EP3791205A1 - Système de capteurs à ultrasons et procédé de détection d'objets dans l'environnement d'un véhicule et véhicule équipé d'un système de capteurs à ultrasons - Google Patents

Système de capteurs à ultrasons et procédé de détection d'objets dans l'environnement d'un véhicule et véhicule équipé d'un système de capteurs à ultrasons

Info

Publication number
EP3791205A1
EP3791205A1 EP19722577.4A EP19722577A EP3791205A1 EP 3791205 A1 EP3791205 A1 EP 3791205A1 EP 19722577 A EP19722577 A EP 19722577A EP 3791205 A1 EP3791205 A1 EP 3791205A1
Authority
EP
European Patent Office
Prior art keywords
group
ultrasonic sensors
ultrasonic
vehicle
sensor system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19722577.4A
Other languages
German (de)
English (en)
Inventor
Peter Preissler
Michael Schumann
Sebastian Olbrich
Burkhard Iske
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3791205A1 publication Critical patent/EP3791205A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/48Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects combined with, or convertible into, other devices or objects, e.g. bumpers combined with road brushes, bumpers convertible into beds
    • B60R19/483Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects combined with, or convertible into, other devices or objects, e.g. bumpers combined with road brushes, bumpers convertible into beds with obstacle sensors of electric or electronic type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/87Combinations of sonar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/521Constructional features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2015/937Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles sensor installation details
    • G01S2015/938Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles sensor installation details in the bumper area
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2015/937Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles sensor installation details
    • G01S2015/939Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles sensor installation details vertical stacking of sensors, e.g. to enable obstacle height determination

