EP3797225B1 - Radiale strömungsmaschine - Google Patents

Radiale strömungsmaschine Download PDF

Info

Publication number
EP3797225B1
EP3797225B1 EP19720916.6A EP19720916A EP3797225B1 EP 3797225 B1 EP3797225 B1 EP 3797225B1 EP 19720916 A EP19720916 A EP 19720916A EP 3797225 B1 EP3797225 B1 EP 3797225B1
Authority
EP
European Patent Office
Prior art keywords
housing part
radial
gas
flow channel
gas outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19720916.6A
Other languages
English (en)
French (fr)
Other versions
EP3797225C0 (de
EP3797225A1 (de
Inventor
Ronny ZWAHLEN
Daniel HILPERT
Peter Meier
Ernst Scherrer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micronel AG
Original Assignee
Micronel AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micronel AG filed Critical Micronel AG
Publication of EP3797225A1 publication Critical patent/EP3797225A1/de
Application granted granted Critical
Publication of EP3797225C0 publication Critical patent/EP3797225C0/de
Publication of EP3797225B1 publication Critical patent/EP3797225B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • F04D29/4253Fan casings with axial entry and discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/164Multi-stage fans, e.g. for vacuum cleaners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/165Axial entry and discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/10Kind or type
    • F05D2210/12Kind or type gaseous, i.e. compressible

