EP3783628A1 - Lagervorrichtung für permanentmagnete und transportverfahren - Google Patents

Lagervorrichtung für permanentmagnete und transportverfahren Download PDF

Info

Publication number
EP3783628A1
EP3783628A1 EP20190480.2A EP20190480A EP3783628A1 EP 3783628 A1 EP3783628 A1 EP 3783628A1 EP 20190480 A EP20190480 A EP 20190480A EP 3783628 A1 EP3783628 A1 EP 3783628A1
Authority
EP
European Patent Office
Prior art keywords
permanent magnets
storage device
ferromagnetic material
casing
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20190480.2A
Other languages
English (en)
French (fr)
Inventor
Helmut Soltner
Norbert Dettmann
Harald GLÜCKLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP3783628A1 publication Critical patent/EP3783628A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0205Magnetic circuits with PM in general
    • H01F7/0221Mounting means for PM, supporting, coating, encapsulating PM

Definitions

  • the invention relates to a storage device for permanent magnets.
  • a storage device within the meaning of the invention is used to store and transport permanent magnets.
  • the invention also relates to a method for transporting permanent magnets.
  • Storage is also known as "bridging time”.
  • goods i.e. permanent magnets in the present case
  • Stored goods are only required at a later point in time and are therefore stored.
  • a storage device is intended and suitable for this purpose.
  • Permanent magnets can be strung together in rods by magnetic force. Such bars can be stored in a container. The container can be transported together with the permanent magnets located therein, for example in order to transport permanent magnets from a supplier to a customer. If several bars in a row are to be stored in a container, a non-magnetic material can be placed between the individual bars in order to keep bars at a distance. In this way it can be avoided that the rods collide in an uncontrolled manner, which could result in damage.
  • a plurality of steel sheets with permanent magnets adhering to them can be accommodated in a container in order to be able to transport a large number of permanent magnets, for example from a supplier to a customer.
  • a large volume is disadvantageously required for this. If a permanent magnet is removed, it can also slip away, then collide with another permanent magnet and thus be damaged.
  • a device for producing permanent magnet assemblies.
  • a permanent magnet arrangement comprises a multiplicity of permanent magnets which are arranged one behind the other and next to one another. Such an arrangement can be used to be sent from a supplier to a customer.
  • the purpose of the WO 2018/204832 A1 known device consists in producing permanent magnet arrangements. In order to be able to do this, the WO 2018/204832 A1 known device has a large number of devices such as cartridges, a convergence device and a holder together with a holder form for permanent magnet arrangements.
  • the pamphlet US 2009/0293238 A1 discloses a device for coupling two objects together by means of magnetic force.
  • the invention is intended to improve a storage device for permanent magnets.
  • the object of the invention is achieved with a bearing device with permanent magnets contained therein, which comprises the features of the first claim.
  • the additional claim relates to a storage device for the storage of permanent magnets.
  • Advantageous refinements result from the dependent claims.
  • the object is also achieved by a method with the features of a further independent claim.
  • the storage device provided to achieve the object contains permanent magnets which are arranged next to one another and / or one above the other.
  • the storage device has sheaths formed from ferromagnetic material for the permanent magnets.
  • Each casing comprises at least one opening which makes it possible to insert a permanent magnet into the casing and / or to remove an inserted permanent magnet from its casing.
  • Magnetic flux lines of a permanent magnet are guided from a magnetic pole to the opposite magnetic pole through the casing made of ferromagnetic material. This ensures that only little magnetic flux penetrates to the outside. Problematic interactions between permanent magnets can be kept low in this way. A permanent magnet can also be removed from the bearing device without strong attractive forces being exerted on it by permanent magnets that are still in the bearing device.
  • a casing in the sense of the present invention runs around an inserted permanent magnet.
  • a casing in the sense of the present invention extends from one pole to another pole of an inserted permanent magnet in such a way that magnetic flux lines of a permanent magnet are guided through the casing from a magnetic pole to the opposite magnetic pole.
  • Permanent magnets can be securely stored by the storage device according to the invention. There is therefore no need to fear transport damage if the storage device with the permanent magnets stored therein is transported, for example from a supplier to a customer. Permanent magnets can be removed individually without any risk. A high packing density is also possible, i.e. a low transport volume.
  • the shape of the cross section of the casing and the shape of the adjoining outer contour of the permanent magnet inserted therein are the same. So, for example, is the outer contour If a permanent magnet is used and adjoins the casing, it is circular, then the shape of the cross section is also circular. If, for example, the outer contour of a permanent magnet that is used, which is adjacent to the casing, is square, then the shape of the cross section is also square.
  • the shape of the named outer contour of a permanent magnet used is slightly smaller than the named shape of the cross section of the casing. There is then a slight play between an inserted permanent magnet and its casing. This allows a permanent magnet to be inserted into and removed from a casing without having to overcome high frictional forces. The small play secures the position of an inserted permanent magnet and thus contributes to transport safety. In addition, a high packing density is possible as a result.
  • a permanent magnet is preferably also used with play in a casing if the shape of the mentioned outer contour of a permanent magnet used differs from the mentioned shape of the cross section of the casing. It is then also avoided having to overcome high frictional forces for inserting or removing a permanent magnet.
  • a permanent magnet is located in a channel of a casing.
  • the permanent magnet can be pushed through the channel. This means that the permanent magnet can enter the channel on one side of the channel and can leave the channel on the other side of the channel.
  • the casing then has two openings. This makes it easier to insert and remove a permanent magnet.
  • a casing formed from ferromagnetic material is spatially separated from another casing formed from ferromagnetic material. So there is a gap between the two sheaths. There can be an air gap between the two sheaths formed from ferromagnetic material, which causes a spatial separation.
  • a layer of a different material, in particular a non-ferromagnetic material, can be made between the two Sheaths formed by ferromagnetic material may be present, which causes a spatial separation. Such a spatial separation can achieve a further improved effect that there is little interaction between two permanent magnets used.
  • a casing formed from ferromagnetic material is not spatially separated from another casing formed from ferromagnetic material. So there is no air gap between the two sheaths made of ferromagnetic material that would cause a spatial separation. There is also no layer made of a different material, in particular a non-ferromagnetic material, between the two sheaths formed from ferromagnetic material. This configuration is used for a high packing density.
  • permanent magnets are arranged in two sheaths formed from ferromagnetic material that are spatially separated from one another in such a way that identical magnetic poles are arranged adjacent to one another.
  • permanent magnets are arranged in two sheaths made of ferromagnetic material, between which there is a layer made of a non-ferromagnetic material, that the same magnetic poles are arranged adjacent to one another. This ensures in an improved manner that stored permanent magnets maintain a spacing. This improves the avoidance of transport damage.
  • two sheaths formed from ferromagnetic material form a common channel through which a permanent magnet can be pushed.
  • permanent magnets can be arranged one above the other and still be easily inserted and removed.
  • this layer comprises a passage, which is then part of the common channel.
  • a permanent magnet can then be pushed in on one side of the common channel and can leave the common channel on the other side.
  • a cross section of a channel of a casing is not aligned in the same way as the cross section of an adjacent channel of a casing. This allows manufacturing advantages to be achieved for devices that are to be equipped with permanent magnets.
  • the invention also relates to a storage device for permanent magnets, which is designed as described above, but in which no permanent magnets are used.
  • permanent magnets can be used as described above.
  • the invention also includes, in particular, a storage device for permanent magnets, in which permanent magnets can be arranged next to one another and one above the other in sheaths.
  • the sheaths are made of ferromagnetic material.
  • Each casing formed from ferromagnetic material has a channel through which a permanent magnet can be pushed.
  • At least two sheaths formed from ferromagnetic material are spatially separated from one another. The channels of the two spatially separated sheaths form a common channel through which a permanent magnet can be pushed.
  • the invention also relates to a system comprising a storage device according to the invention and a receiving container.
  • the storage device is adapted to the receptacle in such a way that the storage device can be placed on the receptacle in order to then move permanent magnets out of the storage device into the receptacle.
  • the receiving container can comprise a closing means which can close the receiving container after the permanent magnets have been moved into the receiving container in such a way that the permanent magnets are held in the receiving container without the storage device placed on the receiving container having to be removed for the closing.
  • the closing means can comprise at least one slide, that is to say a closing means which can be moved back and forth between an open position and a closed position by displacement.
  • the system can comprise a tool with a plurality of rams, with which permanent magnets can be displaced from the storage device into the receptacle when the storage device is placed on the receptacle.
  • the system is used to manufacture devices that include the receptacle.
  • the invention also relates to a method for transporting permanent magnets by loading a storage device according to the invention with the permanent magnets stored therein into a motor vehicle.
  • the motor vehicle then travels to a destination.
  • the storage device with the permanent magnets stored therein is unloaded from the motor vehicle.
  • permanent magnets are removed from the storage device.
  • Permanent magnets can be transported from a supplier to a customer, for example. The customer can use the permanent magnets for his own purposes after the customer has removed the permanent magnets from the storage device.
  • Permanent magnets can easily be transported over long distances. Distances of many kilometers are possible. Permanent magnets can be stored in the storage device for several days or several weeks.
  • a storage device according to the invention is set up in such a way that permanent magnets can be stored by the storage device for long periods of time.
  • the exemplary embodiments make it clear that a storage device according to the invention is set up in such a way that permanent magnets can be brought into the storage device.
  • the exemplary embodiments make it clear that a storage device according to the invention is set up in such a way that permanent magnets can be removed from the storage device.
  • the exemplary embodiments make it clear that a storage device according to the invention is not set up in such a way that its main purpose is not storage.
  • a device which comprises devices in order to be able to fulfill another purpose is therefore not a storage device in the sense of the present invention.
  • the Figure 1 shows in section a bearing device 1 for permanent magnets 2, in which the permanent magnets 2 are arranged one above the other.
  • the permanent magnets 2 have a casing 3 made of ferromagnetic material.
  • the sheaths 3 formed from ferromagnetic material are spatially separated from one another. They therefore do not touch.
  • the spatial separation is brought about by layers 4 which are formed from a non-ferromagnetic material.
