EP3784898A1 - Intake circuit connector - Google Patents

Intake circuit connector

Info

Publication number
EP3784898A1
EP3784898A1 EP19717902.1A EP19717902A EP3784898A1 EP 3784898 A1 EP3784898 A1 EP 3784898A1 EP 19717902 A EP19717902 A EP 19717902A EP 3784898 A1 EP3784898 A1 EP 3784898A1
Authority
EP
European Patent Office
Prior art keywords
tubular section
flow
duct
section
shutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19717902.1A
Other languages
German (de)
French (fr)
Inventor
Nicolas Deleforterie
Thomas VENEZIANI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP3784898A1 publication Critical patent/EP3784898A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/19Means for improving the mixing of air and recirculated exhaust gases, e.g. venturis or multiple openings to the intake system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • F02B31/06Movable means, e.g. butterfly valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10091Air intakes; Induction systems characterised by details of intake ducts: shapes; connections; arrangements
    • F02M35/10144Connections of intake ducts to each other or to another device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10222Exhaust gas recirculation [EGR]; Positive crankcase ventilation [PCV]; Additional air admission, lubricant or fuel vapour admission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10255Arrangements of valves; Multi-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10262Flow guides, obstructions, deflectors or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to an intake circuit connector.
  • the invention also relates to a combustion engine, or heat engine, comprising such an intake circuit connector.
  • the invention also relates to a motor vehicle comprising such a combustion engine.
  • a combustion engine in particular equipping a motor vehicle, requires for its operation fresh air which is led into a combustion chamber through an air intake circuit. Combustion of fuel in the combustion chamber produces gases that are exhausted through an exhaust system.
  • a combustion engine, or heat engine generally comprises an exhaust gas recirculation system commonly known as EGR for the Anglo-Saxon Exhaust Gas Recirculation. Such an EGR system generally aims to reduce pollutant emissions and / or optimize engine power.
  • a greater or lesser proportion of the exhaust gas (also called EGR rate) is redirected from the exhaust system to the engine air intake system.
  • EGR gas exhaust gases that are redirected from the exhaust circuit to the engine air intake circuit.
  • An EGR system is used to reintroduce into the combustion chamber the gases that were burned during the previous combustion.
  • Such a system requires mixing the EGR gases with fresh air.
  • a mixer called air-EGR mixer in the following description, is usually used.
  • air-EGR mixer has a large footprint compared to other elements of a combustion engine.
  • such a mixer causes losses in the air intake circuit of a combustion engine.
  • the object of the invention is to provide a system overcoming the disadvantages mentioned above and improving the systems known from the prior art.
  • the invention proposes a valve system for producing a combustion engine not comprising an air-EGR mixer.
  • the invention relates to an intake circuit connector, particularly a heat engine for a motor vehicle, comprising a tubular section for the circulation of fresh air, and a flow shutter, intended for regulating the air circulation, characterized in that a duct, intended for gas circulation, opens out into the section downstream and in the immediate vicinity of said shutter.
  • the duct intended for the circulation of gas, can open towards the upstream section.
  • the duct intended for gas circulation, can lead into the section in a zone with a high air flow rate and strong turbulence generated by the flow shutter.
  • the outflow projecting from the duct may be angled in the section to form an angle between the main directions of the section and the duct between 10 ° and 80 °, in particular between about 10 ° and 80 °, for example of the order of 45 °, in particular so as to introduce against the flow or against the current, in a first flow of air flowing in the tubular section, a second flow of gas flowing in the conduit.
  • the closing percentage of the flow shutter can be less than or equal to 90%.
  • the projection height of the duct in the tubular section may for example be less than or equal to half the diameter of the tubular section, for example approximately equal to a quarter of the diameter of the tubular section.
  • the distance from the end of the duct projecting in the tubular section to the flow shutter, in a direction perpendicular to the main direction of the tubular section, may be, for example, less than or equal to half the diameter of the tubular section.
  • the distance from the end of the duct projecting in the tubular section to the flow shutter, in the main direction of the tubular section, may be for example between 0.5 and 2 times the diameter of the flow shutter, for example, approximately equal to half the diameter of the flow shutter.
  • the shape of the cross section of the projection of the conduit may be oblong in a plane containing the main direction of the tubular section.
  • the invention also relates to a combustion engine comprising a connector as defined above.
  • the invention relates to a motor vehicle comprising a combustion engine as defined above or a connector as defined above.
  • Figure 1 schematically shows an embodiment of an intake circuit connector.
  • FIG. 2 schematically shows an intake circuit connector such as that of Figure 1 in operation, when there is no introduction of EGR gas.
  • FIG. 3 schematically shows an intake circuit connector such as that of FIG. 1 in operation, when EGR gas is introduced.
  • the air intake circuit of a combustion engine may comprise an air intake valve for regulating the flow of combustion air entering the combustion chamber.
  • the present invention proposes to advantageously take advantage of the presence of such an air intake valve in the engine to be able to overcome the use of an air-EGR mixer in the engine.
  • the air intake valve in addition to its role of controlling the combustion air flow, is then also intended to act as an air mixer and EGR gas.
  • the inlet valve also serves as an EGR gas metering valve.
  • a duct for the EGR gas duct is connected directly to the air intake valve in a carefully chosen place. This allows the EGR gases to be introduced into the air intake circuit while mixing them with fresh air.
  • a motor provided with such a valve does not require an air-EGR mixer and therefore has a small footprint.
  • inlet circuit connector designates such a valve system comprising a conduit, in particular a conduit intended for the EGR gas pipeline.
  • FIG. 1 schematically represents an embodiment of an intake circuit connector 1.
  • the intake circuit connector 1 comprises a tubular section 3.
  • the tubular section 3 is intended for circulation, or for passage, a first fluid, preferably air, more preferably fresh air.
  • the intake circuit connector 1 also comprises a flow shutter 5.
  • the flow shutter 5 is intended to regulate the circulation, or the flow, referred to as the first flow, of the first fluid, for example air, in the tubular section 3.
  • the flow direction of the first flow of the first fluid in the tubular section 3 is represented by an arrow 7.
  • the intake circuit connector 1 further comprises a duct 9 connected to the tubular section 3 downstream of the flow shutter 5.
  • the duct 9 opens projecting into the tubular section 3 downstream and in the immediate vicinity of the flow shutter 5.
  • the duct 9 is intended for circulation a second fluid, preferably EGR gas, and the introduction of the second fluid into the tubular section 3.
  • the flow direction of the second fluid flow, called second flow, in the conduit 9, is represented by an arrow 1 1.
  • fresh air is meant air that is introduced for the first time into the air intake system, that is to say air that has never been previously conducted in the combustion chamber.
  • the conduit 9 opens into the tubular section 3, downstream of the flow valve 5, in a zone to high air flow and / or pressure loss and / or turbulence or strong turbulence generated by the flow shutter 5.
  • the second fluid is thus introduced into these turbulences, which minimizes the pressure losses due to the introduction of the second fluid into the tubular section 3. This also makes it possible to optimize the mixing of the first and second fluids.
  • the conduit 9 is connected to the tubular section 3 protruding into the tubular section 3.
  • the conduit 9 is for example implanted by stitching in the tubular section 3, in other words in the body of the intake circuit connector 1.
  • the duct 9 protrudes into the tubular section 3 over a projecting height h.
  • the height of projection h of the duct 9 in the tubular section 3 is, for example, less than or equal to half the diameter D of the tubular section 3.
  • the height of projection h of the duct 9 in the tubular section 3 is, for example, approximately equal to a quarter of the diameter D of the tubular section 3.