Definitions

  • the present invention relates to a radial flow machine for sucking in and transporting a gas, in particular air.
  • the turbomachine can be used, for example, to generate an air flow, to extract air and/or to generate an overpressure and/or an underpressure of air or another gas
  • Flow machines which also include fans and compressors in particular, have been known for a long time and are used in a wide variety of applications.
  • the flow machines in question within the scope of this property right have a usually electrically driven impeller which rotates in a housing.
  • a gas such as air in particular, is sucked in, transported and compressed.
  • Fans are also often referred to as fans or blowers.
  • a specific class of turbomachines relates to radial turbomachines, in which the gas or the air is usually sucked in axially or parallel to the axis of rotation of the impeller.
  • the gas or air flow is deflected by 90° due to the rotation of the impeller and transported outwards in a radial direction, in order to then be blown out through a gas outlet.
  • radial turbomachines generally allow a relatively high pressure to be generated for a given amount of air.
  • the EP 1 746 290 A1 a two-stage centrifugal compressor in which an external fan is used to cool the motor.
  • the EP 0 385 298 A2 discloses a fan in which the air flow is drawn in axially, then transported radially outwards, deflected by almost 180° at the periphery of an impeller and then blown out through the engine compartment. Here, too, the air flow experiences strong deflections.
  • the fan disclosed in this document also has a large number of housing parts connected to one another, resulting in a large number of potentially leaky points.
  • the US 2013/0236303 A1 shows a fan in which a first housing part, which forms the engine compartment, together with a second housing part, which has the air inlet opening, forms a flow channel into which the sucked air is conveyed by an impeller in order to then be blown out.
  • the U.S. 2011/0135519 A1 discloses a fan with two housing parts, one of which forms a motor compartment and the other an axial gas inlet and a radial one gas outlet.
  • the WO 2011/062633 A1 discloses a compact fan having a central axial air inlet and a radial air outlet, both formed by a first housing part. A second housing part forms the back of the fan.
  • the DE 10 2016 210 948 A1 relates to a compressor with a compressor housing and an electric motor housing.
  • the compressor housing forms a gas inlet and a flow channel.
  • the electric motor housing forms a receiving space for a motor.
  • the WO 02/070139 A2 discloses a centrifugal fan in which the gas outlet is formed by an annular duct extending around the motor.
  • the first housing part or the second housing part forms the gas outlet at a radial distance from the axis of rotation and delimits it circumferentially.
  • the first housing part and the second housing part are each largely plate-shaped on the outside in the region of the flow channel.
  • the flow channel is preferably formed on the inner sides, that is to say on the sides of the first and second housing parts facing one another, in the form of a depression.
  • a plate-shaped outside of the first and second housing part in the area of the flow channel has other advantages. For example, drill and screw holes can easily be provided in order to connect the two housing parts to one another and/or to other components, or inscriptions etc. can simply be applied to the outside.
  • the first or the second housing part forms the gas outlet and delimits it all around, it is ensured in a particularly simple manner that no leaks can develop in the area of the gas outlet. Due to the radial distance between the gas outlet and the axis of rotation of the radial impeller, deflections of the gas flow between the gas inlet and the gas outlet can also be reduced to a minimum, which improves the efficiency of the turbomachine.
  • the first housing part preferably forms the gas outlet and delimits it all around.
  • the gas can then be conveyed out of the gas outlet in particular along the same or at least approximately the same direction as it was conveyed through the gas inlet is sucked in.
  • the gas outlet is preferably formed in particular by a gas outlet opening which is peripherally delimited by the material of the first housing part.
  • the radial flow machine is preferably a radial fan. However, it can also be a radial compressor, for example.
  • the gas inlet is usually arranged in the vicinity of the axis of rotation and the gas outlet is arranged at a distance from the axis of rotation, so that the gas is conveyed outwards in the radial direction between the gas inlet and the gas outlet.
  • the first housing part forms the engine compartment and can therefore also be referred to as the engine housing.
  • the motor compartment is preferably formed by a bag-like depression into which the drive motor can advantageously be inserted from the opening side along the axis of rotation.
  • the first housing part transitions into a projecting area, preferably in the radial direction, ie perpendicular to the axis of rotation.
  • the protruding area On its side facing away from the engine compartment, the protruding area preferably forms the flow channel, which is advantageously designed there in the form of a depression.
  • the gas outlet is preferably formed, for example in the form of an outlet socket, on the side of the cantilevered area which faces the engine compartment.
  • the flow channel formed on the side facing away then merges via a through-opening into the gas outlet on the side of the cantilevered area facing the engine compartment.
  • the outlet socket can have an internal or external thread for connection to a coupling element or a hose connection, for example, or it can be smooth on its outside or have peripheral ribs for sealing placement of a flexible hose.
  • Cooling ribs are preferably provided on the outside of the first housing part, in particular on the outside of the engine compartment, for passively dissipating thermal energy from the engine compartment.
  • the drive motor is preferably an electric motor.
  • the rotor is advantageously arranged on the inside and the stator on the outside.
  • the rotor is then preferably non-rotatably connected to the radial impeller via a drive shaft.
  • the gas can in particular be air. In principle, however, any other gaseous medium can be sucked in and transported by the radial impeller.
  • the second housing part forms the gas inlet, which is formed in particular by a gas inlet opening, which is preferably peripherally delimited by the material of the second housing part.
  • the gas inlet is preferably arranged concentrically to the axis of rotation. It is advantageously formed by an inlet connector which protrudes outwards on the side of the second housing part which is remote from the first housing part.
  • the inlet connector can have an internal or external thread for connection to a coupling element or a hose connection, for example, or it can be smooth on its outside for sealing placement of a flexible hose or have circumferential ribs.
  • the side of the second housing part that faces the first housing part preferably forms the flow channel, which is advantageously designed there in the form of a recess. The gas inlet then merges via a passage opening into the flow channel formed on the other side of the second housing part.
  • the flow channel is formed jointly by the first and the second housing part and is delimited by them.
  • the flow channel connects in particular the gas inlet with the gas outlet.
  • the flow channel preferably has an inner radial area and a peripheral area. In the radial area, the direction of movement of the gas has a radial component, so that the gas is transported radially outwards. In the peripheral area, on the other hand, the movement component of the gas along the circumferential direction or along the tangential direction clearly predominates.
  • the radial area preferably extends radially circumferentially to the gas inlet from the axis of rotation outwards and is also advantageously designed conically, with an opening angle directed towards the first housing part along the axis of rotation.
  • the radial area of the flow channel preferably serves to accommodate the radial impeller.
  • the radial impeller is therefore preferred in the flow channel, that is, in particular between the first and the second housing part arranged. On its radial outside, the radial area advantageously transitions into the peripheral area of the flow channel.
  • the peripheral area usually extends around the radial area and in particular the radial impeller and is used to convert the gas into an encircling ring or spiral flow.
  • the first and the second housing part preferably each form approximately half of the peripheral area of the flow channel.
  • the peripheral region preferably runs essentially along its entire extent in the circumferential direction within the same plane.
  • the cross-sectional area of the flow channel preferably increases along the circumferential direction in the radial area towards the gas outlet, in particular continuously. This takes into account the changing pressure conditions in the circumferential direction.
  • the enlargement of the cross-sectional area can be achieved, for example, by means of an increasing outer radius of the radial area and/or by means of a continuous widening of the flow channel in the direction of the axis of rotation.
  • the turbomachine preferably has at least one radial area and/or at least one peripheral area, which is formed and delimited jointly by the first housing part and the second housing part.
  • the flow channel thus advantageously has at least one section in which it is formed and delimited jointly by the first and the second housing part in cross section.
  • the radial impeller is designed to be set in a rotary motion about the axis of rotation by the drive motor in order to draw in gas through the gas inlet and convey it radially outwards.
  • the gas is transported radially outwards, due to the rotary movement of the radial impeller, the gas is additionally subjected to a movement component pointing in the circumferential direction, as a result of which the gas is advantageously already moving mainly along the circumferential direction towards the gas outlet when it reaches the peripheral region of the flow channel.
  • the flow channel is preferably connected to the gas outlet in a tangential, straight-line direction relative to the axis of rotation.
  • the transition from the peripheral area of the flow channel to the gas outlet takes place continuously. Become this way Deflections of the gas flow and turbulence between the flow channel and the gas outlet are minimized.
  • the gas outlet is thus preferably arranged radially outside the flow channel.
  • the first housing part and, even more advantageously, also the second housing part are advantageously produced as a whole in one piece and preferably as a cast element.
  • the cast element can in each case be made in particular from aluminum or zinc. Due to their one-piece design, the first and second housing parts are not only particularly easy to produce, but the number of potentially leaky points is reduced to a minimum.
  • the radial flow machine has a tightness according to IP 67 according to IEC Standard 60529. If the first and second housing parts are each produced as a cast element, a particularly robust turbomachine is also achieved.
  • first housing part also leads to optimal transfer of the motor heat to the surfaces of the first housing part delimiting the flow channel, especially when made from metal, and thus to efficient dissipation of the heat through the gas flow in the flow channel.
  • first housing part and/or the second housing part can, however, also be made in several pieces. However, at least the first housing part or the second housing part is advantageously formed in one piece.
  • the gas inlet is preferably an axial gas inlet, through which the gas is sucked into the flow channel in a direction that extends parallel to the axis of rotation of the radial impeller.
  • the gas outlet is preferably an axial gas outlet through which the gas is conveyed outwards in a direction which extends parallel to the axis of rotation of the radial impeller.
  • An axial gas outlet enables a particularly space-saving use of the turbomachine. In particular, this also makes it possible to arrange a plurality of such radial flow machines connected in series one behind the other in a space-saving manner.
  • the second housing part preferably has a deflection element, which in particular and preferably can represent an element formed in one piece on the second housing part.
  • the deflection element serves in particular to deflect the gas flowing out of the flow channel in the direction in which it is conveyed out of the turbomachine through the gas outlet to the outside.
  • the deflection element advantageously has a continuously curved surface, which serves to deflect the gas flow.
  • the deflection element is preferably designed to effect a deflection of the flowing gas by approximately 90°.
  • the deflection element protrudes at least partially into the gas outlet, in particular into the area of the gas outlet which is peripherally delimited by the first housing part. In this way, an optimal transition from the flow channel to the gas outlet, ie one that is as turbulence-free as possible for the gas flow, is achieved.
  • a sealing element is advantageously provided between the first housing part and the second housing part in order to seal the flow channel circumferentially towards the outside.
  • the sealing element can in particular be designed as an O-ring and inserted in a correspondingly provided groove on the first or second housing part.
  • the sealing element is preferably also arranged circumferentially around the gas inlet.
  • the sealing element is preferably also arranged circumferentially around the gas outlet. In this way, an optimal sealing of the Flow channel and in particular the gas outlet can be achieved.
  • Between the first and the second housing part there is then preferably a space which is completely sealed off from the outside except for the gas inlet and the gas outlet and which contains at least the flow channel, preferably at least the flow channel and the engine compartment.
  • the space that is sealed off from the outside preferably has a tightness overall that is designed according to IP 67 according to IEC Standard 60529.
  • the first housing part and preferably also the second housing part are advantageously made of a metal. This makes the turbomachine particularly robust. In addition, when made from metal, heat that is generated in the engine compartment can be dissipated to the outside particularly well.
  • the overall housing of the radial flow machine is advantageously formed essentially exclusively by the first and the second housing part.
  • the housing of the turbomachine is advantageously formed exclusively by the first and the second housing part.
  • “Essentially exclusively” means that the overall housing can have other components that are functionally irrelevant in terms of limiting the gas flow and the engine compartment, such as a cover for closing a compartment for accommodating an electronics unit. If there is a compartment for accommodating an electronic unit, this preferably represents part of the space that is completely sealed off from the outside, with the exception of the gas inlet and the gas outlet.
  • a sealing element designed in particular as an O-ring is then preferably present between the first housing part and the cover .
  • a connection plug which leads out of the engine compartment or the compartment with the electronics unit, is also advantageously connected to the first housing part and/or the cover in a sealing manner.
  • the flow machine can additionally have a coupling piece according to a development of the invention in order to connect the gas outlet to the gas inlet of a further radial flow machine.
  • the radial flow machine according to the invention is particularly suitable for industrial applications such as transport ("pick and place”), cleaning, air drying, etc. Applications can also be found in the paper industry in particular.
  • FIGS. 1 to 13 show different representations of preferred embodiments of a radial flow machine according to the invention. Elements with the same or similar functions are each provided with the same reference symbols.
  • the radial flow machine according to the embodiment shown has an extremely compact and robust design overall. This is due in particular to the simple design of the housing consisting essentially of only two housing parts 1 and 2 and the plate-shaped design of the two housing parts 1 and 2 in the area where they abut and where the gas passes through the turbomachine.
  • Both the first housing part 1 and the second housing part 2 are produced in one piece as a cast element made of metal.
  • the first housing part 1 is in the Figures 3 to 5 shown and forms, as is particularly the case in the figure 2 is clearly visible, an engine compartment 11, in which a drive motor 6 is accommodated. Since the engine compartment 11 is designed as a bag-like depression in the housing part 1 and is designed to be open toward the second housing part 2, the drive motor 6 can be easily inserted into the engine compartment 11 when the second housing part 2 is removed. Otherwise, the engine compartment 11 is surrounded all around by the first housing part 1 with the exception of the upper side which is closed by a cover 3 . This enclosing of the engine compartment 11 by the first housing part 1 enables optimal dissipation of heat from the engine compartment 11 .
  • the drive motor 6 is preferably an AC electric motor in which the rotor is advantageously arranged on the inside and the stator is advantageously arranged on the outside.
  • the drive motor 6 is advantageously designed for rotational speeds of up to 40,000 RPM.
  • the drive motor 6 is used to drive a drive shaft 61 and, via this, to drive a radial impeller 5 which is non-rotatably attached to the front end of the drive shaft 61 ( figure 9 ).
  • the rotational movement carried out by the radial impeller 5 during operation of the radial flow machine defines an axis of rotation R ( figure 2 ).
  • the first housing part 1 is designed to be open, but closed with the cover 3 already mentioned.
  • the cover 3 is also made in one piece as a whole and as a cast element made of metal.
  • screws are to be inserted through screw holes 31 of the cover 3 into corresponding threaded holes 18 provided on the first housing part 1 (see FIG figure 3 ) screwed in.
  • a compartment 13 which serves to accommodate an electronic unit 7.
  • the electronics unit 7 serves in particular to control and supply energy to the drive motor 6 and has a printed circuit board 71 with electronic components 711 mounted on the top and bottom.
  • a connection plug 72 is also attached to the circuit board 71 and protrudes outwards through a through-opening correspondingly provided in the cover 3 .
  • the connector plug 72 is used to connect an external control and power supply unit that is not shown in the figures.
  • a sealing element for example an O-ring, can be provided between the cover 3 and the first housing part 1, which is inserted, for example, into a groove provided on the first housing part 1 in order to seal off the compartment 13 and the engine compartment 11 from the outside.
  • the first housing part 1 has a sealing groove, into which a sealing element 32 is inserted, which can be designed in particular as an O-ring.
  • the sealing element 32 is used to seal the first housing part 1 against the cover 3 in the area of the compartment 13.
  • Another sealing element is advantageous, which is not shown in the figures and is preferably designed as an O-ring, between the connector plug 72 and the cover 3 arranged in order to provide a sealing of the compartment 13 to the outside surrounding the connector plug 72 .
  • the first housing part 1 has, in its area enclosing the engine compartment 11 , external cooling ribs 17 which serve to dissipate thermal energy from the engine compartment 11 .
  • the first housing part 1 transitions perpendicularly, ie radially outwards in relation to the axis of rotation R, into a circumferential projecting area 19.
  • the first housing part 1 is largely plate-shaped in this projecting area 19 , at least on its rearward side, that is to say in the direction of the engine compartment 11 .
  • the overhanging portion 19 has an approximately square shape as a whole.
  • a base 16 of the first housing part 1 extends from the cantilevered area 19 to the rear.
  • the first housing part 1 On the front side facing the second housing part 2, the first housing part 1 has a depression in the area of the projection 19, which forms a flow channel 8 together with a depression of the second housing part 2, which will be explained further below.
  • the flow channel 8 is arranged concentrically circumferentially to the axis of rotation R and has an inner radial region 81 which radially outwards into a surrounding outer peripheral region 82 passes.
  • the first housing part 1 is slightly recessed, but flat.
  • the first housing part 1 In the peripheral area 82, the first housing part 1 is recessed in an annular manner, the recess of the radial area 81 merging in the radial direction into the annular recess of the peripheral area 82.
  • the peripheral area 82 of the flow channel 8 is shown in the cross-sectional view according to FIG figure 2 limited by rounded boundary surfaces of the first housing part 1.
  • the peripheral area 82 of the flow channel 8 widens with respect to its cross-sectional area, as for example in FIG figure 5 is clearly visible, continuously in the circumferential direction.
  • the indentation formed in the first housing part 1, which forms the peripheral area 82 of the flow channel 8 merges tangentially and with a further widening cross-sectional area into a gas outlet 12.
  • the gas outlet 12 is formed by a gas outlet socket 121 which extends backwards parallel to the axis of rotation R on the rear side of the first housing part 1 .
  • the gas outlet socket 121 which is formed entirely by the first housing part 1, delimits a gas outlet opening through which the gas flowing out of the flow channel 8 can be blown out of the radial flow machine.
  • the gas outlet connector 121 has an internal thread for connecting, for example, an air line or a coupling element.
  • the recess which forms the peripheral area 82 of the flow channel 8 on the front side of the first housing part 1, merges continuously via a rounded surface into the gas outlet connector 121.
  • the indentation becomes increasingly deep towards the gas outlet 12 .
  • a continuous opening is thus formed in the first housing part 1 in the region of the gas outlet 12 .
  • the gas outlet connector 121 extends parallel to the axis of rotation R from the projecting area 19 to the rear.
  • the first housing part 1 has a sealing groove 14, into which a sealing element 4 in the form of an O-ring is used.
  • the sealing groove 14 and thus the sealing element 4 are not only arranged circumferentially around the flow channel 8 but also around the gas outlet 12 or around the through-opening formed by the gas outlet 12 .
  • the sealing element 4 serves to seal the first housing part 1 from the second housing part 2 in the area of the flow channel 8.
  • the second housing part 2 is in particular in the Figures 6 to 8 shown. Like it in the figure 6 As can be seen, the second housing part 2 has an overall largely plate-shaped outer shape, with the exception of a gas inlet connection 211 protruding on the front and a deflection element 22 protruding on the rear.
  • the second housing part 2 describes a largely square shape, corresponding to the shape of the projection 19 of the first housing part.
  • the gas inlet connector 211 is arranged concentrically to the axis of rotation R and extends outward parallel to this from the otherwise largely planar front side of the second housing part 2 .
  • a gas inlet opening extends continuously through the gas inlet connector 211 and the second housing part 2 and thus forms a gas inlet 21.
  • the gas inlet connector 211 has an internal thread 212 for connecting, for example, an air line or a coupling element.
  • a recess is formed concentrically and circumferentially to the gas inlet 21, which together with the recess of the first housing part 1 described above forms and delimits the flow channel 8.
  • the inner area of the depression of the second housing part 2, which forms the radial area 82 of the flow channel 8, has a conical front boundary surface with an opening angle directed along the axis of rotation R toward the first housing part 1.
  • the conical boundary surface which in particular in the figure 2 is clearly visible, corresponds to the likewise conical front side of the radial impeller 5.
  • annular indentation which forms the peripheral region 82 of the flow channel 8 , adjoins the conical boundary surface all the way around in the radial direction.
  • annular depression of the second housing part 2 also widens continuously along the circumferential direction and has a rounded boundary surface.
  • the depression which forms the peripheral area 82 of the flow channel 8 is continued in a tangential, straight direction to a deflection element 22 .
  • the deflection element 22 protrudes into the gas outlet 12 and in particular the gas outlet connector 121 of the first housing part 1 . It serves to deflect the gas flowing out of the flow channel 8 by about 90° with as little turbulence as possible and to guide it into the gas outlet connector 121 .
  • the deflection element 22 has a continuously rounded inner surface, along which the gas flow is deflected by approximately 90° in a direction extending parallel to the axis of rotation R.
  • the deflection element 22 also has a rounded boundary surface in the cross section of the gas flow, which continuously merges into the rounded boundary surface formed by the depression in the second housing part 2 that forms the peripheral region 82 of the flow channel 8 .
  • the second housing part 2 Around the recess, which forms the flow channel 8, the second housing part 2 has a sealing surface 23 that is generally planar.
  • the sealing surface 23 extends around both the gas inlet 21 and the deflection element 22 . It serves to support the sealing element 4 and thus as a sealing seat for sealing the flow channel 8 to the outside.
  • Screw holes 24 are provided in each of the corners of the second housing part 2 , through which screws can be screwed into the threaded holes 15 of the first housing part 1 in order to fasten the second housing part 2 to the first housing part 2 .
  • the flow channel 8 is thus formed on the one hand by a recess, which is formed on the side of the first housing part 1 facing the second housing part 2, and on the other hand by a corresponding recess, which is formed on the side of the second housing part 2 facing the first housing part 1 is trained.
  • the flow channel 8 has an approximately circular cross-sectional area throughout.
  • An approximately circular cross-sectional area is also present in the continuation of the flow channel 8 in the area of the deflection element 22 and in the gas outlet connector 121 . Due to this continuously circular cross-sectional area, a largely turbulence-free gas flow within the turbomachine is achieved.
  • the radial impeller 5, which in the figure 9 is shown, is attached to the drive shaft 61 in a rotationally fixed manner in the region of a hub 52 .
  • a circular inlet opening is formed in a front wall 53 of the radial impeller 5, which forms an air inlet area 55.
  • Impeller blades 51 arranged between the front wall 53 and a rear wall 54 each extend approximately radially outwards and, during operation, serve to transport the gas flowing into the air inlet region 55 radially outwards.
  • the gas leaves the radial impeller 5 via an air outlet area 56 arranged radially on the outside.
  • the space for the gas decreases in the radial direction outwards between the front wall 53 and the rear wall 54.
  • the gas is thus increasingly compressed as it is conveyed outwards.
  • the radial impeller 5 is arranged in the radial area 81 of the flow channel 8 , ie between the first housing part 1 and the second housing part 2 .
  • the sealing elements 4 and 32 is through the first housing part 1, the second Housing part 2 and the cover 3 limited interior, which includes the flow channel 8, the engine compartment 11 and the compartment 13, with the exception of the gas inlet 21 and the gas outlet 121 completely and preferably according to IP 67 according to IEC Standard 60529 sealed to the outside.
  • the engine compartment 11 and in the compartment 13 there is therefore preferably an increased pressure compared to the outside pressure during operation of the turbomachine, which pressure can in particular essentially correspond to the pressure in the flow channel 8 .
  • the radial impeller 5 is set in a rotary motion about the axis of rotation R by the drive motor 6 .
  • a gas or air is sucked in by the impeller blades 51 through the gas inlet connector 211 into the flow channel 8 and conveyed radially outwards in its radial region 81 .
  • the impeller blades 51 simultaneously move the gas in the circumferential direction, which thus reaches the peripheral area 82 of the flow channel 8 along a spiral from the radial area 81 .
  • the compressed gas reaches the deflection element 22 via the peripheral region 82 , where it is deflected by approximately 90° in a direction extending parallel to the axis of rotation R and is blown out through the gas outlet connector 121 .
  • the gas outlet port 121 of a first radial flow machine can be coupled to the gas inlet port 211 of a second radial flow machine, which is shown in FIGS figures 10 and 11 is shown.
  • the outlet pressure is thereby doubled, or correspondingly multiplied if even more radial flow machines of this type are connected in series.
  • a coupling piece 9 can be used to couple the two radial flow machines, which can be screwed into the internal thread of the gas outlet socket 121 of the first radial flow machine and into the internal thread 212 of the gas inlet socket 211 of the second radial flow machine.
  • the two turbomachines are mutually rotated by 180 ° to each other.
  • the gas outlet 12 of the second radial flow machine is then exactly aligned with the gas inlet 21 of the first radial flow machine.
  • each with a radial impeller 5 can be provided within the radial flow machine.
  • a corresponding embodiment is in the figures 12 and 13 shown.
  • the two radial impellers 5 are both attached to the drive shaft 61 in a rotationally fixed manner and can therefore be driven by the drive motor 6 .
  • An intermediate part 10 is arranged between the first housing part 1 and the second housing part 2 in the area between the two radial impellers 5 .
  • the intermediate part 10 delimits the flow channel 8 on both sides, that is to say towards the first housing part 1 on the one hand and towards the second housing part 2 on the other hand.
  • the gas flowing in through the gas inlet connector 211 of the second housing part 2 thus first reaches a first radial region 81 of the flow channel 8 in the region of the first radial impeller 5, which forms a first (high-pressure) stage of the turbomachine. From this first radial impeller 5, the gas is then conveyed radially outwards into a first peripheral area 82 and from there along the rear side of the first radial impeller 5 again in the direction of the axis of rotation R and axially through a through opening centrally arranged in the intermediate part 10. From this passage opening, the gas passes directly into a second radial area 81 of the flow channel 8, which is located in the area of the second radial impeller 5.
  • the second radial impeller 5 forms a second (low-pressure) stage of the turbomachine. From the second radial impeller 5, the gas is conveyed radially outwards into a second peripheral area 82 of the flow channel 5 and finally through the gas outlet connector 121 to the outside.
  • the first and the second radial impeller 5 and also the first and second radial area 81 and the first and second peripheral area 82 can each be designed and in particular dimensioned differently.
  • the intermediate part 10 which is preferably produced in one piece, in particular as a cast element, thus forms a further housing part of the radial flow machine.
  • the in Central passage opening provided between part 10 forms a gas inlet for the second (low-pressure) stage or a gas outlet for the first (high-pressure) stage of the turbomachine.
  • the first housing part 1 together with the intermediate part 10 or the second housing part 2 together with the intermediate part 10 can also be viewed as a multi-piece housing part 1, 10 or 2, 10.
  • the gas outlet can also be formed by the second housing part 2 and be delimited circumferentially by it.
  • the gas is then blown out of the gas outlet nozzle in the opposite direction to that in which it was sucked in through the gas inlet nozzle.
  • the deflection element is then formed on the first housing part 1 instead of on the second housing part 2 .
  • the radial impeller can also be any different than that in the figure 9 shown radial impeller 5 be configured.
  • the front wall 53 or the rear wall 54 can also be omitted. Preferably, however, for reasons of stability, both the front wall 53 and the rear wall 54 are present.
  • the coupling piece 9 can also be designed in any other way and can include a flexible connecting tube, for example.
  • REFERENCE LIST 1 First housing part 11 engine compartment 5 centrifugal impeller 12 gas outlet 51 impeller blades 121 gas outlet nozzle 52 hub 13 Academic subject 53 front wall 14 seal groove 54 back panel 15 threaded hole 55 air intake area 16 base 56 air outlet area 161 screw hole 17 cooling fins 6 drive motor 18 threaded hole 61 drive shaft 19 Projecting area 7 electronics unit 2

