EP3798513A1 - Heating device - Google Patents
Heating device Download PDFInfo
- Publication number
- EP3798513A1 EP3798513A1 EP20198099.2A EP20198099A EP3798513A1 EP 3798513 A1 EP3798513 A1 EP 3798513A1 EP 20198099 A EP20198099 A EP 20198099A EP 3798513 A1 EP3798513 A1 EP 3798513A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- flame tube
- combustion
- fresh air
- gases
- combustion chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 34
- 238000002485 combustion reaction Methods 0.000 claims abstract description 73
- 239000003546 flue gas Substances 0.000 claims abstract description 70
- 239000000567 combustion gas Substances 0.000 claims abstract description 42
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 29
- 239000007789 gas Substances 0.000 claims abstract description 17
- 239000000779 smoke Substances 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 13
- 239000004449 solid propellant Substances 0.000 claims abstract description 12
- 239000002028 Biomass Substances 0.000 claims abstract description 8
- 239000002609 medium Substances 0.000 description 35
- 230000003647 oxidation Effects 0.000 description 18
- 238000007254 oxidation reaction Methods 0.000 description 18
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 17
- 150000001722 carbon compounds Chemical class 0.000 description 11
- 239000000428 dust Substances 0.000 description 9
- 239000001963 growth medium Substances 0.000 description 7
- 230000001105 regulatory effect Effects 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000000446 fuel Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000002737 fuel gas Substances 0.000 description 3
- 230000002085 persistent effect Effects 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 239000012855 volatile organic compound Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 238000001311 chemical methods and process Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23B—METHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
- F23B10/00—Combustion apparatus characterised by the combination of two or more combustion chambers
- F23B10/02—Combustion apparatus characterised by the combination of two or more combustion chambers including separate secondary combustion chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23B—METHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
- F23B60/00—Combustion apparatus in which the fuel burns essentially without moving
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23B—METHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
- F23B80/00—Combustion apparatus characterised by means creating a distinct flow path for flue gases or for non-combusted gases given off by the fuel
- F23B80/02—Combustion apparatus characterised by means creating a distinct flow path for flue gases or for non-combusted gases given off by the fuel by means for returning flue gases to the combustion chamber or to the combustion zone
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23L—SUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
- F23L9/00—Passages or apertures for delivering secondary air for completing combustion of fuel
- F23L9/04—Passages or apertures for delivering secondary air for completing combustion of fuel by discharging the air beyond the fire, i.e. nearer the smoke outlet
Definitions
- the invention relates to a method for reducing emissions from heating devices, in particular heating boilers, in which solid fuel, in particular biomass, is supplied with fresh air in a combustion chamber for combustion, with combustion gases formed in the combustion chamber being fed to a flame tube via an inflow area facing the combustion chamber, and flue gases formed from the combustion gases are fed via an outflow area of the flame tube to a subsequent flue gas discharge, via which the emission-causing flue gases are discharged, according to the preamble of claim 1.
- the invention also relates to a heating device, in particular a boiler, with a combustion chamber connected to a fresh air line for burning solid fuel, in particular biomass, as well as a flame tube with an inflow area facing the combustion chamber for combustion gases formed in the combustion chamber and an outflow area for combustion gases formed from the combustion gases Flue gases facing a subsequent flue gas discharge line connected to a fan for removing the flue gases, according to the preamble of claim 7.
- Such heating devices are used to heat a heat transfer medium for use as hot water or for heating purposes with the aid of the combustion of a solid fuel.
- the efficiency of the heating device is optimized, i.e. that the greatest possible proportion of the combustion heat is transferred to the heat transfer medium, and on the other hand that the emissions from such a system are kept as low as possible.
- Emissions are the discharge of harmful or environmentally hazardous substances such as carbon monoxide (CO), volatile organic compounds of higher molecular weight Carbon compounds (VOC), nitrogen oxides (NOx) and particles (PM), in particular fine dust particles, understood through the flue gases that arise in the course of the combustion of the solid fuel in the combustion chamber of the heating device.
- the combustion basically takes place in two different phases, namely in a first phase of the heterogeneous conversion of the solids into fuel gases and in a subsequent phase of the homogeneous gas phase oxidation of the fuel gases.
- the first phase of combustion takes place exclusively in the combustion chamber with the supply of fresh air, with which the oxygen required for combustion is brought into the glowing area of the combustion chamber, and which is sometimes also referred to as primary air.
- the subsequent gas phase oxidation begins in the combustion chamber and continues in the flame tube, with complex chemical reactions taking place in the course of which the fuel gases are oxidized and converted into carbon dioxide and water, but also into the above-mentioned pollutants such as carbon monoxide, VOC, nitrogen oxides and fine dust particles.
- Combustion gas is used in the following to refer to the entirety of the gases that come from the combustion chamber into the inflow area of the flame tube, in which oxidized and non-oxidized gas components of the gas phase oxidation can be present, and as flue gas, the entirety of the gases flowing through the outflow area of the flame tube into the flue gas outlet in which the chemical processes that can be traced back to the combustion, in particular the oxidation, are largely completed.
- the course of the combustion and the extent of the combustion residues that cause emissions depend on the chemical and physical framework conditions of the combustion, some of which are controlled by operating parameters the heating device can be adjusted. These include first of all the amount of fuel, which can be set in the case of a pellet heating system via the conveying speed of the screw conveyor for the pellets, and the amount of oxygen available for combustion, which can be set via the speed of a fan, which is usually designed as an induced draft fan and Sucks in fresh air from an intake opening and supplies it to the combustion chamber via the fresh air line.
- the combustion process can be well controlled, electronic control devices are usually provided, which are based on a required heat output of the heating device and an actual state, which is measured with the help of a temperature sensor, which is arranged, for example, in the combustion chamber or in the flame tube, regulate the amount of fuel and the speed of the fan accordingly.
- Well-regulated combustion is characterized by a low level of combustion residues and thus low emissions.
- This secondary air is used for the targeted introduction of additional oxygen into an area of the combustion chamber characterized by gas phase oxidation.
- a stoichiometric excess of oxygen promotes the desired oxidation of carbon compounds to carbon dioxide, but also promotes the undesired formation of nitrogen oxides.
- filter devices to filter combustion residues from the flue gas in order to reduce emissions in this way. Yet In particular, the reduction of fine dust emissions when burning solid fuels in corresponding heating systems is a challenge.
- the aim of the present invention is therefore to provide a heating device with which the emissions, in particular of fine dust, can be reduced.
- Claim 1 relates to a method for reducing emissions from heating devices, in particular boilers, in which solid fuel, in particular biomass, is supplied with fresh air in a combustion chamber for combustion, with combustion gases formed in the combustion chamber being fed to a flame tube via an inflow area facing the combustion chamber , and flue gases formed from the combustion gases are fed via an outflow area of the flame tube to a subsequent flue gas discharge, via which the emission-causing flue gases are discharged.
- a gaseous medium is fed to the flow of smoke and combustion gases established in the flame tube against the direction of flow of this smoke and combustion gas flow.
- the gaseous medium is preheated by the flow of smoke and combustion gases that is established in the flame tube. Preheating prevents the flue gas from cooling down too much, which would impair the complete oxidation of the carbon compounds. Although a temperature decrease cannot be prevented even by preheating the supplied gaseous medium, this temperature decrease does not appear to be disadvantageous. The applicant suspects that the temperature decrease caused by the countercurrent supply of the gaseous medium has no significant effects on the oxidation of the carbon compounds, but prevents the formation of nitrogen oxides.
- the gaseous medium can be, for example, a partial flow of the fresh air supplied to the combustion chamber, so that it is proposed that the gaseous medium be diverted from the fresh air supplied to the combustion chamber.
- a particularly effective reduction in emissions has been shown for embodiments in which a partial return of flue gases into the combustion chamber is provided, in that the derived flue gases are partially fed to the fresh air supplied to the combustion chamber.