Definitions

  • the invention relates to an ultrasonic sensor system and method for detecting objects in the environment of a vehicle.
  • Obstacles for example, are used in motor vehicles to assist the driver in maneuvering.
  • the driver is warned acoustically or optically, especially when approaching the obstacles.
  • Ultrasonic sensors can use ultrasound to detect the presence of objects or obstacles within a limited detection area or range and also measure the distance to the objects.
  • a method for the vehicle data dependent distance measurement is known from DE 196 45 339 Al. Next, a distance measuring device in DE 102 61 018 Al is described.
  • the principle of the pulse-echo method is used.
  • the transmission and detection range of the individual ultrasonic sensor is determined by its directional characteristic. This has a vertical opening angle, which usually depends on the sensor geometry and on the control of the ultrasonic sensor, for example the transmission frequency.
  • an ultrasonic sensor can be installed on a vehicle such that its directional characteristic has a certain angle of attack with respect to the vehicle horizontal plane (vertical angle of attack). This can be positive, ie directed upwards, or negative, that is, downwards in the direction of
  • the sensitivity of ultrasonic sensor systems is thus influenced by the shoring on the vehicle. Decisive for this is the height of the applied threshold for the detection of reflected signals, because this is usually adjusted so that ground reflections are hidden. This applies to both fixed and adaptive thresholds. This requirement alone would lead to a sensor design with a very small opening angle or to high angles of attack of the sensor outer surface and the directional characteristic upwards. However, a further requirement in ultrasound sensor systems is also to provide low objects potentially damaging the vehicle, such as e.g. high curbs to detect. Therefore, the ultrasonic sensors must be installed so that a significant proportion of the sound emission, so the directional characteristic, is also directed to the ground.
  • the vertical opening angle of the sound radiation or directional characteristic is e.g. approx. ⁇ 30 ° and the installation of the ultrasonic sensors is to be carried out in such a way that low installation heights of, for example, less than 50 cm with upward angles of attack, ie positive angles of attack and relatively high installation heights of, for example, more than 50 cm with angles of attack directed towards the ground, ie negative angles of attack, be installed.
  • a resulting installation guideline is shown in FIG.
  • DE 10 2009 046 338 A1 further describes a method in which a transmission signal is transmitted by a plurality of ultrasonic sensors, a reception signal generated by reflection of the transmission signal on an object is received by at least one further ultrasonic sensor and the respective reception signal is evaluated in Dependency of a provided sensitivity characteristic for the reception.
  • the sensitivity characteristic is provided as a function of at least one property of the transmitting ultrasonic sensor. It is shown to provide superimposed ultrasonic sensors for detecting obstacles in the region of a bumper, wherein the different ultrasonic sensors can each have different angles of incidence and geometries.
  • arranged object can be estimated.
  • the invention is based on the idea in the area of a bumper
  • Obstacles can be detected particularly well and safely.
  • An ultrasonic sensor system for detecting objects in the vicinity of a vehicle which comprises a first group of
  • Ultrasonic sensors and a second group of ultrasonic sensors comprises.
  • the ultrasonic sensors of the first group each have a first mounting height on the vehicle, the ultrasonic sensors of the second group of
  • Ultrasonic sensors each have a second installation height on the vehicle, wherein the first installation height is greater than the second installation height.
  • the ultrasonic sensors of the first group have a higher sensitivity for the detection of objects than the ultrasonic sensors of the second group.
  • the core of the invention is therefore the use of additional
  • Ultrasonic sensors which are installed in a level below the usual installation level. This lower level of ultrasonic sensors (second group) Its purpose is to detect low objects. According to the invention
  • the increase in the sensitivity of the first group can be made possible, for example, either by installing the ultrasonic sensors with vertical angles of attack and / or installation heights well above the installation guidelines.
  • the respective directional characteristics of the ultrasonic sensors of the first group have a positive vertical angle of attack, in particular between 0 ° and 15 °, relative to the horizontal plane, ie they are tilted upwards. Due to this alignment, the sensors of the first group detect less ground echoes, whereby the threshold for the detection of the echo signals does not have to be adapted to the fading of ground echoes. Thus, a (fixed or adaptive) threshold can be used for the detection of echo signals, which makes it possible to detect even weakly reflecting objects, such as pedestrians. Accordingly, the sensitivity of the ultrasonic sensors with respect to the detection of objects increases.
  • the respective directional characteristics of the ultrasonic sensors of the second group are preferably aligned horizontally or have a negative vertical angle of attack relative to the horizontal plane.
  • Both groups of ultrasonic sensors can, for example, in one
  • the different vertical angles of incidence of the two groups of ultrasonic sensors are preferably achieved by the respective arrangement of the ultrasonic sensors on a vehicle component, in particular a bumper.
  • ultrasonic sensors with smaller vertical opening angles can be used in comparison to the ultrasonic sensors of the second group.
  • the lower vertical Aperture angle results in fewer ground echoes being received by the ultrasound sensors of the first group and, correspondingly, a detection threshold that allows detection of low-reflectivity objects or more distant objects.
  • a smaller vertical opening angle can be realized in various ways within the scope of the invention.
  • the ultrasonic sensors are designed such that they have in a known manner a diaphragm pot with a vibratory membrane and a circumferential wall around the membrane, wherein on a inside of the membrane, a piezoelectric transducer is arranged.