  • the permanent magnets 2 are arranged in the bearing device 1 in such a way that the same magnetic poles are arranged adjacent to one another.
  • the south pole of the uppermost permanent magnet 2 is therefore arranged adjacent to the south pole of the permanent magnet 2 located below it.
  • the south pole of the lowermost permanent magnet 2 is arranged adjacent to the south pole of the permanent magnet 2 located above it.
  • the north poles of the two central permanent magnets 2 are arranged adjacent to one another.
  • Rods 5 made of non-ferromagnetic material pass through the sheaths 3 and the layers 4 and are screwed at their ends with nuts 6 in order to firmly connect the sheaths 3 and the layers 4 to one another. It is sufficient if one end of a rod 5 is screwed to a nut 6. The other end can then have a head which is firmly connected to the rod 5.
  • the storage device can have a multiplicity of further casings 3, which are present for example on the side and / or behind the casings 3.
  • the number of permanent magnets 2 arranged one above the other can also be more than four or less than four.
  • the ferromagnetic material can consist at least predominantly of iron, nickel or cobalt.
  • the ferromagnetic material can be an alloy which comprises predominantly iron, nickel or cobalt, for example.
  • the ferromagnetic material is preferably made of steel, since it is very stable.
  • the non-ferromagnetic material can be a non-ferrous metal such as aluminum, copper, brass, lead, gold, silver or magnesium.
  • the non-ferromagnetic material can be a stainless steel.
  • the non-ferromagnetic material can be an alloy that includes aluminum, copper, brass, lead gold, silver or magnesium includes.
  • the non-ferromagnetic material can be wood, plastic or ceramic.
  • the non-ferromagnetic material can be a composite material which is formed from the aforementioned non-ferromagnetic materials.
  • the ferromagnetic and non-ferromagnetic materials can also be firmly connected to one another in some other way, for example by pins or gluing.
  • the thickness of a casing 3 is preferably smaller than the depth of an adjacent permanent magnet 2. If the permanent magnet 2 has, for example, a diameter D, the thickness of an adjacent casing 3 is smaller than the diameter D. A greater thickness only increases weight and volume without to be able to further reduce disadvantageous interactions to a significant extent.
  • the thickness of a casing 3 is preferably greater than 1/3 the depth of an adjacent permanent magnet 2. If the permanent magnet 2 has a diameter D, for example, the thickness of an adjacent casing 3 is then greater than 1/3 D. Such a minimum thickness has been found Proven to be useful to get good results.
  • the permanent magnets can be rare earth magnets such as neodymium - iron - boron magnets or samarium - cobalt magnets.
  • the permanent magnets can be made of plastic with permanent magnetic properties such as PANiCNQ. It can be aluminum-nickel-cobalt magnets such as N45SH magnets.
  • the Figure 2a shows the storage device 1 from Figure 1 without permanent magnets stored therein 2.
  • the Figure 2a shows that each casing 3 formed from ferromagnetic material has a channel 7 as a bearing for the permanent magnets 2.
  • Each permanent magnet 2 can be pushed through each channel 7.
  • the layers 4 have passages 8 corresponding to the channels 7, through which the permanent magnets 2 can also be pushed.
  • the channels 7 and passages 8 form a common channel.
  • Each permanent magnet 2 can therefore be pushed in on one side, can for example be pushed through the jointly formed channel and can finally be pushed out of the storage device 1 again at the other end.
  • the Pushing through can be done with a tool, for example with a plunger.
  • the two end openings of a common channel 7, 8 can each have a closure, for example in the form of a cover, in order to protect permanent magnets stored in the bearing device 1 from disadvantageous external influences.
  • a closure for an opening can also be provided on only one side in order to form a stop when a permanent magnet 2 is pushed into the bearing device 1. This makes loading easier.
  • FIG. 11 shows a section through the embodiment of FIG Figure 2a namely in the amount of a layer 4.
  • the Figure 2b illustrates that a passage 8 is an opening in the layer 7 which is dimensioned such that a permanent magnet 2 can be pushed through the opening.
  • the Figure 3 shows a plan view of the storage device 1 from Figure 1 .
  • the Figure 3 shows that the circular diameter of the channels 7 of the sheaths 3 are only slightly larger than the circular outer diameter of the permanent magnets 2.
  • the shape of the cross section of each sheath 3 and the shape of the adjoining outer contour of the permanent magnet 2 inserted therein are therefore the same.
  • Each permanent magnet 3 can therefore be pushed into a channel 7 without excessively large frictional losses.
  • the Figure 3 shows that the thickness of the cladding 3 is smaller than the depth of the permanent magnet 2, but is more than 1/3 the depth. In case 3, the depth is the diameter of the permanent magnet 2 shown.
  • the Figure 4 shows in section a second embodiment of a bearing device 1 for permanent magnets 2, in which the permanent magnets 2 are arranged one above the other.
  • a casing 3 made of ferromagnetic material.
  • the sheaths 3 formed from ferromagnetic material are spatially separated from one another.
  • the spatial separation is brought about by layers 4 which are formed from a non-ferromagnetic material.
  • the permanent magnets 2 are arranged in the bearing device 1 in such a way that the same magnetic poles are arranged adjacent to one another. Each north pole is on the left and each south pole is on the right. The permanent magnets 2 are thus oriented differently compared to the embodiment according to FIG Figures 1 to 3 .
  • Sheaths 3 and layers 4 shown are firmly connected to one another by adhesive connections, that is to say in a materially bonded manner.
  • FIG. 11 shows a plan view of the second embodiment of FIG Figure 4 .
  • the channels 7 and the permanent magnets 2, seen in this top view, have the same elongated shape so that each permanent magnet 2 can be inserted or pushed into a channel 7 of a casing 3 with little play.
  • the shape of the cross section of each casing 3 and the shape of the adjoining outer contour of the permanent magnet 2 inserted therein are therefore the same.
  • the Figure 5 shows that the shapes of the permanent magnets 2 can be freely selected.
  • the sheath has in the case of Figure 5 a circular outer shape. This shape can also be different and, for example, like the permanent magnet 2, can also be elongated.
  • the Figure 6 shows a section parallel to the top view Figure 5 at the level of a layer 4 made of a non-ferromagnetic material.
  • the passage 8 of the layer 4 has the same elongated shape as the channel 7 Figure 5 so that the one in the Figure 5 Permanent magnet 2 shown can also be pushed through the passage 8.
  • FIG. 7 a top view of a third embodiment of a storage device 1 is shown.
  • This embodiment shows permanent magnets 2 which are arranged next to one another and are held by the bearing device 1.
  • the channels 7 are adapted to the shapes of the permanent magnets 2 so that the permanent magnets 2 can be pushed into the channels 7 with little play.
  • the Figure 7 shows that many different forms are possible.
  • the shape of the cross-section of each jacket and the shape of the outer contour adjacent to it of the one inserted therein Permanent magnets are the same. The shapes are such that the permanent magnets 2 can be displaced in a rotationally fixed manner along the channels 7.
  • the Figure 7 shows the case that a casing 3 formed from ferromagnetic material is not spatially separated from another casing 3 formed from ferromagnetic material.
  • permanent magnets 2 can also be analogous to the Figures 1 and 4th be housed in the storage device 1 one above the other.
  • the Figure 8 shows a fourth embodiment of a storage device 1.
  • This storage device 1 illustrates the storage of a total of eight permanent magnets 2, which are arranged side by side and one above the other. Four of the eight permanent magnets 2 are not visible, however, since these are covered by the lower casing 3.
  • the Figure 8 shows the case that four sheaths 3 formed from ferromagnetic material are not spatially separated.
  • the four casings 3 that are not spatially separated are spatially separated from the other four casings 3 formed from ferromagnetic material, specifically by the layer 4.
  • the Figure 9 illustrates a loading of the storage device 1 with permanent magnets 2, which are arranged one above the other.
  • a first permanent magnet 2 has already been pushed into the storage device 1.
  • a tube 9 made of a non-ferromagnetic material is placed on the bearing device 1.
  • the tube 9 is adapted to the cross section of the permanent magnets 2 such that the permanent magnets 2 can be pushed through the tube 9 with little play.
  • a permanent magnet 2 is inserted into the tube 9. With a plunger 10, the permanent magnet 2 inserted into the tube 9 is now moved downward until the in the Figure 10 position shown is reached.
  • the storage device 1 can thus be loaded with permanent magnets 2 which are arranged one above the other.
  • Fastening means can be present to releasably connect the tube 9 to the storage device.
  • the position of the tube 9 relative to the storage device 1 can be fixed by fastening means in order to simplify loading.
  • mechanical fastening means serve as fastening means.
  • the Figure 11 illustrates the loading of a storage device in which permanent magnets 2 can be stored next to one another and one above the other.
  • three permanent magnets 2 can be arranged side by side.
  • Four permanent magnets 2 can be arranged one above the other.
  • the storage device 1 shown in section can therefore store a total of twelve permanent magnets 2.
  • Three first permanent magnets 2 have already been pushed into the storage device 1. These are located in the lowest position in the storage device 1.
  • a system consisting of three tubes 9 is placed on the storage device 1.
  • the tubes are made of a non-ferromagnetic material.
  • Each tube 9 is adapted to the cross section of the permanent magnets 2 in such a way that the permanent magnets 2 can be pushed through each tube 9 with little play.
  • Three permanent magnets 2 are inserted into the three tubes 9. With three tappets 10, the permanent magnets 2 inserted into the tubes 9 are now moved downwards until they are analogous to FIG Figure 10 position shown is reached.
  • the storage device 1 can thus be loaded one after the other with permanent magnets 2, which are arranged both one above the other and next to one another. So that the three tappets 10 can be pressed down together for loading, they are connected to one another by a rod 11, for example.
  • permanent magnets 2 can be pushed down out of the storage device in order to remove it. In a storage device like this in the Figure 11 is shown, this can be done for example with only one plunger 10, as shown in FIG Figure 10 you can see. In this way, permanent magnets 2 can be removed sequentially.
  • the Figure 12 shows in section a cylindrical bearing device 1 which is completely filled with permanent magnets 2.
  • the permanent magnets 2 are mounted side by side and one above the other.
  • the plungers 10 are placed on the upper side on the permanent magnets 2 located there.
  • the tappets 10 are connected to one another by a ring 12.
  • the cylindrical bearing device 1 is placed on a drum 13 in such a way that the permanent magnets 2 can be pushed into chambers 14 of the drum 13.
  • the permanent magnets 2 are pushed completely into the chambers 14 of the drum 13.
  • slides 15 are pushed through slots 16.
  • the slides 15 are arranged in such a way that they prevent permanent magnets 2 from moving out of the drum 13. There are gaps between the slides 15 for the tappets 10.
  • the bearing device 1 is removed together with the plungers 10.
  • the drum 13 filled with the permanent magnets 2 can now be installed in an induction furnace, for example.
  • Fastening means can be provided in order to releasably connect the drum 13 to the storage device in order to avoid disturbances during loading.
  • the Figure 13 shows a plan view of the storage device from FIG Figure 12 .
  • the shape of the cross section of the casing that is to say the cross section of the channels 7, and the shape of the adjoining outer contour of the permanent magnet 2 inserted therein are the same.
  • the permanent magnets 2 are inserted into their channels 7 with little play.
  • a special feature is that, although identically shaped, square section permanent magnets 2 are used.
  • the channels, which are square in section, are twisted to one another along a circular path and thus perform a kind of rotation.
  • a channel 7 is therefore not aligned in the same way as an adjacent channel 7 with regard to its cross section.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Packaging Of Annular Or Rod-Shaped Articles, Wearing Apparel, Cassettes, Or The Like (AREA)
  • Non-Mechanical Conveyors (AREA)