- a partial return of flue gases into the combustion chamber in that the derived flue gases are partially fed to the fresh air supplied to the combustion chamber.
- gaseous medium into the flame tube introduced gaseous medium a partial flow of the fresh air mixed with flue gases can be used, so that it is proposed that the gaseous medium is diverted from the fresh air mixed with flue gases.
- the gaseous medium when entering the smoke and combustion gas flow of the flame tube, executes a rotational movement about this direction of movement superimposed on its movement against the flow direction of the smoke and combustion gas flow. This measure increases the dwell time as well as the turbulence and thus promotes the complete oxidation of the carbon compounds.
- a heating device is also proposed for the apparatus implementation of the method according to the invention, in particular a heating boiler, with a combustion chamber connected to a fresh air line for burning solid fuel, in particular biomass, and a flame tube with an inflow area facing the combustion chamber for combustion gases formed in the combustion chamber and an outflow area for flue gases formed from the combustion gases, which faces a subsequent flue gas discharge line connected to a fan for the removal of the flue gases.
- a A supply line projecting into the flame tube via the outflow area and having an outflow opening for a gaseous medium directed in the direction of the inflow area is provided.
- the outflow opening for the gaseous medium ensures that the gaseous medium is fed to the flow of smoke and combustion gases occurring in the flame tube against the flow direction of this smoke and combustion gas flow, as provided by the method according to the invention.
- the supply line protruding into the flame tube via the outflow area is used to preheat the gaseous medium, which prevents the flue gas from cooling too much.
- preheating the gaseous medium cannot prevent a temperature decrease, but this temperature decrease does not appear to be disadvantageous, since the temperature decrease caused by the countercurrent supply of the gaseous medium has no significant effects on the oxidation of the carbon compounds , but prevents the formation of nitrogen oxides.
- a simple apparatus design provides, for example, that the feed line is designed as a feed tube running parallel to the flame tube axis.
- This feed pipe is preferably arranged in the areas of the flame tube close to the axis, deviating from the flame tube axis.
- an area close to the axis is understood to mean the inner half of the flame tube radius.
- the supply line of the gaseous medium is connected to the fresh air line and that the gaseous medium is a fresh air partial flow derived from the fresh air supplied to the combustion chamber.
- the fresh air line for the partial return of flue gases into the combustion chamber is connected to the flue gas discharge line and the supply line is connected to a section of the fresh air line carrying fresh air and flue gases, the gaseous medium being a fresh air partial flow containing flue gases.
- the two last-mentioned versions have the advantage that the introduction of the gaseous medium is also regulated by the electronic control of the heating device , since the amount of fresh air is regulated by the fan, and thus more gaseous medium is blown countercurrently into the flame tube when the amount of fuel and the amount of fresh air and thus also the amount of substance in the combustion gases increase.
- the supply line have a helically extending gas guide section for the gaseous medium.
- This helical gas guide section can either by a feed pipe for the gaseous medium bent at least in a helical manner in its end section can be realized, or by a correspondingly helically shaped inner jacket of the feed pipe.
- FIG. 1 a schematic representation of the structure of a heating device according to the invention for implementing the method according to the invention.
- Fig. 1 a boiler for heating a heat transfer medium by burning solid fuel, in particular biomass.
- a burner plate 2 is arranged in a combustion chamber 1, to which the solid fuel is supplied, for example in the form of pourable or pourable fuel (eg pellets).
- the ash collects below the burner plate 2 and is transported into the ash container by an ash screw.
- the combustion chamber 1 has one in the Fig. 1 Side opening, not visible, through which pourable material to be fired can be conveyed from a storage container to the burner plate 2 by means of a conveying device.
- the conveying device can be, for example, a screw conveyor that is automatically regulated with the aid of an electronic control device.
- a flame tube 3 is arranged vertically, the inflow area 3a of which faces the combustion chamber 1 and opens into the combustion chamber 1.
- the flame tube 3 is of appropriate thickness and made of a thermally insulating material, preferably ceramic material or (fire) concrete.
- the flue gases R emerge in an outflow area 3b of the flame tube 3 in an approximately laminar flow and enter a subsequent flue gas outlet 4.
- the flue gas outlet 4 penetrates a heat exchanger, not shown, with liquid-filled, in particular water-filled rooms.
- the heat transfer medium to be heated for heating purposes or for use as hot water is located in these rooms.
- the flue gas discharge line 4 is connected to a fan 5 arranged on the exhaust side, which is designed as an induced draft fan and has a discharge opening 6 which can be connected to a chimney extending outside the heating device in order to be able to discharge the flue gases R.
- the fan 5 sucks the combustion gases V and the flue gases R from the combustion chamber 1 via the flame tube 3 and the flue gas discharge line 4 in the direction of the chimney. Furthermore, fresh air F is sucked into the fresh air line 7 and into the combustion chamber 1 by the fan 5.
- the fresh air line 7 for the partial return of flue gases R into the combustion chamber 1 is connected to the flue gas discharge line 4.
- the fresh air line 7 thus has a section 7 a which carries fresh air F mixed with flue gases R.
- a supply line 8 protruding beyond the outflow area 3b into the flame tube 3 with an outflow opening for a gaseous medium G directed in the direction of the inflow area is also arranged.
- This supply line 8 is connected to the fresh air line 7, so that the gaseous medium G is a partial fresh air flow that is diverted from the fresh air F supplied to the combustion chamber 1. Since the fresh air line 7 in the embodiment shown for the return of flue gases R into the combustion chamber 1 is also connected to the flue gas discharge line 4, the supply line 8 is connected to that section 7a of the fresh air line 7, which leads fresh air F mixed with flue gases R, which is in the Fig. 1 is indicated by an arrow labeled "F + R". The gaseous medium G is thus a fresh air partial flow containing flue gases R.
- the supply line 8 is designed as a supply pipe running parallel to the flame tube axis and is arranged in the areas of the flame tube 3 close to the axis. Since the supply line 8 crosses the outflow area 3b of the flame tube 3, the gaseous medium G is already preheated before it is introduced into the flame tube 3. This preheating prevents the flue gas R from cooling too much, which would impair the complete oxidation of the carbon compounds.
- a temperature sensor 9 can also be seen, which measures the flue gas temperature in the flame tube 3 and is connected to the electronic control device mentioned above.
- the introduction of the gaseous medium G is also regulated with the electronic control device of the heating device, so that more of the gaseous medium G is blown countercurrently into the flame tube 3 if the amount of fuel and the amount of fresh air and thus more the amount of substance of the combustion gases V also increase.
- the combustion gas V formed in the combustion chamber 1 is fed to the flame tube 3 via the inflow area 3 a.
- Combustion gas V denotes the entirety of the gases coming from the combustion chamber 1 into the inflow area 3a of the flame tube, in which oxidized and non-oxidized gas fractions of the gas phase oxidation can be present
- the flue gas R denotes the entirety of the gases flowing into the outflow area 3b of the flame tube 3
- Flue gas discharge 4 flowing gases in which the chemical processes directly attributable to the combustion, in particular the oxidation, have largely been completed.
- a flow of flue gases R and combustion gases V is thus established within the flame tube 3, which in the Fig. 1 with an upward pointing arrow "V + R" is indicated.
- the gaseous medium G is fed to this flow of flue gases R and combustion gases V in the flame tube 3 against the direction of flow of this smoke and combustion gas flow.
- an increased dwell time of the flue gases R and the combustion gases V in the flame tube 3 is brought about, as well as an improved contact of the chemical reactants due to the turbulence caused by the countercurrent introduction.
