©renciant par la proportion d’amine primaire (APTES)  Increasing the proportion of activated carbon from 148.4 to 222.6 g / L improves the performance of the filter. The optimal amount of CA W35 in the soil is 222.6 g / L (Figure 23). Application example 5: Adsorption of hexaldehyde by hybrid materials functionalized by primary amine groups differentiated by the proportion of primary amine (APTES)
L'effet de la proportion des prĂ©curseurs de silicium fonctionnalisĂ© avec des groupements amine primaire (APTES) a Ă©tĂ© Ă©tudiĂ©. La capacitĂ© d’ adsorption des matĂ©riaux a Ă©tĂ© dĂ©terminĂ©e Ă  partir de leur exposition Ă  un flux calibrĂ© de l’hexaldĂ©hyde. A cet effet, une seringue de 6 mL, munie de 2 embouts est remplie avec 1g de matĂ©riau puis est exposĂ©e Ă  un flux de 300 mL/min d’un mĂ©lange gazeux (N2+hexaldĂ©byde) contenant 25 ppm (102 mg/m3) d’hexaldĂ©hyde. La teneur d’hexaldĂ©hyde en amont de la seringue est mesurĂ©e et celle en aval est suivie au cours du temps. La mesure de la teneur d’hexaldĂ©hyde est rĂ©alisĂ©e avec un dĂ©tecteur PIB, ppbRAE. Le rapport ({H ex aldĂ©hyde] amont— [hexaldĂ©hydĂ©\avaĂŻ) * 100 /[hexaldĂ©hydejamont permet de dĂ©duire la quantitĂ© piĂ©gĂ©e par le matĂ©riau (Figure 24). The effect of the proportion of silicon precursors functionalized with primary amine groups (APTES) has been studied. The adsorption capacity of the materials was determined from their exposure to a calibrated flow of hexaldehyde. For this purpose, a 6 mL syringe, fitted with 2 tips, is filled with 1 g of material and then exposed to a flow of 300 mL / min of a gaseous mixture (N2 + hexaldebyde) containing 25 ppm (102 mg / m 3 ) of hexaldehyde. The content of hexaldehyde upstream of the syringe is measured and that downstream is monitored over time. The measurement of the hexaldehyde content is carried out with a PIB detector, ppbRAE. The upstream ratio ({H ex aldehyde ]— [hexaldehyde \ avai) * 100 / [hexaldehydejamont makes it possible to deduce the quantity trapped by the material (Figure 24).
Les matériaux testés sont listés dans le Tableau 4 ci-dessous : The materials tested are listed in Table 4 below:
Tableau 4 Table 4
Pour cet exemple d’application, on constate que le pourcentage de prĂ©curseur de silice fonctionnalisĂ© par des groupements amine (APTES) a un impact sur la capacitĂ© d’adsorption. Les rĂ©sultats indiquent que plus la proportion des groupements amines augmente plus la capacitĂ© de piĂ©geage de l’hexanal diminue. Ce phĂ©nomĂšne est dĂ» probablement Ă  l’augmentation de la basicitĂ© intrinsĂšque du matĂ©riau qui dĂ©favorise la rĂ©action entre les amines et Fhexanaf. En effet, la rĂ©action entre amines et aldĂ©hydes est favorisĂ©e en milieu acide. Le pourcentage optimisĂ© de prĂ©curseur silice fonctionnalisĂ© avec des groupements amine (APTES) est 5% pour le piĂ©geage d’un aldĂ©hyde. For this example of application, it can be seen that the percentage of silica precursor functionalized by amine groups (APTES) has an impact on the adsorption capacity. The results indicate that the more the proportion of the amino groups increases the more the trapping capacity of the hexanal decreases. This phenomenon is probably due to the increase in the intrinsic basicity of the material which disadvantages the reaction between the amines and Fhexanaf. Indeed, the reaction between amines and aldehydes is favored in an acid medium. The optimized percentage of silica precursor functionalized with amine groups (APTES) is 5% for the trapping of an aldehyde.
Exemple d'application 6 : Adsorption de l’hexaldĂ©hyde par les matĂ©riaux hybrides fonctionnalisĂ©s par des groupements amines primaires (APTES) et avec des Application example 6: Adsorption of hexaldehyde by hybrid materials functionalized with primary amine groups (APTES) and with
L’effet de la nature de prĂ©curseur siiicĂ© aminĂ© a Ă©tĂ© Ă©tudiĂ© pour le filtre comportant 5% d’APTES et 5% de TMPED. La capacitĂ© d’adsorption des matĂ©riaux a Ă©tĂ© dĂ©terminĂ©e Ă  partir de leur exposition Ă  un flux calibrĂ© d’hexaldĂ©hyde. A cet effet, une seringue de 6 mL, munie de 2 embouts est remplie avec l g de matĂ©riau puis est exposĂ©e Ă  un flux de 300 mL/min d’un mĂ©lange gazeux (N2+hexaldĂ©hyde) contenant 25 ppm (102 mg/nr) d’hexaldĂ©hyde. La teneur d’hexaldĂ©hyde en amont de la seringue est mesurĂ©e et celle en aval est suivie au cours du temps. La mesure de la teneur d’hexaldĂ©hyde est rĂ©alisĂ©e avec un dĂ©tecteur PIB, ppbRAE. Le rapport ([hexaldĂ©hydejamont- [hexaldĂ©hyde]avar)* 100/[hexaldĂ©hyde]amont permet de dĂ©duire la quantitĂ© piĂ©gĂ©e par le matĂ©riau (Figure 25). The effect of the nature of amino precursor was studied for the filter comprising 5% of APTES and 5% of TMPED. The adsorption capacity of the materials was determined from their exposure to a calibrated flow of hexaldehyde. For this purpose, a 6 mL syringe, fitted with 2 tips, is filled with lg of material and then is exposed to a flow of 300 mL / min of a gaseous mixture (N2 + hexaldehyde) containing 25 ppm (102 mg / nr) of hexaldehyde. The content of hexaldehyde upstream of the syringe is measured and that downstream is monitored over time. The measurement of the hexaldehyde content is carried out with a PIB detector, ppbRAE. The ratio ([hexaldehydejamont- [hexaldehyde] avar) * 100 / [hexaldehyde] upstream makes it possible to deduce the quantity trapped by the material (Figure 25).