Abstract

Die Erfindung betrifft eine Lagervorrichtung (1) für Permanentmagnete (2), in der Permanentmagnete (2) nebeneinander und/oder übereinander angeordnet sind, dadurch gekennzeichnet, dass es für die Permanentmagnete (2) aus ferromagnetischem Material gebildete Ummantelungen (3) gibt, wobei eine jede aus ferromagnetischem Material gebildete Ummantelung (3) zumindest eine Öffnung für ein Einsetzen eines Permanentmagneten (2) in die Ummantelung (3) und/oder für eine Entnahme eines Permanentmagneten (2) aus der Ummantelung (3) aufweist.Durch die Erfindung können Permanentmagnete (2) sicher gelagert und entnommen werden.

Description

  • Die Erfindung betrifft eine Lagervorrichtung für Permanentmagnete. Eine Lagervorrichtung im Sinne der Erfindung dient der Lagerung und dem Transport von Permanentmagneten. Die Erfindung betrifft außerdem ein Verfahren für ein Transportieren von Permanentmagneten.
  • Lagerung wird auch als "Überbrückung von Zeit" bezeichnet. Durch eine Lagerung werden Güter, also im vorliegenden Fall Permanentmagnete, längerfristig bevorratet. Gelagerte Güter werden beispielsweise erst zu einem späteren Zeitpunkt benötigt und werden deshalb gelagert.
  • Im Anschluss an die Herstellung von Permanentmagneten ist es in der Regel erforderlich, diese zunächst in einer Lagervorrichtung zu lagern, um die hergestellten Permanentmagnete zu einem späteren Zeitpunkt mithilfe der Lagervorrichtung zu einem Kunden transportieren zu können. Eine erfindungsgemäße Lagervorrichtung ist für diesen Einsatzzweck bestimmt und geeignet.
  • Permanentmagnete können durch Magnetkraft gehalten in Stangen aneinandergereiht sein. Solche Stangen können in einem Behälter gelagert werden. Der Behälter kann zusammen mit den darin befindlichen Permanentmagneten transportiert werden, um beispielsweise Permanentmagnete von einem Lieferanten zu einem Kunden zu transportieren. Sollen mehrere aneinandergereihte Stangen in einem Behälter gelagert werden, so kann ein nicht magnetisches Material zwischen die einzelnen Stangen gebracht werden, um Stangen auf Abstand zu halten. Es kann so vermieden werden, dass die Stangen unkontrolliert aufeinanderprallen, was Beschädigungen zur Folge haben könnte.
  • Sollen Permanentmagnete nach einem Transport wieder vereinzelt werden, so müssen magnetische Kräfte überwunden werden, die die Permanentmagnete stangenförmig zusammenhalten. Bei entsprechend großen magnetischen Kräften kann es leicht passieren, dass ein Permanentmagnet entgleitet und auf einen anderen Permanentmagneten aufprallt. Permanentmagnete können so beschädigt werden. Ein Operator kann dabei verletzt werden.
  • Es ist möglich, einzelne Permanentmagnete auf einem Stahlblech durch magnetische Kräfte zu halten, die dann untereinander einen Abstand aufweisen können. Eine Mehrzahl von Stahlblechen mit daran anhaftenden Permanentmagneten kann in einem Behälter untergebracht sein, um so eine Vielzahl von Permanentmagneten transportieren zu können, so zum Beispiel von einem Lieferanten zu einem Kunden. Nachteilhaft wird dafür aber ein großes Volumen benötigt. Wird ein Permanentmagnet entnommen, so kann dieser ebenfalls entgleiten, dann mit einem anderen Permanentmagneten kollidieren und so beschädigt werden.
  • Es gibt Vorrichtungen mit darin eingesetzten Permanentmagneten. So ist aus der Druckschrift WO 2017/063811 A1 ein Induktionsofen mit darin eingesetzten Permanentmagneten bekannt. Die Permanentmagnete sind zylinderförmig und mehrschichtig angeordnet.
  • Aus der Druckschrift WO 2018/204832 A1 ist eine Vorrichtung bekannt, um Permanentmagnet - Anordnungen herzustellen. Ein Permanentmagnet - Anordnung umfasst eine Vielzahl von Permanentmagneten, die hintereinander und nebeneinander angeordnet sind. Eine solche Anordnung kann dazu dienen, um von einem Lieferanten an einen Kunden versendet zu werden. Der Zweck der aus der WO 2018/204832 A1 bekannten Vorrichtung besteht also darin, Permanentmagnet - Anordnungen herzustellen. Um dies leisten zu können, umfasst die aus der WO 2018/204832 A1 bekannte Vorrichtung eine Vielzahl von Einrichtungen wie Kartuschen, ein Konvergenzgerät und eine Halterung nebst einer Halterungsform für Permanentmagnet - Anordnungen.
  • Aus der Druckschrift US 2007/0182517 A1 ist eine hybride magnetische Struktur mit einer nichtmagnetischen Basis und wenigstens zwei Blöcken aus Permanentmagnetmaterial bekannt.
  • Die Druckschrift US 2009/0293238 A1 offenbart eine Vorrichtung, um zwei Objekte mittels Magnetkraft aneinander zu koppeln.
  • Durch die Erfindung soll eine Lagervorrichtung für Permanentmagnete verbessert werden.
  • Die Aufgabe der Erfindung wird mit einer Lagervorrichtung mit darin enthaltenen Permanentmagneten gelöst, die die Merkmale des ersten Anspruchs umfasst. Der Nebenanspruch betrifft eine Lagervorrichtung für die Lagerung von Permanentmagneten. Vorteilhafte Ausgestaltungen ergeben sich aus den abhängigen Ansprüchen. Die Aufgabe wird außerdem durch ein Verfahren mit den Merkmalen eines weiteren Nebenanspruchs gelöst.
  • Die zur Lösung der Aufgabe vorgesehene Lagervorrichtung enthält Permanentmagnete, die nebeneinander und/oder übereinander angeordnet sind. Die Lagervorrichtung weist für die Permanentmagnete aus ferromagnetischem Material gebildete Ummantelungen auf. Eine jede Ummantelung umfasst zumindest eine Öffnung, die es ermöglicht, einen Permanentmagneten in die Ummantelung einzusetzen und/oder einen eingesetzten Permanentmagneten aus seiner Ummantelung zu entnehmen.
  • Durch die aus ferromagnetischem Material gebildete Ummantelung werden magnetische Flusslinien eines Permanentmagneten von einem magnetischen Pol zum magnetischen Gegenpol geführt. Dadurch wird erreicht, dass nur wenig Magnetfluss nach außen dringt. Problematische Wechselwirkungen zwischen Permanentmagneten können auf diese Weise gering gehalten werden. Auch kann ein Permanentmagnet aus der Lagervorrichtung entnommen werden, ohne dass auf diesen starke Anziehungskräfte durch Permanentmagnete ausgeübt werden, die sich noch in der Lagervorrichtung befinden.
  • Eine Ummantelung im Sinne der vorliegenden Erfindung verläuft um einen eingesetzten Permanentmagneten herum. Eine Ummantelung im Sinne der vorliegenden Erfindung reicht derart von einem Pol zu einem anderen Pol eines eingesetzten Permanentmagneten, dass durch die Ummantelung magnetische Flusslinien eines Permanentmagneten von einem magnetischen Pol zum magnetischen Gegenpol geführt werden.
  • Durch die erfindungsgemäße Lagervorrichtung können Permanentmagnete sicher gelagert werden. Es sind daher keine Transportschäden zu befürchten, wenn die Lagervorrichtung mit den darin gelagerten Permanentmagneten transportiert wird wie zum Beispiel von einem Lieferanten zu einem Kunden. Permanentmagnete können vergleichsweise gefahrlos einzeln entnommen werden. Es ist außerdem eine hohe Packungsdichte möglich, also ein geringes Transportvolumen.
  • In einer Ausgestaltung der Erfindung sind die Form des Querschnitts der Ummantelung und die Form der daran angrenzenden äußeren Kontur des darin eingesetzten Permanentmagneten gleich. Ist also beispielsweise die äußere Kontur eines eingesetzten Permanentmagneten, die an die Ummantelung angrenzt, kreisrund, so ist dann die Form des Querschnitts ebenfalls kreisrund. Ist beispielsweise die äußere Kontur eines eingesetzten Permanentmagneten, die an die Ummantelung angrenzt, quadratisch, so ist dann die Form des Querschnitts ebenfalls quadratisch.
  • Vorzugsweise ist die Form der genannten äußeren Kontur eines eingesetzten Permanentmagneten geringfügig kleiner als die genannte Form des Querschnitts der Ummantelung. Es gibt dann ein geringes Spiel zwischen einem eingesetzten Permanentmagneten und seiner Ummantelung. Hierdurch kann ein Permanentmagnet in eine Ummantelung eingesetzt sowie entnommen werden, ohne hohe Reibungskräfte überwinden zu müssen. Das geringe Spiel sichert die Lage eines eingesetzten Permanentmagneten und trägt damit zur Transportsicherheit bei. Außerdem ist dadurch eine große Packungsdichte möglich.
  • Ein Permanentmagnet ist vorzugsweise auch dann mit Spiel in einer Ummantelung eingesetzt, wenn die Form der genannten äußeren Kontur eines eingesetzten Permanentmagneten sich von der genannten Form des Querschnitts der Ummantelung unterscheidet. Es wird auch dann vermieden, hohe Reibungskräfte für ein Einsetzen oder eine Entnahme eines Permanentmagneten überwinden zu müssen.