Description

    TECHNISCHES GEBIET
  • Die vorliegende Erfindung betrifft eine radiale Strömungsmaschine zum Ansaugen und Befördern eines Gases, insbesondere von Luft. Die Strömungsmaschine kann zum Beispiel zur Erzeugung eines Luftstroms, zur Luftabsaugung und/oder zur Erzeugung eines Überdrucks und/oder eines Unterdrucks von Luft oder eines anderen Gases dienen
  • STAND DER TECHNIK
  • Strömungsmaschinen, zu denen insbesondere auch Ventilatoren und Verdichter zählen, sind seit langem bekannt und werden in unterschiedlichsten Anwendungen eingesetzt. Die im Rahmen dieses Schutzrechts betreffenden Strömungsmaschinen weisen ein üblicherweise elektrisch angetriebenes Laufrad auf, welches in einem Gehäuse rotiert. Dadurch wird ein Gas, wie insbesondere Luft, angesaugt, befördert und verdichtet. Ventilatoren werden oft auch als Lüfter oder Gebläse bezeichnet.
  • Eine bestimmte Klasse von Strömungsmaschinen betrifft radiale Strömungsmaschinen, bei denen das Gas bzw. die Luft üblicherweise axial bzw. parallel zur Rotationsachse des Laufrades angesaugt wird. Der Gas- bzw. Luftstrom wird durch die Rotation des Laufrades um 90° umgelenkt und in radialer Richtung nach aussen hin befördert, um dann durch einen Gasauslass hindurch ausgeblasen zu werden. Im Vergleich zu anderen Strömungsmaschinen ermöglichen radiale Strömungsmaschinen im Allgemeinen bei vorgegebener Luftmenge die Erzeugung eines verhältnismässig grossen Druckes.
  • Neben der Erfüllung der je nach Anwendung geforderten aerodynamischen Werte sind bei radialen Strömungsmaschinen insbesondere die Robustheit sowie eine kompakte und möglichst einfache Bauweise wünschenswert. Des Weiteren können das Lüftervolumen, das Gesamtgewicht, das Vibrationsverhalten und die dadurch resultierende Akustik eine wichtige Rolle spielen. Wichtig beim Design von elektrisch angetriebenen Strömungsmaschinen ist ausserdem eine ausreichende Kühlung des Elektromotors.
  • Beispielsweise zeigt die EP 1 746 290 A1 einen zweistufigen Radialverdichter, bei welchem zur Motorkühlung ein Fremdlüfter eingesetzt wird.
  • In der EP 0 492 770 A1 ist ein Ventilator gezeigt, bei dem Luft durch das Motorgehäuse hindurch angesaugt und dann von einem Laufrad radial nach aussen befördert wird, um schliesslich auf der vom Motor abgewandten Seite des Laufrades zentral ausgeblasen zu werden. Der Luftstrom erfährt dabei mehrfache und starke Umlenkungen, welche die Effizienz des Ventilators beeinträchtigen.
  • Die EP 0 385 298 A2 offenbart einen Ventilator, bei dem der Luftstrom axial angesaugt, dann radial nach aussen befördert, an der Peripherie eines Laufrades um fast 180° umgelenkt und dann durch den Motorraum hindurch ausgeblasen wird. Auch hier erfährt der Luftstrom somit starke Umlenkungen. Der in diesem Dokument offenbarte Ventilator weist zudem eine grosse Anzahl von miteinander verbundenen Gehäuseteilen auf, wodurch sich eine Vielzahl von potenziell undichten Stellen ergibt.
  • Die US 2013/0236303 A1 zeigt einen Ventilator, bei dem ein erstes Gehäuseteil, das den Motorraum bildet, gemeinsam mit einem zweiten Gehäuseteil, das die Lufteinlassöffnung aufweist, einen Strömungskanal bildet, in welchen die angesaugte Luft von einem Laufrad befördert wird, um dann ausgeblasen zu werden.
  • Ferner offenbaren die Dokumente DE 10 2007 053 016 A1 und DE 10 2016 210 464 A1 Strömungsmaschinen, bei denen es sich jedoch anstatt um radiale Strömungsmaschinen jeweils um Seitenkanalverdichter handelt.
  • Die US 2011/0135519 A1 offenbart einen Lüfter mit zwei Gehäuseteilen, von denen eines einen Motorraum bildet und das andere einen axialen Gaseinlass sowie einen radialen Gasauslass.
  • Die WO 2011/062633 A1 offenbart einen kompakten Lüfter mit einem zentralen axialen Lufteinlass und einem radialen Luftauslass, welche beide durch ein erstes Gehäuseteil gebildet werden. Ein zweites Gehäuseteil bildet die Rückseite des Lüfters.
  • Die DE 10 2016 210 948 A1 betrifft einen Verdichter mit einem Verdichtergehäuse und einem Elektromotorgehäuse. Das Verdichtergehäuse bildet einen Gaseinlass sowie einen Strömungskanal. Das Elektromotorgehäuse bildet einen Aufnahmeraum für einen Motor.
  • Die WO 02/070139 A2 offenbart einen Radiallüfter, bei dem der Gasauslass durch einen sich um den Motor herum erstreckenden Ringkanal gebildet wird.
  • DARSTELLUNG DER ERFINDUNG
  • Es ist also eine Aufgabe der vorliegenden Erfindung eine effiziente radiale Strömungsmaschine anzugeben, welche eine kompakte Bauweise mit wenig Teilen hat. Zur Lösung dieser Aufgabe wird eine radiale Strömungsmaschine vorgeschlagen, wie sie in Anspruch 1 angegeben ist. Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben.
  • Die vorliegende Erfindung stellt also eine radiale Strömungsmaschine, insbesondere ein Radialventilator, zur Verfügung, aufweisend
    • ein erstes Gehäuseteil, welches einen Motorraum zur Aufnahme eines Antriebsmotors bildet;
    • ein zweites Gehäuseteil, welches einen Gaseinlass bildet;
    • einen Strömungskanal, der gemeinsam durch das erste Gehäuseteil und das zweite Gehäuseteil gebildet und begrenzt wird;
    • einen Gasauslass; sowie
    • ein Radiallaufrad, das vom Antriebsmotor um eine Rotationsachse antreibbar ist, um ein Gas, insbesondere Luft, von ausserhalb der Strömungsmaschine durch den Gaseinlass hindurch in den Strömungskanal anzusaugen und aus dem Strömungskanal durch den Gasauslass hindurch nach aussen zu befördern.
  • Das erste Gehäuseteil oder das zweite Gehäuseteil bildet dabei radial beabstandet zur Rotationsachse den Gasauslass und begrenzt diesen umlaufend.
  • Das erste Gehäuseteil und das zweite Gehäuseteil sind aussenseitig im Bereich des Strömungskanals jeweils weitgehend plattenförmig ausgebildet. Dadurch kann eine besonders robuste und kompakte Bauform der Strömungsmaschine erreicht werden. Bevorzugt ist der Strömungskanal ist auf den Innenseiten, das heisst auf den einander zugewandten Seiten des ersten und des zweiten Gehäuseteils, jeweils in Form einer Vertiefung ausgebildet. Eine plattenförmige Aussenseite des ersten und zweiten Gehäuseteils im Bereich des Strömungskanals hat aber noch weitere Vorteile. So können zum Beispiel einfach Bohr- und Schraublöcher vorgesehen werden, um die beiden Gehäuseteile miteinander und/oder mit anderen Bauteilen zu verbinden, oder es können einfach aussenseitige Beschriftungen etc. aufgebracht werden.
  • Indem das erste oder das zweite Gehäuseteil den Gasauslass bildet und diesen umlaufend begrenzt, ist auf besonders einfache Art und Weise sichergestellt, dass im Bereich des Gasauslasses keine Undichtigkeiten entstehen können. Durch die radiale Beabstandung des Gasauslasses zur Rotationsachse des Radiallaufrades können zudem Umlenkungen des Gasstroms zwischen dem Gaseinlass und dem Gasauslass auf ein Minimum reduziert werden, wodurch die Effizienz der Strömungsmaschine verbessert wird.
  • Bevorzugt bildet das erste Gehäuseteil den Gasauslass und begrenzt diesen umlaufend. Das Gas kann dann insbesondere entlang derselben oder zumindest ungefähr derselben Richtung aus dem Gasauslass hinaus befördert werden, wie es durch den Gaseinlass eingesaugt wird. Bevorzugt wird der Gasauslass insbesondere durch eine Gasauslassöffnung gebildet, welche umlaufend vom Material des ersten Gehäuseteiles begrenzt wird.
  • Bei der radialen Strömungsmaschine handelt es sich bevorzugt um einen Radialventilator. Es kann sich aber zum Beispiel auch um einen Radialverdichter handeln. Bei der radialen Strömungsmaschine ist der Gaseinlass üblicherweise in der Nähe der Rotationsachse und der Gasauslass beabstandet zur Rotationsachse angeordnet, so dass das Gas zwischen Gaseinlass und Gasauslass in radialer Richtung nach aussen hin befördert wird.
  • Das erste Gehäuseteil bildet den Motorraum und kann deshalb auch als Motorgehäuse bezeichnet werden. Der Motorraum wird bevorzugt durch eine sackartige Vertiefung gebildet, in welche der Antriebsmotor vorteilhaft von der Öffnungsseite her entlang der Rotationsachse einbringbar ist. Im Bereich der Öffnungsseite geht das erste Gehäuseteil bevorzugt in radialer Richtung, das heisst senkrecht zur Rotationsachse, in einen auskragenden Bereich über. Auf seiner vom Motorraum abgewandten Seite bildet der auskragende Bereich bevorzugt den Strömungskanal, welcher dort vorteilhaft in Form einer Vertiefung ausgebildet ist. Der Gasauslass ist bevorzugt, zum Beispiel in Form eines Auslassstutzens, auf der zum Motorraum hingewandten Seite des auskragenden Bereiches ausgebildet. Der auf der abgewandten Seite ausgebildete Strömungskanal geht dann also via eine Durchgangsöffnung in den Gasauslass auf der zum Motorraum zugewandten Seite des auskragenden Bereiches über. Der Auslassstutzen kann zur Verbindung mit z.B. einem Kopplungselement oder einem Schlauchanschluss ein Innen- oder Aussengewinde aufweisen, oder er kann zum dichtenden Aufsetzen eines flexiblen Schlauches auf seiner Aussenseite z.B. glatt ausgebildet sein oder umlaufende Rippen aufweisen.
  • Vorzugsweise sind auf der Aussenseite des ersten Gehäuseteils, insbesondere auf der Aussenseite des Motorraums, Kühlrippen zur passiven Abführung von Wärmeenergie aus dem Motorraum vorhanden.
  • Beim Antriebsmotor handelt es sich bevorzugt um einen Elektromotor. Bei diesem ist der Rotor vorteilhaft innen und der Stator aussen angeordnet. Der Rotor ist dann bevorzugt via eine Antriebswelle mit dem Radiallaufrad drehfest verbunden.
  • Beim Gas kann es sich insbesondere um Luft handeln. Grundsätzlich kann aber ein beliebiges anderes gasförmiges Medium vom Radiallaufrad angesogen und befördert werden.
  • Das zweite Gehäuseteil bildet den Gaseinlass, welcher insbesondere durch eine Gaseinlassöffnung gebildet wird, die bevorzugt umlaufend vom Material des zweiten Gehäuseteils begrenzt wird. Der Gaseinlass ist bevorzugt konzentrisch zur Rotationsachse angeordnet. Vorteilhaft wird er durch einen Einlassstutzen gebildet, welcher auf der vom ersten Gehäuseteil abgewandten Seite des zweiten Gehäuseteils nach aussen hin vorragt. Der Einlassstutzen kann zur Verbindung mit z.B. einem Kopplungselement oder einem Schlauchanschluss ein Innen- oder Aussengewinde aufweisen, oder er kann zum dichtenden Aufsetzen eines flexiblen Schlauches auf seiner Aussenseite z.B. glatt ausgebildet sein oder umlaufende Rippen aufweisen. Bevorzugt bildet die zum ersten Gehäuseteil hingewandte Seite des zweiten Gehäuseteils den Strömungskanal, welcher dort vorteilhaft in Form einer Vertiefung ausgebildet ist. Via eine Durchgangsöffnung geht der Gaseinlass dann also in den auf der anderen Seite des zweiten Gehäuseteils ausgebildeten Strömungskanal über.
  • Der Strömungskanal wird gemeinsam durch das erste und das zweite Gehäuseteil gebildet und durch diese begrenzt. Der Strömungskanal verbindet dabei insbesondere den Gaseinlass mit dem Gasauslass. Vorzugsweise weist der Strömungskanal einen inneren Radialbereich sowie einen Peripheriebereich auf. Im Radialbereich weist die Bewegungsrichtung des Gases eine Radialkomponente auf, so dass das Gas radial nach aussen befördert wird. Im Peripheriebereich überwiegt dagegen deutlich die Bewegungskomponente des Gases entlang der Umfangsrichtung bzw. entlang der tangentialen Richtung.