Les matériaux testés sont listés dans le Tableau 5 ci-dessous : The materials tested are listed in Table 5 below:
Comme attendu, l’exemple 18 prĂ©sente une capacitĂ© d’adsorption plus efficace que l’exemple 22 car la basicitĂ© intrinsĂšque de la matrice de l’exemple 18 est moins importante. Exemple d'application 7 : Adsorption de l’acĂ©taldĂ©hyde, de l’acĂ©tone et de l’E-2- heptenal par le matĂ©riau hybride fonctionnalitĂ© par des groupements amines (Exemple 18) As expected, Example 18 has a more efficient adsorption capacity than Example 22 because the intrinsic basicity of the matrix of Example 18 is less important. Application example 7: Adsorption of acetaldehyde, acetone and E-2-heptenal by the functional hybrid material with amine groups (Example 18)
Un exemple d’utilisation de l’exemple 18p est montrĂ© pour la rĂ©tention de l’acĂ©taldĂ©hyde, de l’acĂ©tone et de GE-2-heptenaL La capacitĂ© d’ adsorption des matĂ©riaux a Ă©tĂ© dĂ©terminĂ©e Ă  partir de leur exposition Ă  un flux calibrĂ© d’un polluant A cet effet, une seringue de 6 mL, munie de 2 embouts est remplie avec Ig de granulĂ©s de l’exemple 18p, puis est exposĂ©e Ă  un flux de 300 mL/min d’un mĂ©lange gazeux (N2+hex aldĂ©hyde) contenant 20 ppm d’E-2-heptcnal, soit 75 ppm d’acĂ©tone ou 3 ppm d’acĂ©taldĂ©hyde. La teneur de pollaunt en amont de la seringue est mesurĂ©e et celle en aval est suivie au cours du temps. La mesure de la teneur d’hexaldĂ©hyde est rĂ©alisĂ©e avec un dĂ©tecteur PIB, ppbRAE. Le rapport ([polluant]amont-[polluant]aval)* 100/[polluant]amont permet de dĂ©duire la quantitĂ© piĂ©gĂ©e par le matĂ©riau (Figure 26). An example of use of example 18p is shown for the retention of acetaldehyde, acetone and GE-2-heptenaL The adsorption capacity of the materials was determined from their exposure to a calibrated flux. of a pollutant For this purpose, a 6 mL syringe, fitted with 2 tips is filled with Ig of granules from Example 18p, then is exposed to a flow of 300 mL / min of a gaseous mixture (N2 + hex aldehyde) containing 20 ppm E-2-heptcnal, i.e. 75 ppm acetone or 3 ppm acetaldehyde. The pollaunt content upstream of the syringe is measured and that downstream is monitored over time. The measurement of the hexaldehyde content is carried out with a PIB detector, ppbRAE. The ratio ([pollutant] upstream- [pollutant] downstream) * 100 / [pollutant] upstream makes it possible to deduce the quantity trapped by the material (Figure 26).
Le matĂ©riau de l’exemple 18p piĂšge trĂšs bien P eptenal, mais un peu moins l’acĂ©tone et l’acĂ©taldĂ©hyde qui sont de petite taille. Les taux de piĂ©geage de l’acĂ©tone et de l’acĂ©taldĂ©hyde restent malgrĂ© tout toujours importants aprĂšs 5h d’exposition (>80%). The material of example 18p traps P eptenal very well, but slightly less acetone and acetaldehyde which are small. The trapping rates of acetone and acetaldehyde still remain high after 5 hours of exposure (> 80%).
Exemple d'application 8 : Test pour piĂ©ger des COVs totaux issus de 1’ (oxydation de P huile par les diffĂ©rents filtres (odeurs de friture) Application example 8: Test to trap total VOCs from 1 ’(oxidation of P oil by different filters (frying odors)
Des centaines de composĂ©s volatils sont gĂ©nĂ©rĂ©s par l’oxydation de l’huile utilisĂ©e comme vecteur de chaleur pour cuire des aliments. L’oxydation conduit Ă  la formation dans un premier temps de produits primaires trĂšs instables (hydroperoxydes, radicaux libres, diĂšnes conjuguĂ©s) et rapidement dĂ©composĂ©s en produits secondaires (aldĂ©hydes, cĂ©tones, alcools, acides, etc...). Hundreds of volatile compounds are generated by the oxidation of oil used as a heat carrier for cooking food. Oxidation leads to the formation, at first, of very unstable primary products (hydroperoxides, free radicals, conjugated dienes) and rapidly broken down into secondary products (aldehydes, ketones, alcohols, acids, etc.).
