EP3792403A1 - Procédé de fabrication d'un pieu foré à décalage planimétrique plein, système d'aide au vissage permettant de guider un processus de vissage dans un tel procédé ainsi que logiciel pour un tel système d'aide au vissage - Google Patents
Procédé de fabrication d'un pieu foré à décalage planimétrique plein, système d'aide au vissage permettant de guider un processus de vissage dans un tel procédé ainsi que logiciel pour un tel système d'aide au vissage Download PDFInfo
- Publication number
- EP3792403A1 EP3792403A1 EP19196698.5A EP19196698A EP3792403A1 EP 3792403 A1 EP3792403 A1 EP 3792403A1 EP 19196698 A EP19196698 A EP 19196698A EP 3792403 A1 EP3792403 A1 EP 3792403A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- screwing
- torque
- load
- assistance system
- sample data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D13/00—Accessories for placing or removing piles or bulkheads, e.g. noise attenuating chambers
- E02D13/06—Accessories for placing or removing piles or bulkheads, e.g. noise attenuating chambers for observation while placing
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D33/00—Testing foundations or foundation structures
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D5/00—Bulkheads, piles, or other structural elements specially adapted to foundation engineering
- E02D5/22—Piles
- E02D5/24—Prefabricated piles
- E02D5/28—Prefabricated piles made of steel or other metals
- E02D5/285—Prefabricated piles made of steel or other metals tubular, e.g. prefabricated from sheet pile elements
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D5/00—Bulkheads, piles, or other structural elements specially adapted to foundation engineering
- E02D5/22—Piles
- E02D5/56—Screw piles
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D7/00—Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
- E02D7/22—Placing by screwing down
Definitions
- the invention relates to a method for producing a fully displacement bored pile, a screwing assistance system for carrying out a screwing process in such a method, and software for such a screwing assistance system.
- screw piles according to DIN EN 12 699 are generally known. These screw piles are also referred to as full displacement bored piles or displacement piles and are described, for example, in the document “Recommendations of the working group “Pfähle”: EA-Pfähle “, Berlin: Ernst & Sohn, 2007, published by the Deutsche Deutschen für Geotechnik eV, ISBN 978-3-433-01870-5, chapter 2.2.4 . This document as a whole is hereinafter also referred to as "EAP”.
- Such full displacement bored piles are often used in urban areas so as not to disturb residents and not to damage sensitive structures in the vicinity.
- These full displacement bored piles are produced by rotating a steel pipe, to which an exchangeable cutting head is attached, is pressed into the subsoil and thus screwed into the subsoil.
- the soil is laterally displaced and compacted by the cutting head.
- the outside dimensions of the cutting head determine the pile diameter.
- the cutting head is sealed watertight with a lost toe, which will remain in the screw hole after the pile has been completed.
- the cutting head and the pipe are screwed vibration-free into the subsoil using a rotary drive with simultaneous vertical contact pressure.
- This contact pressure is measured as it is screwed in and compared with subsoil outcrops that have previously been created for the respective construction site and include, for example, drilling profiles and / or exploration diagrams.
- a reinforcement cage is lowered into the pipe.
- the pipe and a storage container placed on top are filled with concrete.
- the pipe and the cutting head are screwed backwards out of the subsoil.
- the tip of the foot is released from the cutting head and the cutting head forms the post when it is unscrewed.
- the concrete column in the pipe and the container fills the with its large static overpressure from the cutting head released cavity immediately with concrete. This creates a helical concrete bead around the pile shaft in the subsoil.
- the concrete bead is, for example, 5 cm thick, which means that its outer radius is 5 cm larger than the outer radius of the pile shaft.
- the first approach uses evaluations of pile load tests that were carried out on the respective construction site.
- the second approach uses a soil survey that was prepared for the respective construction site.
- the dimensioning is carried out using the respective lower values from the applicable EAP diagrams and tables.
- the third approach uses evaluations of pile test loads that have already been carried out on at least one other construction site, the soil assessment of which is similar to the soil assessment of the respective construction site.