  • the duct 9 opens towards the upstream of the tubular section 3.
  • the projecting outlet of the duct 9 is advantageously angled in the section 3.
  • the tubular section 3 extends along a main direction D1.
  • the duct 9 extends in a main direction D2.
  • the main direction D2 of the duct 9 forms an angle F with the main direction D1 of the tubular section 3.
  • the duct 9 is connected to the tubular section 3 so that the main directions D1 of the tubular section 3 and D2 of the duct 9 form an angle F between 10 ° and 80 °, in particular between approximately 10 ° and approximately 80 °, of preferably of the order of 45 °.
  • the angle F between the main directions D1, D2 of the tubular section 3 and the duct 9 is chosen so as to introduce against the flow or countercurrent, in the first flow of the first fluid flowing in the tubular section 3, the second flow of the second fluid flowing in the conduit 9. As a result, the first and second flows are disturbed, which allows to obtain a mixture between the first and second fluids.
  • the intake circuit connector 1 comprises an oxidizer inlet valve and is intended to be used in a combustion engine.
  • the tubular section 3 is for example intended for the air ducting, for example fresh air, in particular to the combustion air intake.
  • the duct 9 is for example intended for the gas ducting, for example EGR gas.
  • the duct 9 may also be intended for example for the ducting of the blow-by, the English term denoting the ventilation of the gas, or the pipeline of gasoline vapors.
  • the valve of the intake circuit connector 1 has a small percentage of closure. This makes it possible in particular to prevent clogging of the intake circuit connector 1 due to the introduction of EGR gas into the tubular section 3.
  • closing percentage is meant a closing percentage with respect to an open position of the flow gate 5 corresponding to the home position.
  • a closing percentage of 0% corresponds to the open position of the flow shutter 5, and a closing percentage of 100% corresponds to the fully closed position of the flow shutter 5.
  • the closing percentage of the flow shutter 5 is less than or equal to 90%, preferably less than or equal to 50%, more preferably less than or equal to 20%.
  • the intake circuit connector 1 has no sensitivity to fouling.
  • the distance d1 from the end of the duct 9 projecting into the tubular section 3 to the flow shutter 5, in a direction perpendicular to the main direction D1 of the tubular section 3, is for example less than or equal to half the diameter D of the tubular section 3.
  • the distance d1 is for example approximately equal to a quarter of the diameter D of the tubular section 3.
  • the distance d2 from the end of the duct 9 projecting into the tubular section 3 to the flow shutter 5, in the main direction D1 of the tubular section 3, is for example between 0.5 and 2 times the diameter D5 of the flow shutter 5.
  • the distance d2 is for example approximately equal to half the diameter D5 of the flow shutter 5.
  • the duct 9 is disposed closest to the turbulence zone of the tubular section 3, generated by the flow shutter 5.
  • the distances d1 and d2 are for example measured between the center of the flow shutter 5 and the center of the cross section of the end of the duct 9 projecting into the tubular section 3.
  • the shape of the cross section of the projection of the duct 9 is for example oblong in a plane P containing the main direction D1 of the tubular section 3 and maximizing the angle formed between this plane and the main direction D2.
  • the diameter of the cross section of the projection of the duct 9 is for example of the order of D / 5.
  • the shape and dimensions of the cross section of the projection of the duct 9 will for example be chosen as a function of the need for EGR gas flow.
  • valve 1 is of shutter type.
  • the flow shutter 5 is then for example a flap.
  • FIG. 2 schematically represents the intake circuit connector 1 in operation, when there is no introduction of the second fluid, for example EGR gas, into the tubular section 3.
  • the flow shutter 5 is in the open position, at the rest position.
  • a valve 21, not shown in Figure 1 but shown in Figure 2 is disposed in the conduit 9 upstream thereof, that is to say at the end of the conduit 9 opposite to that protruding into the tubular section 3.
  • the conduit 9 is closed by the valve 21.
  • the second fluid is therefore not introduced into the tubular section 3.
  • the arrows 23 represent the first flow of the first fluid in the tubular section 3.
  • the presence of the duct 9, connected to the tubular section 3 projecting into the tubular section 3, induces little of losses in the tubular section 3.
  • the valve 1 thus operates as if there were no conduit 9.
  • the projection height h of the duct 9 in the tubular section 3 can be reduced so as to reduce the phenomenon of airflow disturbance in the tubular section 3. It is possible to choose a projection height h that makes it possible to minimize the phenomenon of a (2015)lic disturbance in the tubular section 3 while ensuring an optimum quality of the mixture between the first fluid and the second fluid, in particular by playing on a compromise with the angle F between the main directions D1, D2 of the tubular section 3 and the duct 9.
  • FIG. 3 diagrammatically represents the intake circuit connector 1 in operation, when the second fluid, for example EGR gas, is introduced into the tubular section 3.
  • the flow shutter 5 is inclined at an angle w with respect to the main direction D1 of the tubular section 3.
  • the inclination angle w of the flow shutter 5 with respect to the main direction D1 of the tubular section 3 is for example between 0 and 20 °, for example of the order of 20 °.
  • the arrows 33 represent the first flow of the first fluid in the tubular section 3. As illustrated in FIG. 3 by the arrows 33, the inclined position of the flow shutter 5 with respect to the main direction D1 of the tubular section 3 creates pressure losses in the tubular section 3. This induces a depression allowing the introduction of the second fluid into the tubular section 3.
  • the arrows 35 represent the second flow of the second fluid in the duct 9.
  • the duct 9 makes it possible to introduce the second fluid into the tubular section 3 in the aerodynamic disturbances of the first fluid. After introduction of the second flow of the second fluid into the tubular section 3, the flow of the first and second fluids downstream of the end of the duct 9 projecting into the tubular section 3 has little loss of charge, as illustrated in FIG. 3 by the arrows 37.
  • the intake circuit connector 1 thus makes it possible to obtain at the outlet a homogeneous mixture between the first fluid, for example air, and the second fluid, for example EGR gas. In addition, the mixing between the first and second fluids induces reduced pressure losses.
  • the intake circuit connector 1 thus plays the role of a mixing valve.
  • An advantage of an intake circuit connector such as that described with reference to FIGS. 1 to 3 lies in the fact that it plays both the role of flow regulator of the first fluid and mixer between the first fluid. and the second fluid.
  • Such an intake circuit connector for example when it is arranged in a combustion engine, makes it possible to dispense with the use of an air-EGR mixer.
  • a homogeneous mixture is obtained between the first fluid, for example air, and the second fluid, for example EGR gas, while minimizing the pressure losses in the circuit. admission of the first fluid.
  • FIGS. 1 to 3 show the intake circuit connector 1 in the case where the main direction D2 of the duct 9 is positioned in a plane normal to the plane of the flow shutter 5.
  • the angle a is of the order of 90 ° in the embodiment of Figures 1 to 3.
  • the main direction D2 of the duct 9 can be positioned in the plane of the flow shutter 5.
  • the angle a is then 0 °. Any other orientation of the main direction D2 of the duct 9 with respect to the plane of the flow shutter 5 may also be chosen.
  • the value of the angle ⁇ will be chosen between 0 ° and 360 ° depending on the geometry of the intake circuit connector upstream of the flow shutter 5. The optimum value of the angle ⁇ will for example be determined by means of to aerodynamic calculations.
  • the invention has been described in relation to FIGS. 1 to 3 in the case where the valve 1 is of shutter type. According to one variant, the valve 1 may be of the plug type.
  • An intake circuit connector such as that described with reference to FIGS. 1 to 3 may be used in a combustion engine, or heat engine, 41. Such an intake circuit connector makes it possible to dispense with the use of an air-EGR mixer in a combustion engine. This gives a combustion engine with a small footprint.
  • the invention also relates to a motor vehicle 51 comprising such a combustion engine 41 or an intake circuit connector such as that described with reference to FIGS. 1 to 3.
  • a connector such as that described with reference to FIGS. 1 to 3 may be used for any type of application requiring a mixture between two fluids, the flow rate of one of the two fluids being regulated by a valve.
  • a connector can be used in a boiler.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