Le dispositif utilisĂ© pour la cuisson d’huile et la rĂ©cupĂ©ration des composĂ©s organiques volatils totaux (VOC) est montrĂ© de façon schĂ©matique dans la Figure 27. Il s’agit d’un autocuiseur 11 fonctionnant sur une plaque Ă  induction 12 avec un couvercle Ă©tanche comportant une entrĂ©e d’air 13 et une ouverture centrale 14 de 1 1 cm de diamĂštre sur laquelle repose un entonnoir 15 de 15 cm de diamĂštre. L’entrĂ©e d’air permet de balayer Ă  500 mL/min l’espace de tĂȘte afin de rĂ©cupĂ©rer les COVs pour les mesurer. Les COVs sont collectĂ©s Ă  l’aide de l’entonnoir et le mĂ©lange gazeux est diluĂ© avec de l’air sec (1 L/min) avant d’ĂȘtre entraĂźnĂ© vers un ballon tricol 16 de 500 ml. Le mĂ©lange gazeux est tirĂ© Ă  1 ,5 mL/min Ă  l’aide d’une pompe pĂ©ristaltique 17 afin d‘homogĂ©nĂ©iser l’atmosphĂšre dans le ballon. La mesure des COVs est rĂ©alisĂ©e avec un dĂ©tecteur Ă  photoionisation (P1D) 18 dont la tĂȘte est maintenue dans le ballon. Dans cette Ă©tude, 2 litres d’huile de tournesol pour friture ont Ă©tĂ© chauffes en continu Ă  ! 80°C pendant 4h. Le compartiment filtre 19 est rempli avec 30g de matĂ©riau‘exemple 18p ou charbon actif NORIT RBAA-3) ou avec un filtre commercial (mousse imprĂ©gnĂ© de charbon actif, RĂ©f. : SEB-SS984689). La teneur de COVs totaux en aval du filtre est suivie au cours du temps Ă  l’aide du dĂ©tecteur PID, ppbRAE The device used for cooking oil and recovering total volatile organic compounds (VOC) is shown schematically in Figure 27. It is a pressure cooker 11 operating on an induction hob 12 with a tight cover comprising an air inlet 13 and a central opening 14 of 1 1 cm in diameter on which rests a funnel 15 of 15 cm in diameter. The air inlet allows sweeping to 500 mL / min the headspace in order to recover the VOCs for measurement. The VOCs are collected using the funnel and the gas mixture is diluted with dry air (1 L / min) before being drawn into a three-necked flask 16 of 500 ml. The gas mixture is drawn out at 1.5 ml / min using a peristaltic pump 17 in order to homogenize the atmosphere in the flask. The measurement of VOCs is carried out with a photoionization detector (P1D) 18 whose head is held in the flask. In this study, 2 liters of sunflower oil for frying were continuously heated to! 80 ° C for 4h. The filter compartment 19 is filled with 30 g of material (example 18 p or NORIT RBAA-3 active carbon) or with a commercial filter (foam impregnated with active carbon, Ref .: SEB-SS984689). The content of total VOCs downstream of the filter is monitored over time using the PID detector, ppbRAE
La figure 28 montre les performances comparĂ©es des divers filtres au cours de la cuisson d’huile. Le filtre commercial ne retient que trĂšs peu les COVs totaux. L’adsorption des COVs totaux par le charbon actif NORIT RBAA-3 est Ă©galement moins efficace que le matĂ©riau composite hydride mĂȘme si ces deux matĂ©riaux prĂ©sentent une adsorption similaire dans le cas de l’étude de l’adoption de monopolluant. Figure 28 shows the comparative performance of the various filters during oil cooking. The commercial filter retains very little total VOCs. The adsorption of total VOCs by NORIT RBAA-3 activated carbon is also less effective than the hydride composite material even if these two materials exhibit similar adsorption in the case of the study of the monopollutant adoption.
Exemple d'application 9 : Tests pour piĂ©ger des COVs totaux issus de F oxydation de l’huile par les matĂ©riaux hybrides fonctionnalisĂ©s (exemple 18p et 24p) se diffĂ©renciant par la natnre du charbon actif ou par ia fonctĂźonnalisatĂźou de la matrice (exemples 18p et 22p) Application example 9: Tests for trapping total VOCs from the oxidation of oil by functionalized hybrid materials (example 18p and 24p) differentiating by the nature of activated carbon or by the functionalization of the matrix (examples 18p and 22p)
La Figure 29 montre les performances comparĂ©es des divers filtres an cours de la cuisson d’huile. Dans cette Ă©tude, 2 litres d’huile de tournesol pour friture ont Ă©tĂ© chauffĂ©s en continu pendant 4h Ă  180°C. Le compartiment filtre est rempli avec 30g de matĂ©riau (exemples 18p, 22p et 24p). Le dispositif montrĂ© dans la Figure 27 est utilisĂ© pour la collecte des COVs totaux en aval des divers filtres. Figure 29 shows the comparative performance of the various filters during oil cooking. In this study, 2 liters of sunflower oil for frying were continuously heated for 4 hours at 180 ° C. The filter compartment is filled with 30g of material (examples 18p, 22p and 24p). The device shown in Figure 27 is used for the collection of total VOCs downstream of the various filters.