- the increased dwell time under the high temperatures of the flame tube 3 and the turbulence due to the countercurrent supply favor the complete oxidation of the carbon compounds and prevent the persistent formation of fine dust.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
- Control And Other Processes For Unpacking Of Materials (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
Die Erfindung bezieht auf ein Verfahren zur Emissionsreduktion von Heizeinrichtungen sowie einen entsprechenden Heizkessel, in denen unter Zufuhr von Frischluft (F) fester Brennstoff, insbesondere Biomasse, in einem Brennraum (1) zur Verbrennung gelangt, wobei im Brennraum (1) gebildete Verbrennungsgase (V) über einen dem Brennraum (1) zugewandten Einströmbereich (3a) einem Flammrohr (3) zugeführt werden, und aus den Verbrennungsgasen (V) gebildete Rauchgase (R) über einen Ausströmbereich (3b) des Flammrohres (3) einer anschließenden Rauchgasableitung (4) zugeführt werden, über die die emissionsverursachenden Rauchgase (R) abgeleitet werden. Es wird vorgeschlagen, dass im Flammrohr (3) ein gasförmiges Medium (G) dem sich im Flammrohr (3) einstellenden Strom an Rauchgasen (R) und Verbrennungsgasen (V) gegen die Stromrichtung dieses Rauch- und Verbrennungsgasstromes (R, V) zugeführt wird. The invention relates to a method for reducing emissions from heating devices and a corresponding heating boiler in which solid fuel, in particular biomass, is burned in a combustion chamber (1) with the supply of fresh air (F), with combustion gases (V ) are fed to a flame tube (3) via an inflow area (3a) facing the combustion chamber (1), and flue gases (R) formed from the combustion gases (V) via an outflow area (3b) of the flame tube (3) to a subsequent flue gas discharge line (4) through which the smoke gases (R) that cause emissions are discharged. It is proposed that in the flame tube (3) a gaseous medium (G) is fed to the flow of flue gases (R) and combustion gases (V) that is established in the flame tube (3) against the direction of flow of this flue and combustion gas flow (R, V) .
Description
Die Erfindung bezieht sich auf ein Verfahren zur Emissionsreduktion von Heizeinrichtungen, insbesondere Heizkessel, in denen unter Zufuhr von Frischluft fester Brennstoff, insbesondere Biomasse, in einem Brennraum zur Verbrennung gelangt, wobei im Brennraum gebildete Verbrennungsgase über einem dem Brennraum zugewandten Einströmbereich einem Flammrohr zugeführt werden, und aus den Verbrennungsgasen gebildete Rauchgase über einen Ausströmbereich des Flammrohres einer anschließenden Rauchgasableitung zugeführt werden, über die die emissionsverursachenden Rauchgase abgeleitet werden, gemäß dem Oberbegriff von Anspruch 1.The invention relates to a method for reducing emissions from heating devices, in particular heating boilers, in which solid fuel, in particular biomass, is supplied with fresh air in a combustion chamber for combustion, with combustion gases formed in the combustion chamber being fed to a flame tube via an inflow area facing the combustion chamber, and flue gases formed from the combustion gases are fed via an outflow area of the flame tube to a subsequent flue gas discharge, via which the emission-causing flue gases are discharged, according to the preamble of
Die Erfindung bezieht sich ferner auf eine Heizeinrichtung, insbesondere Heizkessel, mit einem mit einer Frischluftleitung verbundenen Brennraum zur Verbrennung von festem Brennstoff, insbesondere Biomasse, sowie einem Flammrohr mit einem dem Brennraum zugewandten Einströmbereich für im Brennraum gebildete Verbrennungsgase und einem Ausströmbereich für aus den Verbrennungsgasen gebildete Rauchgase, der einer anschließenden und mit einem Gebläse verbundenen Rauchgasableitung zur Abfuhr der Rauchgase zugewandt ist, gemäß dem Oberbegriff von Anspruch 7.The invention also relates to a heating device, in particular a boiler, with a combustion chamber connected to a fresh air line for burning solid fuel, in particular biomass, as well as a flame tube with an inflow area facing the combustion chamber for combustion gases formed in the combustion chamber and an outflow area for combustion gases formed from the combustion gases Flue gases facing a subsequent flue gas discharge line connected to a fan for removing the flue gases, according to the preamble of
Derartige Heizeinrichtungen dienen der Erwärmung eines Wärmeträgermediums zur Nutzung als Warmwasser oder zu Heizzwecken mithilfe der Verbrennung eines festen Brennstoffes. In der praktischen Anwendung ist dabei einerseits entscheidend, dass der Wirkungsgrad der Heizeinrichtung optimiert wird, also dass ein größtmöglicher Anteil der Verbrennungswärme auf das Wärmeträgermedium übertragen wird, und dass andererseits die Emissionen einer solchen Anlage möglichst gering gehalten werden. Unter Emissionen wird hierbei der Austrag von gesundheitsschädigenden oder umweltgefährdenden Schadstoffen wie Kohlenmonoxid (CO), höhermolekulare flüchtige, organische Kohlenstoffverbindungen (VOC), Stickoxide (NOx) sowie Partikel (PM), insbesondere Feinstaubpartikel, über die Rauchgase verstanden, die im Zuge der Verbrennung des festen Brennstoffes im Brennraum der Heizeinrichtung entstehen. Die Verbrennung vollzieht sich dabei grundsätzlich in zwei unterschiedlichen Phasen, nämlich in einer ersten Phase der heterogenen Umwandlung der Feststoffe in Brenngase und in einer anschließenden Phase der homogenen Gasphasenoxidation der Brenngase. Die erste Phase der Verbrennung vollzieht sich ausschließlich im Brennraum unter der Zufuhr von Frischluft, mit der der für die Verbrennung erforderliche Sauerstoff in den Glutbereich des Brennraums eingebracht wird, und die mitunter auch als Primärluft bezeichnet wird. Die anschließende Gasphasenoxidation beginnt im Brennraum und setzt sich im Flammrohr fort, wobei komplexe chemische Reaktionen vollzogen werden, in deren Verlauf die Brenngase oxidiert und in Kohlendioxid und Wasser, aber auch in die oben genannten Schadstoffe wie Kohlenmonoxid, VOC, Stickoxide sowie Feinstaubpartikel umgewandelt werden. Mit zunehmender Abkühlung der Rauchgase wird auch die zweite Phase der Verbrennung abgeschlossen, und die Verbrennungsrückstände als Rauchgas über die Rauchgasableitung abgeführt. Als Verbrennungsgas wird im Folgenden somit die Gesamtheit der vom Brennraum in den Einströmbereich des Flammrohres gelangenden Gase bezeichnet, in der oxidierte wie nicht-oxidierte Gasanteile der Gasphasenoxidation vorliegen können, und als Rauchgas jene Gesamtheit der über den Ausströmbereich des Flammrohres in die Rauchgasableitung strömenden Gase, in der die unmittelbar auf die Verbrennung zurückzuführenden chemischen Vorgänge insbesondere der Oxidation weitestgehend abgeschlossen sind.Such heating devices are used to heat a heat transfer medium for use as hot water or for heating purposes with the aid of the combustion of a solid fuel. In practical application, it is crucial on the one hand that the efficiency of the heating device is optimized, i.e. that the greatest possible proportion of the combustion heat is transferred to the heat transfer medium, and on the other hand that the emissions from such a system are kept as low as possible. Emissions are the discharge of harmful or environmentally hazardous substances such as carbon monoxide (CO), volatile organic compounds of higher molecular weight Carbon compounds (VOC), nitrogen oxides (NOx) and particles (PM), in particular fine dust particles, understood through the flue gases that arise in the course of the combustion of the solid fuel in the combustion chamber of the heating device. The combustion basically takes place in two different phases, namely in a first phase of the heterogeneous conversion of the solids into fuel gases and in a subsequent phase of the homogeneous gas phase oxidation of the fuel gases. The first phase of combustion takes place exclusively in the combustion chamber with the supply of fresh air, with which the oxygen required for combustion is brought into the glowing area of the combustion chamber, and which is sometimes also referred to as primary air. The subsequent gas phase oxidation begins in the combustion chamber and continues in the flame tube, with complex chemical reactions taking place in the course of which the fuel gases are oxidized and converted into carbon dioxide and water, but also into the above-mentioned pollutants such as carbon monoxide, VOC, nitrogen oxides and fine dust particles. As the flue gases cool down, the second phase of combustion is also completed and the combustion residues are discharged as flue gas via the flue gas discharge. Combustion gas is used in the following to refer to the entirety of the gases that come from the combustion chamber into the inflow area of the flame tube, in which oxidized and non-oxidized gas components of the gas phase oxidation can be present, and as flue gas, the entirety of the gases flowing through the outflow area of the flame tube into the flue gas outlet in which the chemical processes that can be traced back to the combustion, in particular the oxidation, are largely completed.
