EP3781744B1 - Procédé d'immobilisation d'un rail de voie ferrée avec conditionnement thermique d'une portion de rail, et machine ferroviaire associée - Google Patents

Procédé d'immobilisation d'un rail de voie ferrée avec conditionnement thermique d'une portion de rail, et machine ferroviaire associée Download PDF

Info

Publication number
EP3781744B1
EP3781744B1 EP19780250.7A EP19780250A EP3781744B1 EP 3781744 B1 EP3781744 B1 EP 3781744B1 EP 19780250 A EP19780250 A EP 19780250A EP 3781744 B1 EP3781744 B1 EP 3781744B1
Authority
EP
European Patent Office
Prior art keywords
rail
thermal conditioning
temperature
zone
conditioning zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19780250.7A
Other languages
German (de)
English (en)
Other versions
EP3781744A1 (fr
EP3781744C0 (fr
Inventor
Marc-Antoine SAVOYAT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matisa Materiel Industriel SA
Original Assignee
Matisa Materiel Industriel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matisa Materiel Industriel SA filed Critical Matisa Materiel Industriel SA
Publication of EP3781744A1 publication Critical patent/EP3781744A1/fr
Application granted granted Critical
Publication of EP3781744C0 publication Critical patent/EP3781744C0/fr
Publication of EP3781744B1 publication Critical patent/EP3781744B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/04Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rails
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B29/00Laying, rebuilding, or taking-up tracks; Tools or machines therefor
    • E01B29/16Transporting, laying, removing, or replacing rails; Moving rails placed on sleepers in the track
    • E01B29/17Lengths of rails assembled into strings, e.g. welded together
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B31/00Working rails, sleepers, baseplates, or the like, in or on the line; Machines, tools, or auxiliary devices specially designed therefor
    • E01B31/02Working rail or other metal track components on the spot
    • E01B31/18Reconditioning or repairing worn or damaged parts on the spot, e.g. applying inlays, building-up rails by welding; Heating or cooling of parts on the spot, e.g. for reducing joint gaps, for hardening rails
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • C21D2221/10Differential treatment of inner with respect to outer regions, e.g. core and periphery, respectively
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B29/00Laying, rebuilding, or taking-up tracks; Tools or machines therefor