Contrairement Ă  la Figure 25 oĂč l’efficacitĂ© du matĂ©riau de l’exemple 18p est meilleure que celle de l’exemple 22p pour un monopolluant hexaldĂ©hyde, on observe pour les COVs totaux provenant de la cuisson d’huile une meilleure efficacitĂ© du matĂ©riau de l’exemple 22p. Notons que ces efficacitĂ©s correspondent Ă  95% et 94% de piĂ©geage des COVS totaux (environ 1300 ppm en amont) et demeurent Ă©levĂ©es aprĂšs 4h de cuisson. Le remplacement du charbon actif NGR1T W35 par le DARCO K B·· G induit une lĂ©gĂšre diminution de l’efficacitĂ© de piĂ©geage au temps long qui reste Ă©gal Ă  91%. Contrary to FIG. 25 where the efficiency of the material of example 18p is better than that of example 22p for a hexaldehyde monopollutant, a better efficiency of the material of l is observed for the total VOCs coming from the cooking of oil. 'example 22p. Note that these efficiencies correspond to 95% and 94% of trapping of Total VOCs (around 1300 ppm upstream) and remain high after 4 hours of cooking. The replacement of the activated carbon NGR1T W35 by the DARCO KB ·· G induces a slight reduction in the trapping efficiency over a long time which remains equal to 91%.
Exemple d' application 10 : Couvercle de friteuse Les friteuses sont des appareils de cuisson alimentaire générant lors de leur fonctionnement des odeurs de fritures désagréables. Application example 10: Fryer cover Fryers are food cooking devices which generate unpleasant frying odors during operation.
La Demanderesse a dĂ©veloppĂ© un couvercle anti-odeur permettant de limiter et/ou d’éviter l’échappement d’odeurs de friture de friteuse. Deux modes de rĂ©alisations sont prĂ©sentĂ©es Figures 3QA & 30B, et 31A & 31 B. Pour cela, la Demanderesse a intĂ©grĂ© l’un des matĂ©riaux de l’invention comprenant des particules cƓur-coquille avec un cƓur de charbon actif enrobĂ© d’une couche de silice sol- gel fonctionnalisĂ© ou non, dans une cartouche filtrante. Celle-ci est disposĂ©e dans le logement 121 de la paroi infĂ©rieure 12 du couvercle 1 de sorte que lors de la cuisson, les vapeurs de friture sont piĂ©gĂ©es dans les nanoparticules cƓur-coquille de G invention. The Applicant has developed an anti-odor cover making it possible to limit and / or avoid the escape of odors from deep-frying frying. Two embodiments are presented in Figures 3QA & 30B, and 31A & 31 B. For this, the Applicant has integrated one of the materials of the invention comprising core-shell particles with an activated carbon core coated with a layer of silica sol-gel, functionalized or not, in a filter cartridge. The latter is arranged in the housing 121 of the lower wall 12 of the cover 1 so that during cooking, the frying vapors are trapped in the core-shell nanoparticles of G invention.

Claims

1. Couvercle anti-odeur (100) comprenant une paroi supĂ©rieure (110) et une paroi infĂ©rieure (120) caractĂ©risĂ© en ce qu’il comprend un matĂ©riau filtrant (200) incluant des particules cƓur-coquille comprenant ou Ă©tant constituĂ©es d’un cƓur de charbon actif entourĂ© d’une coquille de silice sol-gel, de prĂ©fĂ©rence mĂ©soporeuse. 1. Anti-odor cover (100) comprising an upper wall (110) and a lower wall (120) characterized in that it comprises a filtering material (200) including core-shell particles comprising or consisting of a core of activated carbon surrounded by a shell of sol-gel silica, preferably mesoporous.
2, Couvercle anti-odeur (100) selon la revendication 1, caractĂ©risĂ© en ce qu’il a une forme adaptĂ©e Ă  la fermeture d’un appareil de cuisson, ladite paroi infĂ©rieure (120) Ă©tant dirigĂ©e vers l’intĂ©rieur de l’appareil de cuisson. 2, anti-odor cover (100) according to claim 1, characterized in that it has a shape adapted to the closure of a cooking appliance, said bottom wall (120) being directed towards the interior of the appliance. Cooking.
3, Couvercle anti-odeur (100) selon la revendication 1 ou la revendication 2, caractérisé en ce que la paroi inférieure (120) comprend un logement (121) apte à recevoir le matériau filtrant (200) ou un systÚme de filtration comprenant ledit matériau filtrant (200), tel que par exemple une cartouche filtrante. 3, anti-odor cover (100) according to claim 1 or claim 2, characterized in that the lower wall (120) comprises a housing (121) capable of receiving the filter material (200) or a filtration system comprising said filter material (200), such as for example a filter cartridge.