- the dimensioning is carried out using the respective upper values from the applicable EAP diagrams and tables.
- the accuracy with which the load-bearing capacity of the individual full displacement bored piles can be determined is usually better with the first approach than with the third approach and with the third approach better than with the second approach.
- the proposed method enables the local subsoil in which this pile is to be produced to be taken into account individually for each individual full displacement bored pile. This avoids the pile being made longer than would be necessary for the desired load-bearing capacity, or being made too short, although the subsoil is locally less load-bearing. This in turn prevents different spring stiffnesses and settlement of the individual piles, which would otherwise lead to undesirable stresses in the building built on them.
- this method makes it possible that the screwdriver used for the screwing process is not overstrained and is less subject to wear.
- the load-bearing capacities included in the sample data are preferably those load-bearing capacities that result or have resulted from a defined settlement of the respective full displacement bored pile.
- the desired load-bearing capacity is preferably that load-bearing capacity that results or will result from a defined settlement of the full displacement bored pile to be produced.
- the value 0.1 ⁇ D is usually used, where D is the outside diameter of the pile shaft or the outside diameter of the concrete bead.
- the embedment depth is the length of the pile section that is located in the load-bearing soil layer.
- This location is preferably in the area of the construction site on which the full displacement bored pile is to be constructed.
- the constant boundary conditions comprise at least parameters selected from a group comprising a cutting head type, an outer diameter of the pipe, a foot tip type, a longitudinal screwing speed, a rotational speed, a longitudinal extraction speed and a contact pressure.
- This longitudinal screwing speed is the feed speed with which the cutting head and the pipe move downwards into the subsoil when screwing. This speed is the speed at which the cutting head and the pipe rotate when screwing into the subsoil.
- This longitudinal extraction speed is the retraction speed with which the cutting head and the pipe move upwards out of the subsoil when unscrewing.
- This contact pressure is the pressure with which the cutting head and the pipe are pressed against the subsoil when screwing.
- a minimum embedment depth of the fully displacement bored pile to be produced in the load-bearing soil layer and the demolition torque are used to determine the cancellation of the screwing process.
- the minimum embedment depth is a function of the demolition torque.
- the function has at least the parameter load capacity. If required, the function can have further parameters that result, for example, from the boundary conditions.
- At least one of the termination torques corresponds to a predetermined quantile of the sample data.
- This quantile is for example the 0.1 quantile.
- this soil condition and / or sample data that were determined during the screwing process can be stored in the database.
- FIG. 1 a preferred embodiment of a screwing assistance system 40 according to the invention for guiding a screwing process in a method for producing a full displacement bored pile 10 on a construction site 20 is shown schematically.
- the method is designed according to a preferred embodiment and will be described in more detail below.
- the tightening assistance system 40 includes software that includes a database 30 with sample data 32, an input interface, a processing level and an output interface.
- a breaking torque can be determined from the entered load capacity and the further entered data as well as from the sample data 32. This determination is carried out according to the method.
- the screwing assistance system 40 can be used to predetermine constant boundary conditions for the screwing process, a torque during a screwing process can be determined, and a termination of the screwing process can be initiated at least as a function of the determined torque.
- the cancellation can be output to a screwdriver (not shown) that is used in the method.
- the database 30 with the sample data 32 of pile test loads in different building sites 22 is provided.
- the current subsoil 22 of the construction site 20 comprises, for example, a first, upper soil layer 22.1, which is cohesive and has a low load-bearing capacity that is insufficient for the planned structure, and a second, lower soil layer 22.2, which is non-cohesive and a high one for the planned structure Structure has sufficient load-bearing capacity.
- the sample data 32 include for each of these building sites 22 at least a torque that was used when screwing in this building site 22, and a load-bearing capacity of a full displacement bored pile 10 that was produced by this screwing.
- a desired load-bearing capacity of the full displacement bored pile 10 to be produced is defined.
- constant boundary conditions of a screwing process that is to be carried out to produce the full displacement bored pile 10 are defined.