Definitions

  • the invention relates to the installation of a rail of a railway track, and more particularly to a thermal conditioning operation of a portion of the rail before its installation. It relates both to a railway machine allowing this thermal conditioning operation and to an immobilization process including this operation. It aims at both the installation of a new rail on a pre-existing track, the installation of a new rail on a new track, and a maintenance operation on a pre-existing rail, which includes a removal operation followed by an operation deposit.
  • the railway machine can be an autonomous machine, a renewal train or a laying train.
  • railway rails are subject to significant temperature variations depending on the seasons and weather conditions.
  • the rails tend to elongate and expand under the effect of a rise in temperature, and, conversely, to contract under the effect of a drop in temperature.
  • the rails are laid continuously end-to-end welded and thus fixed to the sleepers, so that the rails cannot vary in length due to temperature variations.
  • the rails Under the effect of an increase in the ambient temperature beyond the installation temperature, the rails, unable to expand, undergo a compressive force tending to push the track out of its way.
  • the rails Under the effect of a drop in temperature below the installation temperature, the rails, unable to contract, are subject to a tensile force tending to pull the track out of its path.
  • a train of works comprising an induction heating station for a previously lifted rail, and a zone for immobilizing the rail on the track sleepers with a view to its subsequent fixing using fasteners.
  • Induction heating generates, in a portion of the rail passing through a heating zone of the heating station, an induced current which raises the temperature of the portion of the rail by Joule effect.
  • the circulation of electrons in the rail is not uniform and we observe a skin effect which is all the more sensitive as the induction frequency increases. This results in a highly inhomogeneous temperature distribution within the rail at the exit from the heating zone.
  • the rail immobilization zone is located at a distance from the heating station, so that the temperature has time to homogenize in the rail, in other words so that the difference between the surface temperature and the temperature in the heart of the rail is lower than a predetermined threshold, the objective being that at the level of the immobilization zone, the rail has reached a homogeneous temperature equal to the predetermined neutral temperature of the location. For example, for a work train traveling at 6 meters per minute, a distance of 17 meters is planned between the exit of the heating station and the rail immobilization zone, which corresponds to a homogenization time of 170 seconds.
  • the cooling methods also involve cooling the surface of the rail, therefore non-homogeneous cooling of the rail, with similar difficulties.
  • the invention aims to remedy the drawbacks of the state of the art and to simplify the immobilization of a rail at a so-called “neutral” set temperature.
  • T 0 mev 1 V ⁇ V T 0 . dv
  • T 1 T 1 avg the uniform temperature of the rail obtained after homogenization
  • E 1 the thermal energy of the rail after uniformization
  • the elongation of a section of the rail is proportional to the average temperature observed in the section of the rail, but independent of the temperature distribution in the section of the rail.
  • the railway machine moves in the working direction at a constant speed, which can be described as nominal, for operating conditions.
  • work data (geometry of the track, nature of the work to be carried out).
  • this speed is usually in the range of 100 to 1200 m/hour.
  • the portion of the rail is immobilized on the crosspiece for less than 50 seconds, preferably less than 30 seconds after the portion of the rail has left the thermal conditioning zone. It is advantageous for the time which elapses between leaving the thermal conditioning zone and fixing the rail to the crosspiece to be minimal, to limit convective heat exchanges with the ambient environment.
  • the temperature distribution at the exit from the thermal conditioning zone can be very inhomogeneous, and remain very inhomogeneous at the time of immobilization of the rail.
  • the time of immobilization of the portion of the rail there is a difference of more than 50°C between at least one point on the surface of the portion of the rail and at least one point on the soul of the rail portion.
  • the modification of the temperature of a surface region of the portion of the rail passing through the thermal conditioning zone is such that the average temperature of the portion of the rail at the exit from the thermal conditioning zone is equal to within +/- 5°C, and preferably to within +/-3°C, and preferably to within +/-2°C, and preferably to within +/-1°C, and preferably exactly, at a predetermined set temperature of the installation location.
  • T mev 1 V ⁇ V T v . dv
  • Passage through the thermal conditioning zone is accompanied by a heat transfer equal to the quantity of heat necessary to bring the section of rail to an average temperature equal to within +/- 5°C, and preferably to +/ -3°C, and preferably within +/-2°C, and particularly preferably within +/-1°C, and preferably exactly, at a predetermined set temperature of the place of immobilization, at the exit from the thermal conditioning zone.
  • the modification of the temperature of a superficial region of the portion of the rail crossing the thermal conditioning zone results in a transfer of a quantity of heat equal to the quantity of heat necessary to bring the section of rail, in adiabatic conditions, at a homogenization temperature equal to a temperature within a predetermined tolerance interval, preferably +/-5°C, preferably +/-3°C, preferably +/-2°C , preferably +/-1°C around, and preferably exactly at, a predetermined set temperature.
  • the thermal conditioning zone is the place of a transfer of thermal energy which can be positive or negative, and whose value ⁇ E is equal to the difference between the thermal energy E A of the front rail entry into the thermal conditioning zone and the thermal energy E N of the rail in an ideal state at a homogeneous temperature equal to the neutral temperature T N (or the difference between the thermal energy E A of the rail before the entry into the thermal conditioning zone and the thermal energy Ec of the rail in a target state at a homogeneous temperature equal to a target temperature T C equal to the neutral temperature T N to within +/- 5°C, and preferably to +/-3°C, and preferably within +/-2°C, and particularly preferably within +/-1°C, and preferably exact).
  • the heat exchange device is controlled as a function of one or more control variables, including one or more of the following measured or estimated variables: a temperature of the portion of the rail at the entry into the thermal conditioning zone, a temperature of the portion of the rail at the exit from the thermal conditioning zone, a temperature of the portion of the rail in the thermal conditioning zone, a temperature of the portion of the rail at the level of the zone d immobilization, a temperature of the rail portion after the immobilization zone, an external ambient temperature, a speed of movement of the railway machine, a speed of movement of the rail relative to the thermal conditioning device, a duration of passage in the thermal conditioning zone, a difference between a set temperature and a measured temperature of the portion of the rail before thermal conditioning, a difference between a set temperature and a measured temperature of the portion of the rail after thermal conditioning, a difference between a temperature setpoint and a measured temperature of the portion of the rail during the heat supply, a difference between a setpoint temperature and a temperature of the portion of the rail at the level of the
  • the portion of the rail crossing the thermal conditioning zone is raised relative to the railway track.
  • the railway machine can be provided with a device for positioning the portion of rail on the track, located between the thermal conditioning device and the zone for immobilizing the portion of rail on a sleeper of the track.
  • the positioning device must preferably be compact, so that the corresponding positioning zone is short.
  • the positioning of the rail portion on the track can be done in the thermal conditioning zone.
  • the portion of the rail crossing the thermal conditioning zone rests on a sleeper of the railway track.
  • the immobilization of the portion of the rail on the sleeper is the operation which immediately follows the crossing of the thermal conditioning zone by the same portion of the rail.
  • the temperature of a surface region of the portion of the rail passing through the thermal conditioning zone is modified, by thermal exchange with a heat source, hot or cold, in particular by thermal radiation, thermal conduction and/or convection, or by alternating electric current induced or generated in the rail portion.
  • the thermal conditioning device is able to provide to the rail portion passing through the thermal conditioning zone and/or able to extract from the rail portion passing through the thermal conditioning zone, a greater quantity of heat sufficient to increase and /or reduce the average temperature of the rail portion by at least 5°C, for a UIC60 rail, when the railway machine advances in the working direction at the predetermined operating speed.
  • the railway machine comprises means for modifying the temperature of a surface region of the portion of the rail passing through the thermal conditioning zone, by alternating electric current induced or conducted in the portion of rail, or by exchange thermal with a source of heat, hot or cold, in particular by thermal radiation, thermal conduction and/or convection.
  • FIG. 1 an overall view of a railway track renewal site 2 is illustrated, a site on which old rails 6 are removed by means of a renewal train 4 (partially shown). front sector) and old sleepers 8 and their replacement by new sleepers 10 and new rails 12, all continuously as the renewal train 4 advances at constant speed in a working direction 100.
  • the renewal train 4 comprises wagons 16 resting on bogies 18, 20 which run on the old rails 6 in the front part of the renewal train 4 and on the new rails 12 in the rear part of the renewal train 4.
  • Part middle of the renewal train 4 rests on tracks 22 which, in the absence of rails on track 2 in this part of the site, roll directly on the ballast 24 and the old sleepers 8 before their removal.
  • the immobilization of the new rails 12 is carried out by the weight of the railway machine at the level of the zone of immobilization 26, also called anchoring zone, located at the level of a bogie 20, in the rear part of the renewal train 4.
  • the actual fixing of the new rails 12 is carried out downstream, using 'fasteners.
  • the section of new or renovated rail to be installed 12 is brought to a set temperature in a thermal conditioning zone 30 of a thermal conditioning device 32, the thermal conditioning zone 30 being located in front and near of the immobilization zone 26 of the rail on one or more sleepers 10, or even directly contiguous to the immobilization zone 26.
  • the immobilization zone 26 itself can be preceded by a positioning zone of the rail , which can be located between the thermal conditioning zone 30 and the immobilization zone 26 (in the hypothesis where the rail is lifted in the thermal conditioning zone) or upstream of the thermal conditioning zone (in the hypothesis where the rail already rests on the new sleepers 10 in the thermal conditioning zone 30 ).
  • the positioning zone of the rail coincides with the immobilization zone 26 or the thermal conditioning zone 30.
  • the thermal conditioning includes heating of the rail, the thermal conditioning device 30 is arranged as a heating device, the thermal conditioning zone 30 then being a heating zone.
  • This heating can be carried out by the means usually used, which have in common not to generate a homogeneous distribution of the temperature in the rail, but on the contrary to generate a significant temperature difference between certain heated zones on the surface of the rail or at proximity to the surface of the rail on the one hand, and less heated zones located at the heart of the rail. Heating can in particular be carried out by electrical induction in the rail, by sprinkling with hot water, by infrared radiation, or by exposure to a heat transfer fluid (water, air, steam, combustion gas, flame).
  • a heat transfer fluid water, air, steam, combustion gas, flame
  • the thermal conditioning includes cooling of the rail, the thermal conditioning device 30 is arranged as a cooling device, the thermal conditioning zone 30 then being a cooling zone.
  • This cooling can in particular be carried out by exposure to a heat transfer fluid.
  • the immobilization zone 26 is positioned relative to the thermal conditioning device 32 in such a way that when the renewal train 4 advances in the working direction 100 at the nominal operating speed, the portion of the rail having left the thermal conditioning device 32 with a non-homogeneous temperature distribution reaches its immobilization position on the sleeper in the immobilization zone 26 before a homogenization of the temperature distribution in a cross section of the rail portion has occurred .
  • the immobilization zone 26 is located less than five meters from the thermal conditioning zone 30, for a renewal train circulating at a nominal speed of 500 m/hour, so that a portion of the rail reaches the immobilization zone 26 less than 36 seconds after leaving the thermal conditioning zone 30.
  • Thermometers 34 are positioned at the entrance to the thermal conditioning zone 30, inside the thermal conditioning zone 30, at the exit from the thermal conditioning zone 30, and if necessary directly near the zone immobilization 26. These thermometers 34 are connected to a control unit 36, which receives signals from other sensors 38 such as, for example: a speed sensor of the renewal train 4, a speed sensor of the rail to be treated , an ambient temperature sensor, an atmospheric pressure sensor, and/or an ambient humidity sensor.
  • sensors 38 such as, for example: a speed sensor of the renewal train 4, a speed sensor of the rail to be treated , an ambient temperature sensor, an atmospheric pressure sensor, and/or an ambient humidity sensor.
  • the control unit 36 is thus capable of measuring, estimating or calculating one or more of the following parameters: an average temperature of the portion of the rail to be treated before thermal conditioning, an average temperature of the portion of the rail after thermal conditioning, a temperature of the portion of the rail during thermal conditioning, a temperature of the portion of the rail after its anchoring, an external ambient temperature, a speed of movement of the renewal train 4, a speed of movement of the rail relative to the conditioning device thermal, a quantity of heat transmitted to the portion of the rail by the thermal conditioning device.
  • control unit 36 contains in memory a set temperature which may have been entered or programmed, and is representative of the neutral temperature sought in the immobilization zone 26, which if necessary allows a determination of a difference between the set temperature and an average temperature of the portion of the rail to be treated before thermal conditioning, a difference between the set temperature and an average temperature of the portion of the rail after thermal conditioning, or a difference between the set temperature and an average temperature of the portion of the rail during conditioning thermal.
  • control unit 36 is capable of modulating the power of the thermal conditioning device.
  • the rail to be treated 12 moves, relative to the thermal conditioning device 30, in the opposite direction, and is guided so that at each moment a raised portion of the rail to be treated 12 passes through the thermal conditioning zone 30. If necessary, the positioning of the thermal conditioning device is adjusted using actuators or a positioning mechanism.
  • the control unit 36 determines by a calculation algorithm, depending on all or part of the parameters discussed previously, the thermal energy which must be transferred to the rail to be treated 12 or which must be extracted therefrom to obtain this average temperature.
  • the portion of the rail 12 has reached the elongation corresponding to the elongation of a rail at a homogeneous temperature equal to the set temperature.
  • the portion of the treated rail 12 enters immediately or almost immediately into the immobilization zone 26, where it is immobilized on a sleeper 10 of the railway track, less than 50 seconds, and preferably less than 30 seconds after the exit from the thermal conditioning zone 30. In this short period of time, the losses by convective exchange with the ambient air are negligible.
  • the method of thermal conditioning of the rails which has been described for a railway renovation with replacement of the rails, also applies to a renovation of the track with replacement of the old rails, or for a first installation, or even for a thermal treatment of interview.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Heat Treatment Of Articles (AREA)
  • Machines For Laying And Maintaining Railways (AREA)
  • Braking Arrangements (AREA)