4, Couvercle anti-odeur (100) selon la revendication 3, caractérisé en ce que le logement (121) est agencé entre la paroi supérieure (110) et la paroi inférieure4, anti-odor cover (100) according to claim 3, characterized in that the housing (121) is arranged between the upper wall (110) and the lower wall
(120). (120).
5. Couvercle anti-odeur (100) selon la revendication 3 ou la revendication 4, caractĂ©risĂ© en ce que le logement (121) comprend le matĂ©riau filtrant (200) du cĂŽtĂ© de la paroi infĂ©rieure (120) et comprend au moins une ouverture d’échappement (111 ) du cĂŽtĂ© de la paroi supĂ©rieure (110), afin de permettre le passage d’un flux de vapeur Ă  travers le couvercle anti-odeur (100). 5. Anti-odor cover (100) according to claim 3 or claim 4, characterized in that the housing (121) comprises the filter material (200) on the side of the bottom wall (120) and comprises at least one opening d exhaust (111) on the side of the upper wall (110), in order to allow the passage of a flow of vapor through the odor cover (100).
6. Couvercle anti-odeur (100) comprenant une paroi supĂ©rieure (110) et une paroi infĂ©rieure (120) caractĂ©risĂ© en ce que la paroi infĂ©rieure (120) comprend un matĂ©riau filtrant (200) comprenant des particules cƓur-coquille constituĂ©es d’un cƓur de charbon actif entourĂ© d’une coquille de silice sol-gel mĂ©soporeuse. 6. Anti-odor cover (100) comprising an upper wall (110) and a lower wall (120) characterized in that the lower wall (120) comprises a filter material (200) comprising core-shell particles made up of a activated carbon core surrounded by a mesoporous sol-gel silica shell.
7. Couvercle anti-odeur (100) selon l’une quelconque des revendications 1 Ă  6, dans lequel les particules cƓur-coquille sont sphĂ©riques et prĂ©sentent un diamĂštre de 20 Ă  400 nm. 7. Anti-odor cover (100) according to any one of claims 1 to 6, in which the core-shell particles are spherical and have a diameter of 20 to 400 nm.
8. Couvercle anti-odeur (100) selon l’une quelconque des revendications 1 Ă  7, dans lequel la coquille de silice sol-gel mĂ©soporeuse comprend un siloxane fomiĂ© Ă  partir d’au moins un prĂ©curseur organosiiicĂ© choisi parmi le tĂ©tramĂ©thoxysilane (TMIOS), le tĂ©traĂ©thoxysilane (TEOS), le phĂ©nyltrimĂ©thoxysilane (PhTMOS), le phĂ©nyltriĂ©thoxysilane (PhTEOS), le (2~phĂ©nyiĂ©thyi)triĂ©thoxysilane, le 3- aminopropyltriĂ©thoxysilane (APTES), le (3-glycidyloxypropyl)trimĂ©thoxysilane (GPTMOS), le (3-glycidyloxypropyl)triĂ©thyoxysilane (GPTE8), la N~(2- aminoĂ©thyl)-3-(trimĂ©thoxysilyl)propylamine (NH2-TMOS), le N- (trimĂ©thoxysilylpropyl)Ă©thylĂšnediamiiietriacĂ©tate, 1’ acĂ©toxy Ă©thy ItrimĂ©thoxy silane (AETMS), l’urĂ©idopropyltriĂ©thoxysilane (UPTS), le 3-(4- semicarbazidyl)propyltriĂ©thoxysilane (SCPTS) et leurs mĂ©langes ; de prĂ©fĂ©rence le prĂ©curseur organosiliciĂ© est du tĂ©tramĂ©thoxysilane ou du tĂ©traĂ©thoxysilane. 8. Anti-odor cover (100) according to any one of claims 1 to 7, in which the mesoporous sol-gel silica shell comprises a siloxane formed from at least one organosilic precursor chosen from tetramethoxysilane (TMIOS) , tetraethoxysilane (TEOS), phenyltrimethoxysilane (PhTMOS), phenyltriethoxysilane (PhTEOS), (2 ~ phenyiethyi) triethoxysilane, 3- aminopropyltriethoxysilane (APTES), (3-glycidyloxypropyl) trimethox glycidyloxypropyl) triethyoxysilane (GPTE8), N ~ (2-aminoethyl) -3- (trimethoxysilyl) propylamine (NH2-TMOS), N- (trimethoxysilylpropyl) ethylenediamiiietriacetate, acetoxy ethyl Itrimethoxy silane (AETMSil) ethoxy propane) UPTS), 3- (4-semicarbazidyl) propyltriethoxysilane (SCPTS) and their mixtures; preferably the organosilicon precursor is tetramethoxysilane or tetraethoxysilane.