The invention relates to an intake circuit connector, particularly of a heat engine for a motor vehicle, comprising a tubular segment (3) for the circulation of fresh air, and a flow shutter (5) for regulating the circulation of air, characterised in that a conduit (9) for the circulation of gas projects out into the downstream segment, in the immediate vicinity of said shutter.

Description

Connecteur de circuit d’admission.  Intake circuit connector.
L’invention concerne un connecteur de circuit d’admission. L’invention porte aussi sur un moteur à combustion, ou moteur thermique, comprenant un tel connecteur de circuit d’admission. L’invention concerne encore un véhicule automobile comprenant un tel moteur à combustion. The invention relates to an intake circuit connector. The invention also relates to a combustion engine, or heat engine, comprising such an intake circuit connector. The invention also relates to a motor vehicle comprising such a combustion engine.
Un moteur à combustion, en particulier équipant un véhicule automobile, requiert pour son fonctionnement de l’air frais qui est conduit dans une chambre de combustion au travers d’un circuit d’admission d’air. La combustion du carburant dans la chambre de combustion produit des gaz qui sont évacués au travers d’un circuit d’échappement. Un moteur à combustion, ou moteur thermique, comprend généralement un système de recirculation des gaz d’échappement communément appelé EGR pour le terme anglo-saxon Exhaust Gas Recirculation. Un tel système EGR vise généralement à réduire les émissions polluantes et/ou à optimiser la puissance du moteur. Une proportion plus ou moins importante des gaz d’échappement (appelée aussi taux d’EGR) est redirigée depuis le circuit d’échappement vers le circuit d’admission d’air du moteur. Dans la suite de la description, les gaz d’échappement qui sont redirigés depuis le circuit d’échappement vers le circuit d’admission d’air du moteur sont appelés gaz EGR. A combustion engine, in particular equipping a motor vehicle, requires for its operation fresh air which is led into a combustion chamber through an air intake circuit. Combustion of fuel in the combustion chamber produces gases that are exhausted through an exhaust system. A combustion engine, or heat engine, generally comprises an exhaust gas recirculation system commonly known as EGR for the Anglo-Saxon Exhaust Gas Recirculation. Such an EGR system generally aims to reduce pollutant emissions and / or optimize engine power. A greater or lesser proportion of the exhaust gas (also called EGR rate) is redirected from the exhaust system to the engine air intake system. In the following description, the exhaust gases that are redirected from the exhaust circuit to the engine air intake circuit are called EGR gas.
Un système EGR permet de réintroduire dans la chambre de combustion les gaz qui ont été brûlés lors de la combustion précédente. Un tel système requiert de mélanger les gaz EGR à de l’air frais. Pour cela, un mélangeur, appelé mélangeur air-EGR dans la suite de la description, est habituellement utilisé. Or, un tel mélangeur présente un encombrement important par rapport aux autres éléments d’un moteur à combustion. En outre, un tel mélangeur provoque des pertes de charges dans le circuit d’admission d’air d’un moteur à combustion. An EGR system is used to reintroduce into the combustion chamber the gases that were burned during the previous combustion. Such a system requires mixing the EGR gases with fresh air. For this, a mixer, called air-EGR mixer in the following description, is usually used. However, such a mixer has a large footprint compared to other elements of a combustion engine. In Moreover, such a mixer causes losses in the air intake circuit of a combustion engine.
Le but de l’invention est de fournir un système remédiant aux inconvénients évoqués précédemment et améliorant les systèmes connus de l’art antérieur. En particulier, l’invention propose un système de vanne permettant de réaliser un moteur à combustion ne comprenant pas de mélangeur air-EGR. The object of the invention is to provide a system overcoming the disadvantages mentioned above and improving the systems known from the prior art. In particular, the invention proposes a valve system for producing a combustion engine not comprising an air-EGR mixer.
Pour atteindre cet objectif, l’invention porte sur un connecteur de circuit d’admission, notamment de moteur thermique destiné à un véhicule automobile, comportant un tronçon tubulaire, destiné à la circulation d’air frais, et un obturateur de débit, destiné à réguler la circulation d’air, caractérisé en ce qu’un conduit, destiné à la circulation de gaz, débouche en saillie dans le tronçon en aval et à proximité immédiate dudit obturateur. To achieve this objective, the invention relates to an intake circuit connector, particularly a heat engine for a motor vehicle, comprising a tubular section for the circulation of fresh air, and a flow shutter, intended for regulating the air circulation, characterized in that a duct, intended for gas circulation, opens out into the section downstream and in the immediate vicinity of said shutter.
Avantageusement, le conduit, destiné à la circulation de gaz, peut déboucher en direction de l’amont du tronçon. Advantageously, the duct, intended for the circulation of gas, can open towards the upstream section.
Avantageusement, le conduit, destiné à la circulation de gaz, peut déboucher dans le tronçon dans une zone à fort débit d’air et de fortes turbulences générées par l’obturateur de débit. Advantageously, the duct, intended for gas circulation, can lead into the section in a zone with a high air flow rate and strong turbulence generated by the flow shutter.
Le débouché en saillie du conduit peut être en biais dans le tronçon pour former un angle entre les directions principales du tronçon et du conduit compris entre 10° et 80°, notamment entre environ 10° et 80°, par exemple de l’ordre de 45°, en particulier de sorte à introduire à contre- flux ou à contre-courant, dans un premier flux d’air circulant dans le tronçon tubulaire, un deuxième flux de gaz circulant dans le conduit. Le pourcentage de fermeture de l’obturateur de débit peut être inférieur ou égal à 90 %. The outflow projecting from the duct may be angled in the section to form an angle between the main directions of the section and the duct between 10 ° and 80 °, in particular between about 10 ° and 80 °, for example of the order of 45 °, in particular so as to introduce against the flow or against the current, in a first flow of air flowing in the tubular section, a second flow of gas flowing in the conduit. The closing percentage of the flow shutter can be less than or equal to 90%.
La hauteur de saillie du conduit dans le tronçon tubulaire peut être par exemple inférieure ou égale à la moitié du diamètre du tronçon tubulaire, par exemple environ égale au quart du diamètre du tronçon tubulaire. The projection height of the duct in the tubular section may for example be less than or equal to half the diameter of the tubular section, for example approximately equal to a quarter of the diameter of the tubular section.
La distance de l’extrémité du conduit faisant saillie dans le tronçon tubulaire à l’obturateur de débit, dans une direction perpendiculaire à la direction principale du tronçon tubulaire, peut être par exemple inférieure ou égale à la moitié du diamètre du tronçon tubulaire. The distance from the end of the duct projecting in the tubular section to the flow shutter, in a direction perpendicular to the main direction of the tubular section, may be, for example, less than or equal to half the diameter of the tubular section.
La distance de l’extrémité du conduit faisant saillie dans le tronçon tubulaire à l’obturateur de débit, dans la direction principale du tronçon tubulaire, peut être par exemple comprise entre 0,5 et 2 fois le diamètre de l’obturateur de débit, par exemple environ égale à la moitié du diamètre de l’obturateur de débit. The distance from the end of the duct projecting in the tubular section to the flow shutter, in the main direction of the tubular section, may be for example between 0.5 and 2 times the diameter of the flow shutter, for example, approximately equal to half the diameter of the flow shutter.
La forme de la section transversale de la saillie du conduit peut être oblongue dans un plan contenant la direction principale du tronçon tubulaire. The shape of the cross section of the projection of the conduit may be oblong in a plane containing the main direction of the tubular section.
L’invention porte également sur un moteur à combustion comprenant un connecteur tel que défini précédemment. The invention also relates to a combustion engine comprising a connector as defined above.
L’invention porte enfin sur un véhicule automobile comprenant un moteur à combustion tel que défini précédemment ou un connecteur tel que défini précédemment. Finally, the invention relates to a motor vehicle comprising a combustion engine as defined above or a connector as defined above.
La figure 1 représente de façon schématique un mode de réalisation d’un connecteur de circuit d’admission. Figure 1 schematically shows an embodiment of an intake circuit connector.