  • Der Radialbereich erstreckt sich bevorzugt radial umlaufend zum Gaseinlass von der Rotationsachse nach aussen hin und ist zudem vorteilhaft konisch ausgebildet, mit einem entlang der Rotationsachse zum ersten Gehäuseteil hin gerichteten Öffnungswinkel. Der Radialbereich des Strömungskanals dient bevorzugt zur Aufnahme des Radiallaufrads. Das Radiallaufrad ist somit bevorzugt im Strömungskanal, das heisst insbesondere zwischen dem ersten und dem zweiten Gehäuseteil, angeordnet. Auf seiner radialen Aussenseite geht der Radialbereich vorteilhaft in den Peripheriebereich des Strömungskanals über.
  • Der Peripheriebereich erstreckt sich üblicherweise umlaufend um den Radialbereich und insbesondere das Radiallaufrad herum und dient dazu, das Gas in eine umlaufende Ring- oder Spiralströmung zu überführen. Vorzugsweise bilden das erste und das zweite Gehäuseteil den Peripheriebereich des Strömungskanals je ungefähr hälftig. Der Peripheriebereich verläuft dabei bevorzugt im Wesentlichen entlang seiner gesamten Erstreckung in Umfangsrichtung innerhalb derselben Ebene. Bevorzugt vergrössert sich entlang der Umfangsrichtung die Querschnittsfläche des Strömungskanals im Radialbereich zum Gasauslass hin, insbesondere stetig. Dadurch wird den sich in Umfangsrichtung verändernden Druckverhältnissen Rechnung getragen. Die Vergrösserung der Querschnittsfläche kann zum Beispiel mittels eines grösser werdenden Aussenradius' des Radialbereiches und/oder mittels einer kontinuierlichen Aufweitung des Strömungskanals in Richtung der Rotationsachse erreicht werden.
  • Bevorzugt weist die Strömungsmaschine zumindest einen Radialbereich und/oder zumindest einen Peripheriebereich auf, welcher gemeinsam durch das erste Gehäuseteil und das zweite Gehäuseteil gebildet und begrenzt wird. Der Strömungskanal weist somit vorteilhaft zumindest einen Abschnitt auf, in welchem er im Querschnitt gemeinsam durch das erste und das zweite Gehäuseteil gebildet und begrenzt wird.
  • Das Radiallaufrad ist dazu ausgebildet, durch den Antriebsmotor in eine Drehbewegung um die Rotationsachse herum versetzt zu werden, um Gas durch den Gaseinlass hindurch anzusaugen und radial nach aussen zu befördern. Bei der Beförderung des Gases radial nach aussen hin wird das Gas aufgrund der Drehbewegung des Radiallaufrads zusätzlich mit einer in Umfangsrichtung weisenden Bewegungskomponente beaufschlagt, wodurch sich das Gas bei Erreichen des Peripheriebereiches des Strömungskanals vorteilhaft bereits hauptsächlich entlang der Umfangsrichtung zum Gasauslass hin bewegt.
  • Die Verbindung des Strömungskanals zum Gasauslass erfolgt bevorzugt relativ zur Rotationsachse in tangentialer, geradliniger Richtung. Vorteilhaft erfolgt der Übergang des Peripheriebereichs des Strömungskanals in den Gasauslass stetig. Auf diese Weise werden Umlenkungen des Gasstroms sowie Turbulenzen zwischen dem Strömungskanal und dem Gasauslass minimiert. Der Gasauslass ist somit bevorzugt radial ausserhalb des Strömungskanals angeordnet.
  • Vorteilhaft ist das erste Gehäuseteil und, noch vorteilhafter, auch das zweite Gehäuseteil jeweils als Ganzes einstückig und bevorzugt als Gusselement hergestellt. Das Gusselement kann jeweils insbesondere aus Aluminium oder Zink hergestellt sein. Durch ihre jeweils einstückige Ausbildung sind das erste und das zweite Gehäuseteil nicht nur besonders einfach herstellbar, sondern die Anzahl von potentiell undichten Stellen wird auf ein Minimum reduziert. Vorteilhaft weist die radiale Strömungsmaschine eine Dichtigkeit gemäss IP 67 nach IEC Standard 60529 auf. Bei einer Herstellung des ersten und zweiten Gehäuseteils jeweils als Gusselement wird zudem eine besonders robuste Strömungsmaschine erreicht. Die Einstückigkeit des ersten Gehäuseteils führt zudem insbesondere bei einer Herstellung aus einem Metall zu einer optimalen Übertragung der Motorwärme auf die den Strömungskanal begrenzenden Flächen des ersten Gehäuseteils und somit zu einer effizienten Abführung der Wärme durch den Gasstrom im Strömungskanal. In anderen, ebenfalls bevorzugten Ausführungsformen können das erste Gehäuseteil und/oder das zweite Gehäuseteil aber auch mehrstückig ausgebildet sein. Vorteilhaft ist jedoch zumindest das erste Gehäuseteil oder das zweite Gehäuseteil einstückig ausgebildet.
  • Beim Gaseinlass handelt es sich bevorzugt um einen axialen Gaseinlass, durch welchen hindurch das Gas in eine Richtung in den Strömungskanal hinein angesaugt wird, welche sich parallel zur Rotationsachse des Radiallaufrads erstreckt.
  • Beim Gasauslass handelt es sich bevorzugt um einen axialen Gasauslass, durch welchen hindurch das Gas in eine Richtung nach aussen befördert wird, welche sich parallel zur Rotationsachse des Radiallaufrads erstreckt. Ein axialer Gasauslass ermöglicht einen besonders platzsparenden Einsatz der Strömungsmaschine. Insbesondere wird dadurch auch ermöglicht, auf platzsparende Weise mehrere derartige radiale Strömungsmaschinen seriell hintereinander geschaltet anzuordnen.
  • Um das aus dem Strömungskanal in Richtung des Gasauslasses strömende Gas umzulenken, weist das zweite Gehäuseteil bevorzugt ein Umlenkelement auf, welches insbesondere und vorzugsweise ein einstückig am zweiten Gehäuseteil ausgebildetes Element darstellen kann. Das Umlenkelement dient insbesondere dazu, das aus dem Strömungskanal strömende Gas in diejenige Richtung umzulenken, in welche es aus der Strömungsmaschine durch den Gasauslass hindurch nach aussen befördert wird. Das Umlenkelement weist hierzu vorteilhaft eine stetig gekrümmte Fläche auf, welche zum Umlenken des Gasstromes dient. Bevorzugt ist das Umlenkelement dazu ausgebildet, eine Umlenkung des strömenden Gases um ca. 90° zu bewirken.
  • Gemäss einer Weiterbildung der Erfindung ragt das Umlenkelement zumindest teilweise in den Gasauslass, insbesondere in den umlaufend vom ersten Gehäuseteil begrenzten Bereich des Gasauslasses, hinein. Auf diese Weise wird ein optimaler, das heisst für den Gasstrom möglichst turbulenzfreier Übergang vom Strömungskanal zum Gasauslass erreicht.
  • Zwischen dem ersten Gehäuseteil und dem zweiten Gehäuseteil ist vorteilhaft ein Dichtungselement vorhanden, um den Strömungskanal umlaufend nach aussen hin abzudichten. Das Dichtungselement kann insbesondere als O-Ring ausgebildet sein und in einer am ersten oder zweiten Gehäuseteil entsprechend dafür vorgesehenen Nut eingelegt sein. Bevorzugt ist das Dichtungselement zudem umlaufend um den Gaseinlass herum angeordnet. Ausserdem bevorzugt ist das Dichtungselement zudem umlaufend um den Gasauslass herum angeordnet. Auf diese Weise kann eine optimale Abdichtung des Strömungskanals und insbesondere auch des Gasauslasses erreicht werden. Zwischen dem ersten und dem zweiten Gehäuseteil ist dann also bevorzugt ein bis auf den Gaseinlass und den Gasauslass nach aussen hin vollständig abgedichteter Raum vorhanden, welcher zumindest den Strömungskanal, bevorzugt zumindest den Strömungskanal und den Motorraum, beinhaltet. Der nach aussen hin abgedichtete Raum weist bevorzugt insgesamt eine Dichtigkeit auf, welche gemäss IP 67 nach IEC Standard 60529 ausgeführt ist.
  • Das erste Gehäuseteil und bevorzugt auch das zweite Gehäuseteil sind vorteilhaft aus einem Metall hergestellt. Die Strömungsmaschine wird dadurch besonders robust. Ausserdem kann bei einer Herstellung aus Metall Wärme, welche im Motorraum generiert wird, besonders gut nach aussen hin abgeführt werden.
  • Vorteilhaft wird das Gesamtgehäuse der radialen Strömungsmaschine im Wesentlichen ausschliesslich durch das erste und das zweite Gehäuseteil gebildet. Insbesondere im Bereich des Gaseinlasses, des Strömungskanals und des Gasauslasses wird das Gehäuse der Strömungsmaschine vorteilhaft ausschliesslich durch das erste und das zweite Gehäuseteil gebildet. Unter "im Wesentlichen ausschliesslich" wird verstanden, dass das Gesamtgehäuse noch weitere, funktional bzgl. der Begrenzung der Gasströmung und des Motorraums jedoch kaum relevante Komponenten aufweisen kann, wie zum Beispiel einen Deckel zum Verschliessen eines Faches zur Aufnahme einer Elektronikeinheit. Falls ein Fach zur Aufnahme einer Elektronikeinheit vorhanden ist, stellt dieses bevorzugt ein Teil des bis auf den Gaseinlass und den Gasauslass nach aussen hin vollständig abgedichteten Raumes dar. Ein insbesondere als O-Ring ausgebildetes Dichtungselement ist dann bevorzugt zwischen dem ersten Gehäuseteil und dem Deckel vorhanden. Vorteilhaft ist auch ein Anschlussstecker, der aus dem Motorraum oder dem Fach mit der Elektronikeinheit nach aussen führt, dichtend mit dem ersten Gehäuseteil und/oder dem Deckel verbunden.
  • Um eine serielle Hintereinanderschaltung mit weiteren derartigen radialen Strömungsmaschinen zu ermöglichen, kann die Strömungsmaschine gemäss einer Weiterbildung der Erfindung zusätzlich ein Kopplungsstück aufweisen, um den Gasauslass mit dem Gaseinlass einer weiteren radialen Strömungsmaschine zu verbinden.
  • Die erfindungsgemässe radiale Strömungsmaschine ist insbesondere geeignet für Industrieanwendungen wie Transport ("Pick and Place"), Reinigung, Lufttrocknung etc. Anwendungen finden sich insbesondere auch in der Papierindustrie.
  • KURZE BESCHREIBUNG DER ZEICHNUNGEN
  • Bevorzugte Ausführungsformen der Erfindung werden im Folgenden anhand der Zeichnungen beschrieben, die lediglich zur Erläuterung dienen und nicht einschränkend auszulegen sind. In den Zeichnungen zeigen:
  • Fig. 1
    eine perspektivische Ansicht einer bevorzugten Ausführungsform einer erfindungsgemässen radialen Strömungsmaschine;
    Fig. 2
    eine zentrale Querschnittsansicht der radialen Strömungsmaschine der Fig. 1 entlang der Rotationsachse, wobei das Radiallaufrad aus darstellerischen Gründen weggelassen ist;
    Fig. 3
    eine erste perspektivische Ansicht der Innenseite des ersten Gehäuseteils der radialen Strömungsmaschine der Fig. 1;
    Fig. 4
    eine zweite perspektivische Ansicht der Innenseite des ersten Gehäuseteils der radialen Strömungsmaschine der Fig. 1;
    Fig. 5
    eine Draufsicht auf die Innenseite des ersten Gehäuseteils der radialen Strömungsmaschine der Fig. 1;
    Fig. 6
    eine perspektivische Ansicht der Aussenseite des zweiten Gehäuseteils der radialen Strömungsmaschine der Fig. 1;
    Fig. 7
    eine perspektivische Ansicht der Innenseite des zweiten Gehäuseteils der radialen Strömungsmaschine der Fig. 1;
    Fig. 8
    eine Draufsicht auf die Innenseite des zweiten Gehäuseteils der radialen Strömungsmaschine der Fig. 1;
    Fig. 9
    eine perspektivische Ansicht des Radiallaufrads, des Antriebmotors und der Elektronikeinheit der radialen Strömungsmaschine der Fig. 1;
    Fig. 10
    eine perspektivische Ansicht von zwei seriell hintereinander geschalteten radialen Strömungsmaschinen, welche jeweils gemäss der in der Fig. 1 dargestellten Ausführungsform ausgebildet sind;
    Fig. 11
    eine Seitenansicht der zwei seriell hintereinander geschalteten radialen Strömungsmaschinen der Fig. 10;
    Fig. 12
    eine zentrale Querschnittsansicht einer weiteren bevorzugten Ausführungsform einer erfindungsgemässen radialen Strömungsmaschine mit zwei Radiallaufrädern; sowie
    Fig. 13