Description

    DOMAINE TECHNIQUE DE L'INVENTION
  • L'invention se rapporte à la pose d'un rail d'une voie de chemin de fer, et plus particulièrement à une opération de conditionnement thermique d'une portion du rail avant sa pose. Elle se rapporte à la foi à une machine ferroviaire permettant cette opération de conditionnement thermique et à un procédé d'immobilisation incluant cette opération. Elle vise à la fois la pose d'un rail neuf sur une voie préexistante, la pose d'un rail neuf sur une voie neuve, et une opération de maintenance sur un rail préexistant, qui inclut une opération de dépose suivi d'une opération de pose. La machine ferroviaire peut être une machine autonome, un train de renouvellement ou un train de pose.
  • ETAT DE LA TECHNIQUE ANTERIEURE
  • Les rails des voies ferroviaires sont soumis à d'importantes variations de température selon les saisons et les conditions météorologiques. Les rails tendent à s'allonger et à se dilater sous l'effet d'une hausse de température, et, à l'inverse, à se contracter sous l'effet d'une chute de température.
  • De nos jours, les rails sont posés soudés bout à bout de façon continue et fixés ainsi aux traverses, de sorte que les rails ne peuvent pas varier de longueur sous l'effet des variations de température. Sous l'effet d'une augmentation de la température ambiante au-delà de la température de pose, les rails, ne pouvant se dilater, subissent une force de compression tendant à pousser la voie hors de son chemin. À l'inverse, sous l'effet d'une baisse de température en deçà de la température de pose, les rails, ne pouvant se contracter, subissent une force de traction tendant à tirer la voie hors de son chemin.
  • Pour minimiser l'impact des variations de température, on cherche à immobiliser les rails sur la voie à une température prédéterminée dite « neutre », dont la valeur diffère selon les régions climatiques, et qui peut correspondre par exemple à une température moyenne ou médiane du lieu de pose, constatée sur une longue période, le cas échéant de plusieurs années. On est ainsi assuré que la plage de variation des contraintes à l'intérieur du rail, et la variation des efforts sur la voie, seront minimisées.
  • Dans le document EP 0 467 833 est illustré un train de travaux comportant un poste de chauffage par induction d'un rail préalablement soulevés, et une zone d'immobilisation du rail sur les traverses de la voie en vue de sa fixation ultérieure à l'aide d'attaches. Le chauffage par induction génère dans une portion du rail traversant une zone de chauffage du poste de chauffage, un courant induit qui élève la température de la portion de rail par effet Joule. Mais la circulation des électrons dans le rail n'est pas uniforme et l'on observe un effet de peau qui est d'autant plus sensible que la fréquence d'induction s'élève. Il en résulte une distribution de la température fortement inhomogène au sein du rail à la sortie de la zone de chauffage. La zone d'immobilisation du rail est située à distance du poste de chauffage, de manière que la température ait le temps de s'homogénéiser dans le rail, en d'autres termes de manière que la différence entre la température de surface et la température dans le coeur du rail soit inférieure à un seuil prédéterminé, l'objectif étant qu'au niveau de la zone d'immobilisation, le rail ait atteint une température homogène égale à la température neutre prédéterminée du lieu. A titre d'exemple, pour un train de travaux circulant à 6 mètres par minutes, on prévoit une distance de 17 mètres entre sortie du poste de chauffage et la zone d'immobilisation du rail, ce qui correspond à un temps d'homogénéisation de 170 secondes.
  • D'autres méthodes de chauffage peuvent être mises en oeuvre. On a ainsi proposé d'exposer le rail à un rayonnement infrarouge. On constate toutefois que le rayonnement infrarouge pénètre peu dans la matière, et n'engendre qu'un chauffage superficiel, avec un effet de peau d'environ 100 nm. D'autres formes de chauffage, notamment par aspersion d'eau ou par exposition à la flamme d'un brûleur, ont été proposées, mais se traduisent également par un chauffage limité à la surface du rail.
  • Partant du postulat qu'il est nécessaire d'attendre l'homogénéisation de la température dans le rail à la température de neutralisation avant l'immobilisation du rail sur les traverses, l'idée de la nécessité de prévoir un temps d'homogénéisation, et donc une distance importante entre le poste de chauffage principal et la zone d'immobilisation d'une machine ferroviaire de travaux, s'est imposée dans l'état de la technique.
  • Cette disposition n'est toutefois pas sans inconvénients. Elle impacte tout d'abord la taille de la machine ferroviaire, qui est pourvue de moyens pour faire cheminer le rail entre le poste de chauffage et la zone d'immobilisation. Par ailleurs, des dispositions doivent être prises pour limiter et contrôler les pertes thermiques dans l'espace séparant la zone de chauffage de la zone d'immobilisation, afin de limiter la consommation énergétique et d'assurer qu'au niveau de la zone d'immobilisation, la température homogène atteinte soit bien la température consignée dite « neutre ». Enfin, des difficultés opérationnelles apparaissent à chaque fois que la machine ferroviaire est amenée à s'arrêter de manière imprévue, puisque la portion de rail située entre le poste de chauffage et la zone d'immobilisation, après un certain temps, n'est plus à la température souhaitée, et qu'une procédure spécifique doit être mise en oeuvre à chaque redémarrage. C'est d'ailleurs ce qui a amené, dans le document WO2017/017600A1 , à proposer d'interposer, entre le dispositif de chauffage et la zone d'immobilisation, un tronçon intercalaire d'isolation thermique, ou de traitement thermique complémentaire visant à compenser les pertes thermiques entre le poste de chauffage et la zone d'immobilisation.
  • Lorsqu'il est nécessaire de refroidir le rail avant l'immobilisation, les méthodes de refroidissement passent également par un refroidissement de la surface du rail, donc à un refroidissement non homogène du rail, avec des difficultés similaires.
  • Pour résoudre ces problèmes, il serait théoriquement possible de faire appel à des technologies permettant une chauffe uniforme du rail, par exemple par passage d'un courant continu dans le rail. Mais une telle technologie s'avère difficile à mettre en oeuvre en pratique.
  • EXPOSE DE L'INVENTION
  • L'invention vise à remédier aux inconvénients de l'état de la technique et à simplifier l'immobilisation d'un rail à une température de consigne dite « neutre ».
  • Pour ce faire est proposé, selon un premier aspect de l'invention, un procédé d'immobilisation d'un rail d'une voie ferrée à l'aide d'une machine ferroviaire, suivant lequel :
    • on déplace la machine ferroviaire dans une direction de travail, de manière qu'à chaque instant une portion du rail, non fixée à une traverse de la voie ferrée, traverse une zone de conditionnement thermique d'un dispositif de conditionnement thermique de la machine ferroviaire ;
    • on modifie une température d'une région superficielle de la portion du rail traversant la zone de conditionnement thermique à l'aide du dispositif de conditionnement thermique, en générant une distribution de température non homogène dans la portion de rail ; et
    • on immobilise la portion du rail sur une traverse de la voie ferrée, après modification de la température de la région superficielle de la portion du rail, mais sans attendre que la distribution de la température dans la portion du rail soit homogénéisée.
  • Les inventeurs ont en effet soupçonné, puis vérifié par le calcul et par des essais expérimentaux, qu'il n'était pas nécessaire d'attendre l'homogénéisation de la température dans le rail pour obtenir l'effet recherché, à savoir un allongement du rail, ou une longueur de la portion de rail en cours de pose, correspondant à l'allongement et la longueur constatés à la température neutre. L'étude théorique s'appuie sur deux résultats :
    • la conservation de la température moyenne du rail pendant l'homogénéisation ;
    • la proportionnalité entre l'allongement du rail et la contrainte moyenne dans la section transversale observée.