Der Verlauf der Verbrennung und das Ausmaß der emissionsverursachenden Verbrennungsrückstände hängen von den chemischen und physikalischen Rahmenbedingungen der Verbrennung ab, die zum Teil durch regelbare Bedienparameter der Heizeinrichtung eingestellt werden können. Hierzu zählen zunächst die Brennstoffmenge, die im Fall einer Pelletsheizung über die Fördergeschwindigkeit der Förderschnecke für die Pellets eingestellt werden kann, und die für die Verbrennung verfügbare Sauerstoffmenge, die über die Drehzahl eines Gebläses eingestellt werden kann, das in der Regel als Saugzuggebläse ausgeführt ist und von einer Ansaugöffnung Frischluft ansaugt und über die Frischluftleitung dem Brennraum zuführt. Aufgrund der einheitlichen Größe und der guten Dosierbarkeit der Pellets sowie die exakt regelbare Frischluftmenge kann der Verbrennvorgang gut gesteuert werden, wobei üblicher Weise elektronische Regeleinrichtungen vorgesehen sind, die aus einer geforderten Wärmeleistung der Heizeinrichtung und einem Ist-Zustand, der mithilfe eines Temperatursensors gemessen wird, der beispielsweise im Brennraum oder im Flammrohr angeordnet ist, die Brennstoffmenge und die Drehzahl des Gebläses entsprechend regeln.The course of the combustion and the extent of the combustion residues that cause emissions depend on the chemical and physical framework conditions of the combustion, some of which are controlled by operating parameters the heating device can be adjusted. These include first of all the amount of fuel, which can be set in the case of a pellet heating system via the conveying speed of the screw conveyor for the pellets, and the amount of oxygen available for combustion, which can be set via the speed of a fan, which is usually designed as an induced draft fan and Sucks in fresh air from an intake opening and supplies it to the combustion chamber via the fresh air line. Due to the uniform size and the good dosability of the pellets as well as the precisely controllable amount of fresh air, the combustion process can be well controlled, electronic control devices are usually provided, which are based on a required heat output of the heating device and an actual state, which is measured with the help of a temperature sensor, which is arranged, for example, in the combustion chamber or in the flame tube, regulate the amount of fuel and the speed of the fan accordingly.
Eine gut geregelte Verbrennung zeichnet sich durch ein geringes Ausmaß an Verbrennungsrückständen und somit durch geringe Emissionen aus. Um die stöchiometrischen Verhältnisse der Gasphasenoxidation zu verbessern ist es etwa bekannt, von der dem Glutbereich als so genannte Primärluft zugeführten Frischluft einen Frischluftanteil abzuzweigen und dem Brennraum knapp oberhalb des Glutbereiches direkt in die Flammen gerichtet als sogenannte Sekundärluft zuzuführen. Diese Sekundärluft dient dem gezielten Einbringen von zusätzlichem Sauerstoff in einen von Gasphasenoxidation gekennzeichneten Bereich des Brennraums. Ein stöchiometrischer Überschuss an Sauerstoff begünstigt dabei zwar die erwünschte Oxidation von Kohlenstoffverbindungen zu Kohlendioxid, fördert jedoch auch die unerwünschte Bildung von Stickoxiden. Des Weiteren ist es freilich bekannt mithilfe von Filtereinrichtungen Verbrennungsrückstände aus dem Rauchgas zu filtern, um auf diese Weise die Emissionen zu senken. Dennoch stellt insbesondere die Senkung der Feinstaubemissionen bei der Verbrennung fester Brennstoffe in entsprechenden Heizeinrichtungen eine Herausforderung dar.Well-regulated combustion is characterized by a low level of combustion residues and thus low emissions. In order to improve the stoichiometric ratios of the gas phase oxidation, it is known, for example, to branch off a portion of fresh air from the fresh air supplied to the ember area as so-called primary air and to supply it to the combustion chamber just above the embers area directly into the flames as so-called secondary air. This secondary air is used for the targeted introduction of additional oxygen into an area of the combustion chamber characterized by gas phase oxidation. A stoichiometric excess of oxygen promotes the desired oxidation of carbon compounds to carbon dioxide, but also promotes the undesired formation of nitrogen oxides. Furthermore, it is of course known to use filter devices to filter combustion residues from the flue gas in order to reduce emissions in this way. Yet In particular, the reduction of fine dust emissions when burning solid fuels in corresponding heating systems is a challenge.
Das Ziel der vorliegenden Erfindung besteht somit darin eine Heizeinrichtung bereitzustellen, mit der die Emissionen insbesondere von Feinstaub reduziert werden können.The aim of the present invention is therefore to provide a heating device with which the emissions, in particular of fine dust, can be reduced.
Dieses Ziel wird mithilfe eines Verfahrens gemäß Anspruch 1 sowie mithilfe einer Heizeinrichtung gemäß Anspruch 7 erreicht. Anspruch 1 bezieht sich dabei auf ein Verfahren zur Emissionsreduktion von Heizeinrichtungen, insbesondere Heizkessel, in denen unter Zufuhr von Frischluft fester Brennstoff, insbesondere Biomasse, in einem Brennraum zur Verbrennung gelangt, wobei im Brennraum gebildete Verbrennungsgase über einen dem Brennraum zugewandten Einströmbereich einem Flammrohr zugeführt werden, und aus den Verbrennungsgasen gebildete Rauchgase über einen Ausströmbereich des Flammrohres einer anschließenden Rauchgasableitung zugeführt werden, über die die emissionsverursachenden Rauchgase abgeleitet werden. Erfindungsgemäß wird hierfür vorgeschlagen, dass im Flammrohr ein gasförmiges Medium dem sich im Flammrohr einstellenden Strom an Rauch- und Verbrennungsgasen gegen die Stromrichtung dieses Rauch- und Verbrennungsgasstromes zugeführt wird. Mithilfe dieser Maßnahme gelingt eine in ihrem Ausmaß überraschende Emissionsreduktion insbesondere hinsichtlich der Feinstaubpartikel, mit der eine Reduktion bis unter die Nachweisbarkeitsgrenze herkömmlicher Messmethoden erreicht werden kann. Die Anmelderin vermutet, dass diese Wirkung auf die durch die gegenstromige Zufuhr des gasförmigen Mediums gesteigerte Verweildauer der Rauch- und Verbrennungsgase im Flammrohr zurückzuführen ist, sowie auf den durch die Verwirbelungen verbesserten Kontakt der chemischen Reaktionspartner. Die erhöhte Verweildauer unter den hohen Temperaturen des Flammrohres sowie die Turbulenzen aufgrund der gegenstromigen Zufuhr begünstigen die vollständige Oxidation der Kohlenstoffverbindungen und unterbinden die persistente Bildung von Feinstaub.This goal is achieved with the aid of a method according to
Dieser Effekt nimmt mit zunehmender Verweildauer und Turbulenz zu, sodass die gegenstromige Zufuhr des gasförmigen Mediums in den achsnahen Bereichen des Flammrohres am effektivsten ist. Dabei wurde aber festgestellt, dass die gegenstromige Zufuhr des gasförmigen Mediums aber dennoch vorzugsweise abweichend von der Flammrohrachse erfolgt. Unter einem achsnahen Bereich wird dabei die innere Hälfte des Flammrohrradius verstanden.This effect increases with increasing dwell time and turbulence, so that the countercurrent supply of the gaseous medium is most effective in the areas of the flame tube close to the axis. It was found, however, that the countercurrent supply of the gaseous medium is nevertheless preferably carried out differently from the axis of the flame tube. An area close to the axis is understood to mean the inner half of the flame tube radius.