  • the ultrasound sensors of the first group can now have a smaller diaphragm diameter than the ultrasound sensors of the second group, resulting in a comparatively lower vertical aperture angle of the directional characteristic for the ultrasound sensors of the first group.
  • the ultrasonic sensors of the first group may have a higher membrane rigidity. This leads to a comparatively increased resonance frequency of the diaphragm pot. A higher resonance frequency results in a lower vertical opening angle of the directional characteristic and thus leads to an increased sensitivity.
  • the ultrasonic sensors of the first group are preferably operated at a higher transmission frequency than the ultrasonic sensors of the second group.
  • a higher transmission frequency results in a lower compared vertical
  • Opening angle of the directional characteristic When using different transmission frequencies for the two groups, preferably the same
  • Sensor structure and the same sensor geometry, in particular the same membrane diameter can be used for the respective ultrasonic sensors of the two groups.
  • the transmission frequency for the first group should only be increased so far that the ultrasonic sensors of the second group still have sufficient sensitivity in this frequency range, preferably> 50% based on the sensitivity of the ultrasonic sensors of the first group.
  • a variation of the vertical opening angle can also be achieved by incorporating an ultrasonic sensor in a funnel-shaped holder, wherein the effective directional characteristic achieved with respect to the object detection is influenced by the geometry of the funnel.
  • the membrane of the ultrasonic sensor does not close flush with the surface, for. B. a bumper from, but is set against this, so that the sound must move through the funnel in front of it.
  • the respective number of ultrasonic sensors of the first group and the second group is initially not limited and does not have to match.
  • the second group has at least as many
  • Ultrasonic sensor of the first group is arranged an ultrasonic sensor of the second group.
  • the number of ultrasonic sensors of the first group and the second group is the same. This arrangement allows in a particularly advantageous manner, not only to recognize an object and to determine its distance, but also to close by a simple trilateration in the vertical to the height of the reflex to the ground and thus to the height of the detected object. It is further preferred if the ultrasonic sensors of the first group and the ultrasonic sensors of the second group have the greatest possible vertical distance from each other, in other words, if the first installation height as large as possible
  • the second group has at least one ultrasonic sensor more than the first group, wherein offset between each two adjacent ultrasonic sensors of the second group, an ultrasonic sensor of the first group is arranged.
  • Trilateration in particular a 3D trilateration done.
  • certain or even all of the ultrasonic sensors, but in particular the ultrasonic sensors of the first group, can be arranged and aligned in such a way or one such
  • Anstellwinkel have that objects above the vehicle, e.g. the ceiling of a parking garage or transit can also be detected. For example, it can be detected whether a passage for a vehicle is high enough.
  • a vehicle with at least one ultrasound sensor system designed according to the invention for detecting objects in the surroundings of the vehicle is proposed, wherein the
  • Ultrasonic sensors of the ultrasonic sensor system on a front and / or on a rear bumper of the vehicle or on the side of the vehicle, for. B. within the B-pillar are arranged.
  • the first installation height on the vehicle of the ultrasonic sensors of the first group preferably has a value in the range from 50 cm to 80 cm.
  • the second installation height preferably has a value in the range of 20 cm to 40 cm.
  • Ultrasonic sensors of the first group is greater than a threshold distance and wherein by means of the ultrasonic sensors of the second group objects are detected whose distance from the ultrasonic sensors of the second group is smaller than the limit distance.
  • the limit distance can be, for example, 40 cm.
  • the ultrasonic sensor system according to the invention has an increased sensitivity for high objects. It also results in an improved compared to the prior art coverage of the vertical field of view of the overall system. If, as in many conventional systems, the ultrasonic sensors are installed at only one level or installation height, dead zones result due to the
  • FIG. 1 shows a diagram of the installation height in relation to the vertical angle of attack of an ultrasonic sensor.
  • Figure 2a shows schematically a vehicle in front view with a
  • Ultrasonic sensor system for detecting objects in the vicinity of the vehicle according to a first embodiment of the invention.
  • FIG. 2b shows schematically an ultrasound sensor of the first group and an ultrasound sensor of the second group of the ultrasound sensor system.
  • Figure 3a shows a side view schematically a vehicle with a
  • Ultrasonic sensor system for detecting objects in the vicinity of the vehicle according to the prior art.
  • Figure 3b shows a side view schematically a vehicle with a
  • Ultrasonic sensor system for detecting objects in the vicinity of the vehicle according to a second embodiment of the invention.
  • Figure 4 shows schematically a vehicle in front view with a
  • Ultrasonic sensor system for detecting objects in the vicinity of the vehicle according to a third embodiment of the invention.
  • FIG. 1 shows a diagram 100 in which, on the x-axis
  • Ultrasonic sensor system for detecting objects in the environment of a
  • Vehicle is plotted against the vertical angle ⁇ of the ultrasonic sensor.
  • the illustrated ranges of values are determined by the structure of the ultrasonic sensor and to be understood merely as an example
  • the range of installation height h and angle of incidence ⁇ 110 limited downwardly by curve 104 is limited upwardly by curve 106 for installation heights greater than about 46 cm, and for installation heights less than about 46 cm is bounded by the curve 107, represents the range of combinations of h and ⁇ that the ultrasonic sensors are more typical
  • Ultrasonic sensor systems for detecting objects in the environment of a
  • the curve 104 represents combinations of installation height and vertical angle of attack, in which echo signals from the ground can barely be detected G, 1 upper limit ground ").
  • the curve 104 represents combinations of installation height and
  • the curve 107 represents combinations of installation height and angle at which just no disturbing echo signal is received from a ceiling, for example in a garage or in a car park G, upper limit ceiling ").