La figure 2 représente de façon schématique un connecteur de circuit d’admission tel que celui de la figure 1 en fonctionnement, lorsqu’il n’y a pas d’introduction de gaz EGR. La figure 3 représente de façon schématique un connecteur de circuit d’admission tel que celui de la figure 1 en fonctionnement, lorsqu’il y a introduction de gaz EGR. Figure 2 schematically shows an intake circuit connector such as that of Figure 1 in operation, when there is no introduction of EGR gas. FIG. 3 schematically shows an intake circuit connector such as that of FIG. 1 in operation, when EGR gas is introduced.
Le circuit d’admission d’air d’un moteur à combustion peut comprendre une vanne d’admission d’air, destinée à réguler le débit d’air comburant entrant dans la chambre de combustion. La présente invention propose de tirer avantageusement profit de la présence d’une telle vanne d’admission d’air dans le moteur pour pouvoir s’affranchir de l’utilisation d’un mélangeur air-EGR dans le moteur. La vanne d’admission d’air, en plus de son rôle de régulation du débit d’air comburant, est alors également destinée à jouer le rôle de mélangeur d’air et de gaz EGR. La vanne d’admission sert alors également de vanne de dosage de gaz EGR. Pour cela, un conduit destiné à la canalisation de gaz EGR est directement raccordé à la vanne d’admission d’air, à une place judicieusement choisie. Ceci permet d’introduire les gaz EGR dans le circuit d’admission d’air tout en les mélangeant à de l’air frais. Il en résulte qu’un moteur pourvu d’une telle vanne ne nécessite pas de mélangeur air-EGR et présente donc notamment un encombrement réduit. The air intake circuit of a combustion engine may comprise an air intake valve for regulating the flow of combustion air entering the combustion chamber. The present invention proposes to advantageously take advantage of the presence of such an air intake valve in the engine to be able to overcome the use of an air-EGR mixer in the engine. The air intake valve, in addition to its role of controlling the combustion air flow, is then also intended to act as an air mixer and EGR gas. The inlet valve also serves as an EGR gas metering valve. For this purpose, a duct for the EGR gas duct is connected directly to the air intake valve in a carefully chosen place. This allows the EGR gases to be introduced into the air intake circuit while mixing them with fresh air. As a result, a motor provided with such a valve does not require an air-EGR mixer and therefore has a small footprint.
Dans la suite de la description, on désigne par l’expression « connecteur de circuit d’admission » un tel système de vanne comportant un conduit, notamment un conduit destiné à la canalisation de gaz EGR. In the remainder of the description, the term "inlet circuit connector" designates such a valve system comprising a conduit, in particular a conduit intended for the EGR gas pipeline.
La figure 1 représente de façon schématique un mode de réalisation d’un connecteur de circuit d’admission 1. Le connecteur de circuit d’admission 1 comprend un tronçon tubulaire 3. Le tronçon tubulaire 3 est destiné à la circulation, ou au passage, d’un premier fluide, de préférence de l’air, de préférence encore de l’air frais. Le connecteur de circuit d’admission 1 comprend également un obturateur de débit 5. L’obturateur de débit 5 est destiné à réguler la circulation, ou le flux, dénommé premier flux, du premier fluide, par exemple de l’air, dans le tronçon tubulaire 3. Le sens de circulation du premier flux du premier fluide dans le tronçon tubulaire 3 est représenté par une flèche 7. Le connecteur de circuit d’admission 1 comprend en outre un conduit 9 raccordé au tronçon tubulaire 3 en aval de l’obturateur de débit 5. Le conduit 9 débouche en saillie dans le tronçon tubulaire 3 en aval et à proximité immédiate de l’obturateur de débit 5. Le conduit 9 est destiné à la circulation d’un deuxième fluide, de préférence des gaz EGR, et à l’introduction du deuxième fluide dans le tronçon tubulaire 3. Le sens de circulation du flux du deuxième fluide, dénommé deuxième flux, dans le conduit 9, est représenté par une flèche 1 1 . FIG. 1 schematically represents an embodiment of an intake circuit connector 1. The intake circuit connector 1 comprises a tubular section 3. The tubular section 3 is intended for circulation, or for passage, a first fluid, preferably air, more preferably fresh air. The intake circuit connector 1 also comprises a flow shutter 5. The flow shutter 5 is intended to regulate the circulation, or the flow, referred to as the first flow, of the first fluid, for example air, in the tubular section 3. The flow direction of the first flow of the first fluid in the tubular section 3 is represented by an arrow 7. The intake circuit connector 1 further comprises a duct 9 connected to the tubular section 3 downstream of the flow shutter 5. The duct 9 opens projecting into the tubular section 3 downstream and in the immediate vicinity of the flow shutter 5. The duct 9 is intended for circulation a second fluid, preferably EGR gas, and the introduction of the second fluid into the tubular section 3. The flow direction of the second fluid flow, called second flow, in the conduit 9, is represented by an arrow 1 1.
Par « air frais », on entend de l’air qui est introduit pour la première fois dans le circuit d’admission d’air, autrement dit de l’air qui n’a jamais été conduit au préalable dans la chambre de combustion. By "fresh air" is meant air that is introduced for the first time into the air intake system, that is to say air that has never been previously conducted in the combustion chamber.
Lorsque le premier fluide circule dans le tronçon tubulaire 3, il existe des pertes de charges intrinsèques dans le tronçon tubulaire 3. Avantageusement, le conduit 9 débouche dans le tronçon tubulaire 3, en aval de l’obturateur de débit 5, dans une zone à fort débit d’air et/ou de perte de charge et/ou de turbulences ou fortes turbulences générées par l’obturateur de débit 5. Le deuxième fluide est ainsi introduit dans ces turbulences, ce qui permet de minimiser les pertes de charges liées à l’introduction du deuxième fluide dans le tronçon tubulaire 3. Ceci permet aussi d’optimiser le mélange des premier et deuxième fluides. When the first fluid flows in the tubular section 3, there are intrinsic losses in the tubular portion 3. Advantageously, the conduit 9 opens into the tubular section 3, downstream of the flow valve 5, in a zone to high air flow and / or pressure loss and / or turbulence or strong turbulence generated by the flow shutter 5. The second fluid is thus introduced into these turbulences, which minimizes the pressure losses due to the introduction of the second fluid into the tubular section 3. This also makes it possible to optimize the mixing of the first and second fluids.
Le conduit 9 est raccordé au tronçon tubulaire 3 en faisant saillie dans le tronçon tubulaire 3. Le conduit 9 est par exemple implanté par piquage dans le tronçon tubulaire 3, autrement dit dans le corps du connecteur de circuit d’admission 1. Le conduit 9 fait saillie dans le tronçon tubulaire 3 sur une hauteur de saillie h. La hauteur de saillie h du conduit 9 dans le tronçon tubulaire 3 est par exemple inférieure ou égale à la moitié du diamètre D du tronçon tubulaire 3. De préférence, la hauteur de saillie h du conduit 9 dans le tronçon tubulaire 3 est par exemple environ égale au quart du diamètre D du tronçon tubulaire 3. The conduit 9 is connected to the tubular section 3 protruding into the tubular section 3. The conduit 9 is for example implanted by stitching in the tubular section 3, in other words in the body of the intake circuit connector 1. The duct 9 protrudes into the tubular section 3 over a projecting height h. The height of projection h of the duct 9 in the tubular section 3 is, for example, less than or equal to half the diameter D of the tubular section 3. Preferably, the height of projection h of the duct 9 in the tubular section 3 is, for example, approximately equal to a quarter of the diameter D of the tubular section 3.
Avantageusement, le conduit 9 débouche en direction de l’amont du tronçon tubulaire 3. Le débouché en saillie du conduit 9 est avantageusement en biais dans le tronçon 3. Advantageously, the duct 9 opens towards the upstream of the tubular section 3. The projecting outlet of the duct 9 is advantageously angled in the section 3.
Le tronçon tubulaire 3 s’étend selon une direction principale D1. Le conduit 9 s’étend selon une direction principale D2. La direction principale D2 du conduit 9 forme un angle F avec la direction principale D1 du tronçon tubulaire 3. The tubular section 3 extends along a main direction D1. The duct 9 extends in a main direction D2. The main direction D2 of the duct 9 forms an angle F with the main direction D1 of the tubular section 3.
Avantageusement, le conduit 9 est raccordé au tronçon tubulaire 3 de sorte que les directions principales D1 du tronçon tubulaire 3 et D2 du conduit 9 forment un angle F compris entre 10° et 80°, notamment entre environ 10° et environ 80°, de préférence de l’ordre de 45°. L’angle F entre les directions principales D1 , D2 du tronçon tubulaire 3 et du conduit 9 est choisi de sorte à introduire à contre-flux ou à contre- courant, dans le premier flux du premier fluide circulant dans le tronçon tubulaire 3, le deuxième flux du deuxième fluide circulant dans le conduit 9. Il en résulte que les premier et deuxième flux se perturbent, ce qui permet d’obtenir un mélange entre les premier et deuxième fluides. Advantageously, the duct 9 is connected to the tubular section 3 so that the main directions D1 of the tubular section 3 and D2 of the duct 9 form an angle F between 10 ° and 80 °, in particular between approximately 10 ° and approximately 80 °, of preferably of the order of 45 °. The angle F between the main directions D1, D2 of the tubular section 3 and the duct 9 is chosen so as to introduce against the flow or countercurrent, in the first flow of the first fluid flowing in the tubular section 3, the second flow of the second fluid flowing in the conduit 9. As a result, the first and second flows are disturbed, which allows to obtain a mixture between the first and second fluids.