    eine perspektivische Ansicht der Strömungsmaschine der Fig. 12.
    BESCHREIBUNG BEVORZUGTER AUSFÜHRUNGSFORMEN
  • Die Figuren 1 bis 13 zeigen in unterschiedlichen Darstellungen bevorzugte erfindungsgemässe Ausführungsformen einer radialen Strömungsmaschine. Elemente mit gleichen oder ähnlichen Funktionen sind jeweils mit denselben Bezugszeichen versehen.
  • Wie aus der Figur 1 ersichtlich ist, weist die radiale Strömungsmaschine gemäss der dargestellten Ausführungsform insgesamt eine äusserst kompakte und robuste Bauweise auf. Dies ist insbesondere begründet in der einfachen Ausbildung des Gehäuses aus im Wesentlichen lediglich zwei Gehäuseteilen 1 und 2 sowie in der plattenförmigen Ausgestaltung der beiden Gehäuseteile 1 und 2 in demjenigen Bereich, wo sie aneinander anliegen und wo der Gasdurchtritt durch die Strömungsmaschine erfolgt.
  • Sowohl das erste Gehäuseteil 1 als auch das zweite Gehäuseteil 2 ist insgesamt einstückig als ein Gusselement aus Metall hergestellt.
  • Das erste Gehäuseteil 1 ist in den Figuren 3 bis 5 gezeigt und bildet, wie es insbesondere in der Figur 2 gut erkennbar ist, einen Motorraum 11, in welchem ein Antriebsmotor 6 aufgenommen ist. Da der Motorraum 11 als eine sackartige Vertiefung im Gehäuseteil 1 ausgebildet ist und zum zweiten Gehäuseteil 2 hin offen ausgebildet ist, kann der Antriebsmotor 6 bei abgenommenem zweiten Gehäuseteil 2 einfach in den Motorraum 11 eingesetzt werden. Ansonsten wird der Motorraum 11 mit Ausnahme der mit einem Deckel 3 verschlossenen Oberseite umlaufend vom ersten Gehäuseteil 1 umschlossen. Durch diese Umschliessung des Motorraums 11 durch das erste Gehäuseteil 1 ist eine optimale Abführung von Wärme aus dem Motorraum 11 möglich.
  • Beim Antriebsmotor 6 handelt es sich bevorzugt um einen Wechselstrom-Elektromotor, bei dem der Rotor vorteilhaft innen und der Stator vorteilhaft aussen angeordnet sind. Vorteilhaft ist der Antriebsmotor 6 für Umdrehungsgeschwindigkeiten bis zu 40`000 RPM ausgelegt. Der Antriebsmotor 6 dient zum Antreiben einer Antriebswelle 61 und, via diese, zum Antreiben eines Radiallaufrads 5, welches drehfest am vorderen Ende der Antriebswelle 61 angebracht ist (Figur 9). Die vom Radiallaufrad 5 im Betrieb der radialen Strömungsmaschine durchgeführte Rotationsbewegung definiert eine Rotationsachse R (Figur 2).
  • Oberhalb des Antriebsmotors 6 ist das erste Gehäuseteil 1 an sich offen ausgebildet, jedoch mit dem bereits erwähnten Deckel 3 verschlossen. Der Deckel 3 ist ebenfalls insgesamt einstückig und als ein Gusselement aus Metall hergestellt. Zur lösbaren Befestigung des Deckels 3 am ersten Gehäuseteil 1 sind Schrauben durch Schraublöcher 31 des Deckels 3 in entsprechend am ersten Gehäuseteil 1 vorgesehene Gewindebohrungen 18 (siehe Figur 3) eingeschraubt. Durch diese Schraubverbindungen und das unmittelbare Anliegen des Deckels 3 am ersten Gehäuseteil 1 ist eine gute Abführung von Wärme aus dem Motorraum 11 auch via den Deckel 3 möglich.
  • Unterhalb des Deckels 3, also zwischen dem Deckel 3 und dem Antriebsmotor 6 ist ein Fach 13 vorgesehen, welches zur Unterbringung einer Elektronikeinheit 7 dient. Die Elektronikeinheit 7 dient insbesondere zur Steuerung und Energieversorgung des Antriebsmotors 6 und weist eine Leiterplatte 71 mit auf der Ober- und der Unterseite angebrachten Elektronikkomponenten 711 auf. An der Leiterplatte 71 ist zudem ein Anschlussstecker 72 angebracht, welcher durch eine entsprechend im Deckel 3 vorgesehene Durchgangsöffnung nach aussen ragt. Der Anschlussstecker 72 dient zum Anschluss einer externen und in den Figuren nicht dargestellten Kontroll- und Energieversorgungseinheit. Mittels Abschrauben des Deckels 3 vom ersten Gehäuseteil 1, ist die Elektronikeinheit 7 gut zugänglich und bei Bedarf einfach reparier- oder austauschbar. Zwischen dem Deckel 3 und dem ersten Gehäuseteil 1 kann ein Dichtungselement, zum Beispiel ein O-Ring, vorgesehen sein, welches zum Beispiel in eine am ersten Gehäuseteil 1 vorgesehene Nut eingelegt ist, um das Fach 13 und den Motorraum 11 nach aussen hin abzudichten.
  • Umlaufend um das Fach 13 weist das erste Gehäuseteil 1 eine Dichtungsnut auf, in welche ein Dichtungselement 32 eingesetzt ist, das insbesondere als ein O-Ring ausgebildet sein kann. Das Dichtungselement 32 dient zur Abdichtung des ersten Gehäuseteils 1 gegenüber dem Deckel 3 im Bereich des Fachs 13. Vorteilhaft ist ein weiteres Dichtungselement, welches in den Figuren jedoch nicht dargestellt ist und bevorzugt als O-Ring ausgebildet ist, zwischen dem Anschlussstecker 72 und dem Deckel 3 angeordnet, um eine den Anschlussstecker 72 umlaufende Abdichtung des Faches 13 nach aussen hin bereitzustellen.
  • Wie zum Beispiel in der Figur 3 ersichtlich ist, weist das erste Gehäuseteil 1 in seinem den Motorraum 11 umschliessenden Bereich aussenseitige Kühlrippen 17 auf, welche zum Abführen von thermischer Energie aus dem Motorraum 11 dienen.
  • Im Bereich des vorderen, das heisst zum zweiten Gehäuseteil 2 hin gewandten Endes des Motorraums 11 geht das erste Gehäuseteil 1 senkrecht, das heisst in Bezug auf die Rotationsachse R radial nach aussen hin in einen umlaufenden auskragenden Bereich 19 über. Das erste Gehäuseteil 1 ist in diesem auskragenden Bereich 19 zumindest auf seiner nach hinten, das heisst in Richtung des Motorraums 11 gewandten Seite weitgehend plattenförmig ausgebildet. Der auskragende Bereich 19 hat insgesamt eine ungefähr quadratische Form.
  • Unterhalb des Bereiches, welches den Motorraum 11 umschliesst, erstreckt sich ein Sockel 16 des ersten Gehäuseteils 1 vom auskragenden Bereich 19 nach hinten. Der Sockel 16, welcher nach oben hin mit dem den Motorraum 11 umschliessenden Bereich des ersten Gehäuseteils 1 verbunden ist, weist Schraublöcher 161 zur Befestigung der radialen Strömungsmaschine an einem weiteren Bauteil oder an einem Trageelementen auf.
  • Auf der zum zweiten Gehäuseteil 2 hin gewandten Vorderseite weist das erste Gehäuseteils 1 im Bereich der Auskragung 19 eine Vertiefung auf, welche gemeinsam mit einer weiter unten noch erläuterten Vertiefung des zweiten Gehäuseteils 2 einen Strömungskanal 8 bildet. Der Strömungskanal 8 ist konzentrisch umlaufend zur Rotationsachse R angeordnet und weist einen inneren Radialbereich 81 auf, welcher radial nach aussen hin in einen umlaufenden äusseren Peripheriebereich 82 übergeht. Im Radialbereich 81 ist das erste Gehäuseteil 1 leicht vertieft, jedoch plan ausgebildet. Im Peripheriebereich 82 ist das erste Gehäuseteil 1 ringförmig umlaufend vertieft ausgebildet, wobei die Vertiefung des Radialbereiches 81 in radialer Richtung umlaufend in die ringförmige Vertiefung des Peripheriebereiches 82 übergeht. Der Peripheriebereich 82 des Strömungskanals 8 wird dabei in der Querschnittsansicht gemäss Figur 2 durch gerundete Begrenzungsflächen des ersten Gehäuseteils 1 begrenzt.
  • Der Peripheriebereich 82 des Strömungskanals 8 weitet sich bzgl. seiner Querschnittsfläche, wie zum Beispiel in der Figur 5 gut erkennbar ist, in Umfangsrichtung kontinuierlich auf. In dem in der Figur 5 oben dargestellten Bereich geht die im ersten Gehäuseteil 1 ausgebildete Vertiefung, welche den Peripheriebereich 82 des Strömungskanals 8 bildet, tangential und mit sich weiterhin aufweitender Querschnittsfläche in einen Gasauslass 12 über. Der Gasauslass 12 wird durch einen Gasauslassstutzen 121 gebildet, welcher sich auf der Rückseite des ersten Gehäuseteils 1 parallel zur Rotationsachse R nach hinten erstreckt. Der Gasauslassstutzen 121, welcher vollständig vom ersten Gehäuseteil 1 gebildet wird, begrenzt eine Gasauslassöffnung, durch welche hindurch das aus dem Strömungskanal 8 strömende Gas aus der radialen Strömungsmaschine ausgeblasen werden kann. Auf seiner Innenseite weist der Gasauslassstutzen 121 ein Innengewinde auf zum Anschliessen von zum Beispiel einer Luftleitung oder eines Kopplungselements.
  • Um einen kontinuierlichen und somit möglichst turbulenzfreien Übergang vom Strömungskanal 8 zum Gasauslassstutzen 121 zu ermöglichen, geht die Vertiefung, welche auf der Vorderseite des ersten Gehäuseteils 1 den Peripheriebereich 82 des Strömungskanals 8 bildet, stetig via eine gerundete Fläche in den Gasauslassstutzen 121 über. Mit anderen Worten vertieft sich die Vertiefung zum Gasauslass 12 hin zunehmend. Im Bereich des Gasauslasses 12 ist im ersten Gehäuseteil 1 somit eine durchgehende Öffnung ausgebildet. Der Gasauslassstutzen 121 erstreckt sich parallel zur Rotationsachse R vom auskragenden Bereich 19 aus nach hinten.
  • Umlaufend um die den Strömungskanal 8 bildende Vertiefung weist das erste Gehäuseteil 1 eine Dichtungsnut 14 auf, in welche ein Dichtungselement 4 in Form eines O-Rings eingesetzt ist. Die Dichtungsnut 14 und somit das Dichtungselement 4 sind nicht nur umlaufend um den Strömungskanal 8 herum angeordnet, sondern auch um den Gasauslass 12 bzw. um die vom Gasauslass 12 gebildete Durchgangsöffnung herum. Das Dichtungselement 4 dient zur Abdichtung des ersten Gehäuseteils 1 gegenüber des zweiten Gehäuseteils 2 im Bereich des Strömungskanals 8.
  • In den Ecken des auskragenden Bereiches 19 des ersten Gehäuseteils 1 sind jeweils Gewindebohrungen 15 vorgesehen, welche zur Befestigung des zweiten Gehäuseteils 2 am ersten Gehäuseteil 1 dienen.
  • Das zweite Gehäuseteil 2 ist insbesondere in den Figuren 6 bis 8 gezeigt. Wie es in der Figur 6 erkennbar ist, hat das zweite Gehäuseteil 2 eine insgesamt weitgehend plattenförmige Aussenform, mit Ausnahme eines auf der Vorderseite vorstehenden Gaseinlassstutzens 211 und eines auf der Rückseite vorstehenden Umlenkelements 22. Das zweite Gehäuseteil 2 beschreibt dabei eine weitgehend quadratische Form, korrespondierend zur Form der Auskragung 19 des ersten Gehäuseteils.
  • Der Gaseinlassstutzen 211 ist konzentrisch zur Rotationsachse R angeordnet und erstreckt sich parallel zu dieser von der ansonsten weitgehend plan ausgebildeten Vorderseite des zweiten Gehäuseteils 2 nach aussen hin. Eine Gaseinlassöffnung erstreckt sich durchgehend durch den Gaseinlassstutzen 211 und das zweite Gehäuseteil 2 hindurch und bildet somit einen Gaseinlass 21. Auf seiner Innenseite weist der Gaseinlassstutzen 211 ein Innengewinde 212 auf zum Anschliessen von zum Beispiel einer Luftleitung oder eines Kopplungselements.
  • Auf der in den Figuren 7 und 8 erkennbaren Rück- bzw. Innenseite des zweiten Gehäuseteils 2 ist konzentrisch und umlaufend zum Gaseinlass 21 eine Vertiefung ausgebildet, welche gemeinsam mit der weiter oben beschriebenen Vertiefung des ersten Gehäuseteils 1 den Strömungskanal 8 bildet und begrenzt. Analog zur Vertiefung des ersten Gehäuseteils 1 weist auch diejenige des zweiten Gehäuseteils 2 einen inneren Bereich auf, welcher den Radialbereich 81 des Strömungskanals 8 begrenzt, sowie einen äusseren Bereich, welcher den Peripheriebereich 82 des Strömungskanals 8 begrenzt.
  • Der innere Bereich der Vertiefung des zweiten Gehäuseteils 2, welcher den Radialbereich 82 des Strömungskanals 8 bildet, weist eine konisch ausgebildete vordere Begrenzungsfläche auf, mit einem sich entlang der Rotationsachse R zum ersten Gehäuseteil 1 hin gerichteten Öffnungswinkel. Die konische Begrenzungsfläche, welche insbesondere in der Figur 2 gut erkennbar ist, entspricht der ebenfalls konisch ausgebildeten Vorderseite des Radiallaufrades 5.