Des Weiteren wird vorzugsweise vorgeschlagen, dass das gasförmige Medium durch den sich im Flammrohr einstellenden Strom an Rauch- und Verbrennungsgasen vorgewärmt wird. Die Vorwärmung verhindert eine zu starke Abkühlung des Rauchgases, die die vollständige Oxidation der Kohlenstoffverbindungen beeinträchtigen würde. Zwar kann eine Temperatursenkung auch durch das Vorwärmen des zugeführten gasförmigen Mediums nicht verhindert werden, diese Temperatursenkung scheint jedoch nicht nachteilig zu sein. Die Anmelderin vermutet, dass die durch die gegenstromige Zufuhr des gasförmigen Mediums verursachte Temperatursenkung keine nennenswerten Auswirkungen auf die Oxidation der Kohlenstoffverbindungen hat, die Bildung von Stickoxiden jedoch unterbindet.Furthermore, it is preferably proposed that the gaseous medium is preheated by the flow of smoke and combustion gases that is established in the flame tube. Preheating prevents the flue gas from cooling down too much, which would impair the complete oxidation of the carbon compounds. Although a temperature decrease cannot be prevented even by preheating the supplied gaseous medium, this temperature decrease does not appear to be disadvantageous. The applicant suspects that the temperature decrease caused by the countercurrent supply of the gaseous medium has no significant effects on the oxidation of the carbon compounds, but prevents the formation of nitrogen oxides.
Bei dem gasförmigen Medium kann es sich etwa um einen Teilstrom der dem Brennraum zugeführten Frischluft handeln, sodass vorgeschlagen wird, dass das gasförmige Medium von der dem Brennraum zugeführten Frischluft abgeleitet wird.The gaseous medium can be, for example, a partial flow of the fresh air supplied to the combustion chamber, so that it is proposed that the gaseous medium be diverted from the fresh air supplied to the combustion chamber.
Eine besonders effektive Emissionsreduktion hat sich für Ausführungsformen gezeigt, bei denen eine teilweise Rückführung von Rauchgasen in den Brennraum vorgesehen ist, indem die abgeleiteten Rauchgase teilweise der dem Brennraum zugeführten Frischluft zugeleitet werden. Bei einer solchen Rückführung kann als erfindungsgemäß in das Flammrohr eingeleitetes gasförmiges Medium ein Teilstrom der mit Rauchgasen vermengten Frischluft verwendet werden, sodass vorgeschlagen wird, dass das gasförmige Medium von der mit Rauchgasen vermengten Frischluft abgeleitet wird.A particularly effective reduction in emissions has been shown for embodiments in which a partial return of flue gases into the combustion chamber is provided, in that the derived flue gases are partially fed to the fresh air supplied to the combustion chamber. With such a return, according to the invention, into the flame tube introduced gaseous medium a partial flow of the fresh air mixed with flue gases can be used, so that it is proposed that the gaseous medium is diverted from the fresh air mixed with flue gases.
In den beiden letztgenannte Ausführungen, bei denen als gasförmiges Medium die dem Brennraum zugeführte Frischluft oder die mit Rauchgasen vermengte Frischluft verwendet wird, zeigt sich auch der große Vorteil, dass die Einleitung des gasförmigen Mediums mit der elektronischen Regelung der Heizeinrichtung mitgeregelt wird, da die Frischluftmenge über das bereits erwähnte Saugzuggebläse geregelt wird, und somit auch mehr an gasförmigem Medium gegenstromig in das Flammrohr eingeblasen wird, wenn die Brennstoffmenge und die Frischluftmenge und somit auch die Stoffmenge der Verbrennungsgase zunehmen.In the two last-mentioned versions, in which the fresh air supplied to the combustion chamber or the fresh air mixed with flue gases is used as the gaseous medium, there is also the great advantage that the introduction of the gaseous medium is also regulated by the electronic control of the heating device, since the amount of fresh air is regulated via the already mentioned induced draft fan, and thus more gaseous medium is blown countercurrently into the flame tube when the amount of fuel and the amount of fresh air and thus also the amount of substance of the combustion gases increase.
Des Weiteren wird vorgeschlagen, dass das gasförmige Medium beim Eintritt in den Rauch- und Verbrennungsgasstrom des Flammrohres eine seiner Bewegung gegen die Stromrichtung des Rauch- und Verbrennungsgasstromes überlagerte Rotationsbewegung um diese Bewegungsrichtung vollzieht. Diese Maßnahme erhöht die Verweildauer sowie die Turbulenzen und begünstigt somit die vollständige Oxidation der Kohlenstoffverbindungen.Furthermore, it is proposed that the gaseous medium, when entering the smoke and combustion gas flow of the flame tube, executes a rotational movement about this direction of movement superimposed on its movement against the flow direction of the smoke and combustion gas flow. This measure increases the dwell time as well as the turbulence and thus promotes the complete oxidation of the carbon compounds.
Erfindungsgemäß wird zur apparativen Umsetzung des erfindungsgemäßen Verfahrens ferner eine Heizeinrichtung vorgeschlagen, insbesondere ein Heizkessel, mit einem mit einer Frischluftleitung verbundenen Brennraum zur Verbrennung von festem Brennstoff, insbesondere Biomasse, sowie einem Flammrohr mit einem dem Brennraum zugewandten Einströmbereich für im Brennraum gebildete Verbrennungsgase und einem Ausströmbereich für aus den Verbrennungsgasen gebildete Rauchgase, der einer anschließenden und mit einem Gebläse verbundenen Rauchgasableitung zur Abfuhr der Rauchgase zugewandt ist. Erfindungsgemäß ist dabei vorgesehen, dass eine über den Ausströmbereich in das Flammrohr ragende Zufuhrleitung mit einer in Richtung des Einströmbereiches gerichteten Ausströmöffnung für ein gasförmiges Medium vorgesehen ist. Die in Richtung des Einströmbereiches gerichtete Ausströmöffnung für das gasförmige Medium stellt sicher, dass das gasförmige Medium dem sich im Flammrohr einstellenden Strom an Rauch- und Verbrennungsgasen gegen die Stromrichtung dieses Rauch- und Verbrennungsgasstromes zugeführt wird, wie gemäß des erfindungsgemäßen Verfahrens vorgesehen ist. Zudem wird mithilfe der über den Ausströmbereich in das Flammrohr ragenden Zufuhrleitung eine Vorwärmung des gasförmigen Mediums erreicht, die eine zu starke Abkühlung des Rauchgases verhindert. Wie bereits ausgeführt wurde, kann zwar auch durch das Vorwärmen des gasförmigen Mediums eine Temperatursenkung nicht verhindert werden, wobei diese Temperatursenkung jedoch nicht nachteilig zu sein scheint, da die durch die gegenstromige Zufuhr des gasförmigen Mediums verursachte Temperatursenkung keine nennenswerten Auswirkungen auf die Oxidation der Kohlenstoffverbindungen hat, die Bildung von Stickoxiden jedoch unterbindet.According to the invention, a heating device is also proposed for the apparatus implementation of the method according to the invention, in particular a heating boiler, with a combustion chamber connected to a fresh air line for burning solid fuel, in particular biomass, and a flame tube with an inflow area facing the combustion chamber for combustion gases formed in the combustion chamber and an outflow area for flue gases formed from the combustion gases, which faces a subsequent flue gas discharge line connected to a fan for the removal of the flue gases. According to the invention it is provided that a A supply line projecting into the flame tube via the outflow area and having an outflow opening for a gaseous medium directed in the direction of the inflow area is provided. The outflow opening for the gaseous medium, which is directed in the direction of the inflow area, ensures that the gaseous medium is fed to the flow of smoke and combustion gases occurring in the flame tube against the flow direction of this smoke and combustion gas flow, as provided by the method according to the invention. In addition, the supply line protruding into the flame tube via the outflow area is used to preheat the gaseous medium, which prevents the flue gas from cooling too much. As already stated, preheating the gaseous medium cannot prevent a temperature decrease, but this temperature decrease does not appear to be disadvantageous, since the temperature decrease caused by the countercurrent supply of the gaseous medium has no significant effects on the oxidation of the carbon compounds , but prevents the formation of nitrogen oxides.