  • Si on désigne par C la capacité thermique de l'acier (en J/kg/K), par ρ la masse volumique de l'acier (en kg/m3), et par V le volume de rail considéré (en m3), l'énergie thermique présente dans le rail en sortie de la zone de conditionnement thermique est, par définition : E 0 = V C . T 0 . ρ . dv = C . ρ . V T 0 . dv
    Figure imgb0001
  • On peut définir une température moyenne du rail T 0 moy telle que : T 0 moy = 1 V V T 0 . dv
    Figure imgb0002
  • Il s'en déduit : E 0 = C . ρ . V . T 0 moy
    Figure imgb0003
  • Si l'on désigne par T 1 = T 1 moy la température uniforme du rail obtenue après homogénéisation, et par E 1 l'énergie thermique du rail après uniformisation, on obtient : E 1 = C . ρ . V . T 1 moy
    Figure imgb0004
  • Or si l'on observe que la constante de temps d'homogénéisation de la température (2 à 3 minutes) est très petite devant la constante de temps de refroidissement du rail dans son ensemble (100 à 200 minutes), on peut considérer que la transformation correspondant à l'homogénéisation est adiabatique, de sorte qu'il y a conservation de l'énergie thermique. Dès lors : E 0 = E 1
    Figure imgb0005
  • On a donc, après simplification : T 0 moy = T 1 moy
    Figure imgb0006
  • On a ainsi établi que la température moyenne en sortie de la zone de conditionnement est égale à la température d'homogénéisation du rail.
  • Si on désigne par S la surface de la section de rail, par E le module de Young, et par α est le coefficient d'élongation du rail, on peut exprimer la contrainte moyenne dans la section du rail de la manière suivante : σ = 1 S . S σ s . ds = 1 S . S E . α . ΔT s . ds = E . α . 1 S . S ΔT s . ds
    Figure imgb0007
  • On peut définir une variation de la température moyenne ΔTmoy dans la section de rail, qui est égale à la moyenne des variations locales de température dans la section de rail de sorte que : ΔT moy = 1 S . S ΔT s . ds
    Figure imgb0008
  • On écrit alors la contrainte moyenne en fonction de la variation moyenne de température : σ = E . α . ΔT moy
    Figure imgb0009
  • Par ailleurs, la loi de Hooke sur l'élasticité permet de relier la contrainte moyenne à l'allongement relatif (en négligeant les variations de la section) : σ = E . ΔL L 0
    Figure imgb0010
  • On en déduit la relation de proportionnalité entre l'allongement relatif et la variation de la température moyenne de la section : Δ L L 0 = α . Δ T moy
    Figure imgb0011
  • En d'autres termes, l'allongement d'une section du rail est proportionnel à la température moyenne constatée dans la section du rail, mais indépendant de la distribution des températures dans la section du rail.
  • En pratique, la machine ferroviaire se déplace dans la direction de travail à une vitesse constante, que l'on peut qualifier de nominale, pour des conditions de travail données (géométrie de la voie, nature des travaux à effectuer). A titre indicatif, cette vitesse est habituellement dans une fourchette de 100 à 1200 m/heure.
  • De préférence, on immobilise la portion du rail sur la traverse moins de 50 secondes, de préférence moins de 30 secondes après que la portion du rail a quitté la zone de conditionnement thermique. On a intérêt à ce que le temps qui s'écoule entre la sortie de la zone de conditionnement thermique et la fixation du rail sur la traverse soit minimal, pour limiter les échanges thermiques convectifs avec le milieu ambient.
  • Dans certaines conditions, la distribution de température à la sortie de la zone de conditionnement thermique peut être très inhomogène, et rester très inhomogène au moment de l'immobilisation du rail. Par exemple, on peut constater qu'il existe au moment de l'immobilisation de la portion du rail une différence de plus de 50°C entre au moins un point de la surface de la portion de rail et au moins un point de l'âme de la portion de rail.
  • Suivant un mode de réalisation, que la modification de la température d'une région superficielle de la portion du rail traversant la zone de conditionnement thermique est telle que la température moyenne de la portion de rail à la sortie de la zone de conditionnement thermique est égale à +/- 5°C près, et de préférence à +/-3°C près, et de préférence à +/-2°C près, et de préférence à +/-1°C près, et en préférence exacte, à une température de consigne prédéterminée du lieu de pose.
  • Par température moyenne, on entend ici l'intégrale volumique des températures élémentaires dans la portion du rail : T moy = 1 V V T v . dv
    Figure imgb0012
  • Le passage dans la zone de conditionnement thermique s'accompagne d'un transfert de chaleur égal à la quantité de chaleur nécessaire pour amener le tronçon de rail à une température moyenne égale à +/- 5°C près, et de préférence à +/-3°C près, et de préférence à +/-2°C près, et de manière particulièrement préférée à +/-1°C près, et de préférence exacte, à une température de consigne prédéterminée du lieu d'immobilisation, à la sortie de la zone de conditionnement thermique.
  • Dans la mesure où la transition entre la sortie de la zone de conditionnement thermique et la zone d'immobilisation est de courte durée, on peut considérer que les échanges thermiques entre le rail et l'environnement sont faibles. Dès lors, la modification de la température d'une région superficielle de la portion du rail traversant la zone de conditionnement thermique se traduit par un transfert d'une quantité de chaleur égale à la quantité de chaleur nécessaire pour amener le tronçon de rail, dans des conditions adiabatiques, à une température d'homogénéisation égale à une température comprise dans intervalle de tolérance prédéterminé, de préférence de +/-5°C, de préférence de +/-3°C, de préférence de +/-2°C, de préférence de +/-1°C autour de, et de préférence exacte à, une température de consigne prédéterminée.
  • En d'autres termes, la zone de conditionnement thermique est le lieu d'un transfert d'énergie thermique qui peut être positif ou négatif, et dont la valeur ΔE est égale à la différence entre l'énergie thermique EA du rail avant l'entrée dans la zone de conditionnement thermique et l'énergie thermique EN du rail dans un état idéal à une température homogène égale à la température neutre TN (ou à la différence entre l'énergie thermique EA du rail avant l'entrée dans la zone de conditionnement thermique et l'énergie thermique Ec du rail dans un état cible à une température homogène égale à une température cible TC égale à la température neutre TN à +/- 5°C près, et de préférence à +/-3°C près, et de préférence à +/-2°C près, et de manière particulièrement préférée à +/-1°C près, et de préférence exacte). En faisant l'hypothèse que le rail se trouve en équilibre thermique avec son environnement avant l'entrée dans la zone de conditionnement thermique, donc à une température homogène égale à la température ambiante TA , on peut écrire : { E N = C . ρ . V . T N E A = C . ρ . V . T A Δ E = E N E A = C . ρ . V . T N T A
    Figure imgb0013
  • De préférence, le dispositif d'échange thermique est commandé en fonction d'une ou plusieurs variables de commande, incluant une ou plusieurs des variables mesurées ou estimées suivantes : une température de la portion du rail à l'entrée dans la zone de conditionnement thermique, une température de la portion du rail à la sortie de la zone de conditionnement thermique, une température de la portion du rail dans la zone de conditionnement thermique, une température de la portion du rail au niveau de la zone d'immobilisation, une température de la portion rail après la zone d'immobilisation, une température ambiante extérieure, une vitesse de déplacement de la machine ferroviaire, une vitesse de déplacement du rail par rapport au dispositif de conditionnement thermique, une durée de passage dans la zone de conditionnement thermique, un écart entre une température de consigne et une température mesurée de la portion du rail avant conditionnement thermique, un écart entre une température de consigne et une température mesurée de la portion du rail après conditionnement thermique, un écart entre une température de consigne et une température mesurée de la portion du rail durant l'apport de la chaleur, un écart entre une température de consigne et une température de la portion du rail au niveau de la zone d'immobilisation, un écart entre une température de consigne et une température de la portion rail après la zone d'immobilisation, une humidité ambiante, ou une vitesse de vent.