Selon un exemple de réalisation, le connecteur de circuit d’admission 1 comporte une vanne d’admission de comburant et est destiné à être utilisé dans un moteur à combustion. Le tronçon tubulaire 3 est par exemple destiné à la canalisation d’air, par exemple de l’air frais, en particulier à l’admission d’air comburant. Le conduit 9 est par exemple destiné à la canalisation de gaz, par exemple de gaz EGR. Le conduit 9 peut également être destiné par exemple à la canalisation du blow-by, terme anglo-saxon désignant la ventilation des gaz, ou à la canalisation de vapeurs d’essence. According to an exemplary embodiment, the intake circuit connector 1 comprises an oxidizer inlet valve and is intended to be used in a combustion engine. The tubular section 3 is for example intended for the air ducting, for example fresh air, in particular to the combustion air intake. The duct 9 is for example intended for the gas ducting, for example EGR gas. The duct 9 may also be intended for example for the ducting of the blow-by, the English term denoting the ventilation of the gas, or the pipeline of gasoline vapors.
De préférence, la vanne du connecteur de circuit d’admission 1 présente un faible pourcentage de fermeture. Ceci permet notamment d’éviter un encrassement du connecteur de circuit d’admission 1 dû à l'introduction de gaz EGR dans le tronçon tubulaire 3. Preferably, the valve of the intake circuit connector 1 has a small percentage of closure. This makes it possible in particular to prevent clogging of the intake circuit connector 1 due to the introduction of EGR gas into the tubular section 3.
Par « pourcentage de fermeture », on entend un pourcentage de fermeture par rapport à une position ouverte de l’obturateur de débit 5 correspondant à la position de repos. Un pourcentage de fermeture de 0 % correspond à la position ouverte de l’obturateur de débit 5, et un pourcentage de fermeture de 100 % correspond à la position complètement fermée de l’obturateur de débit 5. By "closing percentage" is meant a closing percentage with respect to an open position of the flow gate 5 corresponding to the home position. A closing percentage of 0% corresponds to the open position of the flow shutter 5, and a closing percentage of 100% corresponds to the fully closed position of the flow shutter 5.
Avantageusement, le pourcentage de fermeture de l’obturateur de débit 5 est inférieur ou égal à 90 %, de préférence inférieur ou égal à 50 %, de préférence encore inférieur ou égal à 20 %. Il en résulte que le connecteur de circuit d’admission 1 ne présente pas de sensibilité à l'encrassement. Advantageously, the closing percentage of the flow shutter 5 is less than or equal to 90%, preferably less than or equal to 50%, more preferably less than or equal to 20%. As a result, the intake circuit connector 1 has no sensitivity to fouling.
La distance d1 de l’extrémité du conduit 9 faisant saillie dans le tronçon tubulaire 3 à l’obturateur de débit 5, dans une direction perpendiculaire à la direction principale D1 du tronçon tubulaire 3, est par exemple inférieure ou égale à la moitié du diamètre D du tronçon tubulaire 3. De préférence, la distance d1 est par exemple environ égale au quart du diamètre D du tronçon tubulaire 3. La distance d2 de l’extrémité du conduit 9 faisant saillie dans le tronçon tubulaire 3 à l’obturateur de débit 5, dans la direction principale D1 du tronçon tubulaire 3, est par exemple comprise entre 0,5 et 2 fois le diamètre D5 de l’obturateur de débit 5. De préférence, la distance d2 est par exemple environ égale à la moitié du diamètre D5 de l’obturateur de débit 5. Avantageusement, le conduit 9 est disposé au plus proche de la zone de turbulences du tronçon tubulaire 3, générées par l’obturateur de débit 5. The distance d1 from the end of the duct 9 projecting into the tubular section 3 to the flow shutter 5, in a direction perpendicular to the main direction D1 of the tubular section 3, is for example less than or equal to half the diameter D of the tubular section 3. Preferably, the distance d1 is for example approximately equal to a quarter of the diameter D of the tubular section 3. The distance d2 from the end of the duct 9 projecting into the tubular section 3 to the flow shutter 5, in the main direction D1 of the tubular section 3, is for example between 0.5 and 2 times the diameter D5 of the flow shutter 5. Preferably, the distance d2 is for example approximately equal to half the diameter D5 of the flow shutter 5. Advantageously, the duct 9 is disposed closest to the turbulence zone of the tubular section 3, generated by the flow shutter 5.
Comme cela est illustré sur la figure 1 , les distances d1 et d2 sont par exemple mesurées entre le centre de l’obturateur de débit 5 et le centre de la section transversale de l’extrémité du conduit 9 faisant saillie dans le tronçon tubulaire 3. As illustrated in FIG. 1, the distances d1 and d2 are for example measured between the center of the flow shutter 5 and the center of the cross section of the end of the duct 9 projecting into the tubular section 3.
La forme de la section transversale de la saillie du conduit 9 est par exemple oblongue dans un plan P contenant la direction principale D1 du tronçon tubulaire 3 et maximisant l’angle formé entre ce plan et la direction principale D2. Le diamètre de la section transversale de la saillie du conduit 9 est par exemple de l’ordre de D/5. La forme et les dimensions de la section transversale de la saillie du conduit 9 seront par exemple choisies en fonction du besoin en débit de gaz EGR. The shape of the cross section of the projection of the duct 9 is for example oblong in a plane P containing the main direction D1 of the tubular section 3 and maximizing the angle formed between this plane and the main direction D2. The diameter of the cross section of the projection of the duct 9 is for example of the order of D / 5. The shape and dimensions of the cross section of the projection of the duct 9 will for example be chosen as a function of the need for EGR gas flow.
Selon un exemple de réalisation, la vanne 1 est de type à volet. L’obturateur de débit 5 est alors par exemple un volet. According to an exemplary embodiment, the valve 1 is of shutter type. The flow shutter 5 is then for example a flap.
Le fonctionnement d’un connecteur de circuit d’admission 1 tel que celui de la figure 1 est décrit ci-après en référence aux figures 2 et 3. The operation of an intake circuit connector 1 such as that of FIG. 1 is described hereinafter with reference to FIGS. 2 and 3.
La figure 2 représente de façon schématique le connecteur de circuit d’admission 1 en fonctionnement, lorsqu’il n’y a pas d’introduction du deuxième fluide, par exemple des gaz EGR, dans le tronçon tubulaire 3. L’obturateur de débit 5 est en position ouverte, à la position de repos. FIG. 2 schematically represents the intake circuit connector 1 in operation, when there is no introduction of the second fluid, for example EGR gas, into the tubular section 3. The flow shutter 5 is in the open position, at the rest position.
Une vanne 21 , non représentée sur la figure 1 mais représentée sur la figure 2, est disposée dans le conduit 9 en amont de celui-ci, c’est-à-dire à l’extrémité du conduit 9 opposée à celle faisant saillie dans le tronçon tubulaire 3. A valve 21, not shown in Figure 1 but shown in Figure 2, is disposed in the conduit 9 upstream thereof, that is to say at the end of the conduit 9 opposite to that protruding into the tubular section 3.
Le conduit 9 est fermé par la vanne 21. Le deuxième fluide n’est donc pas introduit dans le tronçon tubulaire 3. The conduit 9 is closed by the valve 21. The second fluid is therefore not introduced into the tubular section 3.
Les flèches 23 représentent le premier flux du premier fluide dans le tronçon tubulaire 3. Comme cela est illustré de façon schématique sur la figure 2, la présence du conduit 9, raccordé au tronçon tubulaire 3 en faisant saillie dans le tronçon tubulaire 3, induit peu de pertes de charges dans le tronçon tubulaire 3. La vanne 1 fonctionne donc comme si il n’y avait pas de conduit 9. The arrows 23 represent the first flow of the first fluid in the tubular section 3. As shown schematically in FIG. 2, the presence of the duct 9, connected to the tubular section 3 projecting into the tubular section 3, induces little of losses in the tubular section 3. The valve 1 thus operates as if there were no conduit 9.
Il peut toutefois exister une légère perturbation aéraulique dans le tronçon tubulaire 3, notamment dans une zone 25 en amont de l’extrémité du conduit 9 faisant saillie dans le tronçon tubulaire 3. However, there may be a slight airflow disturbance in the tubular section 3, particularly in an area 25 upstream of the end of the duct 9 projecting into the tubular section 3.