Eine einfache apparative Ausführung sieht etwa vor, dass die Zufuhrleitung als ein parallel zur Flammrohrachse verlaufendes Zufuhrrohr ausgeführt ist. Dieses Zufuhrrohr ist vorzugsweise in den achsnahen Bereichen des Flammrohres abweichend von der Flammrohrachse angeordnet. Unter einem achsnahen Bereich wird dabei wie bereits erwähnt die innere Hälfte des Flammrohrradius verstanden. Diese Maßnahmen bewirken eine durch die gegenstromige Zufuhr des gasförmigen Mediums gesteigerte Verweildauer der Rauch- und Verbrennungsgase im Flammrohr, sowie einen durch die Verwirbelungen verbesserten Kontakt der chemischen Reaktionspartner. Wie bereits ausgeführt wurde, begünstigen die erhöhte Verweildauer unter den hohen Temperaturen des Flammrohres sowie die Turbulenzen aufgrund der gegenstromigen Zufuhr die vollständige Oxidation der Kohlenstoffverbindungen und unterbinden die persistente Bildung von Feinstaub. Dieser Effekt nimmt mit zunehmender Verweildauer und Turbulenz zu, sodass die gegenstromige Zufuhr des gasförmigen Mediums in den achsnahen Bereichen des Flammrohres, jedoch abweichend von der Flammrohrachse, am effektivsten ist.A simple apparatus design provides, for example, that the feed line is designed as a feed tube running parallel to the flame tube axis. This feed pipe is preferably arranged in the areas of the flame tube close to the axis, deviating from the flame tube axis. As already mentioned, an area close to the axis is understood to mean the inner half of the flame tube radius. These measures result in an increased dwell time of the smoke and combustion gases in the flame tube due to the countercurrent supply of the gaseous medium, as well as an improved contact of the chemical reactants due to the turbulence. As already stated, the increased dwell time under the high temperatures of the flame tube and the turbulence due to the countercurrent feed promote complete oxidation the carbon compounds and prevent the persistent formation of fine dust. This effect increases with increasing dwell time and turbulence, so that the countercurrent supply of the gaseous medium is most effective in the areas of the flame tube close to the axis, but deviating from the flame tube axis.
Für die Bereitstellung des gasförmigen Mediums wird vorgeschlagen, dass die Zufuhrleitung des gasförmigen Mediums mit der Frischluftleitung verbunden ist und es sich bei dem gasförmigen Medium um einen von der dem Brennraum zugeführten Frischluft abgeleiteten Frischluftteilstrom handelt. Insbesondere wird vorgeschlagen, dass die Frischluftleitung zur teilweisen Rückführung von Rauchgasen in den Brennraum mit der Rauchgasableitung verbunden ist und die Zufuhrleitung mit einem Frischluft und Rauchgase führenden Abschnitt der Frischluftleitung verbunden ist, wobei es sich bei dem gasförmigen Medium um einen Rauchgase enthaltenden Frischluftteilstrom handelt. Da die Frischluftleitung in herkömmlicher Weise mit einem Gebläse verbunden ist, um die Frischluft in den Brennraum zu saugen und in weiterer Folge die Rauchgase abzusaugen, haben die beiden letztgenannten Ausführungen den Vorteil, dass die Einleitung des gasförmigen Mediums mit der elektronischen Regelung der Heizeinrichtung mitgeregelt wird, da die Frischluftmenge über das Gebläse geregelt wird, und somit auch mehr an gasförmigem Medium gegenstromig in das Flammrohr eingeblasen wird, wenn die Brennstoffmenge und die Frischluftmenge und somit auch die Stoffmenge der Verbrennungsgase zunehmen.For the provision of the gaseous medium it is proposed that the supply line of the gaseous medium is connected to the fresh air line and that the gaseous medium is a fresh air partial flow derived from the fresh air supplied to the combustion chamber. In particular, it is proposed that the fresh air line for the partial return of flue gases into the combustion chamber is connected to the flue gas discharge line and the supply line is connected to a section of the fresh air line carrying fresh air and flue gases, the gaseous medium being a fresh air partial flow containing flue gases. Since the fresh air line is conventionally connected to a fan in order to suck the fresh air into the combustion chamber and subsequently suck out the flue gases, the two last-mentioned versions have the advantage that the introduction of the gaseous medium is also regulated by the electronic control of the heating device , since the amount of fresh air is regulated by the fan, and thus more gaseous medium is blown countercurrently into the flame tube when the amount of fuel and the amount of fresh air and thus also the amount of substance in the combustion gases increase.
Um die Verweildauer sowie die Turbulenzen zu erhöhen und somit die vollständige Oxidation der Kohlenstoffverbindungen zu begünstigen wird des Weiteren vorgeschlagen, dass die Zufuhrleitung einen wendelförmig verlaufenden Gasführungsabschnitt für das gasförmige Medium aufweist. Dieser wendelförmige Gasführungsabschnitt kann entweder durch ein zumindest in seinem Endabschnitt wendelförmig gebogenes Zufuhrrohr für das gasförmige Medium verwirklicht werden, oder durch einen entsprechend wendelförmig geformten Innenmantel des Zufuhrrohres.In order to increase the dwell time and the turbulence and thus promote the complete oxidation of the carbon compounds, it is further proposed that the supply line have a helically extending gas guide section for the gaseous medium. This helical gas guide section can either by a feed pipe for the gaseous medium bent at least in a helical manner in its end section can be realized, or by a correspondingly helically shaped inner jacket of the feed pipe.