  • Suivant un mode de réalisation, l'on mesure une ou plusieurs des températures suivantes :
    • au moins une température de la portion du rail après l'apport de chaleur à l'aide d'au moins un thermomètre (par exemple un pyromètre ou un thermocouple) disposé au niveau d'une zone de sortie de la zone de conditionnement thermique ou derrière la zone de conditionnement thermique dans la direction de travail ;
    • au moins une température de la portion du rail avant l'apport de chaleur à l'aide d'au moins un thermomètre (par exemple un pyromètre ou un thermocouple) disposé au niveau d'une zone d'entrée de la zone de conditionnement thermique ou devant la zone de conditionnement thermique dans la direction de travail ;
    • au moins une température de la portion du rail durant l'apport de chaleur à l'aide d'au moins un thermomètre (par exemple un pyromètre ou un thermocouple) disposé à l'intérieur de la zone de conditionnement thermique ;
    • au moins une température de la portion du rail après l'immobilisation, à l'aide d'au moins un thermomètre (par exemple un pyromètre ou un thermocouple) disposé au niveau de la zone d'immobilisation ou après la zone d'immobilisation dans la direction de travail.
  • Suivant un mode de réalisation, la portion du rail traversant la zone de conditionnement thermique est soulevée par rapport à la voie ferrée. On peut prévoir le cas échéant que la machine ferroviaire comprenne un dispositif de positionnement de la portion de rail sur la voie, situé entre le dispositif de conditionnement thermique et la zone d'immobilisation de la portion de rail sur une traverse de la voie. Dans cette hypothèse, le dispositif de positionnement doit de préférence être compact, pour que la zone de positionnement correspondante soit courte.
  • Alternativement, le positionnement de la portion de rail sur la voie peut être fait dans la zone de conditionnement thermique.
  • Suivant un autre mode de réalisation alternatif, la portion du rail traversant la zone de conditionnement thermique repose sur une traverse de la voie ferrée. L'immobilisation de la portion du rail sur la traverse est l'opération qui succède immédiatement à la traversée de la zone de conditionnement thermique par la même portion du rail.
  • De préférence, on modifie la température d'une région superficielle de la portion du rail traversant la zone de conditionnement thermique, par échange thermique avec une source de chaleur, chaude ou froide, notamment par rayonnement thermique, conduction thermique et/ou convection, ou par courant électrique alternatif induit ou généré dans la portion de rail.
  • Suivant un autre aspect de l'invention, celle-ci a trait à une machine ferroviaire comportant :
    • des moyens de traction aptes à déplacer la machine ferroviaire dans une direction de travail à une vitesse de fonctionnement prédéterminée de 500 m/heure,
    • au moins un dispositif de conditionnement thermique comportant au moins une zone de conditionnement thermique disposée de manière qu'à chaque instant, lorsque la machine ferroviaire (4) se déplace dans la direction de travail (100) à la vitesse de fonctionnement prédéterminée, une portion du rail, non fixée à une traverse, traverse la zone de conditionnement thermique ; le dispositif de conditionnement thermique étant apte à modifier une température d'une région superficielle de la portion du rail traversant la zone de conditionnement thermique, en générant une distribution de température non homogène dans la portion de rail ;
    • une zone d'immobilisation de la portion du rail sur une traverse de la voie ferrée, située au niveau d'un bogie derrière la zone de conditionnement thermique dans la direction de travail, la zone d'immobilisation étant positionnée à moins de 5 mètres de la zone de conditionnement thermique.
  • De préférence, le dispositif de conditionnement thermique est apte à apporter à la portion de rail traversant la zone de conditionnement thermique et/ou apte à extraire de la portion de rail traversant la zone de conditionnement thermique, une quantité de chaleur supérieure suffisante pour augmenter et/ou diminuer d'au moins 5°C la température moyenne de la portion de rail, pour un rail UIC60, lorsque la machine ferroviaire avance dans la direction de travail à la vitesse de fonctionnement prédéterminée.
  • Suivant un mode de réalisation, la machine ferroviaire comporte des moyens de modification de la température d'une région superficielle de la portion du rail traversant la zone de conditionnement thermique, par courant électrique alternatif induit ou conduit dans la portion de rail, ou par échange thermique avec une source de chaleur, chaude ou froide, notamment par rayonnement thermique, conduction thermique et/ou convection.
  • BREVE DESCRIPTION DES FIGURES
  • D'autres caractéristiques et avantages de l'invention ressortiront à la lecture de la description qui suit, en référence aux figures annexées, qui illustrent :
    • la figure 1, une vue schématique d'un chantier de pose d'un rail de voie de chemin de fer, selon le procédé de l'invention ;
    • la figure 2, une vue schématique de détail du chantier de la figure 1, illustrant le conditionnement thermique et la fixation d'une portion de rail suivant le procédé de l'invention ;
  • Pour plus de clarté, les éléments identiques ou similaires sont repérés par des signes de référence identiques sur l'ensemble des figures.
  • DESCRIPTION DÉTAILLÉE DE MODES DE REALISATION
  • Sur la figure 1 est illustrée une vue globale d'un chantier de renouvellement d'une voie de chemin de fer 2, chantier sur lequel on procède, au moyen d'un train de renouvellement 4 (représenté partiellement), à la dépose d'anciens rails 6 (secteur avant) et d'anciennes traverses 8 et à leur remplacement par de nouvelles traverses 10 et de nouveaux rails 12, le tout en continu au fur et à mesure de l'avancée du train de renouvellement 4 à vitesse constante dans une direction de travail 100. Le train de renouvellement 4 comporte des wagons 16 reposant sur des bogies 18, 20 qui roulent sur les anciens rails 6 en partie avant du train de renouvellement 4 et sur les nouveaux rails 12 en partie arrière du train de renouvellement 4. Une partie médiane du train de renouvellement 4 repose quant à elle sur des chenilles 22 qui, en l'absence de rails sur la voie 2 dans cette partie du chantier, roulent directement sur le ballast 24 et les anciennes traverses 8 avant leur dépose.
  • Sur un tronçon avant du chantier, des outils permettent de désolidariser les anciens rails 6 des traverses 8. Au fur et à mesure de leur démontage, les anciens rails 6 sont soulevés et reposés sur le ballast 24 sur les côtés de la voie. Sur le tronçon suivant du chantier, les anciennes traverses 8 sont à nu, ce qui permet de procéder à leur dépose à l'aide d'un groupe d'outils de dépose et leur remplacement par les nouvelles traverses 10 à l'aide d'un groupe d'outils de pose. Les nouveaux rails 12, qui, avant le passage du train de renouvellement 4, ont été disposés au sol de part et d'autre de la voie 2, sur des galets pour permettre une dilatation thermique du rail libre de contrainte vers l'avant du train, sont soulevés et positionnés en respectant la géométrie souhaitée de la voie 2, avant d'être posés sur les nouvelles traverses 10. L'immobilisation des nouveaux rails 12 est effectuée par le poids de la machine ferroviaire au niveau de la zone d'immobilisation 26, appelée également zone d'ancrage, située au niveau d'un bogie 20, en partie arrière du train de renouvellement 4. De façon connue, la fixation proprement dite des nouveaux rails 12 est effectuée en aval, à l'aide d'attaches.
  • Afin d'éviter ou de limiter le risque de détérioration de la voie sous l'effet des variations des conditions climatiques ou météorologiques, il est prévu de procéder à l'immobilisation des rails nouveaux ou rénovés 12 sur les traverses en portant ces profilés métalliques à une température de consigne, dite « neutre ».