Avantageusement, la hauteur de saillie h du conduit 9 dans le tronçon tubulaire 3 peut être diminuée de façon à réduire le phénomène de perturbation aéraulique dans le tronçon tubulaire 3. On peut choisir une hauteur de saillie h permettant de minimiser le phénomène de perturbation aéraulique dans le tronçon tubulaire 3 tout en garantissant une qualité optimale du mélange entre le premier fluide et le deuxième fluide, notamment en jouant sur un compromis avec l’angle F entre les directions principales D1 , D2 du tronçon tubulaire 3 et du conduit 9. La figure 3 représente de façon schématique le connecteur de circuit d’admission 1 en fonctionnement, lorsqu’il y a introduction du deuxième fluide, par exemple des gaz EGR, dans le tronçon tubulaire 3. Advantageously, the projection height h of the duct 9 in the tubular section 3 can be reduced so as to reduce the phenomenon of airflow disturbance in the tubular section 3. It is possible to choose a projection height h that makes it possible to minimize the phenomenon of aeraulic disturbance in the tubular section 3 while ensuring an optimum quality of the mixture between the first fluid and the second fluid, in particular by playing on a compromise with the angle F between the main directions D1, D2 of the tubular section 3 and the duct 9. FIG. 3 diagrammatically represents the intake circuit connector 1 in operation, when the second fluid, for example EGR gas, is introduced into the tubular section 3.
L’obturateur de débit 5 est incliné d’un angle w par rapport à la direction principale D1 du tronçon tubulaire 3. L’angle w d’inclinaison de l’obturateur de débit 5 par rapport à la direction principale D1 du tronçon tubulaire 3 est par exemple compris entre 0 et 20°, par exemple de l’ordre de 20°. The flow shutter 5 is inclined at an angle w with respect to the main direction D1 of the tubular section 3. The inclination angle w of the flow shutter 5 with respect to the main direction D1 of the tubular section 3 is for example between 0 and 20 °, for example of the order of 20 °.
Les flèches 33 représentent le premier flux du premier fluide dans le tronçon tubulaire 3. Comme cela est illustré sur la figure 3 par les flèches 33, la position inclinée de l’obturateur de débit 5 par rapport à la direction principale D1 du tronçon tubulaire 3 crée des pertes de charges dans le tronçon tubulaire 3. Ceci induit une dépression permettant l’introduction du deuxième fluide dans le tronçon tubulaire 3. The arrows 33 represent the first flow of the first fluid in the tubular section 3. As illustrated in FIG. 3 by the arrows 33, the inclined position of the flow shutter 5 with respect to the main direction D1 of the tubular section 3 creates pressure losses in the tubular section 3. This induces a depression allowing the introduction of the second fluid into the tubular section 3.
Les flèches 35 représentent le deuxième flux du deuxième fluide dans le conduit 9. Le conduit 9 permet d’introduire le deuxième fluide dans le tronçon tubulaire 3 dans les perturbations aérodynamiques du premier fluide. Après introduction du deuxième flux du deuxième fluide dans le tronçon tubulaire 3, le flux des premier et deuxième fluides en aval de l’extrémité du conduit 9 faisant saillie dans le tronçon tubulaire 3 présente peu de pertes de charges, comme cela est illustré sur la figure 3 par les flèches 37. Le connecteur de circuit d’admission 1 permet donc d’obtenir en sortie un mélange homogène entre le premier fluide, par exemple de l’air, et le deuxième fluide, par exemple des gaz EGR. En outre, le mélange entre les premier et deuxième fluides induit des pertes de charges réduites. Le connecteur de circuit d’admission 1 joue donc le rôle d’une vanne mélangeuse. Un avantage d’un connecteur de circuit d’admission tel que celui décrit en relation avec les figures 1 à 3 réside dans le fait qu’il joue à la fois le rôle de régulateur de débit du premier fluide et de mélangeur entre le premier fluide et le deuxième fluide. Un tel connecteur de circuit d’admission, lorsqu’il est par exemple disposé dans un moteur à combustion, permet de s’affranchir de l’utilisation d’un mélangeur air- EGR. On obtient en sortie du connecteur de circuit d’admission un mélange homogène entre le premier fluide, par exemple de l’air, et le deuxième fluide, par exemple des gaz EGR, tout en ayant minimisé les pertes de charges dans le circuit d'admission du premier fluide. The arrows 35 represent the second flow of the second fluid in the duct 9. The duct 9 makes it possible to introduce the second fluid into the tubular section 3 in the aerodynamic disturbances of the first fluid. After introduction of the second flow of the second fluid into the tubular section 3, the flow of the first and second fluids downstream of the end of the duct 9 projecting into the tubular section 3 has little loss of charge, as illustrated in FIG. 3 by the arrows 37. The intake circuit connector 1 thus makes it possible to obtain at the outlet a homogeneous mixture between the first fluid, for example air, and the second fluid, for example EGR gas. In addition, the mixing between the first and second fluids induces reduced pressure losses. The intake circuit connector 1 thus plays the role of a mixing valve. An advantage of an intake circuit connector such as that described with reference to FIGS. 1 to 3 lies in the fact that it plays both the role of flow regulator of the first fluid and mixer between the first fluid. and the second fluid. Such an intake circuit connector, for example when it is arranged in a combustion engine, makes it possible to dispense with the use of an air-EGR mixer. At the outlet of the intake circuit connector, a homogeneous mixture is obtained between the first fluid, for example air, and the second fluid, for example EGR gas, while minimizing the pressure losses in the circuit. admission of the first fluid.
Les figures 1 à 3 représentent le connecteur de circuit d’admission 1 dans le cas où la direction principale D2 du conduit 9 est positionnée dans un plan normal au plan de l’obturateur de débit 5. FIGS. 1 to 3 show the intake circuit connector 1 in the case where the main direction D2 of the duct 9 is positioned in a plane normal to the plane of the flow shutter 5.
On désigne par la référence a l’angle formé entre le plan de l’obturateur de débit 5 lorsqu’il est à la position de repos, en position ouverte, et la projection orthogonale de la direction principale D2 du conduit 9 sur un plan perpendiculaire à la direction D1. L’angle a est de l’ordre de 90° dans l’exemple de réalisation des figures 1 à 3. Reference is made to the angle formed between the plane of the flow shutter 5 when it is at the rest position, in the open position, and the orthogonal projection of the main direction D2 of the duct 9 on a perpendicular plane to the direction D1. The angle a is of the order of 90 ° in the embodiment of Figures 1 to 3.
Selon une variante, la direction principale D2 du conduit 9 peut être positionnée dans le plan de l’obturateur de débit 5. L’angle a est alors de 0°. Toute autre orientation de la direction principale D2 du conduit 9 par rapport au plan de l’obturateur de débit 5 pourra également être choisie. La valeur de l’angle a sera choisie entre 0° et 360° en fonction de la géométrie du connecteur de circuit d’admission en amont de l’obturateur de débit 5. La valeur optimale de l’angle a sera par exemple déterminée grâce à des calculs aérodynamiques. L’invention a été décrite en relation avec les figures 1 à 3 dans le cas où la vanne 1 est de type à volet. Selon une variante, la vanne 1 peut être de type à boisseau. Un connecteur de circuit d’admission tel que celui décrit en relation avec les figures 1 à 3 peut être utilisé dans un moteur à combustion, ou moteur thermique, 41. Un tel connecteur de circuit d’admission permet de s’affranchir de l’utilisation d’un mélangeur air-EGR dans un moteur à combustion. On obtient ainsi un moteur à combustion présentant un encombrement réduit. According to one variant, the main direction D2 of the duct 9 can be positioned in the plane of the flow shutter 5. The angle a is then 0 °. Any other orientation of the main direction D2 of the duct 9 with respect to the plane of the flow shutter 5 may also be chosen. The value of the angle α will be chosen between 0 ° and 360 ° depending on the geometry of the intake circuit connector upstream of the flow shutter 5. The optimum value of the angle α will for example be determined by means of to aerodynamic calculations. The invention has been described in relation to FIGS. 1 to 3 in the case where the valve 1 is of shutter type. According to one variant, the valve 1 may be of the plug type. An intake circuit connector such as that described with reference to FIGS. 1 to 3 may be used in a combustion engine, or heat engine, 41. Such an intake circuit connector makes it possible to dispense with the use of an air-EGR mixer in a combustion engine. This gives a combustion engine with a small footprint.
L’invention porte également sur un véhicule automobile 51 comprenant un tel moteur à combustion 41 ou un connecteur de circuit d’admission tel que celui décrit en relation avec les figures 1 à 3. The invention also relates to a motor vehicle 51 comprising such a combustion engine 41 or an intake circuit connector such as that described with reference to FIGS. 1 to 3.
Un connecteur tel que celui décrit en relation avec les figures 1 à 3 peut être utilisé pour tout type d'application nécessitant un mélange entre deux fluides, le débit d’un des deux fluides étant régulé par une vanne. Par exemple, un tel connecteur peut être utilisé dans une chaudière. A connector such as that described with reference to FIGS. 1 to 3 may be used for any type of application requiring a mixture between two fluids, the flow rate of one of the two fluids being regulated by a valve. For example, such a connector can be used in a boiler.