  • In einer Ausgestaltung der Erfindung befindet sich ein Permanentmagnet in einem Kanal einer Ummantelung. Der Permanentmagnet kann durch den Kanal hindurchgeschoben werden. Damit ist gemeint, dass der Permanentmagnet an einer Seite des Kanals in den Kanal hineingelangen kann und an der anderen Seite des Kanals den Kanal verlassen kann. Die Ummantelung weist dann also zwei Öffnungen auf. Hierdurch werden ein Einsetzen sowie eine Entnahme eines Permanentmagneten erleichtert.
  • In einer Ausgestaltung der Erfindung ist eine aus ferromagnetischem Material gebildete Ummantelung von einer anderen aus ferromagnetischem Material gebildeten Ummantelung räumlich getrennt. Es gibt also einen Abstand zwischen den beiden Ummantelungen. Es kann einen Luftspalt zwischen den beiden aus ferromagnetischem Material gebildeten Ummantelungen geben, der eine räumliche Trennung bewirkt. Es kann eine Schicht aus einem anderen Material, insbesondere einem nicht ferromagnetischen Material, zwischen den beiden aus ferromagnetischem Material gebildeten Ummantelungen vorhanden sein, die eine räumliche Trennung bewirkt. Durch eine solche räumliche Trennung kann weiter verbessert erreicht werden, dass eine Wechselwirkung zwischen zwei eingesetzten Permanentmagneten gering ist.
  • In einer Ausgestaltung der Erfindung ist eine aus ferromagnetischem Material gebildete Ummantelung von einer anderen aus ferromagnetischem Material gebildeten Ummantelung nicht räumlich getrennt. Es gibt also keinen Luftspalt zwischen den beiden aus ferromagnetischem Material gebildeten Ummantelungen, der eine räumliche Trennung bewirkt. Es gibt auch keine Schicht aus einem anderen Material, insbesondere einem nicht ferromagnetischen Material, zwischen den beiden aus ferromagnetischem Material gebildeten Ummantelungen. Diese Ausgestaltung dient einer hohen Packungsdichte.
  • In einer Ausgestaltung der Erfindung gibt es zwischen zwei aus ferromagnetischem Material gebildeten Ummantelungen eine Schicht, die aus einem nicht ferromagnetischen Material gebildet ist. Durch eine solche Schicht kann weiter verbessert erreicht werden, dass eine Wechselwirkung zwischen zwei eingesetzten Permanentmagneten gering ist.
  • In einer Ausgestaltung der Erfindung sind in zwei aus ferromagnetischem Material gebildeten Ummantelungen, die voneinander räumlich getrennt sind, Permanentmagnete so angeordnet, dass gleiche magnetische Pole zueinander benachbart angeordnet sind. In einer Ausgestaltung der Erfindung sind in zwei aus ferromagnetischem Material gebildeten Ummantelungen, zwischen denen sich eine aus einem nicht ferromagnetischem Material gebildete Schicht befindet, Permanentmagnete so angeordnet, dass gleiche magnetische Pole zueinander benachbart angeordnet sind. Hierdurch wird verbessert sichergestellt, dass gelagerte Permanentmagnete einen Abstand einhalten. Transportschäden lassen sich dadurch verbessert vermeiden.
  • In einer Ausgestaltung der Erfindung bilden zwei aus ferromagnetischem Material gebildete Ummantelungen einen gemeinsamen Kanal, durch den ein Permanentmagnet hindurchgeschoben werden kann. Dadurch können Permanentmagnete übereinander angeordnet werden und dennoch leicht eingesetzt sowie entnommen werden. Befindet sich zwischen den beiden aus ferromagnetischem Material gebildeten Ummantelungen eine Schicht aus einem anderen Material, so umfasst diese Schicht einen Durchgang, der dann Teil des gemeinsamen Kanals ist. Ein Permanentmagnet kann dann auf einer Seite des gemeinsamen Kanals hineingeschoben werden und kann den gemeinsamen Kanal an der anderen Seite wieder verlassen.
  • In einer Ausgestaltung der Erfindung ist ein Querschnitt eines Kanals einer Ummantelung nicht in gleicher Weise ausgerichtet wie der Querschnitt eines benachbarten Kanals einer Ummantelung. Hierdurch können Herstellungsvorteile für Vorrichtungen erzielt werden, die mit Permanentmagneten zu bestücken sind.
  • Die Erfindung betrifft auch eine Lagervorrichtung für Permanentmagnete, die wie zuvor beschrieben beschaffen ist, in der aber keine Permanentmagnete eingesetzt sind. Es können aber Permanentmagnete wie zuvor beschrieben eingesetzt werden.
  • Zur Erfindung gehört insbesondere auch eine Lagervorrichtung für Permanentmagnete, in der Permanentmagnete nebeneinander und übereinander in Ummantelungen angeordnet werden können. Die Ummantelungen sind aus ferromagnetischem Material gebildet. Eine jede aus ferromagnetischem Material gebildete Ummantelung weist einen Kanal auf, durch den ein Permanentmagnet hindurchgeschoben werden kann. Zumindest zwei aus ferromagnetischem Material gebildete Ummantelungen sind räumlich voneinander getrennt. Die Kanäle der beiden räumlich voneinander getrennten Ummantelungen bilden einen gemeinsamen Kanal, durch den ein Permanentmagnet hindurchgeschoben werden kann.
  • Die Erfindung betrifft außerdem ein System umfassend eine erfindungsgemäße Lagervorrichtung und einen Aufnahmebehälter. Die Lagervorrichtung ist so an den Aufnahmebehälter angepasst, dass die Lagervorrichtung auf den Aufnahmebehälter aufgesetzt werden kann, um anschließend Permanentmagnete aus der Lagervorrichtung in den Aufnahmebehälter zu verschieben.
  • Der Aufnahmebehälter kann ein Schließmittel umfassen, welches den Aufnahmebehälter nach dem Verschieben der Permanentmagnete in den Aufnahmebehälter hinein so verschließen kann, dass die Permanentmagnete in dem Aufnahmebehälter gehalten werden, ohne dass für das Verschließen die auf dem Aufnahmebehälter aufgesetzte Lagervorrichtung entfernt werden muss.
  • Das Schließmittel kann zumindest einen Schieber umfassen, also ein Schließmittel, welches durch Verschieben zwischen einer Öffnungsstellung und einer Schließstellung hin und her bewegt werden kann.
  • Das System kann ein Werkzeug mit einer Mehrzahl von Stößeln umfassen, mit dem Permanentmagnete aus der Lagervorrichtung in den Aufnahmebehälter verschoben werden können, wenn die Lagervorrichtung auf den Aufnahmebehälter aufgesetzt ist.
  • Das System dient der Herstellung von Vorrichtungen, die den Aufnahmebehälter umfassen.
  • Die Erfindung betrifft außerdem ein Verfahren für ein Transportieren von Permanentmagneten, indem eine erfindungsgemäße Lagervorrichtung mit den darin gelagerten Permanentmagneten in ein Kraftfahrzeug eingeladen wird. Danach fährt das Kraftfahrzeug zu einem Bestimmungsort. Nach Erreichen des Bestimmungsorts wird die Lagervorrichtung mit den darin gelagerten Permanentmagneten aus dem Kraftfahrzeug ausgeladen. Im Anschluss an das Ausladen werden Permanentmagnete aus der Lagervorrichtung entnommen. Permanentmagnete können so beispielsweise von einem Lieferanten zu einem Kunden transportiert werden. Der Kunde kann die Permanentmagnete für seine Zwecke nutzen, nachdem der Kunde die Permanentmagnete aus der Lagervorrichtung entnommen hat.
  • Permanentmagnete können problemlos über große Distanzen transportiert werden. Distanzen von vielen Kilometern sind möglich. Permanentmagnete können mehrere Tage oder mehrere Wochen in der Lagervorrichtung gelagert werden.
  • Werden eine Vielzahl von Permanentmagneten gelagert und transportiert, so erzeugen diese ein starkes Magnetfeld in ihrer Nähe, wenn keine entsprechende Abschirmung während der Lagerung bzw. des Transports vorgesehen ist. Dies kann sich beispielsweise auf Herzschrittmacher nachteilhaft auswirken. Es können außerdem zu unliebsame Kraftwirkungen während eines Transportes auftreten, u.U. mit dem Resultat von Personenschäden. Die als Transportbehälter dienende Lagervorrichtung verhindert wirksam externe Magnetfelder, die die Sicherheit beeinträchtigen könnten.
  • Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert. Den Ausführungsbeispielen sind weitere vorteilhafte Ausgestaltungen der Erfindung zu entnehmen. Der Schutzbereich der Ansprüche ist nicht auf die Ausführungsbeispiele beschränkt.
  • Die Ausführungsbeispiele verdeutlichen, dass eine erfindungsgemäße Lagervorrichtung so eingerichtet ist, dass Permanentmagnete durch die Lagervorrichtung über lange Zeiträume gelagert werden können. Die Ausführungsbeispiele verdeutlichen, dass eine erfindungsgemäße Lagervorrichtung so eingerichtet ist, dass Permanentmagnete in die Lagervorrichtung hinein gebracht werden können. Die Ausführungsbeispiele verdeutlichen, dass eine erfindungsgemäße Lagervorrichtung so eingerichtet ist, dass Permanentmagnete der Lagervorrichtung entnommen werden können. Die Ausführungsbeispiele verdeutlichen, dass eine erfindungsgemäße Lagervorrichtung nicht so eingerichtet ist, dass deren Hauptzweck nicht der Lagerung dient. Eine Vorrichtung, die Einrichtungen umfasst, um einen anderen Zweck erfüllen zu können, ist daher keine Lagervorrichtung im Sinne der vorliegenden Erfindung.
  • Es zeigen:
  • Figur 1:
    Lagervorrichtung mit übereinander angeordneten Permanentmagneten;
    Figur 2a:
    Lagervorrichtung aus Figur 1 ohne Permanentmagnete;
    Figur 2b:
    Schnitt durch die Ausführungsform der Figur 2a;
    Figur 3:
    Aufsicht auf die Lagervorrichtung aus Figur 1;
    Figur 4:
    Schnitt durch eine zweite Ausführungsform einer Lagervorrichtung;
    Figur 5:
    Aufsicht auf die zweite Ausführungsform der Figur 4;
    Figur 6:
    Schnittdarstellung parallel zu der Aufsicht aus Figur 5;
    Figur 7:
    Aufsicht auf eine dritte Ausführungsform einer Lagervorrichtung;
    Figur 8:
    vierte Ausführungsform einer Lagervorrichtung;
    Figur 9:
    Beladen einer Lagervorrichtung mit Permanentmagneten;
    Figur 10:
    Beladen einer Lagervorrichtung mit Permanentmagneten;
    Figur 11:
    Beladen einer Lagervorrichtung mit Permanentmagneten;
    Figur 12:
    Beladen einer Trommel mit Permanentmagneten;
    Figur 13:
    Aufsicht auf die Lagervorrichtung aus Figur 12.
  • Die Figur 1 zeigt im Schnitt eine Lagervorrichtung 1 für Permanentmagnete 2, in der die Permanentmagnete 2 übereinander angeordnet sind. Für jeden Permanentmagneten 2 gibt es eine aus ferromagnetischem Material gebildete Ummantelung 3.
  • Die aus ferromagnetischem Material gebildeten Ummantelungen 3 sind räumlich voneinander getrennt ist. Diese berühren sich daher nicht. Die räumliche Trennung wird durch Schichten 4 bewirkt, die aus einem nicht ferromagnetischen Material gebildet sind.
  • Die Permanentmagnete 2 sind so in der Lagervorrichtung 1 angeordnet, dass gleiche magnetische Pole zueinander benachbart angeordnet sind. Der Südpol des obersten Permanentmagneten 2 ist daher benachbart zum Südpol des darunter befindlichen Permanentmagneten 2 angeordnet. Der Südpol des untersten Permanentmagneten 2 ist benachbart zum Südpol des darüber befindlichen Permanentmagneten 2 angeordnet. Die Nordpole der beiden mittleren Permanentmagnete 2 sind zueinander benachbart angeordnet.
  • Durch die Ummantelungen 3 und die Schichten 4 führen Stangen 5 aus nicht ferromagnetischem Material hindurch, die an ihrem Ende mit Muttern 6 verschraubt sind, um die Ummantelungen 3 und die Schichten 4 miteinander fest zu verbinden. Es genügt, wenn ein Ende einer Stange 5 mit einer Mutter 6 verschraubt ist. Das andere Ende kann dann einen Kopf aufweisen, der fest mit der Stange 5 verbunden ist.
  • In der Figur 1 wird der Fall gezeigt, dass vier Permanentmagnete 2 übereinander angeordnet gelagert sind. Die Lagervorrichtung kann eine Vielzahl von weiteren Ummantelungen 3 aufweisen, die beispielsweise seitlich und/oder hinter den Ummantelungen 3 vorhanden sind. Auch kann die Zahl von übereinander angeordneten Permanentmagneten 2 mehr als vier oder weniger als vier betragen. Das ferromagnetische Material kann zumindest überwiegend aus Eisen, Nickel oder Kobalt bestehen. Das ferromagnetische Material kann eine Legierung sein, die zum Beispiel überwiegend Eisen, Nickel oder Kobalt umfasst. Vorzugsweise besteht das ferromagnetische Material aus einem Stahl, da dieses sehr stabil ist.
  • Das nicht ferromagnetische Material kann ein Buntmetall wie Aluminium, Kupfer, Messing, Blei, Gold, Silber oder Magnesium sein. Das nicht ferromagnetische Material kann ein Edelstahl sein. Das nicht ferromagnetische Material kann eine Legierung sein, die Aluminium, Kupfer, Messing, Blei Gold, Silber oder Magnesium umfasst. Das nicht ferromagnetische Material kann Holz, Kunststoff oder Keramik sein. Das nicht ferromagnetische Material kann ein Verbundmaterial sein, welches aus zuvor genannten nicht ferromagnetischen Materialien gebildet ist. Die ferromagnetischen und nicht ferromagnetischen Materialien können auch anders miteinander fest verbunden sein, so zum Beispiel durch Stifte oder Verkleben.
  • Die Dicke einer Ummantelung 3 ist vorzugsweise kleiner als die Tiefe eines angrenzenden Permanentmagneten 2. Weist der Permanentmagnet 2 beispielsweise einen Durchmesser D auf, so ist die Dicke einer angrenzenden Ummantelung 3 kleiner als der Durchmesser D. Eine größere Dicke erhöht lediglich Gewicht und Volumen, ohne in einem nennenswerten Umfang nachteilhafte Wechselwirkungen weiter reduzieren zu können.
  • Die Dicke einer Ummantelung 3 ist vorzugsweise größer als 1/3 der Tiefe eines angrenzenden Permanentmagneten 2. Weist der Permanentmagnet 2 beispielsweise einen Durchmesser D auf, so ist die Dicke einer angrenzenden Ummantelung 3 dann größer als 1/3 D. Eine solche Mindestdicke hat sich als zweckmäßig erwiesen, um gute Ergebnisse zu erzielen.
  • Die Permanentmagnete können Seltenerdmagnete sein wie zum Beispiel Neodym - Eisen - Bor - Magnete oder Samarium - Kobalt - Magnete. Die Permanentmagnete können aus Kunststoff mit permanent magnetischen Eigenschaften gebildet sein wie der Werkstoff PANiCNQ. Es kann sich um Aluminium-Nickel-Kobalt-Magnete wie zum Beispiel N45SH - Magnete handeln.
  • Die Figur 2a zeigt die Lagervorrichtung 1 aus Figur 1 ohne darin gelagerte Permanentmagnete 2. Die Figur 2a verdeutlicht, dass eine jede aus ferromagnetischem Material gebildete Ummantelung 3 einen Kanal 7 als Lager für die Permanentmagneten 2 aufweist. Ein jeder Permanentmagnet 2 kann durch einen jeden Kanal 7 hindurchgeschoben werden. Die Schichten 4 weisen mit den Kanälen 7 korrespondierende Durchgänge 8 auf, durch die die Permanentmagnete 2 ebenfalls hindurchgeschoben werden können. Es wird durch die Kanäle 7 und Durchgänge 8 ein gemeinschaftlicher Kanal gebildet. Ein jeder Permanentmagnet 2 kann daher an einer Seite hineingeschoben werden, kann durch den gemeinschaftlich gebildeten Kanal beispielsweise hindurchgeschoben werden und kann schließlich an dem anderen Ende aus der Lagervorrichtung 1 wieder herausgeschoben werden. Das Hindurchschieben kann mit einem Werkzeug geschehen, so zum Beispiel mit einem Stößel.
  • Die beiden endseitigen Öffnungen eines gemeinschaftlichen Kanals 7, 8 können jeweils einen Verschluss beispielsweise in Form eines Deckels aufweisen, um in der Lagervorrichtung 1 gelagerte Permanentmagnete vor nachteilhaften äußeren Einflüssen zu schützen. Es kann aber auch nur auf einer Seite ein solcher Verschluss für eine Öffnung vorgesehen sein, um einen Anschlag zu bilden, wenn ein Permanentmagnet 2 in die Lagervorrichtung 1 hineingeschoben wird. Das Beladen kann so erleichtert werden.
  • Die Figur 2b zeigt einen Schnitt durch die Ausführungsform der Figur 2a und zwar in Höhe einer Schicht 4. Die Figur 2b verdeutlicht, dass ein Durchgang 8 eine Öffnung in der Schicht 7 ist, die so bemessen ist, dass ein Permanentmagnet 2 durch die Öffnung hindurchgeschoben werden kann.
  • Die Figur 3 zeigt eine Aufsicht auf die Lagervorrichtung 1 aus Figur 1. Die Figur 3 zeigt, dass die kreisrunden Durchmesser der Kanäle 7 der Ummantelungen 3 nur geringfügig größer sind als die kreisrunden Außendurchmesser der Permanentmagnete 2. Die Form des Querschnitts einer jeden Ummantelung 3 und die Form der daran angrenzenden äußeren Kontur des darin eingesetzten Permanentmagneten 2 sind also gleich. Ein jeder Permanentmagnet 3 kann daher ohne übermäßig große Reibungsverluste in einen Kanal 7 hineingeschoben werden. Die Figur 3 zeigt, dass die Dicke der Ummantelung 3 kleiner als die Tiefe des Permanentmagneten 2 ist, aber mehr als 1/3 der Tiefe beträgt. Die Tiefe ist im Fall 3 der Durchmesser des gezeigten Permanentmagneten 2.
  • Die Figur 4 zeigt im Schnitt eine zweite Ausführungsform einer Lagervorrichtung 1 für Permanentmagnete 2, in der die Permanentmagnete 2 übereinander angeordnet sind. Für jeden Permanentmagneten 2 gibt es eine aus ferromagnetischem Material gebildete Ummantelung 3.
  • Die aus ferromagnetischem Material gebildeten Ummantelungen 3 sind räumlich voneinander getrennt. Die räumliche Trennung wird durch Schichten 4 bewirkt, die aus einem nicht ferromagnetischen Material gebildet sind.
  • Die Permanentmagnete 2 sind so in der Lagervorrichtung 1 angeordnet, dass gleiche magnetische Pole zueinander benachbart angeordnet sind. Ein jeder Nordpol befindet sich auf der linken Seite und ein jeder Südpol befindet sich auf der rechten Seite. Die Permanentmagnete 2 sind also anders ausgerichtet im Vergleich zu der Ausführungsform nach den Figuren 1 bis 3.
  • Die in der Figur 4 gezeigten Ummantelungen 3 und Schichten 4 sind durch Klebeverbindungen, also stoffschlüssig, fest miteinander verbunden.