  • Umlaufend an die konische Begrenzungsfläche schliesst in radialer Richtung eine ringförmige Vertiefung an, welche den Peripheriebereich 82 des Strömungskanals 8 bildet. Analog zur ringförmigen Vertiefung des ersten Gehäuseteils 1 weitet sich auch die ringförmige Vertiefung des zweiten Gehäuseteils 2 entlang der Umfangrichtung kontinuierlich auf und weist eine gerundete Begrenzungsfläche auf.
  • In dem in der Figur 8 oben dargestellten Bereich ist die Vertiefung, welche den Peripheriebereich 82 des Strömungskanals 8 bildet, in tangentialer, geradliniger Richtung zu einem Umlenkelement 22 weitergeführt. Das Umlenkelement 22 ragt, wenn das erste und das zweite Gehäuseteil bestimmungsgemäss miteinander verbunden sind, in den Gasauslass 12 und insbesondere den Gasauslassstutzen 121 des ersten Gehäuseteils 1 hinein. Es dient dazu, das aus dem Strömungskanal 8 hinausströmende Gas möglichst turbulenzfrei um ca. 90° umzulenken und in den Gasauslassstutzen 121 hineinzuleiten. Das Umlenkelement 22 weist hierzu eine stetig gerundete Innenfläche auf, entlang welcher den Gasstrom um ca. 90° in eine sich parallel zur Rotationsachse R erstreckende Richtung umgelenkt wird. Das Umlenkelement 22 weist zudem auch im Querschnitt des Gasstroms eine gerundete Begrenzungsfläche auf, welche kontinuierlich in diejenige gerundete Begrenzungsfläche übergeht, welche von der Vertiefung des zweiten Gehäuseteils 2 ausgebildet wird, die den Peripheriebereich 82 des Strömungskanals 8 bildet.
  • Um die Vertiefung herum, welche den Strömungskanal 8 bildet, weist das zweite Gehäuseteil 2 eine insgesamt plan ausgebildete Dichtungsfläche 23 auf. Die Dichtungsfläche 23 erstreckt sich sowohl umlaufend um den Gaseinlass 21 als auch um das Umlenkelement 22 herum. Sie dient zur Auflage des Dichtungselements 4 und somit als Dichtungssitz zum Abdichten des Strömungskanals 8 nach aussen.
  • In den Ecken des zweiten Gehäuseteils 2 sind jeweils Schraublöcher 24 vorgesehen, durch welche hindurch Schrauben in die Gewindebohrungen 15 des ersten Gehäuseteils 1 einschraubbar sind, um das zweite Gehäuseteil 2 am ersten Gehäuseteil 2 zu befestigen.
  • Der Strömungskanal 8 wird also einerseits durch eine Vertiefung gebildet, welche auf der zum zweiten Gehäuseteil 2 hin gewandten Seite des ersten Gehäuseteils 1 ausgebildet ist, sowie andererseits durch eine dazu korrespondierende Vertiefung, welche auf der zum ersten Gehäuseteil 1 hin gewandten Seite des zweiten Gehäuseteils 2 ausgebildet ist. Im Peripheriebereich 82 weist der Strömungskanal 8 durchgehend eine ungefähr kreisförmige Querschnittsfläche auf. Eine ungefähr kreisförmige Querschnittsfläche ist auch in der Fortsetzung des Strömungskanals 8 im Bereich des Umlenkelements 22 und im Gasauslassstutzen 121 vorhanden. Aufgrund dieser kontinuierlich kreisförmigen Querschnittsfläche wird eine weitgehend turbulenzfreie Gasführung innerhalb der Strömungsmaschine erreicht.
  • Das Radiallaufrad 5, welches in der Figur 9 gezeigt ist, ist im Bereich einer Nabe 52 drehfest an der Antriebswelle 61 angebracht. Im Bereich der Nabe 52 und somit konzentrisch zur Rotationsachse R ist in einer Vorderwand 53 des Radiallaufrades 5 eine kreisrunde Eingangsöffnung ausgebildet, welche einen Lufteintrittsbereich 55 bildet. Zwischen der Vorderwand 53 und einer Rückwand 54 angeordnete Laufradschaufeln 51 erstrecken sich jeweils ungefähr radial nach aussen hin und dienen im Betrieb dazu, das in den Lufteintrittsbereich 55 einströmende Gas radial nach aussen zu befördern. Das Gas verlässt dabei das Radiallaufrad 5 via einen radial aussenseitig angeordneten Luftaustrittsbereich 56.
  • Aufgrund der konischen Ausbildung der Vorderwand 53 verkleinert sich der Raum für das Gas in radialer Richtung nach aussen hin zwischen der Vorderwand 53 und der Rückwand 54. Das Gas wird somit bei der Beförderung nach aussen hin zunehmend verdichtet.
  • Das Radiallaufrad 5 ist im Radialbereich 81 des Strömungskanals 8, das heisst zwischen dem ersten Gehäuseteil 1 und dem zweiten Gehäuseteil 2 angeordnet.
  • Aufgrund der Dichtungselemente 4 und 32 ist der durch das erste Gehäuseteil 1, das zweite Gehäuseteil 2 und den Deckel 3 begrenzte Innenraum, welcher den Strömungskanal 8, den Motorraum 11 und das Fach 13 umfasst, mit Ausnahme des Gaseinlasses 21 und des Gasauslasses 121 vollständig und bevorzugt gemäss IP 67 nach IEC Standard 60529 nach aussen hin abgedichtet. Im Motorraum 11 und im Fach 13 herrscht im Betrieb der Strömungsmaschine somit bevorzugt ein gegenüber dem Aussendruck erhöhter Druck, welcher insbesondere im Wesentlichen dem Druck im Strömungskanal 8 entsprechen kann.
  • Im Betrieb der radialen Strömungsmaschine wird das Radiallaufrad 5 vom Antriebsmotor 6 in eine Drehbewegung um die Rotationsachse R versetzt. Dadurch wird von den Laufradschaufeln 51 ein Gas bzw. Luft durch den Gaseinlassstutzen 211 hindurch in den Strömungskanal 8 hinein angesogen und in dessen Radialbereich 81 radial nach aussen befördert. Die Laufradschaufeln 51 bewegen das Gas gleichzeitig in die Umfangsrichtung, welches somit entlang einer Spirale vom Radialbereich 81 in den Peripheriebereich 82 des Strömungskanals 8 gelangt. Via den Peripheriebereich 82 gelangt das verdichtete Gas zum Umlenkelement 22, wo es um ca. 90° in eine sich parallel zur Rotationsachse R erstreckende Richtung umgelenkt und durch den Gasauslassstutzen 121 hindurch ausgeblasen wird.
  • Um den Druck des Gases noch weiter zu erhöhen, können mehrere derartige radiale Strömungsmaschinen seriell hintereinander geschaltet werden. Hierzu kann der Gasauslassstutzen 121 einer ersten radialen Strömungsmaschine an den Gaseinlassstutzen 211 einer zweiten radialen Strömungsmaschine gekoppelt werden, was in den Figuren 10 und 11 dargestellt ist. Der Ausgangsdruck wird dadurch verdoppelt, bzw. bei einer Hintereinanderschaltung von noch mehr derartigen radialen Strömungsmaschinen entsprechend vervielfacht.
  • Zur Kopplung der beiden radialen Strömungsmaschinen kann ein Kopplungsstück 9 verwendet werden, welches einerseits in das Innengewinde des Gasauslassstutzens 121 der ersten radialen Strömungsmaschine und andererseits in das Innengewinde 212 des Gaseinlassstutzens 211 der zweiten radialen Strömungsmaschine einschraubbar ist.
  • Um auch bei seriell hintereinander geschalteten radialen Strömungsmaschinen eine verhältnismässig kompakte Anordnung zu erhalten, können die beiden Strömungsmaschinen, wie es in der Figur 10 gezeigt ist, gegenseitig um 180° gedreht zueinander angeordnet werden. Der Gasauslass 12 der zweiten radialen Strömungsmaschine fluchtet dann genau mit dem Gaseinlass 21 der ersten radialen Strömungsmaschine.
  • Als weitere Möglichkeit zur Erhöhung des Gasdruckes können mehrere Stufen mit jeweils einem Radiallaufrad 5 innerhalb der radialen Strömungsmaschine vorgesehen werden. Eine entsprechende Ausführungsform ist in den Figuren 12 und 13 gezeigt. Die beiden Radiallaufräder 5 sind beide drehfest an der Antriebswelle 61 angebracht und somit vom Antriebsmotor 6 antreibbar. Zwischen dem ersten Gehäuseteil 1 und dem zweiten Gehäuseteil 2 ist im Bereich zwischen den beiden Radiallaufrädern 5 ein Zwischenteil 10 angeordnet. Das Zwischenteil 10 begrenzt den Strömungskanal 8 beidseitig, das heisst einerseits zum ersten Gehäuseteil 1 und andererseits zum zweiten Gehäuseteil 2 hin. Das durch den Gaseinlassstutzen 211 des zweiten Gehäuseteils 2 einströmende Gas gelangt somit zuerst in einen ersten Radialbereich 81 des Strömungskanals 8 im Bereich des ersten Radiallaufrades 5, welches eine erste (Hochdruck-)Stufe der Strömungsmaschine bildet. Von diesem ersten Radiallaufrad 5 wird das Gas dann radial nach aussen in einen ersten Peripheriebereich 82 und von dort entlang der Rückseite des ersten Radiallaufrads 5 wieder in Richtung zur Rotationsachse R hin sowie axial durch eine im Zwischenteil 10 zentral angeordnete Durchgangsöffnung hindurch befördert. Von dieser Durchgangsöffnung aus gelangt das Gas direkt in einen zweiten Radialbereich 81 des Strömungskanals 8, welcher sich im Bereich des zweiten Radiallaufrades 5 befindet. Das zweite Radiallaufrad 5 bildet eine zweite (Niederdruck-)Stufe der Strömungsmaschine. Vom zweiten Radiallaufrad 5 wird das Gas radial nach aussen in einen zweiten Peripheriebereich 82 des Strömungskanals 5 und schliesslich durch den Gasauslassstutzen 121 hindurch nach aussen befördert. Für eine optimale Anpassung an die jeweiligen Druckverhältnisse können das erste und das zweite Radiallaufrad 5 und ebenso der erste und zweite Radialbereich 81 sowie der erste und zweite Peripheriebereich 82 jeweils unterschiedlich ausgestaltet und insbesondere dimensioniert sein.
  • Das bevorzugt einstückig, insbesondere als Gusselement, hergestellte Zwischenteil 10 bildet somit ein weiteres Gehäuseteil der radialen Strömungsmaschine. Die im Zwischenteil 10 vorgesehene zentrale Durchgangsöffnung bildet dabei einen Gaseinlass für die zweite (Niederdruck-)Stufe bzw. einen Gasauslass für die erste (Hochdruck-)Stufe der Strömungsmaschine. Je nach Betrachtungsweise kann das erste Gehäuseteil 1 zusammen mit dem Zwischenteil 10, oder aber das zweite Gehäuseteil 2 zusammen mit dem Zwischenteil 10 auch als mehrstückiges Gehäuseteil 1, 10 bzw. 2, 10 angesehen werden.
  • Selbstverständlich ist die hier beschriebene Erfindung nicht auf die erwähnten Ausführungsformen beschränkt und eine Vielzahl von Abwandlungen ist möglich. So kann der Gasauslass grundsätzlich auch durch das zweite Gehäuseteil 2 gebildet und von diesem umlaufend begrenzt sein. Das Gas wird dann entgegengesetzt zu derjenigen Richtung aus dem Gasauslassstutzen ausgeblasen, in welche es durch den Gaseinlassstutzen hindurch angesaugt wird. Das Umlenkelement ist dann anstatt am zweiten Gehäuseteil 2 am ersten Gehäuseteil 1 ausgebildet. Des Weiteren kann das Radiallaufrad auch beliebig anders als das in der Figur 9 gezeigte Radiallaufrad 5 ausgestaltet sein. Insbesondere kann die Vorderwand 53 oder die Rückwand 54 auch entfallen. Bevorzugt, aus Stabilitätsgründen, sind jedoch sowohl die Vorderwand 53 als auch die Rückwand 54 vorhanden. Auch das Kopplungsstück 9 kann beliebig anders ausgebildet sein und beispielsweise einen flexiblen Verbindungsschlauch umfassen. Eine Vielzahl weiterer Abwandlungen ist denkbar. BEZUGSZEICHENLISTE
    1 Erstes Gehäuseteil
    11 Motorraum 5 Radiallaufrad
    12 Gasauslass 51 Laufradschaufeln
    121 Gasauslassstutzen 52 Nabe
    13 Fach 53 Vorderwand
    14 Dichtungsnut 54 Rückwand
    15 Gewindebohrung 55 Lufteintrittsbereich
    16 Sockel 56 Luftaustrittsbereich
    161 Schraubloch
    17 Kühlrippen 6 Antriebsmotor
    18 Gewindebohrung 61 Antriebswelle
    19 Auskragender Bereich
    7 Elektronikeinheit
    2 Zweites Gehäuseteil 71 Leiterplatte
    21 Gaseinlass 711 Elektronikkomponenten
    211 Gaseinlassstutzen 72 Anschlussstecker
    212 Innengewinde
    22 Umlenkelement 8 Strömungskanal
    23 Dichtungsfläche 81 Radialbereich
    24 Schraubloch 82 Peripheriebereich
    3 Deckel 9 Kopplungsstück
    31 Schraubloch 10 Zwischenteil
    32 Dichtungselement
    R Rotationsachse
    4 Dichtungselement