9, Couvercle anti-odeur (100) selon l’une quelconque des revendications 1 Ă  8, dans lequel le prĂ©curseur organosiiicĂ© est un mĂ©lange de tĂ©tramĂ©thoxysilane et d’un prĂ©curseur organosiiicĂ© fonctionnalisĂ©, avantageusement choisi parmi le phĂ©nyltrimĂ©thoxysilane (PhTMOS), le phĂ©nyltriĂ©thoxysilane (PhTEOS), le (2- phĂ©nylĂ©thyljtriĂ©thoxysilane, le 3-aminopropyltriĂ©thoxysilane (APTES), le (3- glycidyloxypropyijtrimĂ©thoxysilane (GPTMOS), le (3- glycidyloxypropyljtriĂ©thoxysilane (GPTES), la N-(2-AmmoĂ©thyl)-3~ (trimĂ©thoxysilyl)propyiamine (NH2-TMOS), le N-9, anti-odor cover (100) according to any one of claims 1 to 8, in which the organosilic precursor is a mixture of tetramethoxysilane and a functionalized organosilic precursor, advantageously chosen from phenyltrimethoxysilane (PhTMOS), phenyltriethoxysilane ( PhTEOS), (2-phenylethyljtriethoxysilane, 3-aminopropyltriethoxysilane (APTES), (3-glycidyloxypropyijtrimethoxysilane (GPTMOS), (3-glycidyloxypropyljtriethoxysilane (GPTES), N- (2-Ammoethyl) -ily (3) (NH2-TMOS), the N-
(TrimĂ©thoxysĂźlylpropyl)Ă©thylĂšnediamineiriaeĂ©tate, TacĂ©toxyĂ©thyltrimĂ©thoxysiiane (AETMS), l’urĂ©idopropyltriĂ©thoxysilane (UPTS), le 3-(4- semicarbazidyl)propyltriĂ©thoxysilane (SCPTS) et leurs mĂ©langes. (Trimethoxyselylpropyl) ethylenediamineiriaeetate, Tacetoxyethyltrimethoxysiiane (AETMS), ureidopropyltriethoxysilane (UPTS), 3- (4-semicarbazidyl) propyltriethoxysilane (SCPTS) and their mixtures.
10, Couvercle anti-odeur (100) selon l’une quelconque des revendications 1 Ă  9, dans lequel le charbon actif se prĂ©sente sous forme de bĂątonnets de taille millimĂ©trique. 10, anti-odor cover (100) according to any one of claims 1 to 9, wherein the activated carbon is in the form of rods of millimeter size.
11. Couvercle anti-odeur (100) selon l’une quelconque des revendications 6 Ă  10, dans lequel la paroi infĂ©rieure (120) comprend un logement (121) dans lequel est agencĂ© le matĂ©riau filtrant (200). 11. Anti-odor cover (100) according to any one of claims 6 to 10, in which the lower wall (120) comprises a housing (121) in which the filtering material (200) is arranged.
12. Couvercle anti-odeur (100) selon l’une quelconque des revendications 6 Ă  11, dans lequel la paroi supĂ©rieure (110) comprend au moins une ouverture d’échappement (111) communiquant avec le logement (121) de la paroi infĂ©rieure (120) comprenant le matĂ©riau filtrant (200). 13, Couvercle anti-odeur (100) selon l’une quelconque des revendications 1 Ă  12, caractĂ©risĂ© en ce qu’il comprend un hublot. 12. Anti-odor cover (100) according to any one of claims 6 to 11, in which the upper wall (110) comprises at least one exhaust opening (111) communicating with the housing (121) of the lower wall. (120) comprising the filter material (200). 13, anti-odor cover (100) according to any one of claims 1 to 12, characterized in that it comprises a porthole.
14. Couvercle anti-odeur (100) selon l’une quelconque des revendications 1 Ă  13, caractĂ©risĂ© en ce qu’il comprend un joint annulaire d’étanchĂ©itĂ©. 14. Anti-odor cover (100) according to any one of claims 1 to 13, characterized in that it comprises an annular seal.
15. Appareil de cuisson alimentaire comprenant un couvercle anti-odeur (100) selon l’une quelconque des revendications 1 à 14. 15. Food cooking appliance comprising an anti-odor cover (100) according to any one of claims 1 to 14.
16. Appareil de cuisson alimentaire selon la revendication 15, comprenant une cuve pour bain de cuisson ; de prĂ©fĂ©rence l’appareil de cuisson alimentaire est une friteuse. 16. Food cooking appliance according to claim 15, comprising a tank for cooking bath; preferably the food cooking appliance is a fryer.
17. Cartouche filtrante pour couvercle anti-odeur (100), caractĂ©risĂ©e en ce qu’elle comprend un matĂ©riau filtrant (200) incluant des particules cƓur-coquille comprenant ou Ă©tant constituĂ©es d’un cƓur de charbon actif entourĂ© d’une coquille de silice sol-gel, de prĂ©fĂ©rence mĂ©soporeuse. 17. Filter cartridge for odor cover (100), characterized in that it comprises a filter material (200) including core-shell particles comprising or consisting of an activated carbon core surrounded by a silica shell sol-gel, preferably mesoporous.
18. Cartouche filtrante pour couvercle anti-odeur (100) selon la revendication 17, dans laquelle les particules cƓur-coquille sont sphĂ©riques et prĂ©sentent un diamĂštre de 20 Ă  400 nm. 18. Filter cartridge for odor cover (100) according to claim 17, wherein the core-shell particles are spherical and have a diameter of 20 to 400 nm.