  • the area 120 may be allowed in prior art systems when there is an application in which the detection of low objects such as curbs has little meaning. For example, low objects such as curbs are included
  • the area 125 is allowed in systems according to the prior art, for example, on the condition that the total range of the ultrasonic sensors is limited to, for example 150 cm, otherwise there is a risk of a disturbing echo signal from a ceiling, for example in a garage or in a parking garage, to receive.
  • area 140 above curves 106 and 107 is not allowed in prior art systems because of the risk of receiving a disturbing echo signal from a ceiling, for example in a garage or in a car park, and at the same time no echo signals from the floor or from very low objects.
  • the area 130 below the curve 104 is not allowed in systems according to the prior art, for example, because of the high proportion of
  • the invention now also makes it possible to arrange ultrasonic sensors in the "forbidden" areas or to change the shape of the areas.
  • the ultrasonic sensors of the second group in an inventive
  • trained ultrasonic sensor system for detecting objects in the environment of a vehicle may also be formed with combinations of installation height and vertical angle of attack in the area 130.
  • the ultrasonic sensors of the first group of the inventively designed ultrasonic sensor system can combinations of installation height and vertical angle in
  • Figure 2a is schematically a vehicle 10 in front view with a
  • Ultrasonic sensor system 20 for detecting objects in the vicinity of the
  • the ultrasonic sensor system 20 comprises twelve ultrasonic sensors 12, 14, including six ultrasonic sensors 12 of a first group 22 of FIG
  • Ultrasonic sensors on, and six ultrasonic sensors 14 belong to a second group 24.
  • the ultrasonic sensors 12 of the first group 22 have a first installation height hi on the vehicle relative to a roadway plane 40.
  • the ultrasonic sensors 14 of the second group 24 have a second one
  • the ultrasonic sensors 12 of the first group 22 have a higher sensitivity for detecting objects than the ultrasonic sensors 14 of the second group 24.
  • the number of ultrasonic sensors 12 of the first group 22 in this example corresponds to the number of ultrasonic sensors 14 of the first group 24.
  • FIG. 2 b shows schematically an ultrasound sensor 12 of the first group 22 and an ultrasound sensor 14 of the second group 24 of FIG
  • the ultrasonic sensor 12 has in this example a positive vertical angle ⁇ .
  • Directional characteristic 52 and the main axis 50 of the directional characteristic is inclined relative to the horizontal 45 upwards.
  • the ultrasonic sensor 14 has a directional characteristic 54 which is not inclined relative to the horizontal 45.
  • the opening angle Ji of the directional characteristic 52 of the ultrasonic sensor 12 is smaller than the opening angle y 2 of the directional characteristic 54 of the ultrasonic sensor 14.
  • FIG. 3 a shows schematically in side view a vehicle 10 with a conventional ultrasonic sensor system for detecting a prior art object 80.
  • the ultrasonic sensor system has at least one ultrasonic sensor 16 which is mounted at a specific installation height hs relative to the roadway plane 40.
  • the installation height hs is for example 50 cm. Shown is the directional characteristic 56 and the vertical field of view of the
  • Ultrasonic sensor 16 This has an opening angle s and also has no inclination of the main axis to the horizontal 45 in this example. It can be seen that the field of view at a distance do intersects the roadway level 40. Low objects which are closer to the vehicle than this limit distance d o , ie approximately in the gap region 58, may not be detected by the ultrasonic sensor 16 at all, or may be detected only in a very unreliable manner.
  • Figure 3b shows schematically in side view a vehicle 10 with a
  • the ultrasonic sensor system 20 for detecting an object 80 after a second Embodiment of the invention.
  • the ultrasonic sensor system 20 has two groups 22, 24 of ultrasonic sensors 12, 14 which are each mounted in a specific first or second installation height hi and h 2 relative to the roadway plane 40.
  • the installation height hi is for example 50 cm.
  • the installation height h 2 is for example 30 cm.
  • Shown here is the directional characteristic 52 or the vertical field of view of an ultrasonic sensor 12 of the first group 22 with installation height hi. In this example, this has no inclination of the main axis to the horizontal 45, but the opening angle yi of the directional characteristic 52 is compared to the opening angle ys according to FIG State of the art according to Figure 2 a) smaller.
  • the ultrasonic sensor 12 accordingly has a higher sensitivity, in particular for high objects, than the
  • Ultrasonic sensor 16 of the prior art is not or only very unreliable.
  • Detection gap is closed according to the invention by adding the second group 24 of ultrasonic sensors 14.
  • the ultrasonic sensor 14 has a field of view or a directional characteristic 54 which essentially covers the area of the near and low objects 81 and thus enables a reliable detection of such objects 81.
  • Figure 4 is a schematic front view of a vehicle 10 with a
  • Ultrasonic sensor system 20 for detecting objects in the vicinity of the
  • the ultrasonic sensor system 20 here comprises eleven ultrasonic sensors 12, 14, thereof five ultrasonic sensors 12 belong to a first group 22 of FIG
  • Ultrasonic sensors on, and six ultrasonic sensors 14 belong to a second group 24.
  • the ultrasonic sensors 12 of the first group 22 have a first installation height hi on the vehicle relative to a roadway plane 40.
  • the ultrasonic sensors 14 of the second group 24 have a second one
  • the ultrasonic sensors 12 of the first group 22 have a higher sensitivity for detecting objects than the ultrasonic sensors 14 of the second group 24.
  • the number of ultrasonic sensors 14 of the second group 24 in this example corresponds to the number of ultrasonic sensors 12 of the first group 22 plus one. Offset between each two adjacent ultrasonic sensors 14 of the second group 24, an ultrasonic sensor 12 of the first group 22 is arranged in each case.
  • an ultrasonic sensor 12 of the first group 22 is arranged in each case.
  • the horizontal distance x between a sensor 12 of the first group and the next sensor 14 of the second group may be reduced. This results in the area 15 of the plate sufficient sensor coverage to ensure the reliable detection of low objects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