Claims

Revendications : Claims:
1. Connecteur de circuit d’admission, notamment de moteur thermique destiné à un véhicule automobile, comportant un tronçon tubulaire (3), destiné à la circulation d’air frais, et un obturateur de débit (5), destiné à réguler la circulation d’air, caractérisé en ce qu’un conduit (9), destiné à la circulation de gaz, débouche en saillie dans le tronçon en aval et à proximité immédiate dudit obturateur. 1. Intake circuit connector, in particular a heat engine for a motor vehicle, comprising a tubular section (3) intended for the circulation of fresh air, and a flow shutter (5) intended to regulate the circulation of air, characterized in that a conduit (9) for the flow of gas, opens protruding into the section downstream and in the immediate vicinity of said shutter.
2. Connecteur selon la revendication 1 , caractérisé en ce que le conduit (9), destiné à la circulation de gaz, débouche en direction de l’amont du tronçon (3). 2. Connector according to claim 1, characterized in that the conduit (9) for the flow of gas, opens upstream of the section (3).
3. Connecteur selon la revendication 1 ou 2, caractérisé en ce que le conduit (9), destiné à la circulation de gaz, débouche dans le tronçon (3) dans une zone à fort débit d’air et de fortes turbulences générées par l’obturateur de débit (5). 3. Connector according to claim 1 or 2, characterized in that the conduit (9) for the flow of gas, opens into the section (3) in a high air volume zone and strong turbulence generated by the shutter (5).
4. Connecteur selon l’une quelconque des revendications 1 à 3, caractérisé en ce que le débouché en saillie du conduit (9) est en biais dans le tronçon (3) pour former un angle (F) entre les directions principales (D1 ) du tronçon (3) et (D2) du conduit (9) compris entre 10° et 80°, par exemple de l’ordre de 45°, en particulier de sorte à introduire à contre-flux ou à contre-courant, dans un premier flux d’air circulant dans le tronçon tubulaire (3), un deuxième flux de gaz circulant dans le conduit (9). 4. Connector according to any one of claims 1 to 3, characterized in that the projecting opening of the duct (9) is at an angle in the section (3) to form an angle (F) between the main directions (D1). of the section (3) and (D2) of the duct (9) between 10 ° and 80 °, for example of the order of 45 °, in particular so as to introduce counterflow or against the current, in a first flow of air flowing in the tubular section (3), a second flow of gas flowing in the duct (9).
5. Connecteur selon l’une quelconque des revendications 1 à 4, caractérisé en ce que le pourcentage de fermeture de l’obturateur de débit (5) est inférieur ou égal à 90 %. 5. Connector according to any one of claims 1 to 4, characterized in that the closing percentage of the flow shutter (5) is less than or equal to 90%.
6. Connecteur selon l’une quelconque des revendications 1 à 5, caractérisé en ce que la hauteur de saillie (h) du conduit (9) dans le tronçon tubulaire (3) est inférieure ou égale à la moitié du diamètre (D) du tronçon tubulaire (3), par exemple environ égale au quart du diamètre (D) du tronçon tubulaire. 6. Connector according to any one of claims 1 to 5, characterized in that the projection height (h) of the duct (9) in the tubular section (3) is less than or equal to half the diameter (D) of the tubular section (3), for example approximately equal to a quarter of the diameter (D) of the tubular section.
7. Connecteur selon l’une quelconque des revendications 1 à 6, caractérisé en ce que la distance (d1 ) de l’extrémité du conduit (9) faisant saillie dans le tronçon tubulaire (3) à l’obturateur de débit (5), dans une direction perpendiculaire à la direction principale (D1 ) du tronçon tubulaire (3), est inférieure ou égale à la moitié du diamètre (D) du tronçon tubulaire (3). 7. Connector according to any one of claims 1 to 6, characterized in that the distance (d1) from the end of the duct (9) protruding into the tubular section (3) to the flow shutter (5) in a direction perpendicular to the main direction (D1) of the tubular section (3) is less than or equal to half the diameter (D) of the tubular section (3).
8. Connecteur selon l’une quelconque des revendications 1 à 7, caractérisé en ce que la distance (d2) de l’extrémité du conduit (9) faisant saillie dans le tronçon tubulaire (3) à l’obturateur de débit (5), dans la direction principale (D1 ) du tronçon tubulaire (3), est comprise entre 0,5 et 2 fois le diamètre (D5) de l’obturateur de débit (5), par exemple environ égale à la moitié du diamètre (D5) de l’obturateur de débit. 8. Connector according to any one of claims 1 to 7, characterized in that the distance (d2) from the end of the duct (9) protruding into the tubular section (3) to the flow shutter (5) in the main direction (D1) of the tubular section (3) is between 0.5 and 2 times the diameter (D5) of the flow gate (5), for example about half the diameter (D5 ) of the flow shutter.
9. Connecteur selon l’une quelconque des revendications 1 à 8, caractérisé en ce que la forme de la section transversale de la saillie du conduit (9) est oblongue dans un plan (P) contenant la direction principale (D1 ) du tronçon tubulaire (3). 9. Connector according to any one of claims 1 to 8, characterized in that the shape of the cross section of the projection of the duct (9) is oblong in a plane (P) containing the main direction (D1) of the tubular section (3).
10. Moteur à combustion (41 ) comprenant un connecteur selon l’une quelconque des revendications 1 à 9. A combustion engine (41) comprising a connector according to any one of claims 1 to 9.
1 1. Véhicule automobile (51 ) comprenant un moteur à combustion selon la revendication 10 ou un connecteur selon l’une quelconque des revendications 1 à 9. A motor vehicle (51) comprising a combustion engine according to claim 10 or a connector according to any one of claims 1 to 9.
EP19717902.1A 2018-04-25 2019-04-15 Intake circuit connector Withdrawn EP3784898A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1853629A FR3080654B1 (en) 2018-04-25 2018-04-25 INTAKE CIRCUIT CONNECTOR
PCT/EP2019/059668 WO2019206717A1 (en) 2018-04-25 2019-04-15 Intake circuit connector