19. Cartouche filtrante pour couvercle anti-odeur (100) selon la revendication 17 ou la revendication 18, dans laquelle la coquille de silice sol-gel mĂ©soporeuse comprend un siloxane formĂ© Ă  partir d’au moins un prĂ©curseur organosilicĂ© choisi parmi le tĂ©tramĂ©thoxysilane (TMÏOS), le tĂ©traĂ©thoxysilane (TEOS), le phĂ©nyltrimĂ©thoxysilane (PhTMOS), le phĂ©nyltriĂ©thoxysilane (PhTEOS), le (2- phĂ©nyiĂ©thyl)triĂ©thoxysiiane, le 3-aminopropyltriĂ©thoxysilane (APTES), le (3- glycidyloxypropyl)trimĂ©thoxysilane (GPTMOS), le (3- glycidyloxypropyl)iiiĂ©thyoxysilane (OPTES), la N-(2~aminoĂ©thyl)~3- (trimĂ©thoxysilyl)propylamine (NH2-TMOS), le N-19. Filter cartridge for anti-odor cover (100) according to claim 17 or claim 18, in which the mesoporous sol-gel silica shell comprises a siloxane formed from at least one organosilicate precursor chosen from tetramethoxysilane (TMÏOS ), tetraethoxysilane (TEOS), phenyltrimethoxysilane (PhTMOS), phenyltriethoxysilane (PhTEOS), (2-phenyiethyl) triethoxysiiane, 3-aminopropyltriethoxysilane (APTES), (3-glycidyloxypropyl) trimethoxysane - glycidyloxypropyl) iiiethyoxysilane (OPTES), N- (2 ~ aminoethyl) ~ 3- (trimethoxysilyl) propylamine (NH2-TMOS), N-
(trimĂ©thoxysilylpropyl)Ă©thylĂšnediarninetriacĂ©tate, racĂ©toxyĂ©thyltrimĂ©thoxysilane (AETMS), TurĂ©idopropyltriĂ©thoxysilane (UPTS), le 3-(4- semicarbazidyl)propyltriĂ©thoxysilane (SCPTS) et leurs mĂ©langes ; de prĂ©fĂ©rence le prĂ©curseur organosiliciĂ© est du tĂ©tramĂ©thoxysilane ou du tĂ©traĂ©thoxysilane. , Cartouche filtrante pour couvercle anti-odeur (100) selon l’une quelconque des revendications 17 Ă  19, dans laquelle le prĂ©curseur organosilicĂ© est un mĂ©lange de tĂ©tramĂ©thoxysilane et d’un prĂ©curseur organosilicĂ© fonctionnalisĂ©, avantageusement choisi parmi le phĂ©nyltrimĂ©thoxysilane (PhTMOS), le phĂ©nyltriĂ©thoxysilane (PhTEOS), le (2-phĂ©nylĂ©thyl)triĂ©thoxysilane, le 3~ aminopropyltriĂ©thoxysilane (APTES), le (3-glycidyloxypropyl)trimĂ©thoxysilane (GPTMOS), le (3-glyridyloxypropyl)triĂ©thoxysilane (OPTES), la N-(2- AminoĂ©thyl)-3-(trimĂ©thoxysilyl)propylamine (NH2-TMOS), le N- (T i m Ă©th oxy i 1 y 1 propv 1 )Ă©tby 1 Ăšn edi am i n etri acĂ©tate, l’acĂ©toxyĂ©thyltrimĂ©thoxysilane (AETMS), l’urĂ©idopropyltriĂ©thoxysilane (IJPTS), le 3-(4- semicarbazidyl ĂźpropyltriĂ©thoxysiiane (SCPTS) et leurs mĂ©langes. Cartouche filtrante pour couvercle anti-odeur (100) selon l’une quelconque des revendications 17 Ă  20, dans laquelle le charbon actif se prĂ©sente sous forme de bĂątonnets de taille millimĂ©trique. (trimethoxysilylpropyl) ethylenediarninetriacetate, racetoxyethyltrimethoxysilane (AETMS), Tureidopropyltriethoxysilane (UPTS), 3- (4-semicarbazidyl) propyltriethoxysilane (SCPTS) and their mixtures; preferably the organosilicon precursor is tetramethoxysilane or tetraethoxysilane. , Filter cartridge for odor cover (100) according to any one of claims 17 to 19, in which the organosilicate precursor is a mixture of tetramethoxysilane and of a functionalized organosilicate precursor, advantageously chosen from phenyltrimethoxysilane (PhTMOS), the phenyltriethoxysilane (PhTEOS), (2-phenylethyl) triethoxysilane, 3 ~ aminopropyltriethoxysilane (APTES), (3-glycidyloxypropyl) trimethoxysilane (GPTMOS), (3-glyridyloxypropyl) triethoxysilane (OPTES), N-ethyl ) -3- (trimethoxysilyl) propylamine (NH2-TMOS), N- (T im ethy oxy i 1 y 1 propv 1) Ă©tby 1 en edi am in etri acetate, acetoxyethyltrimethoxysilane (AETMS), ureidopropyltriethoxysilane (IJPTS ), 3- (4- semicarbazidyl Ăźpropyltriethoxysiiane (SCPTS) and mixtures thereof. Filter cartridge for odor cover (100) according to any one of claims 17 to 20, wherein the activated carbon is in the form of millimeter-sized sticks.