L'invention concerne un système de capteurs à ultrasons servant à détecter des objets dans l'environnement d'un véhicule, ce système comprenant un premier groupe de capteurs à ultrasons et un deuxième groupe de capteurs à ultrasons. Les capteurs à ultrasons du premier groupe présentent tous une première hauteur de montage sur le véhicule et les capteurs à ultrasons du deuxième groupe présentent tous une deuxième hauteur de montage sur le véhicule, la première hauteur de montage étant supérieure à la deuxième hauteur de montage. Les capteurs à ultrasons du premier groupe présentent une plus grande sensibilité pour la détection d'objets que les capteurs à ultrasons du deuxième groupe.
EP19722577.4A 2018-05-09 2019-05-03 Système de capteurs à ultrasons et procédé de détection d'objets dans l'environnement d'un véhicule et véhicule équipé d'un système de capteurs à ultrasons Withdrawn EP3791205A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018207274.4A DE102018207274A1 (de) 2018-05-09 2018-05-09 Ultraschallsensorsystem und Verfahren zum Erkennen von Objekten im Umfeld eines Fahrzeugs, sowie Fahrzeug mit einem Ultraschallsensorsystem
PCT/EP2019/061360 WO2019215028A1 (fr) 2018-05-09 2019-05-03 Système de capteurs à ultrasons et procédé de détection d'objets dans l'environnement d'un véhicule et véhicule équipé d'un système de capteurs à ultrasons