Claims (13)

  1. Radiale Strömungsmaschine aufweisend
    ein erstes Gehäuseteil (1), welches einen Motorraum (11) zur Aufnahme eines Antriebsmotors (6) bildet;
    ein zweites Gehäuseteil (2), welches einen Gaseinlass (21) bildet;
    einen Strömungskanal (8), der gemeinsam durch das erste Gehäuseteil (1) und das zweite Gehäuseteil (2) gebildet und begrenzt wird;
    einen Gasauslass (12); sowie
    ein Radiallaufrad (5), das vom Antriebsmotor (6) um eine Rotationsachse (R) antreibbar ist, um ein Gas von ausserhalb der Strömungsmaschine durch den Gaseinlass (21) hindurch in den Strömungskanal (8) anzusaugen und aus dem Strömungskanal (8) durch den Gasauslass (12) hindurch nach aussen zu befördern,
    wobei das erste Gehäuseteil (1) oder das zweite Gehäuseteil (2) radial beabstandet zur Rotationsachse (R) den Gasauslass (12) bildet und diesen umlaufend begrenzt,
    und wobei das erste Gehäuseteil (1) und das zweite Gehäuseteil (2) aussenseitig im Bereich des Strömungskanals (8) jeweils weitgehend plattenförmig ausgebildet sind.
  2. Radiale Strömungsmaschine nach Anspruch 1, wobei das erste Gehäuseteil (1) und das zweite Gehäuseteil (2) jeweils als Ganzes einstückig und bevorzugt als Gusselement hergestellt sind.
  3. Radiale Strömungsmaschine nach Anspruch 1 oder 2, wobei es sich beim Gasauslass um einen axialen Gasauslass (12) handelt.
  4. Radiale Strömungsmaschine nach einem der vorhergehenden Ansprüche, wobei das zweite Gehäuseteil (2) oder das erste Gehäuseteil (1) ein Umlenkelement (22) aufweist, welches zur Umlenkung des aus dem Strömungskanal (8) in Richtung des Gasauslasses (12) strömenden Gases dient.
  5. Radiale Strömungsmaschine nach Anspruch 4, wobei das Umlenkelement (22) dazu ausgebildet ist, eine Umlenkung des strömenden Gases um ca. 90° zu bewirken.
  6. Radiale Strömungsmaschine nach Anspruch 4 oder 5, wobei das Umlenkelement (22) zumindest teilweise in den Gasauslass (12) hineinragt.
  7. Radiale Strömungsmaschine nach einem der vorhergehenden Ansprüche, wobei der Strömungskanal (8) auf den einander zugewandten Seiten des ersten Gehäuseteils (1) und des zweiten Gehäuseteils (2) jeweils in Form einer Vertiefung ausgebildet ist.
  8. Radiale Strömungsmaschine nach einem der vorhergehenden Ansprüche, wobei zwischen dem ersten Gehäuseteil (1) und dem zweiten Gehäuseteil (2) ein Dichtungselement (4) vorhanden ist, um den Strömungskanal (8) umlaufend nach aussen hin abzudichten.
  9. Radiale Strömungsmaschine nach Anspruch 8, wobei das Dichtungselement (4) umlaufend um den Gasauslass (12) herum angeordnet ist.
  10. Radiale Strömungsmaschine nach einem der vorhergehenden Ansprüche, wobei das erste Gehäuseteil (1) und bevorzugt auch das zweite Gehäuseteil (2) aus einem Metall hergestellt sind.
  11. Radiale Strömungsmaschine nach einem der vorhergehenden Ansprüche, wobei das erste Gehäuseteil (1) ein mit einem Deckel (3) verschliessbares Fach (13) zur Aufnahme einer Elektronikeinheit (7) bildet.
  12. Radiale Strömungsmaschine nach einem der vorhergehenden Ansprüche, zusätzlich aufweisend ein Kopplungsstück (9), um den Gasauslass (12) mit dem Gaseinlass (21) einer weiteren radialen Strömungsmaschine zu verbinden.
  13. Radiale Strömungsmaschine nach einem der vorhergehenden Ansprüche, wobei vom ersten Gehäuseteil (1) und vom zweiten Gehäuseteil (2) ein bis auf den Gaseinlass (21) und den Gasauslass (12) nach aussen hin vollständig abgedichteter Raum begrenzt wird, welcher zumindest den Strömungskanal (8), bevorzugt zumindest den Strömungskanal (8) und den Motorraum (11), mitumfasst.
EP19720916.6A 2018-05-22 2019-05-06 Radiale strömungsmaschine Active EP3797225B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18173575 2018-05-22
PCT/EP2019/061552 WO2019223988A1 (de) 2018-05-22 2019-05-06 Radiale strömungsmaschine