  • Die Figur 5 zeigt eine Aufsicht auf die zweite Ausführungsform der Figur 4. Die Kanäle 7 und die Permanentmagnete 2 weisen in dieser Aufsicht gesehen eine gleiche langgestreckte Form so auf, dass ein jeder Permanentmagnet 2 mit geringem Spiel in einen Kanal 7 einer Ummantelung 3 eingesetzt bzw. hineingeschoben werden kann. Die Form des Querschnitts einer jeden Ummantelung 3 und die Form der daran angrenzenden äußeren Kontur des darin eingesetzten Permanentmagneten 2 sind also gleich. Die Figur 5 verdeutlicht, dass Formen der Permanentmagnete 2 frei wählbar sind.
  • Die Ummantelung weist im Fall der Figur 5 eine kreisrunde äußere Form auf. Diese Form kann auch anders sein und beispielsweise wie der Permanentmagnet 2 ebenfalls langgestreckt sein.
  • Die Figur 6 zeigt einen Schnitt parallel zu der Aufsicht aus Figur 5 und zwar auf Höhe einer Schicht 4, die aus einem nicht ferromagnetischen Material gebildet ist. Der Durchgang 8 der Schicht 4 weist die gleiche langgestreckte Form auf wie der Kanal 7 aus Figur 5, so dass der in der Figur 5 gezeigte Permanentmagnet 2 auch durch den Durchgang 8 hindurch geschoben werden kann.
  • In der Figur 7 wird eine Aufsicht auf eine dritte Ausführungsform einer Lagervorrichtung 1 gezeigt. Diese Ausführungsform zeigt nebeneinander angeordnete Permanentmagnete 2, die durch die Lagervorrichtung 1 gehalten sind. Die Kanäle 7 sind in Aufsicht gesehen an die Formen der Permanentmagnete 2 so angepasst, dass die Permanentmagnete 2 mit geringem Spiel in die Kanäle 7 hineingeschoben werden können. Die Figur 7 verdeutlicht, dass viele verschiedene Formen möglich sind. Die Form des Querschnitts einer jeden Ummantelung und die Form der jeweils daran angrenzenden äußeren Kontur des darin eingesetzten Permanentmagneten sind gleich. Die Formen sind so, dass die Permanentmagnete 2 drehfest entlang der Kanäle 7 verschoben werden können.
  • Die Figur 7 zeigt den Fall, dass eine aus ferromagnetischem Material gebildete Ummantelung 3 von einer anderen aus ferromagnetischem Material gebildeten Ummantelung 3 räumlich nicht getrennt ist.
  • Zusätzlich zu der in der Figur 7 gezeigten Anordnung von Permanentmagneten 2 können Permanentmagnete 2 auch analog zu den Figuren 1 und 4 in der Lagervorrichtung 1 übereinander untergebracht sein.
  • Die Figur 8 zeigt eine vierte Ausführungsform einer Lagervorrichtung 1. Diese Lagevorrichtung 1 verdeutlicht die Lagerung von insgesamt acht Permanentmagneten 2, die nebeneinander und übereinander angeordnet sind. Vier der acht Permanentmagnete 2 sind allerdings nicht sichtbar, da diese von der unteren Ummantelung 3 verdeckt sind.
  • Die Figur 8 zeigt den Fall, dass jeweils vier aus ferromagnetischem Material gebildete Ummantelungen 3 räumlich nicht getrennt sind. Die jeweils vier nicht räumlich getrennten Ummantelungen 3 sind von den anderen vier aus ferromagnetischem Material gebildete Ummantelungen 3 räumlich getrennt und zwar durch die Schicht 4.
  • Die Figur 9 verdeutlicht ein Beladen der Lagervorrichtung 1 mit Permanentmagneten 2, die übereinander angeordnet werden. In die Lagervorrichtung 1 ist bereits ein erster Permanentmagnet 2 hineingeschoben worden. Auf die Lagervorrichtung 1 ist ein Rohr 9 aufgesetzt, das aus einem nicht ferromagnetischen Material besteht. Das Rohr 9 ist so an den Querschnitt der Permanentmagnete 2 angepasst, dass die Permanentmagnete 2 durch das Rohr 9 mit geringem Spiel geführt hindurchgeschoben werden können. Ein Permanentmagnet 2 ist in das Rohr 9 eingesetzt. Mit einem Stößel 10 wird der in das Rohr 9 eingesetzte Permanentmagnet 2 nun nach unten bewegt, bis die in der Figur 10 gezeigte Stellung erreicht ist. Nacheinander kann so die Lagervorrichtung 1 mit Permanentmagneten 2 beladen werden, die übereinander angeordnet sind.
  • Es ist auch möglich, in das Rohr 9 sofort eine Mehrzahl von Permanentmagneten 2 einzusetzen, um diese dann insgesamt nach unten in die Lagervorrichtung 1 hinein zu bewegen. Dies ist insbesondere dann möglich, wenn die Permanentmagnete in einem Rohr so angeordnet sind, dass diese sich abstoßen. Aufgrund von Reluktanzkraft werden sich die Permanentmagnete 2 in der Lagervorrichtung 1 geeignet ausrichten, wie dies beispielsweise in der Figur 1 gezeigt wird.
  • Es können Befestigungsmittel vorhanden sein, um das Rohr 9 mit der Lagervorrichtung lösbar zu verbinden. Durch Befestigungsmittel kann die Lage des Rohres 9 relativ zur Lagervorrichtung 1 fixiert werden, um ein Beladen zu vereinfachen. Als Befestigungsmittel dienen insbesondere mechanische Befestigungsmittel.
  • Die Figur 11 verdeutlicht das Beladen einer Lagervorrichtung, in der Permanentmagnete 2 nebeneinander und übereinander gelagert werden können. In dem in der Figur 11 gezeigten Fall können drei Permanentmagnete 2 nebeneinander angeordnet werden. Es können vier Permanentmagnete 2 übereinander angeordnet werden. Die im Schnitt gezeigte Lagervorrichtung 1 kann also insgesamt zwölf Permanentmagnete 2 lagern. In die Lagervorrichtung 1 sind bereits drei erste Permanentmagnete 2 hineingeschoben worden. Diese befinden sich in der untersten Position in der Lagervorrichtung 1. Auf die Lagervorrichtung 1 ist ein aus drei Rohren 9 bestehendes System aufgesetzt. Die Rohre bestehen aus einem nicht ferromagnetischen Material. Ein jedes Rohr 9 ist so an den Querschnitt der Permanentmagnete 2 angepasst, dass die Permanentmagnete 2 durch ein jedes Rohr 9 mit geringem Spiel hindurchgeschoben werden können. Drei Permanentmagnete 2 sind in die drei Rohre 9 eingesetzt. Mit drei Stößeln 10 werden die in die Rohre 9 eingesetzten Permanentmagnete 2 nun nach unten bewegt, bis diese analog zur Figur 10 gezeigte Stellung erreicht ist. Nacheinander kann so die Lagervorrichtung 1 mit Permanentmagneten 2 beladen werden, die sowohl übereinander als auch nebeneinander angeordnet sind. Damit die drei Stößel 10 für ein Beladen gemeinsam heruntergedrückt werden können, sind diese beispielsweise durch eine Stange 11 miteinander verbunden.
  • Mithilfe von Stößeln 10 können Permanentmagnete 2 nach unten aus der Lagervorrichtung herausgeschoben werden, um diese zu entnehmen. Bei einer Lagervorrichtung, wie diese in der Figur 11 gezeigt wird, kann dies beispielsweise mit nur einem Stößel 10 geschehen, wie dieser in der Figur 10 zu sehen ist. Auf diese Weise gelingt eine sequenzielle Entnahme von Permanentmagneten 2.
  • Die Figur 12 zeigt im Schnitt eine zylinderförmige Lagervorrichtung 1, die vollständig mit Permanentmagneten 2 gefüllt ist. Die Permanentmagnete 2 sind nebeneinander und übereinander gelagert. Stößel 10 sind an die Oberseite auf den dort befindlichen Permanentmagneten 2 aufgesetzt. Die Stößel 10 sind durch einen Ring 12 miteinander verbunden. Die zylinderförmige Lagervorrichtung 1 ist auf einer Trommel 13 so aufgesetzt, dass die Permanentmagnete 2 in Kammern 14 der Trommel 13 hineingeschoben werden können. Durch Herunterdrücken des Rings 12 werden die Permanentmagnete 2 vollständig in die Kammern 14 der Trommel 13 verschoben. Im Anschluss daran werden Schieber 15 durch Schlitze 16 hindurchgeschoben. Die Schieber 15 sind so angeordnet, dass diese ein Herausbewegen von Permanentmagneten 2 aus der Trommel 13 verhindern. Es gibt Lücken zwischen den Schiebern 15 für die Stößel 10.
  • Ist die Trommel 13 so vollständig mit den Permanentmagneten 2 beladen worden, so wird die Lagervorrichtung 1 zusammen mit den Stößeln 10 entfernt. Die mit den Permanentmagneten 2 gefüllte Trommel 13 kann nun beispielsweise in einen Induktionsofen eingebaut werden.
  • Es können Befestigungsmittel vorhanden sein, um die Trommel 13 mit Lagervorrichtung lösbar zu verbinden, um Störungen während eines Beladens zu vermeiden.
  • Die Figur 13 zeigt eine Aufsicht auf die Lagervorrichtung aus der Figur 12. Die Form des Querschnitts der Ummantelung, also des Querschnitts der Kanäle 7, und die Form der daran angrenzenden äußeren Kontur des darin eingesetzten Permanentmagneten 2 sind gleich. Die Permanentmagnete 2 sind mit geringem Spiel in ihren Kanälen 7 eingesetzt. Eine Besonderheit besteht darin, dass zwar gleich geformte, im Schnitt quadratische Permanentmagnete 2 eingesetzt sind. Die im Schnitt quadratischen Kanäle sind aber entlang einer Kreisbahn zueinander verdreht und vollziehen so eine Art Rotation. Ein Kanal 7 ist also hinsichtlich seines Querschnitts nicht in gleicher Weise ausgerichtet wie ein benachbarter Kanal 7.
  • Wie der Druckschrift der Druckschrift WO 2017/063811 A1 zu entnehmen ist, kann es von Interesse sein, eine derartige Geometrie von Permanentmagneten in Vorrichtungen vorzusehen. Solche Geometrien können in der erfindungsgemäßen Lagervorrichtung bereits berücksichtigt sein, um eine Herstellung von Vorrichtungen, wie diese beispielhaft aus der Druckschrift WO 2017/063811 A1 bekannt sind, beschleunigen zu können.