Publications (1)

Publication Number Publication Date
EP3791205A1 true EP3791205A1 (fr) 2021-03-17

Family

ID=66440036

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19722577.4A Withdrawn EP3791205A1 (fr) 2018-05-09 2019-05-03 Système de capteurs à ultrasons et procédé de détection d'objets dans l'environnement d'un véhicule et véhicule équipé d'un système de capteurs à ultrasons

Country Status (5)

Country Link
US (1) US20210018621A1 (fr)
EP (1) EP3791205A1 (fr)
CN (1) CN112219134A (fr)
DE (1) DE102018207274A1 (fr)
WO (1) WO2019215028A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018218007A1 (de) 2018-10-22 2020-04-23 Robert Bosch Gmbh Verfahren zur Bestimmung einer Höhe eines Objektes, Umfelderfassungssystem sowie Fahrzeug mit einem Umfelderfassungssystem
DE102019214365A1 (de) * 2019-09-20 2021-03-25 Robert Bosch Gmbh Höhenmessung mittels Ultraschallsensorik

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19655360B4 (de) 1996-11-04 2010-12-09 Valeo Schalter Und Sensoren Gmbh Verfahren und Abstandsmesseinrichtung zur von den Fahrzeugdaten abhängigen Abstandsmessung von Hindernissen
DE10134070A1 (de) * 2001-07-13 2003-01-23 Valeo Schalter & Sensoren Gmbh Abstandmesssystem
DE10261018A1 (de) 2002-12-24 2004-07-08 Robert Bosch Gmbh Abstandsmessvorrichtung
DE102004021561A1 (de) * 2004-05-03 2005-12-08 Daimlerchrysler Ag Objekterkennungssystem für ein Kraftfahrzeug
DE102007053033A1 (de) * 2007-11-07 2009-05-14 Robert Bosch Gmbh Überwachungseinrichtung für den toten Winkel bei Fahrzeugen sowie Verfahren
DE102009046338B4 (de) 2009-11-03 2021-06-02 Robert Bosch Gmbh Verfahren, Sende-/Empfangseinrichtung und System zum Erkennen von Objekten
DE102009054663A1 (de) * 2009-12-15 2011-06-16 Robert Bosch Gmbh Verfahren zur Objekterfassung und Wandleranordnung hierfür
DE102013200793A1 (de) * 2013-01-18 2014-07-24 Robert Bosch Gmbh Fahrerassistenzsystem
DE102014202497B4 (de) * 2014-02-12 2016-11-24 Volkswagen Aktiengesellschaft Schätzung geometrischer Parameter eines fahrbahnfesten seitlichen Objekts
DE102015211539A1 (de) * 2015-06-23 2016-12-29 Bayerische Motoren Werke Aktiengesellschaft Kraftfahrzeug mit einer Ultraschallsensoranordnung
DE102017106743A1 (de) * 2017-03-29 2018-10-04 Valeo Schalter Und Sensoren Gmbh Verfahren zum Erfassen eines Objekts in einem Umgebungsbereich eines Kraftfahrzeugs mit Klassifizierung des Objekts, Ultraschallsensorvorrichtung sowie Kraftfahrzeug

Also Published As

Publication number Publication date
WO2019215028A1 (fr) 2019-11-14
CN112219134A (zh) 2021-01-12
DE102018207274A1 (de) 2019-11-14
US20210018621A1 (en) 2021-01-21