Im Folgenden werden Ausführungsformen der Erfindung anhand der beiliegenden Zeichnung näher beschrieben. Dabei zeigt die
Insbesondere zeigt die
Oberhalb des Brenntellers 2 ist ein Flammrohr 3 vertikal angeordnet, dessen Einströmbereich 3a dem Brennraum 1 zugewandt ist und in den Brennraum 1 mündet. Das Flammrohr 3 ist von entsprechender Dicke und aus einem thermisch isolierenden Material, vorzugsweise keramisches Material oder (Feuer)Beton, gefertigt. Am oberen Ende des Flammrohres 3 treten die Rauchgase R in einem Ausströmbereich 3b des Flammrohres 3 in annähernd laminarer Strömung aus und gelangen in eine anschließende Rauchgasableitung 4. Die Rauchgasableitung 4 durchsetzt einen nicht näher dargestellten Wärmetauscher mit flüssigkeitsgefüllten, insbesondere wassergefüllten Räumen. In diesen Räumen befindet sich das für Heizzwecke oder zur Nutzung als Warmwasser zu erwärmende Wärmeträgermedium.Above the
Die Rauchgasableitung 4 ist mit einem abgasseitig angeordneten Gebläse 5 verbunden, das als Saugzuggebläse ausgeführt ist und eine Abgabeöffnung 6 aufweist, die etwa an einem außerhalb der Heizeinrichtung verlaufenden Kamin angeschlossen werden kann, um die Rauchgase R abführen zu können. Das Gebläse 5 saugt die Verbrennungsgase V und die Rauchgase R vom Brennraum 1 über das Flammrohr 3 und die Rauchgasableitung 4 in Richtung des Kamins. Des Weiteren wird vom Gebläse 5 Frischluft F in die Frischluftleitung 7 und in den Brennraum 1 angesaugt. Im gezeigten Ausführungsbeispiel der
Wie der
Die Zufuhrleitung 8 ist im gezeigten Ausführungsbeispiel als ein parallel zur Flammrohrachse verlaufendes Zufuhrrohr ausgeführt und in den achsnahen Bereichen des Flammrohres 3 angeordnet. Da die Zufuhrleitung 8 den Ausströmbereich 3b des Flammrohres 3 quert, wird das gasförmige Medium G bereits vorgewärmt, bevor es in das Flammrohr 3 eingeleitet wird. Diese Vorwärmung verhindert eine zu starke Abkühlung des Rauchgases R, die die vollständige Oxidation der Kohlenstoffverbindungen beeinträchtigen würde.In the exemplary embodiment shown, the
In der
Da die Frischluftleitung 7 mit dem Saugzuggebläse 7 verbunden ist, wird auch die Einleitung des gasförmigen Mediums G mit der elektronischen Regeleinrichtung der Heizeinrichtung mitgeregelt, sodass auch mehr an gasförmigem Medium G gegenstromig in das Flammrohr 3 eingeblasen wird, wenn die Brennstoffmenge und die Frischluftmenge und somit auch die Stoffmenge der Verbrennungsgase V zunehmen.Since the
Das im Brennraum 1 gebildete Verbrennungsgas V wird dabei über den Einströmbereich 3a dem Flammrohr 3 zugeführt. Als Verbrennungsgas V wird dabei die Gesamtheit der vom Brennraum 1 in den Einströmbereich 3a des Flammrohres gelangenden Gase bezeichnet, in der oxidierte wie nicht-oxidierte Gasanteile der Gasphasenoxidation vorliegen können, und als Rauchgas R jene Gesamtheit der über den Ausströmbereich 3b des Flammrohres 3 in die Rauchgasableitung 4 strömenden Gase, in der die unmittelbar auf die Verbrennung zurückzuführenden chemischen Vorgänge insbesondere der Oxidation weitestgehend abgeschlossen sind. Innerhalb des Flammrohres 3 stellt sich somit ein Strom an Rauchgasen R und Verbrennungsgasen V ein, der in der
Diesem Strom an Rauchgasen R und Verbrennungsgasen V wird im Flammrohr 3 das gasförmige Medium G gegen die Stromrichtung dieses Rauch- und Verbrennungsgasstromes zugeführt. Auf diese Weise wird eine erhöhte Verweildauer der Rauchgase R und der Verbrennungsgase V im Flammrohr 3 bewirkt, sowie ein verbesserter Kontakt der chemischen Reaktionspartner aufgrund der durch die gegenstromige Einleitung verursachten Verwirbelungen. Die erhöhte Verweildauer unter den hohen Temperaturen des Flammrohres 3 sowie die Turbulenzen aufgrund der gegenstromigen Zufuhr begünstigen die vollständige Oxidation der Kohlenstoffverbindungen und unterbinden die persistente Bildung von Feinstaub.The gaseous medium G is fed to this flow of flue gases R and combustion gases V in the
Auf diese Weise gelingt eine in ihrem Ausmaß überraschende Emissionsreduktion insbesondere hinsichtlich der Feinstaubpartikel, mit der eine Reduktion bis unter die Nachweisbarkeitsgrenze herkömmlicher Messmethoden erreicht werden kann, wie die Anmelderin zeigen konnte. Mithilfe der Erfindung wird somit eine Heizeinrichtung mit deutlich verbesserten Emissionseigenschaften bereitgestellt.In this way, a surprising amount of emissions is achieved, particularly with regard to fine dust particles, with which a reduction to below the detectability limit of conventional measurement methods can be achieved, as the applicant was able to show. With the aid of the invention, a heating device with significantly improved emission properties is thus provided.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RS20220787A RS63512B1 (en) | 2019-09-26 | 2020-09-24 | Heating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT508192019 | 2019-09-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3798513A1 true EP3798513A1 (en) | 2021-03-31 |
EP3798513B1 EP3798513B1 (en) | 2022-06-01 |
Family
ID=72658991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20198099.2A Active EP3798513B1 (en) | 2019-09-26 | 2020-09-24 | Heating device |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3798513B1 (en) |
DK (1) | DK3798513T3 (en) |
ES (1) | ES2925384T3 (en) |
PL (1) | PL3798513T3 (en) |
RS (1) | RS63512B1 (en) |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3685946A (en) * | 1970-11-12 | 1972-08-22 | Ecological Controls Inc | Combustion chamber supplemental air supply assembly and method |
US4565184A (en) * | 1984-05-17 | 1986-01-21 | Collins Bruce H | Combustible particulate fuel heater |
DE3512810A1 (en) | 1985-04-10 | 1986-10-23 | Dyckerhoff Engineering GmbH, 6200 Wiesbaden | METHOD AND INSTALLATION FOR THE COMBUSTION OF WASTE |
DE4033406A1 (en) | 1990-10-20 | 1992-04-23 | Hoval Interliz Ag | METHOD AND DEVICE FOR THE BURNING OF WOOD CHIPS AND WOOD SHAVINGS UNDER THE FORMATION OF LOW-POLLUTANT EXHAUST GASES WITH SLIDING REGULATABLE BURNING PERFORMANCE |
CA1319055C (en) | 1987-10-02 | 1993-06-15 | Guillermo F. Garrido | Non-peripheral blowing of oxygen-containing gas in steam generating boilers |
EP0798510A2 (en) * | 1996-03-28 | 1997-10-01 | Georg Fischer GmbH & Co. | Heating boiler |
WO1999019668A1 (en) | 1997-10-10 | 1999-04-22 | Kvaerner Pulping Oy | Method and arrangement for optimizing oxidation during burning of gaseous and liquid fuels |
DE10021434A1 (en) | 1999-05-03 | 2000-12-21 | E T R En Technik Und Recycling | Burner for solid material has a cylindrical burn chamber feed from underneath and mounted on height adjusting supports |
JP2007285570A (en) | 2006-04-14 | 2007-11-01 | Sekisui House Ltd | Pellet stove and air supply method |
DE102006057710A1 (en) | 2006-12-07 | 2008-07-03 | Kosel Gmbh | Underfeed combustion system for producing heat energy, has air inlet formed at upper closed end of central pipe, which exhibits lateral air outlets for discharge of secondary air, and nozzle provided at lower closed end of central pipe |
DE102007054114A1 (en) | 2007-11-10 | 2009-05-20 | Iht Innovative Heiztechnik Gmbh | Boiler for combustion of solid fuel |
WO2010063046A1 (en) | 2008-12-02 | 2010-06-10 | Knopf Privatstiftung | Method and apparatus for cascaded biomass oxidation with thermal feedback |
DE102010051489A1 (en) * | 2010-08-06 | 2012-02-09 | Fainest Ag | Solid fuel burner for rotary kiln, has swirl vane facing end of burner tube that has pre-combustion and main combustion portions with holes for controlled oxygen supply, nitrogen oxide reduction and for preventing caking of residues |
EP3246652A1 (en) * | 2016-05-18 | 2017-11-22 | ÖKOFEN Forschungs- und Entwicklungsgesellschaft m.b.H. | Heating device |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3537842A1 (en) | 1985-10-24 | 1987-04-30 | Edmund Wagner | Degassing installation for partly pyrolitic combustion of solid fuels |
DE3614177C2 (en) | 1986-04-26 | 1996-09-26 | Erk Eckrohrkessel | combustion chamber |
DE4308001A1 (en) | 1993-03-13 | 1994-09-15 | Erk Eckrohrkessel | Primary measure for reducing pollutants in flue gases from a combustion plant |
DE102009014010B4 (en) | 2009-03-19 | 2012-02-23 | Georg Fischer Gmbh & Co. Kg | Burner for solid, lumpy fuel |
AT513734B1 (en) | 2012-12-04 | 2022-12-15 | Oekofen Forschungs Und Entw M B H | Boiler with heat engine |