- At least one breaking torque is determined when screwing in a load-bearing soil layer 22.2.
- the nature of the soil at at least one location 26 on construction site 20 is determined.
- the sample data 32 will then be filtered according to the determined soil condition in order to determine the abort torque.
- the screwing process comprises that a pipe 12 with a cutting head 14, which is sealed watertight with a foot tip 16, is screwed into the subsoil 22.
- the constant boundary conditions are maintained during the screwing process and the torque is measured.
- the constant boundary conditions include, for example, the following parameters: the type of cutting head 14, the outside diameter of the tube 12, the type of foot tip 16, the longitudinal screwing speed, the rotational speed and the contact pressure.
- the screwing process is aborted as soon as the measured torque reaches the abortion torque in connection with and / or depending on the embedment depth.
- the process continues, for example, by lowering a reinforcement cage (not shown) into the pipe 12, pouring concrete into the pipe 12 and into a storage container 18 placed on top, and finally the pipe 12 and the 14 cutting head are backwards out of the subsoil 22 unscrewed, the tip of the foot 16 remaining in the screw hole 24.
- the full displacement bored pile 10 is ready as soon as the concrete has hardened.
Landscapes
- Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Paleontology (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
- Piles And Underground Anchors (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19196698.5A EP3792403A1 (fr) | 2019-09-11 | 2019-09-11 | Procédé de fabrication d'un pieu foré à décalage planimétrique plein, système d'aide au vissage permettant de guider un processus de vissage dans un tel procédé ainsi que logiciel pour un tel système d'aide au vissage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19196698.5A EP3792403A1 (fr) | 2019-09-11 | 2019-09-11 | Procédé de fabrication d'un pieu foré à décalage planimétrique plein, système d'aide au vissage permettant de guider un processus de vissage dans un tel procédé ainsi que logiciel pour un tel système d'aide au vissage |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3792403A1 true EP3792403A1 (fr) | 2021-03-17 |
Family
ID=67928708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19196698.5A Withdrawn EP3792403A1 (fr) | 2019-09-11 | 2019-09-11 | Procédé de fabrication d'un pieu foré à décalage planimétrique plein, système d'aide au vissage permettant de guider un processus de vissage dans un tel procédé ainsi que logiciel pour un tel système d'aide au vissage |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP3792403A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115354701A (zh) * | 2022-01-26 | 2022-11-18 | 长沙理工大学 | 红层软岩地区微型桩顶自锚式拉杆连接装置及其操作方法 |
WO2023180295A1 (fr) * | 2022-03-21 | 2023-09-28 | Aalborg Universitet | Procédé et système d'installation d'un pieu vissé dans un sol |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010043785B3 (de) * | 2010-11-11 | 2012-03-22 | Krinner Innovation Gmbh | Schraubfundament mit Abschnitten veränderlicher Durchmesser |
KR20130113004A (ko) * | 2012-04-05 | 2013-10-15 | 주식회사 포스코 | 고강도 강관을 이용한 선단확장형 중굴 공법 |
DE102014002986B3 (de) * | 2014-02-28 | 2015-03-12 | Krinner Innovation Gmbh | Verfahren und Vorrichtung zum Einbringen von Schraubfundamenten ins Erdreich |
EP3533932A1 (fr) * | 2018-03-01 | 2019-09-04 | BAUER Spezialtiefbau GmbH | Procédé et système permettant d'ériger un élément de fondation dans le sol |
-
2019
- 2019-09-11 EP EP19196698.5A patent/EP3792403A1/fr not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010043785B3 (de) * | 2010-11-11 | 2012-03-22 | Krinner Innovation Gmbh | Schraubfundament mit Abschnitten veränderlicher Durchmesser |