Similar Documents

Publication Publication Date Title
EP1764630A1 (fr) Procédé de mesure de creneaux de stationnement d'un vehicule
DE102016108756A1 (de) Radarsensoreinrichtung für ein Kraftfahrzeug, Fahrerassistenzsystem, Kraftfahrzeug sowie Verfahren zum Erfassen eines Objekts
DE102004047479A1 (de) Verfahren und Vorrichtung zum Klassifizieren von Seitenbegrenzungen einer Parklücke für ein Einparkassistenzsystem
EP1801613B1 (fr) Procédé et dispositif destinés à la détection d'objets dans l'environnement d'un véhicule
DE102016113736A1 (de) Verfahren zum Erfassen eines Objekts in einer Umgebung eines Fahrzeugs mit Höhenbestimmung, Fahrerassistenzsystem sowie Fahrzeug
EP3195006B1 (fr) Procédé et dispositif d'ouverture d'un vantail d'un véhicule automobile et véhicule automobile
WO2017125366A1 (fr) Procédé d'adaptation d'une variation de valeur seuil d'écho pour un capteur à ultrasons d'un véhicule automobile
DE102012015764A1 (de) Kraftfahrzeug mit einem Überflutungserkennungssystem und entsprechendes Verfahren
EP3791205A1 (fr) Système de capteurs à ultrasons et procédé de détection d'objets dans l'environnement d'un véhicule et véhicule équipé d'un système de capteurs à ultrasons
EP3602119B1 (fr) Procédé de détection d'un objet dans une zone environnante d'un véhicule à moteur avec classification de l'objet, dispositif de capteur ultrasonique et véhicule à moteur
EP2634596A1 (fr) Procédé d'enregistrement d'objets dans l'environnement d'un véhicule automobile
DE102015122413B4 (de) Verfahren zum Betreiben eines Ultraschallsensors eines Kraftfahrzeugs, Ultraschallsensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
EP1762861B1 (fr) Procédé et dispositif de mesure de créneaux de stationnement d'un vehicule automobile
WO2011054606A1 (fr) Procédé, dispositif émetteur/récepteur et système de reconnaissance d'objets
EP1966631A1 (fr) Dispositif pour la detection d'un objet
DE102016109850B4 (de) Verfahren zum Erkennen einer Neigung in einer Fahrbahn eines Kraftfahrzeugs, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102017118809A1 (de) Verfahren zum Betreiben einer Sensorvorrichtung eines Kraftfahrzeugs, Sensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102017115457A1 (de) Erkennung einer Fehlstellung eines Abstandssensors basierend auf einem Verhältnis von Detektionsmerkmalen
DE102019205299B4 (de) Verfahren zum Erkennen von Hindernissen in einer Fahrzeugumgebung
EP2813861B1 (fr) Procédé de détermination d'un niveau d'eau dans le voisinage d'un véhicule automobile, le dispositif d'assistance au conducteur et de véhicules automobiles
DE102008034634A1 (de) Sicherheitssystem
EP3093689A1 (fr) Procede de fonctionnement d'un systeme d'assistance au conducteur d'un vehicule automobile comprenant une reconnaissance d'objet a proximite, systeme d'assistance au conducteur et vehicule automobile
DE102017118880B4 (de) Verfahren zum Betreiben einer Sensorvorrichtung eines Kraftfahrzeugs, Sensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102016101358B4 (de) Verfahren zum Erfassen eines Objekts in einem Umgebungsbereich eines Kraftfahrzeugs durch Betreiben eines Ultraschallsensors mit unterschiedlichen Frequenzen, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102015121343A1 (de) Radarsensoreinrichtung zum Erfassen eines Objektes, Fahrerassistenzsystem, Kraftfahrzeug sowie Verfahren zum Erfassen eines Objektes

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201209

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210629