Claims (15)

  1. Lagervorrichtung (1) für Permanentmagnete (2), in der Permanentmagnete (2) nebeneinander und/oder übereinander angeordnet sind, dadurch gekennzeichnet, dass es für die Permanentmagnete (2) aus ferromagnetischem Material gebildete Ummantelungen (3) gibt, wobei eine jede aus ferromagnetischem Material gebildete Ummantelung (3) zumindest eine Öffnung für ein Einsetzen eines Permanentmagneten (2) in die Ummantelung (3) und/oder für eine Entnahme eines Permanentmagneten (2) aus der Ummantelung (3) aufweist.
  2. Lagervorrichtung (1) nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die Form des Querschnitts der Ummantelung (3) und die Form der daran angrenzenden äußeren Kontur des darin eingesetzten Permanentmagneten (2) gleich sind, wobei die Permanentmagnete (2) mit Spiel in ihren Ummantelungen (3) eingesetzt sind.
  3. Lagervorrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Permanentmagnet (2) sich in einem Kanal (7) einer Ummantelung befindet, durch den der Permanentmagnet (2) hindurchgeschoben werden kann.
  4. Lagervorrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest eine aus ferromagnetischem Material gebildete Ummantelung (3) von einer anderen aus ferromagnetischem Material gebildeten Ummantelung (3) räumlich getrennt ist und/oder dass zumindest eine aus ferromagnetischem Material gebildete Ummantelung (3) von einer anderen aus ferromagnetischem Material gebildeten Ummantelung (3) räumlich nicht getrennt ist.
  5. Lagervorrichtung (1) nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass in zwei aus ferromagnetischem Material gebildeten Ummantelungen (3), die voneinander räumlich getrennt sind, Permanentmagnete (2) so angeordnet sind, dass gleiche magnetische Pole benachbart angeordnet sind.
  6. Lagervorrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich zwischen zwei aus ferromagnetischem Material gebildeten Ummantelungen (3) ein nicht ferromagnetisches Material (4) befindet.
  7. Lagervorrichtung (1) nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass eine Schicht (4) aus dem nicht ferromagnetischen Material gebildet ist.
  8. Lagervorrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwei aus ferromagnetischem Material gebildete Ummantelungen (3) einen gemeinsamen Kanal bilden, durch den ein Permanentmagnet (2) hindurchgeschoben werden kann.
  9. Lagervorrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die aus ferromagnetischem Material gebildeten Ummantelungen (3) aus Stahl bestehen.
  10. Lagervorrichtung (1) für Permanentmagnete (2), dadurch gekennzeichnet, dass Permanentmagnete (2) nebeneinander und übereinander in Ummantelungen (3) angeordnet werden können, wobei die Ummantelungen (3) aus ferromagnetischem Material gebildet sind, wobei eine jede aus ferromagnetischem Material gebildete Ummantelung (3) einen Kanal (7) aufweist, durch den ein Permanentmagnet (2) hindurchgeschoben werden kann, wobei zumindest zwei aus ferromagnetischem Material gebildete Ummantelungen (3) räumlich voneinander getrennt sind und die Kanäle der beiden räumlich voneinander getrennten Ummantelungen (3) einen gemeinsamen Kanal bilden, durch den ein Permanentmagnet (2) hindurchgeschoben werden kann.
  11. System umfassend eine Lagervorrichtung (1) nach einem der vorhergehenden Ansprüche und einen Aufnahmebehälter (13), wobei die Lagervorrichtung (1) so an den Aufnahmebehälter (13) angepasst ist, dass die Lagervorrichtung (1) auf den Aufnahmebehälter (13) aufgesetzt werden kann, um anschließend Permanentmagnete (2) aus der Lagervorrichtung (1) in den Aufnahmebehälter (13) zu verschieben.
  12. System nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass der Aufnahmebehälter ein Schließmittel (15) umfasst, welches den Aufnahmebehälter (13) nach dem Verschieben der Permanentmagnete (2) in den Aufnahmebehälter (13) hinein so verschließen kann, dass die Permanentmagnete (2) in dem Aufnahmebehälter (13) gehalten werden, ohne dass für das Verschließen die auf dem Aufnahmebehälter (13) aufgesetzte Lagervorrichtung (1) entfernt werden muss.
  13. System nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass das Schließmittel zumindest einen Schieber (15) umfasst.
  14. System nach einem der drei vorhergehenden Ansprüche, dadurch gekennzeichnet, dass dieses ein Werkzeug mit einer Mehrzahl von Stößeln (10) umfasst, mit dem Permanentmagnete (2) aus der Lagervorrichtung (1) in den Aufnahmebehälter (13) verschoben werden können, wenn die Lagervorrichtung (1) auf den Aufnahmebehälter (13) aufgesetzt ist.
  15. Verfahren für ein Transportieren von Permanentmagneten, indem eine Lagervorrichtung mit den Merkmalen nach einem der vorgehenden Ansprüche 1 bis 9 zusammen mit den darin gelagerten Permanentmagneten in ein Kraftfahrzeug eingeladen wird, das Kraftfahrzeug zu einem Bestimmungsort fährt, die Lagervorrichtung mit den darin gelagerten Permanentmagneten aus dem Kraftfahrzeug ausgeladen wird und im Anschluss an das Ausladen Permanentmagnete aus der Lagervorrichtung entnommen werden.
EP20190480.2A 2019-08-19 2020-08-11 Lagervorrichtung für permanentmagnete und transportverfahren Pending EP3783628A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019212339.2A DE102019212339A1 (de) 2019-08-19 2019-08-19 Lagervorrichtung für Permanentmagnete