  • Dans ce but, le tronçon de rail nouveau ou rénové à poser 12 est porté à une température de consigne dans une zone de conditionnement thermique 30 d'un dispositif de conditionnement thermique 32, la zone de conditionnement thermique 30 étant située en avant et à proximité de la zone d'immobilisation 26 du rail sur une ou plusieurs traverses 10, voire directement contiguë à la zone d'immobilisation 26. Le cas échéant, la zone d'immobilisation 26 proprement dite peut être précédée d'une zone de positionnement du rail, qui peut être située entre la zone de conditionnement thermique 30 et la zone d'immobilisation 26 (dans l'hypothèse où le rail est soulevé dans la zone de conditionnement thermique) ou en amont de la zone de conditionnement thermique (dans l'hypothèse où le rail repose déjà sur les nouvelles traverses 10 dans la zone de conditionnement thermique 30). Alternativement, la zone de positionnement du rail coïncide avec la zone d'immobilisation 26 ou la zone de conditionnement thermique 30.
  • Lorsque l'intervention sur le chantier a lieu à un moment où la température ambiante est inférieure à la température consignée dite « neutre », le conditionnement thermique comporte un chauffage du rail, le dispositif de conditionnement thermique 30 est aménagé en dispositif de chauffage, la zone de conditionnement thermique 30 étant alors une zone de chauffage. Ce chauffage peut être réalisé les moyens habituellement utilisés, qui ont en commun de ne pas générer une répartition homogène de la température dans le rail, mais au contraire d'engendrer une différence de température significative entre certaines zones chauffées à la surface du rail ou à proximité de la surface du rail d'une part, et des zones moins chauffées situées au coeur du rail. Le chauffage peut notamment être réalisé par induction électrique dans le rail, par aspersion d'eau chaude, par rayonnement infrarouge, ou par exposition à un fluide caloporteur (eau, air, vapeur, gaz de combustion, flamme).
  • À l'inverse, lorsque la température ambiante est supérieure à la température consignée dite « neutre », le conditionnement thermique comporte un refroidissement du rail, le dispositif de conditionnement thermique 30 est aménagé en dispositif de refroidissement, la zone de conditionnement thermique 30 étant alors une zone de refroidissement. Ce refroidissement peut notamment être effectué par exposition à un fluide caloporteur.
  • De manière remarquable, la zone d'immobilisation 26 est positionnée par rapport au dispositif de conditionnement thermique 32 de manière telle que lorsque le train de renouvellement 4 avance dans la direction de travail 100 à la vitesse de fonctionnement nominale, la portion du rail ayant quitté le dispositif de conditionnement thermique 32 avec une distribution de température non homogène atteint sa position d'immobilisation sur la traverse dans la zone d'immobilisation 26 avant que soit intervenue une homogénéisation de la distribution de la température dans une section transversale de la portion de rail.
  • A titre d'exemple, la zone d'immobilisation 26 se trouve à moins de cinq mètres de la zone de conditionnement thermique 30, pour un train de renouvellement circulant à une vitesse nominale de 500 m/heure, de sorte qu'une portion du rail atteint la zone d'immobilisation 26 moins de 36 secondes après avoir quitté la zone de conditionnement thermique 30.
  • En pratique, on a intérêt à réduire au maximum la distance entre la sortie de la zone de conditionnement thermique 30 et la zone d'immobilisation 26, afin de simplifier le redémarrage du train de renouvellement 4 après une période d'arrêt, en réduisant la portion de rail dont la température n'est plus dans l'intervalle de tolérance autorisant son ancrage, et située entre la zone de conditionnement thermique 30 et la zone d'immobilisation 26. On prévoit donc en particulier que la sortie de la zone de conditionnement thermique 30 puisse coïncider spatialement avec la zone d'immobilisation 26.
  • Des thermomètres 34 sont positionnés à l'entrée de la zone de conditionnement thermique 30, à l'intérieur de la zone de conditionnement thermique 30, à la sortie de la zone de conditionnement thermique 30, et le cas échéant directement à proximité de la zone d'immobilisation 26. Ces thermomètres 34 sont reliés à une unité de commande 36, qui reçoit des signaux d'autres capteurs 38 tels que, par exemple : un capteur de vitesse du train de renouvellement 4, un capteur de vitesse du rail à traiter, un capteur de température ambiante, un capteur de pression atmosphérique, et/ou un capteur d'humidité ambiante. L'unité de commande 36 est ainsi apte à mesurer, estimer ou calculer un ou plusieurs des paramètres suivants : une température moyenne de la portion du rail à traiter avant le conditionnement thermique, une température moyenne de la portion du rail après le conditionnement thermique, une température de la portion du rail durant le conditionnement thermique, une température de la portion du rail après son ancrage, une température ambiante extérieure, une vitesse de déplacement du train de renouvellement 4, une vitesse de déplacement du rail par rapport au dispositif de conditionnement thermique, une quantité de chaleur transmise à la portion du rail par le dispositif de conditionnement thermique.
  • Par ailleurs, l'unité de commande 36 contient en mémoire une température de consigne qui peut avoir été saisie ou programmée, et est représentative de la température neutre recherchée dans la zone d'immobilisation 26, ce qui permet le cas échéant une détermination d'un écart entre la température de consigne et une température moyenne de la portion du rail à traiter avant conditionnement thermique, d'un écart entre la température de consigne et une température moyenne de la portion du rail après conditionnement thermique, ou d'un écart entre la température de consigne et une température moyenne de la portion du rail durant le conditionnement thermique. De façon connue, l'unité de commande 36 est apte à moduler la puissance du dispositif de conditionnement thermique.
  • Lorsque le train de renouvellement 4 avance dans une direction de travail 100, le rail à traiter 12 se déplace, par rapport au dispositif de conditionnement thermique 30, dans la direction opposée, et est guidé de sorte qu'à chaque instant une portion soulevée du rail à traiter 12 traverse la zone de conditionnement thermique 30. Le cas échéant, le positionnement du dispositif de conditionnement thermique est ajusté grâce à des actionneurs ou à un mécanisme de positionnement.
  • On fait ainsi en sorte qu'à chaque instant, et en fonction de l'avancement du train de renouvellement 4, une portion du rail à traiter 12 traverse la zone de conditionnement thermique 30 où, suivant les conditions externes, elle est chauffée ou refroidie par le dispositif de conditionnement thermique 32, de manière à ce que la température moyenne dans la portion du rail en sortie de la zone de conditionnement thermique soit égale à la température de consigne. L'unité de commande 36 détermine par un algorithme de calcul, en fonction de tout ou partie des paramètres discutés précédemment, l'énergie thermique qui doit être transférée au rail à traiter 12 ou qui doit en être extraite pour obtenir cette température moyenne.
  • Dès la sortie de la zone de conditionnement thermique 30, et bien que sa température soit très inhomogène, la portion du rail 12 a atteint l'allongement correspondant à l'allongement d'un rail à une température homogène égale à la température de consigne. La portion du rail traitée 12 pénètre immédiatement ou quasiment immédiatement dans la zone d'immobilisation 26, où l'on procède à son immobilisation sur une traverse 10 de la voie ferrée, moins de 50 secondes, et de préférence moins de 30 secondes après la sortie de la zone de conditionnement thermique 30. Dans ce court laps de temps, les pertes par échange convectif avec l'air ambiant sont négligeables.
  • Naturellement, les exemples représentés sur les figures et discutés cidessus ne sont donnés qu'à titre illustratif et non limitatif.
  • Le mode de conditionnement thermique des rails qui a été décrit pour une rénovation de voie ferrée avec remplacement des rails, vaut également pour une rénovation de la voie avec replacement des rails anciens, ou pour une première pose, ou encore pour un traitement thermique d'entretien.
  • Ce qui a été décrit pour un train de renouvellement est transposable à une machine ferroviaire autonome ou un train de pose.