KR20130113004A (ko) * | 2012-04-05 | 2013-10-15 | 주식회사 포스코 | 고강도 강관을 이용한 선단확장형 중굴 공법 |
DE102014002986B3 (de) * | 2014-02-28 | 2015-03-12 | Krinner Innovation Gmbh | Verfahren und Vorrichtung zum Einbringen von Schraubfundamenten ins Erdreich |
EP3533932A1 (fr) * | 2018-03-01 | 2019-09-04 | BAUER Spezialtiefbau GmbH | Procédé et système permettant d'ériger un élément de fondation dans le sol |
Non-Patent Citations (1)
Title |
---|
"Empfehlungen des Arbeitskreises ''Pfähle'': EA-Pfähle", 2007, ERNST & SOHN |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115354701A (zh) * | 2022-01-26 | 2022-11-18 | 长沙理工大学 | 红层软岩地区微型桩顶自锚式拉杆连接装置及其操作方法 |
WO2023180295A1 (fr) * | 2022-03-21 | 2023-09-28 | Aalborg Universitet | Procédé et système d'installation d'un pieu vissé dans un sol |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3081737B1 (fr) | Appareil de forage destine a pratiquer un forage tube et procede de fonctionnement d'un appareil de forage | |
DE69606647T2 (de) | Verfahren zum erzeugen eines pfahles durch schneckenbohren | |
DE3617025A1 (de) | Vorgefertigter betonpfahl sowie verfahren und vorrichtung zu seinem einbringen ins erdreich | |
CH704534A1 (de) | Vorrichtung zum Bohren und Spalten von festen Materialien. | |
EP3792403A1 (fr) | Procédé de fabrication d'un pieu foré à décalage planimétrique plein, système d'aide au vissage permettant de guider un processus de vissage dans un tel procédé ainsi que logiciel pour un tel système d'aide au vissage | |
WO2005080753A1 (fr) | Avancement d'elements tubulaires dans un terrain | |
EP4063567A1 (fr) | Procédé de construction et agencement permettant de mettre en oevre un projet de construction | |
DE10346040A1 (de) | Verfahren und Prüfanordnung zum Bestimmen des Tragverhaltens von Verdrängungspfählen | |
EP3533932B1 (fr) | Procédé et système permettant d'ériger un élément de fondation dans le sol | |
EP3513039B1 (fr) | Procédé d'évaluation de signaux de mesure | |
CH716469A1 (de) | Bohrkopf, Bewehrungskorb und Bohreinheit zur Herstellung von Pfählen. | |
EP0580098A1 (fr) | Procédé et dispositif de fondation à pieux | |
EP3613903B1 (fr) | Procédé de surveillance des charges structurelles d'une machine support pourvue d'appareil de forage et de battage ainsi que machine de travail pourvue d'appareil de battage et de forage | |
EP1188865B1 (fr) | Procédé et appareil pour pour créer un support pour tuyaux | |
EP3901374A1 (fr) | Procédé et agencement de surveillance d'une fondation de construction | |
EP3907371B1 (fr) | Machine de travail et procédé de traitement d'un sol | |
EP3626890B1 (fr) | Procédé d'essai de portance d'une fondation | |
DE1634421A1 (de) | Verfahren zur Herstellung eines Fundaments fuer Punktbelastung | |
EP3530811A1 (fr) | Appareil isolé destiné à introduire un tubage dans la fondation sur pilotis ainsi que procédé de réglage de l'inclinaison du pilotis | |
EP3964686B1 (fr) | Engin de travail mobile destiné á creuser des fondations profondes et procédé d'alignement d'un outil d'un tel engin de travail | |
EP4343066A1 (fr) | Engin de génie civil et procédé de réalisation d'une fondation dans le sol | |
DE4035646A1 (de) | Verfahren zum eintreiben von tragelementen in den boden | |
EP3569770B1 (fr) | Procédé d'investigation de la capacité des pieux entournés | |
DE3941641C1 (en) | Drive unit for foundation I beams - has ground drills within beams, retrieved after beams are properly installed | |
DE4303518C2 (de) | Verfahren und Vorrichtung zum Verfestigen einer Deponie von vorverdichtetem Altmüll unter Erschließung von zusätzlicher Aufnahmekapazität für Frischmüll |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190911 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20210918 |