Publications (1)

Publication Number Publication Date
EP3784898A1 true EP3784898A1 (en) 2021-03-03

Family

ID=62528729

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19717902.1A Withdrawn EP3784898A1 (en) 2018-04-25 2019-04-15 Intake circuit connector

Country Status (6)

Country Link
EP (1) EP3784898A1 (en)
JP (1) JP2021522439A (en)
KR (1) KR20210002572A (en)
CN (1) CN112041554B (en)
FR (1) FR3080654B1 (en)
WO (1) WO2019206717A1 (en)

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937251A (en) * 1982-08-23 1984-02-29 Yanmar Diesel Engine Co Ltd Gas mixer for use in gas engine
JPS6125554U (en) * 1984-07-19 1986-02-15 愛三工業株式会社 Internal combustion engine intake system
JPS62135862U (en) * 1986-02-20 1987-08-26
JPH0614050Y2 (en) * 1987-03-27 1994-04-13 トヨタ自動車株式会社 EGR passage with exhaust hole
JP3095665B2 (en) * 1995-10-16 2000-10-10 株式会社日本自動車部品総合研究所 Evaporative fuel control system for internal combustion engine
JP3992784B2 (en) * 1997-05-30 2007-10-17 日産自動車株式会社 Engine intake system
JP2003269260A (en) * 2002-03-14 2003-09-25 Toyota Motor Corp Gas introducing apparatus for internal combustion engine
JP3861789B2 (en) * 2002-10-03 2006-12-20 日産自動車株式会社 Intake device for internal combustion engine
JP4840676B2 (en) * 2008-12-17 2011-12-21 アイシン精機株式会社 Intake manifold
CN102128110A (en) * 2011-01-21 2011-07-20 潍柴动力股份有限公司 Air inlet device and diesel engine
DE102012200170A1 (en) * 2012-01-06 2013-07-11 Continental Automotive Gmbh mixing valve
US20140150759A1 (en) * 2012-12-04 2014-06-05 GM Global Technology Operations LLC Engine Including External EGR System
CN103352774A (en) * 2013-04-28 2013-10-16 安徽江淮汽车股份有限公司 Gas fully-mixing structure and exhaust gas recycling system
JP6231446B2 (en) * 2014-07-04 2017-11-15 愛三工業株式会社 Exhaust mixing device
US9574528B2 (en) * 2014-12-17 2017-02-21 Caterpillar Inc. Exhaust gas recirculation adapter
JP6332192B2 (en) * 2015-08-06 2018-05-30 マツダ株式会社 Engine intake system
JP6551046B2 (en) * 2015-08-20 2019-07-31 日産自動車株式会社 engine

Also Published As

Publication number Publication date
FR3080654B1 (en) 2021-10-15
CN112041554A (en) 2020-12-04
CN112041554B (en) 2023-12-01
KR20210002572A (en) 2021-01-08
FR3080654A1 (en) 2019-11-01
WO2019206717A1 (en) 2019-10-31
JP2021522439A (en) 2021-08-30

Similar Documents

Publication Publication Date Title
FR2736393A1 (en) INTERNAL COMBUSTION ENGINE, IN PARTICULAR INTERNAL COMBUSTION ENGINE FOR A MOTOR VEHICLE, COMPRISING AN EXHAUST GAS RECIRCULATION SYSTEM
EP2954183B1 (en) Device for exhaust gas orientation
WO2007148007A1 (en) Exhaust gas recirculation system for a combustion engine of the supercharged diesel type and method for controlling such an engine
WO2007125233A1 (en) Device for distributing incoming gases in an internal combustion air supply system
EP0964206B1 (en) Variable geometry gas turbine combustor chamber
FR3001770A1 (en) ENGINE EXHAUST GAS ADMISSION AND RECIRCULATION GAS SUPPLY SYSTEM AND METHOD OF CONTROLLING THE SAME
EP2881576A1 (en) Recirculated exhaust gas distribution device and corresponding intake manifold and intake module
FR3107304A1 (en) CATALYTIC DEVICE FOR TREATMENT OF EXHAUST GASES FROM AN INTERNAL COMBUSTION ENGINE
FR2893988A1 (en) Internal combustion engine e.g. supercharged internal combustion engine, for use in vehicle, has inlet and exhaust pipes including respective necks configured to accelerate flow of gas and fresh air in exhaust and inlet pipes, respectively
WO2019206717A1 (en) Intake circuit connector
EP2076659A1 (en) Exhaust line fitted with a fuel injector and means for homogenizing burnt gases
EP1375893B1 (en) Exhaust gas recirculation device for spark ignited turbocharged internal combustion engine
FR2549897A1 (en) INTAKE DEVICE FOR INTERNAL COMBUSTION ENGINE
WO2016156715A1 (en) Device comprising an exhaust gas recirculation circuit
FR3109606A1 (en) CATALYTIC DEVICE FOR TREATMENT OF ENGINE EXHAUST GASES, INCLUDING AN AIR INJECTION BODY
FR2914952A1 (en) Exhaust gas recirculation rate adaptation device i.e. three-way valve, for oil engine, has deflector favoring exhaust gas circulation towards exhaust pipe in certain blocking positions of blocking units
FR3063772A1 (en) HP EGR EXCHANGER INTERFACE FOR THERMAL ENGINE
FR2901309A3 (en) Gas processing assembly for motor vehicle, has check valve placed in duct with one end connected to air supply device and another end emerged in pipe in vicinity of nozzle of injector, where injection of air by duct cools nozzle
FR3109802A1 (en) Heating of a thermal engine depollution system comprising an e-turbo
EP1650420A1 (en) System and method for regulation of the particulate filter regeneration of an internal combustion engine
FR2847947A1 (en) Motor vehicle i.c. engine exhaust gas recirculation system has flow breaker baffle in entry zone of inlet manifold
KR20110134538A (en) Egr valve
FR2886983A1 (en) Motor vehicle IC engine exhaust gas recirculation (EGR) system has pre-mixing zone in recirculation pipe, connected by valve to combustion chamber inlet duct
FR2806448A1 (en) Control system for the gas debit in an exhaust gas recirculation system has the EGR valve and the air admission valve inside the same casing, controlled by a single control unit at a servomechanism
WO2024134072A1 (en) Hydrogen combustion device

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200929

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210917

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RENAULT S.A.S

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RENAULT S.A.S

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20240217