Claims (10)

  1. Procédé d'immobilisation d'un rail (12) d'une voie ferrée (2) à l'aide d'une machine ferroviaire (4), suivant lequel :
    - on déplace la machine ferroviaire(4) dans une direction de travail (100), de manière qu'à chaque instant une portion du rail (12), non fixée à une traverse (8, 10) de la voie ferrée (2), traverse une zone de conditionnement thermique (30) d'un dispositif de conditionnement thermique (32) de la machine ferroviaire (4) ;
    - on modifie une température d'une région superficielle de la portion du rail traversant la zone de conditionnement thermique (30) à l'aide du dispositif de conditionnement thermique (32), en générant une distribution de température non homogène dans la portion de rail ;
    caractérisé en ce que l'on immobilise la portion du rail (12) sur une traverse (10) de la voie ferrée, après modification de la température de la région superficielle de la portion du rail, mais sans attendre que la distribution de la température dans la portion du rail soit homogénéisée.
  2. Procédé d'immobilisation selon la revendication 1, caractérisé en ce que l'on immobilise la portion du rail (12) sur la traverse (10) moins de 50 secondes, de préférence moins de 30 secondes après que la portion du rail (12) a quitté la zone de conditionnement thermique (30).
  3. Procédé d'immobilisation selon l'une quelconque des revendications précédentes, caractérisé en ce que la modification de la température d'une région superficielle de la portion du rail traversant la zone de conditionnement thermique (30) est telle que la température moyenne de la portion de rail à la sortie de la zone de conditionnement thermique (30) est égale à +/- 5°C près, et de préférence à +/-3°C près, et de préférence à +/-2°C près, et de préférence à +/-1°C près, et en préférence exacte, à une température de consigne prédéterminée du lieu de pose.
  4. Procédé d'immobilisation selon l'une quelconque des revendications précédentes, caractérisé en ce que la modification de la température d'une région superficielle de la portion du rail traversant la zone de conditionnement thermique (30) se traduit par un transfert d'une quantité de chaleur égale à la quantité de chaleur nécessaire pour amener le tronçon de rail, dans des conditions adiabatiques, à une température d'homogénéisation égale à une température comprise dans intervalle de tolérance prédéterminé, de préférence de +/-5°C, de préférence de +/-3°C, de préférence de +/-2°C, de préférence de +/-1°C autour de, et de préférence exacte à, une température de consigne prédéterminée.
  5. Procédé d'immobilisation selon l'une quelconque des revendications précédentes, caractérisé en ce que la portion du rail (12) traversant la zone de conditionnement thermique (30) est soulevée par rapport à la voie ferrée (2).
  6. Procédé d'immobilisation selon l'une quelconque des revendications précédentes, caractérisé en ce que la portion du rail (12) traversant la zone de conditionnement thermique (30) repose sur une traverse (8, 10) de la voie ferrée (2).
  7. Procédé d'immobilisation selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on modifie la température d'une région superficielle de la portion du rail traversant la zone de conditionnement thermique (30), par échange thermique avec une source de chaleur, chaude ou froide, notamment par rayonnement thermique, conduction thermique et/ou convection, ou par courant électrique alternatif induit ou généré dans la portion de rail.
  8. Machine ferroviaire (4) comportant :
    - des moyens de traction aptes à déplacer la machine ferroviaire (4) dans une direction de travail (100) à une vitesse de fonctionnement prédéterminée de 500 m/heure ;
    - au moins un dispositif de conditionnement thermique (32) comportant au moins une zone de conditionnement thermique (30), la zone de conditionnement thermique étant disposée de manière qu'à chaque instant, lorsque la machine ferroviaire (4) se déplace dans la direction de travail (100) à la vitesse de fonctionnement prédéterminée, une portion d'un rail (12), non fixée à une traverse (8, 10), traverse la zone de conditionnement thermique (30) ; le dispositif de conditionnement thermique (32) étant apte à modifier une température d'une région superficielle de la portion du rail traversant la zone de conditionnement thermique (30) en générant une distribution de température non homogène dans la portion de rail ;
    - une zone d'immobilisation (26) de la portion du rail (12) sur une traverse (10) de la voie ferrée, située au niveau d'un bogie (20) derrière la zone de conditionnement thermique (30) dans la direction de travail,
    caractérisée en ce que la zone d'immobilisation (26) est positionnée à moins de 5 mètres de la zone de conditionnement thermique.
  9. Machine ferroviaire (4) selon la revendication 8, , caractérisée en ce que le dispositif de conditionnement thermique est apte à apporter à la portion de rail traversant la zone de conditionnement thermique et/ou apte à extraire de la portion de rail traversant la zone de conditionnement thermique, une quantité de chaleur supérieure suffisante pour augmenter et/ou diminuer d'au moins 5°C la température moyenne de la portion de rail, pour un rail UIC60, lorsque la machine ferroviaire avance dans la direction de travail à la vitesse de fonctionnement prédéterminée.
  10. Machine ferroviaire (4) selon l'une quelconque des revendications 8 à 9, caractérisée en ce que la machine ferroviaire comporte des moyens de modification de la température d'une région superficielle de la portion du rail traversant la zone de conditionnement thermique (30), par courant électrique alternatif induit ou conduit dans la portion de rail, ou par échange thermique avec une source de chaleur, chaude ou froide, notamment par rayonnement thermique, conduction thermique et/ou convection.
EP19780250.7A 2018-10-02 2019-10-01 Procédé d'immobilisation d'un rail de voie ferrée avec conditionnement thermique d'une portion de rail, et machine ferroviaire associée Active EP3781744B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1859128A FR3086677B1 (fr) 2018-10-02 2018-10-02 Procede d’immobilisation d’un rail de voie ferree avec conditionnement thermique d’une portion de rail, et machine ferroviaire associee
PCT/EP2019/076658 WO2020070168A1 (fr) 2018-10-02 2019-10-01 Procédé d'immobilisation d'un rail de voie ferrée avec conditionnement thermique d'une portion de rail, et machine ferroviaire associée