AT15458U1 (en) | 2013-02-25 | 2017-09-15 | Ing Russ Egon | Process for burning fuel |
AT520068B1 (en) | 2017-05-16 | 2019-09-15 | Oekofen Forschungs Und Entw M B H | heater |
-
2020
- 2020-09-24 EP EP20198099.2A patent/EP3798513B1/en active Active
- 2020-09-24 ES ES20198099T patent/ES2925384T3/en active Active
- 2020-09-24 PL PL20198099.2T patent/PL3798513T3/en unknown
- 2020-09-24 RS RS20220787A patent/RS63512B1/en unknown
- 2020-09-24 DK DK20198099.2T patent/DK3798513T3/en active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3685946A (en) * | 1970-11-12 | 1972-08-22 | Ecological Controls Inc | Combustion chamber supplemental air supply assembly and method |
US4565184A (en) * | 1984-05-17 | 1986-01-21 | Collins Bruce H | Combustible particulate fuel heater |
DE3512810A1 (en) | 1985-04-10 | 1986-10-23 | Dyckerhoff Engineering GmbH, 6200 Wiesbaden | METHOD AND INSTALLATION FOR THE COMBUSTION OF WASTE |
CA1319055C (en) | 1987-10-02 | 1993-06-15 | Guillermo F. Garrido | Non-peripheral blowing of oxygen-containing gas in steam generating boilers |
DE4033406A1 (en) | 1990-10-20 | 1992-04-23 | Hoval Interliz Ag | METHOD AND DEVICE FOR THE BURNING OF WOOD CHIPS AND WOOD SHAVINGS UNDER THE FORMATION OF LOW-POLLUTANT EXHAUST GASES WITH SLIDING REGULATABLE BURNING PERFORMANCE |
EP0798510A2 (en) * | 1996-03-28 | 1997-10-01 | Georg Fischer GmbH & Co. | Heating boiler |
WO1999019668A1 (en) | 1997-10-10 | 1999-04-22 | Kvaerner Pulping Oy | Method and arrangement for optimizing oxidation during burning of gaseous and liquid fuels |
DE10021434A1 (en) | 1999-05-03 | 2000-12-21 | E T R En Technik Und Recycling | Burner for solid material has a cylindrical burn chamber feed from underneath and mounted on height adjusting supports |
JP2007285570A (en) | 2006-04-14 | 2007-11-01 | Sekisui House Ltd | Pellet stove and air supply method |
DE102006057710A1 (en) | 2006-12-07 | 2008-07-03 | Kosel Gmbh | Underfeed combustion system for producing heat energy, has air inlet formed at upper closed end of central pipe, which exhibits lateral air outlets for discharge of secondary air, and nozzle provided at lower closed end of central pipe |
DE102007054114A1 (en) | 2007-11-10 | 2009-05-20 | Iht Innovative Heiztechnik Gmbh | Boiler for combustion of solid fuel |
WO2010063046A1 (en) | 2008-12-02 | 2010-06-10 | Knopf Privatstiftung | Method and apparatus for cascaded biomass oxidation with thermal feedback |
DE102010051489A1 (en) * | 2010-08-06 | 2012-02-09 | Fainest Ag | Solid fuel burner for rotary kiln, has swirl vane facing end of burner tube that has pre-combustion and main combustion portions with holes for controlled oxygen supply, nitrogen oxide reduction and for preventing caking of residues |
EP3246652A1 (en) * | 2016-05-18 | 2017-11-22 | ÖKOFEN Forschungs- und Entwicklungsgesellschaft m.b.H. | Heating device |
Non-Patent Citations (1)
Title |
---|
PETER DAVID KARNER: "Entwicklung einer Feuerungsanlage für Pellets eines alternativen Energieträgers", THESIS, 3 June 2009 (2009-06-03), pages 1 - 87, XP055865164, Retrieved from the Internet <URL:https://pure.unileoben.ac.at/portal/files/2235837/AC07694914n01vt.pdf> [retrieved on 20211124] |
Also Published As
Publication number | Publication date |
---|---|
ES2925384T3 (en) | 2022-10-17 |
DK3798513T3 (en) | 2022-08-22 |
PL3798513T3 (en) | 2022-10-03 |
RS63512B1 (en) | 2022-09-30 |
EP3798513B1 (en) | 2022-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2615369C3 (en) | Process for flue gas conditioning in waste incineration plants with heat recovery, in particular for municipal and industrial waste, and device for carrying out the process | |
EP0498014B2 (en) | Method of supplying combustion air and firing installation | |
DE60011541T2 (en) | Method and apparatus for NOx reduction | |
EP1901003A1 (en) | Method for feeding combustion gas | |
DE4312820A1 (en) | Process for burning fuels, especially waste | |
EP2787279B1 (en) | Method for operating a solid fuel boiler and solid fuel boiler | |
DE102011115363A1 (en) | Power plant and process for its operation | |
EP2058589B1 (en) | Boiler for solid fuel | |
CH646509A5 (en) | BOILER FOR COMBINED OIL / GAS AND SOLID FUEL FIRING. | |
DE60122829T2 (en) | Waste incineration plant with exhaust gas recirculation | |
EP0839301A1 (en) | Method of incinerating material | |
DE202014010947U1 (en) | Small combustion plant with installation | |
DE69717880T2 (en) | Energy generator for the production of a hot fluid | |
EP3798513B1 (en) | Heating device | |
DE2241891C3 (en) | Method and device for incinerating ammonia plumes resulting from the cleaning of coke oven gases | |
CH701784A1 (en) | Means for improving the burning behavior of a wood heating and wood burning. | |
EP0793063B1 (en) | Heating installation with heat exchanger | |
EP0563499A1 (en) | Wood gasification boiler | |
EP3936013A1 (en) | Grill and method | |
DE3825291A1 (en) | METHOD AND COMBUSTION PLANT FOR COMBUSTION OF FOSSILER FUELS WITH REDUCED EMISSIONS OF NITROGEN | |
DE4006288A1 (en) | Treatment of dangerous waste combustion fumes - comprises mixing with cooling air for use in standard refuse incinerator | |
DE4220489C1 (en) | Operating air heater plant - using boiler heated closed circuit to preheat air and fuel feeds to reducing high value combustion fuels | |
DE202010005458U1 (en) | Baking oven system with a biomass burner | |
DE102019114571B4 (en) | Combustion optimization device for reducing emissions in flue gas, wood-burning oven with a combustion optimization device and its use | |
EP0701674B1 (en) | Method of reducing waste-incineration emissions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
17P | Request for examination filed |
Effective date: 20210921 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220126 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1495605 Country of ref document: AT Kind code of ref document: T Effective date: 20220615 Ref country code: CH Ref legal event code: EP Ref country code: DE Ref legal event code: R096 Ref document number: 502020001167 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20220818 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2925384 Country of ref document: ES Kind code of ref document: T3 Effective date: 20221017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220601 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220901 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220601 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220601 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220902 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220601 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220601 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220601 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220601 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221003 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220601 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 502020001167 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221001 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: FROELING HEIZKESSEL- UND BEHAELTERBAU, GESELLSCHAFT M.B.H Effective date: 20230217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220601 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230427 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220924 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220924 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20230828 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RS Payment date: 20230825 Year of fee payment: 4 Ref country code: PL Payment date: 20230825 Year of fee payment: 4 Ref country code: BE Payment date: 20230830 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231002 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230930 Year of fee payment: 4 Ref country code: CH Payment date: 20231001 Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20200924 |
|
PLCK | Communication despatched that opposition was rejected |
Free format text: ORIGINAL CODE: EPIDOSNREJ1 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220601 |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240924 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20240821 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240926 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240829 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240924 Year of fee payment: 5 |