Publications (3)

Publication Number Publication Date
EP3797225A1 EP3797225A1 (de) 2021-03-31
EP3797225C0 EP3797225C0 (de) 2023-07-05
EP3797225B1 true EP3797225B1 (de) 2023-07-05

Family

ID=62222507

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19720916.6A Active EP3797225B1 (de) 2018-05-22 2019-05-06 Radiale strömungsmaschine

Country Status (6)

Country Link
US (1) US11754092B2 (de)
EP (1) EP3797225B1 (de)
JP (1) JP7307962B2 (de)
KR (1) KR102653189B1 (de)
CN (1) CN112513472A (de)
WO (1) WO2019223988A1 (de)

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765597B2 (ja) 1989-03-01 1995-07-19 株式会社日立製作所 電動送風機
GB2251035A (en) 1990-12-20 1992-06-24 Dunphy Oil And Gas Burners Lim Centrifugal fan
JPH07259798A (ja) * 1994-03-23 1995-10-09 Aisin Seiki Co Ltd 遠心送風機
WO2002070139A2 (en) * 2001-03-05 2002-09-12 Robert Bosch Corporation Compact centrifugal blower with annular stator
EP1746290A1 (de) 2005-07-20 2007-01-24 Rietschle Thomas Schopfheim GmbH Radialverdichter
US20080232962A1 (en) 2007-03-20 2008-09-25 Agrawal Giridhari L Turbomachine and method for assembly thereof using a split housing design
DE102007053016A1 (de) 2007-11-05 2009-05-07 Gardner Denver Deutschland Gmbh Seitenkanalverdichter
EP2501439B1 (de) * 2009-11-19 2018-08-08 ResMed Motor Technologies Inc. Gebläse
US8702404B2 (en) * 2009-12-09 2014-04-22 Halla Visteon Climate Control Corporation Air blower for a fuel cell vehicle
EP2431588B1 (de) * 2010-09-20 2012-09-19 Fiat Powertrain Technologies S.p.A. Turboladereinheit mit zughöriger Hilfskomponente für einen Verbrennungsmotor
US9017893B2 (en) 2011-06-24 2015-04-28 Watt Fuel Cell Corp. Fuel cell system with centrifugal blower system for providing a flow of gaseous medium thereto
US8974178B2 (en) 2012-01-17 2015-03-10 Hamilton Sundstrand Corporation Fuel system centrifugal boost pump volute
JP6155544B2 (ja) 2012-03-12 2017-07-05 日本電産株式会社 遠心ファン
CN102788022B (zh) * 2012-07-16 2014-12-17 华中科技大学 一种高可靠性的微型机械泵
JP6322121B2 (ja) 2014-10-29 2018-05-09 株式会社オティックス ターボチャージャ用のコンプレッサ構造
DE102016210464A1 (de) 2016-06-14 2017-12-14 Gardner Denver Deutschland Gmbh Verdichteranordnung
DE102016210948A1 (de) * 2016-06-20 2017-12-21 Continental Automotive Gmbh Elektro-Verdichter mit kompakter Lagerung

Also Published As

Publication number Publication date
JP2021524553A (ja) 2021-09-13
EP3797225C0 (de) 2023-07-05
US20210199126A1 (en) 2021-07-01
CN112513472A (zh) 2021-03-16
KR102653189B1 (ko) 2024-03-29
KR20210030280A (ko) 2021-03-17
US11754092B2 (en) 2023-09-12
EP3797225A1 (de) 2021-03-31
JP7307962B2 (ja) 2023-07-13
WO2019223988A1 (de) 2019-11-28

Similar Documents

Publication Publication Date Title
EP3347598B1 (de) Turbo-lüfter mit kühlkörper
DE10245798B4 (de) Elektrisch betriebener Ladeluftverdichter mit integrierter Luftkühlung
DE102005019563B4 (de) Lüfter
DE102006057086B4 (de) Gebläse für ein Gasverbrennungssystem
DE1428191A1 (de) Kreiselgeblaese
EP2602489B1 (de) Haushalts-Dunstabzugshaube sowie Verfahren zum Kühlen eines Motors einer Lüftervorrichtung der Haushalts-Dunstabzugshaube
DE102012107107B4 (de) Aktive Kühlung eines Motors
DE102008000168A1 (de) Gebläseanordnung mit Vordrallerzeuger
WO2010086210A1 (de) Seitenkanalgebläse, insbesondere sekundärluftgebläse für eine verbrennungskraftmaschine
EP3592987B1 (de) Halbspiralgehäuse
EP3797225B1 (de) Radiale strömungsmaschine
DE60101368T2 (de) Vakuumpumpe
DE102014113598A1 (de) Mehrstufiger Kolbenkompressor mit einer äußeren Kühlluftführung
WO2019120550A1 (de) Seitenkanalgebläse, insbesondere sekundärluftgebläse für eine verbrennungskraftmaschine
WO2020099027A1 (de) Diagonalventilator mit drallreduzierung am diagonallaufrad
EP3844400A1 (de) Rotormontageeinheit mit kühlfunktion
DE102011006546B4 (de) Gebläseanordnung
EP3728860B1 (de) Seitenkanalgebläse, insbesondere sekundärluftgebläse für eine verbrennungskraftmaschine
EP1528259B1 (de) Radialgebläse für einen Gasbrenner
EP3596341A1 (de) Lüfter
EP1528260B1 (de) Radialgebläse
WO2024074177A1 (de) Ventilator und kühlstruktur für einen ventilator
DE4242406C2 (de) Anordnung in einem Schraubenverdichter
WO2020099035A1 (de) Variabel mit unterschiedlichen düsen kombinierbarer diagonalventilator
DE202007016576U1 (de) Lüfter

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201106

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40041714

Country of ref document: HK

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230126

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1585087

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019008406

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20230706

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230717

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231005

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231105

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231006

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705