Publications (3)

Publication Number Publication Date
EP3781744A1 EP3781744A1 (fr) 2021-02-24
EP3781744C0 EP3781744C0 (fr) 2024-01-03
EP3781744B1 true EP3781744B1 (fr) 2024-01-03

Family

ID=65244078

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19780250.7A Active EP3781744B1 (fr) 2018-10-02 2019-10-01 Procédé d'immobilisation d'un rail de voie ferrée avec conditionnement thermique d'une portion de rail, et machine ferroviaire associée

Country Status (8)

Country Link
US (1) US20210348246A1 (fr)
EP (1) EP3781744B1 (fr)
CN (1) CN112840081B (fr)
AU (1) AU2019353974A1 (fr)
CA (1) CA3114829A1 (fr)
FR (1) FR3086677B1 (fr)
PL (1) PL3781744T3 (fr)
WO (1) WO2020070168A1 (fr)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3266956A (en) * 1963-11-29 1966-08-16 Union Carbide Corp Thermal hardening of rails
US3566796A (en) * 1967-03-28 1971-03-02 Penn Central Co Rail temperature regulating apparatus
US3896734A (en) * 1967-12-29 1975-07-29 Plasser Bahnbaumasch Franz Apparatus for continuously laying track
AT307472B (de) * 1967-12-29 1973-05-25 Plasser Bahnbaumasch Franz Verfahren und Vorrichtung zum kontinuerlich fortschreitenden Verlegen von insbesondere aus stumpfgeschweißten Schienen gebildeten Schienensträngen
US4860727A (en) * 1988-06-16 1989-08-29 Eads Mark E Mobile rail heater and method for expanding rails
EP0467833B1 (fr) 1990-07-13 1994-03-16 Scheuchzer S.A. Procédé de neutralisation en voie des rails de chemin de fer
ATE135064T1 (de) * 1992-01-14 1996-03-15 Scheuchzer Sa Vorrichtung zur auswechslung und neutralisierung von eisenbahnschienen
US5299504A (en) * 1992-06-30 1994-04-05 Technical Rail Products, Incorporated Self-propelled rail heater car with movable induction heating coils
FR2738843B1 (fr) * 1995-09-20 1997-10-17 Sogerail Procede de traitement thermique d'un rail en acier
DE19633758C1 (de) * 1996-08-22 1997-09-11 Thyssen Stahl Ag Verfahren zur Verringerung der Aufklaffwerte im Stegeinsägeversuch von Eisenbahnschienen aus Stahl
US6308635B1 (en) * 1998-09-24 2001-10-30 Kershaw Manufacturing Company Rail heating module and assembly
CN101379333B (zh) * 2005-11-30 2010-11-10 先进智慧财产有限公司 用于铺设长元件的设备和铺设方法
FR2904335B1 (fr) * 2006-07-25 2009-09-18 Tso Sa "procede de substitution de rails sur une ligne a grande vitesse"
US9040882B2 (en) * 2007-09-12 2015-05-26 Inductotherm Corp. Electric induction heating of a rail head with non-uniform longitudinal temperature distribution
FR3020073B1 (fr) * 2015-07-27 2017-01-13 Matisa Materiel Ind Sa Procede de renouvellement de voies ferrees et dispositif pour sa mise en oeuvre

Also Published As

Publication number Publication date
EP3781744A1 (fr) 2021-02-24
CA3114829A1 (fr) 2020-04-09
FR3086677A1 (fr) 2020-04-03
EP3781744C0 (fr) 2024-01-03
US20210348246A1 (en) 2021-11-11
FR3086677B1 (fr) 2020-10-30
PL3781744T3 (pl) 2024-04-08
AU2019353974A1 (en) 2021-05-06
WO2020070168A1 (fr) 2020-04-09
CN112840081A (zh) 2021-05-25
CN112840081B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
EP3329049B1 (fr) Procédé de renouvellement de voies ferrées et dispositif pour sa mise en oeuvre
FR2797627A1 (fr) Perfectionnements apportes aux etenderies de recuisson de verre plat
EP3631089B1 (fr) Procédé de pose d'un rail de voie ferree
EP3781744B1 (fr) Procédé d'immobilisation d'un rail de voie ferrée avec conditionnement thermique d'une portion de rail, et machine ferroviaire associée
EP0467833B1 (fr) Procédé de neutralisation en voie des rails de chemin de fer
DK2631476T5 (en) Method of controlling the structural state of wind turbines
EP2004910B1 (fr) Procede et dispositif de renouvellement de rail ferroviaire en continu
WO2018147755A1 (fr) Procédé de production et de traitement thermique de longueurs rails, et système de mise en oeuvre du procédé
BE1025806B1 (fr) Four comprenant un système de contrôle associé aux paramètres inertiels
RU2785928C2 (ru) Способ крепления рельса рельсового пути с тепловой регулировкой участка рельса и соответствующая рельсовая машина
FR2492274A1 (fr) Procede de traitement thermique de matieres en vrac au four tubulaire rotatif
EP1756489B1 (fr) Procede pour le maintien de la qualite du manteau neigeux d'une installation couverte de sport de glisse, et installation pour la mise en oeuvre d'un tel procede
Flis et al. Energy efficiency analysis of railway turnout heating with a simplified snow model using classical and contactless heating method
FR3093115A1 (fr) Dispositif mobile de chauffage d’un rail de voie ferrée par lampes électriques à rayonnement infrarouge et procédé de chauffage associé
FR2883891A1 (fr) Procede d'optimisation de la substitution de rails de chemin de fer anciens par des rails de chemin de fer neufs
FR2829797A1 (fr) Procede et dispositif destines au refroidissement d'un dispositif catalytique
EP4179147A1 (fr) Procédés initial et final de pose de longs rails
JP2022071042A (ja) 管路内周面裏打工法
WO2022008695A1 (fr) Procédé de renouvellement de rails d'une voie ferrée par des longs rails nouveaux, et train de travaux associé
FR2684097A1 (fr) Procede et dispositif de fabrication en continu de profiles en materiaux composites carbone-carbone de faible section et de grande longueur.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17P Request for examination filed

Effective date: 20201115

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17Q First examination report despatched

Effective date: 20210210

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MATISA MATERIEL INDUSTRIEL S.A.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230906

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019044497

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

U01 Request for unitary effect filed

Effective date: 20240117

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240125