EP19756224.2A 2018-07-12 2019-07-12 Odorless lid Withdrawn EP3799556A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1856413A FR3083682B1 (en) 2018-07-12 2018-07-12 ANTI-ODOR COVER
PCT/FR2019/051752 WO2020012135A1 (en) 2018-07-12 2019-07-12 Odorless lid

Publications (1)

Publication Number Publication Date
EP3799556A1 true EP3799556A1 (en) 2021-04-07

Family

ID=65243680

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19756224.2A Withdrawn EP3799556A1 (en) 2018-07-12 2019-07-12 Odorless lid

Country Status (8)

Country Link
US (1) US20210267412A1 (en)
EP (1) EP3799556A1 (en)
KR (1) KR20210044768A (en)
CN (1) CN112423634A (en)
AU (1) AU2019300427A1 (en)
CA (1) CA3106068A1 (en)
FR (1) FR3083682B1 (en)
WO (1) WO2020012135A1 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE7412769L (en) * 1973-10-12 1975-05-28 Du Pont
EP0183281A2 (en) * 1978-09-13 1986-06-04 Itt Industries, Inc. Removable cover for a cooking pot
DE4343358A1 (en) * 1993-12-18 1995-06-22 Hasso Von Bluecher Porous adsorbent plate or moulding useful as filter esp. for gas purification
DE10150825A1 (en) * 2001-10-15 2003-04-17 Bsh Bosch Siemens Hausgeraete Catalytic coating used for part of a cooking, roasting, baking and grilling appliance comprises a structure made from porous particles and a binder
KR100625830B1 (en) * 2005-03-30 2006-09-22 서선자 Apparatus for discharging the smell in the lid of cooking receptacle
KR100708331B1 (en) * 2005-07-04 2007-04-17 씜성우 Adsorbent for recovering Volatile Organic Compound and manufacturing method the same of
JP2008045580A (en) * 2006-08-11 2008-02-28 Hitachi Appliances Inc Vacuum heat insulating panel and equipment equipped therewith
WO2014105908A2 (en) * 2012-12-26 2014-07-03 Meyer Intellectual Properties Ltd. Cookware set for frying
CN204016023U (en) * 2014-02-28 2014-12-17 ćș·è‰Ÿć°”ć…Źćž A kind of cooking apparatus and for the cigarette filtration system of this cooking apparatus
FR3061708B1 (en) * 2017-01-06 2021-10-22 Commissariat Energie Atomique PROCESS FOR PREPARING HEART-SHELL HYBRID MATERIALS
CN107048980A (en) * 2017-05-15 2017-08-18 重ćș†ć‡°ć·ąćźžäžšæœ‰é™ć…Źćž A kind of self-heating chafing dish and self-heating food bag

Also Published As

Publication number Publication date
FR3083682A1 (en) 2020-01-17
CA3106068A1 (en) 2020-01-16
WO2020012135A1 (en) 2020-01-16
CN112423634A (en) 2021-02-26
AU2019300427A1 (en) 2021-02-25
KR20210044768A (en) 2021-04-23
AU2019300427A2 (en) 2021-03-11
FR3083682B1 (en) 2020-12-11
US20210267412A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
WO2018127671A1 (en) Method for producing core-shell hybrid materials
JP5792738B2 (en) Method for surface treatment of porous particles
CA2730527C (en) Nanoporous detectors of monocyclic aromatic compounds and other pollutants
EP1924843A2 (en) Nanoporous direct optical transducing material for detecting aldehydes
WO2020012135A1 (en) Odorless lid
WO1996034897A1 (en) Polyvinyl alcohol purification process
WO2018069528A1 (en) Method for sol-gel coating of textile materials
WO2003104517A2 (en) Method and device for incorporating a compound in the pores of a porous material and uses thereof
JP2020016461A (en) sensor
EP2035141B1 (en) Preparation of hybrid nanomaterials and filters for gas traps
US20160002272A1 (en) Surface functionalized porous silicon material and method of making thereof
WO2014167231A2 (en) Method for depositing a photocatalytic coating and related coatings, textile materials and use in photocatalysis
WO2018007772A1 (en) Nanoporous matrix and use thereof
WO2005100371A1 (en) Porous hybrid organic-inorganic materials for the detection of halogens
Shirke et al. Hydrophobic hollow fiber composite membranes based on hexadecyl-modified SiO2 nanoparticles for toluene separation
EP2576058A1 (en) Method for producing a deposit of a material, which is localized and has a defined shape, on the surface of a substrate
WO2020070456A1 (en) Method for preparing a monolithic nanoporous silicate sol-gel material
JP2022026253A (en) Sensor and sensor array
EP4149672B1 (en) Filter element for gaseous fluids
Arafune et al. Encapsulation of PEG-modified myoglobin in hydrophobic mesoporous silica as studied by optical waveguide spectroscopy
Ninness et al. DEVELOPMENT OF MATERIALS AND SAMPLING METHODS FOR IR-BASED DETECTION OF TOXIC COMPOUNDS IN WATER
Stolyarchuk et al. A magic angle spinning NMR study of xerogels functionalized by 3-mercaptopropyl groups
WO2009141563A2 (en) Surface treatment of silicon nanoparticles

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201229

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20240201