Publications (1)

Publication Number Publication Date
EP3783628A1 true EP3783628A1 (de) 2021-02-24

Family

ID=72046749

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20190480.2A Pending EP3783628A1 (de) 2019-08-19 2020-08-11 Lagervorrichtung für permanentmagnete und transportverfahren

Country Status (2)

Country Link
EP (1) EP3783628A1 (de)
DE (1) DE102019212339A1 (de)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10084941T1 (de) * 1999-09-20 2002-08-14 Ecoair Corp Permanentmagnetischer Rotorabschnitt für elektrische Maschinen
JP2003115406A (ja) * 2001-10-03 2003-04-18 Maguna:Kk 磁気遮蔽用スペーサ
JP2004031399A (ja) * 2002-06-21 2004-01-29 Maguna:Kk 永久磁石の磁気漏洩軽減用ホルダ
US20070182517A1 (en) 2001-11-30 2007-08-09 Humphries David E High performance hybrid magnetic structure for biotechnology applications
US20090293238A1 (en) 2008-05-30 2009-12-03 Hana Consulting, Inc. Magnetic coupling device and method
US20100090555A1 (en) * 2008-10-09 2010-04-15 Honda Motor Co., Ltd. Axial gap type motor
CN206032233U (zh) * 2016-08-31 2017-03-22 上海洛克磁业有限公司 一种永磁体磁屏蔽包装箱
WO2017063811A1 (de) 2015-10-13 2017-04-20 Forschungszentrum Jülich GmbH Induktionsofen, strangpressanlage und verfahren
KR20180034794A (ko) * 2016-09-28 2018-04-05 주식회사 비엠에스 외전형 브러시 리스 직류 전동기의 압입 시스템
CN207417575U (zh) * 2017-10-17 2018-05-29 成都晨航磁业有限公司 一种用于永磁产品运输的包装盒
WO2018204832A1 (en) 2017-05-04 2018-11-08 Loop Global Inc. Manufacturing of permanent magnet arrays with controlled convergence

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10084941T1 (de) * 1999-09-20 2002-08-14 Ecoair Corp Permanentmagnetischer Rotorabschnitt für elektrische Maschinen
JP2003115406A (ja) * 2001-10-03 2003-04-18 Maguna:Kk 磁気遮蔽用スペーサ
US20070182517A1 (en) 2001-11-30 2007-08-09 Humphries David E High performance hybrid magnetic structure for biotechnology applications
JP2004031399A (ja) * 2002-06-21 2004-01-29 Maguna:Kk 永久磁石の磁気漏洩軽減用ホルダ
US20090293238A1 (en) 2008-05-30 2009-12-03 Hana Consulting, Inc. Magnetic coupling device and method
US20100090555A1 (en) * 2008-10-09 2010-04-15 Honda Motor Co., Ltd. Axial gap type motor
WO2017063811A1 (de) 2015-10-13 2017-04-20 Forschungszentrum Jülich GmbH Induktionsofen, strangpressanlage und verfahren
CN206032233U (zh) * 2016-08-31 2017-03-22 上海洛克磁业有限公司 一种永磁体磁屏蔽包装箱
KR20180034794A (ko) * 2016-09-28 2018-04-05 주식회사 비엠에스 외전형 브러시 리스 직류 전동기의 압입 시스템
WO2018204832A1 (en) 2017-05-04 2018-11-08 Loop Global Inc. Manufacturing of permanent magnet arrays with controlled convergence
CN207417575U (zh) * 2017-10-17 2018-05-29 成都晨航磁业有限公司 一种用于永磁产品运输的包装盒

Also Published As

Publication number Publication date
DE102019212339A1 (de) 2021-02-25

Similar Documents

Publication Publication Date Title
DE102005020378B4 (de) Magnetresonanzgerät mit Gradientenspule mit integrierten passiven Shimvorrichtungen
DE102017122752A1 (de) Vorrichtung zur Bearbeitung von Artikeln der Tabak verarbeitenden Industrie
EP3552301A1 (de) Verfahren zur herstellung eines rotors für eine synchronreluktanzmaschine sowie rotor für eine synchronreluktanzmaschine
EP1134472A2 (de) Dichtungselement für eine Vorrichtung zur brandgesicherten Durchführung von Leitungen u.dgl. durch in Wänden befindliche Öffnungen hindurch
DE1752637A1 (de) Vorrichtung zur Verformung von elektrisch leitenden Arbeitsteilen
DE2615580C2 (de) Magnetischer Abscheider zum Abscheiden magnetisierbarer Teilchen aus einem durchströmenden Fluid
DE19617057C2 (de) Sputteranlage mit zwei längserstreckten Magnetrons
DE102007038848A1 (de) Spulenkörper für einen Linearmotor-Stator für eine automatische Tür
DE102016108646A1 (de) Elektrodynamische Bremse
EP3783628A1 (de) Lagervorrichtung für permanentmagnete und transportverfahren
DE2714651C3 (de) Einrichtung zum Positionieren ferromagnetischer Teile in vorgegebenem Abstand voneinander
EP0660459B1 (de) Vielfach-Flachstecker
EP4215065A2 (de) Handhabungsvorrichtung für stabförmige artikel der tabak verarbeitenden industrie
EP1589642B1 (de) Vorrichtung zum Umformen von stangenförmigen oder rohrförmigen elektrisch leitenden oder magentisierbaren Werkstücken
DE102016111908A1 (de) Greifvorrichtung zum Greifen von ferromagnetischen Gegenständen
EP1575720A1 (de) Verfahren und vorrichtung zum herauslösen und vereinzeln von abgelängten, magnetisierbaren stahldrähten aus einem drahtvorrat
DE102016221090B3 (de) Fallturm-magazin mit wirbelstrombremse
DE102008027861A1 (de) Vorrichtung zum Halten von scheibenförmigen Objekten
DE1498830B2 (de) Sektormagnet für ein Teilchenspektrometer
DE3236133A1 (de) Geldbombe
DE102005020383B4 (de) Vorrichtung zur Herstellung einer Shimeinrichtung, Verfahren zur Herstellung einer Shimeinrichtung sowie Magnetresonanzge-rät umfassend eine Shimeinrichtung
DE1878250U (de) Dauermagnetisches lager, insbesondere fuer die axiallagerung des laeufers eines elektrizitaetszaehlers.
DE1003368B (de) Zylinderfoermige oder andere prismatische Induktionsspule
CH389529A (de) Halter zum gerichteten und gleichzeitigen Festhalten mehrerer langgestreckter Gegenstände, wie zum Beispiel der Anodendrähte von Kristalldioden
DE2226088C3 (de) Elektromagnet für Betatrons

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FORSCHUNGSZENTRUM JUELICH GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210528

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220511