EP3777375B1 - Techniques and apparatuses for providing notifications in short paging messages - Google Patents

Techniques and apparatuses for providing notifications in short paging messages Download PDF

Info

Publication number
EP3777375B1
EP3777375B1 EP19706163.3A EP19706163A EP3777375B1 EP 3777375 B1 EP3777375 B1 EP 3777375B1 EP 19706163 A EP19706163 A EP 19706163A EP 3777375 B1 EP3777375 B1 EP 3777375B1
Authority
EP
European Patent Office
Prior art keywords
notification
paging message
short
paging
reason
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19706163.3A
Other languages
German (de)
French (fr)
Other versions
EP3777375A1 (en
EP3777375C0 (en
Inventor
Muhammad Nazmul ISLAM
Tao Luo
Ozcan Ozturk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of EP3777375A1 publication Critical patent/EP3777375A1/en
Application granted granted Critical
Publication of EP3777375C0 publication Critical patent/EP3777375C0/en
Publication of EP3777375B1 publication Critical patent/EP3777375B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/90Services for handling of emergency or hazardous situations, e.g. earthquake and tsunami warning systems [ETWS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/50Connection management for emergency connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel

Definitions

  • aspects of the present disclosure generally relate to wireless communication, and more particularly to techniques and apparatuses for providing notifications in short paging messages.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like).
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, singlecarrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE).
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP).
  • UMTS Universal Mobile Telecommunications System
  • a wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs).
  • a user equipment (UE) may communicate with a base station (BS) via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP), a radio head, a transmit receive point (TRP), a new radio (NR) BS, a 5G Node B, and/or the like.
  • New radio which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP).
  • 3GPP Third Generation Partnership Project
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL), using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)) on the uplink (UL), as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • MIMO multiple-input multiple-output
  • US 2017/280481 A1 relates to DCIs for paging and/or system information update.
  • the DCI (e.g., DCI for paging and/or system information update) does not indicate a (e.g., any) system information change or indicates no system information change, there may be a PDSCH associated with the DCI.
  • the DCI format for system information update (e.g., system information update without a paging message or WTRU-specific paging message or record) may be separate or different from the DCI format for paging (e.g., for paging with an associated PCH or PDSCH).
  • US 2017/105166 A1 discusses paging mechanisms that may be used to indicate the update of one or more SIBs, which may indicate the need for a WTRU to acquire or reacquire one or more SIBs.
  • WO 2017/ 078023 A1 & EP 3,364,689 A1 relates to a flag in a DCI determining a structure of scheduling information of a PDSCH to which paging information is allocated.
  • S_flag TRUE
  • the MTC terminal judges that the bit information in the bit field after this flag is allocation information of the PDSCH for paging information, and receives paging information based on this allocation information.
  • NTT DOCOMO "Views on Remaining issues of DCI", 3GPP DRAFT; R1-157344 VIEWS ON REMAINING ISSUES OF DCI, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE , vol. RAN WG1, no.
  • S_flag TRUE
  • S_flag FALSE
  • the rest of DCI bits carries system information update, ETWS, CMAS, and EAB without scheduling information of PDSCH.
  • LTE and NR technologies Preferably, these improvements should be applicable to other multiple access technologies and the telecommunication standards that employ these technologies.
  • a method of wireless communication may include receiving a paging grant that includes a short paging message and a notification of a reason that the short paging message was triggered; determining that the paging grant includes the short paging message; and obtaining the notification of the reason that the short paging message was triggered based at least in part on determining that the paging grant includes the short paging message.
  • a user equipment for wireless communication may include memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to receive a paging grant that includes a short paging message and a notification of a reason that the short paging message was triggered; determine that the paging grant includes the short paging message; and obtain the notification of the reason that the short paging message was triggered based at least in part on determining that the paging grant includes the short paging message.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a user equipment, may cause the one or more processors to receive a paging grant that includes a short paging message and a notification of a reason that the short paging message was triggered; determine that the paging grant includes the short paging message; and obtain the notification of the reason that the short paging message was triggered based at least in part on determining that the paging grant includes the short paging message.
  • an apparatus for wireless communication may include means for receiving a paging grant that includes a short paging message and a notification of a reason that the short paging message was triggered; means for determining that the paging grant includes the short paging message; and means for obtaining the notification of the reason that the short paging message was triggered based at least in part on determining that the paging grant includes the short paging message.
  • a method of wireless communication may include determining a reason for triggering a short paging message; and transmitting a paging grant that includes the short paging message and a notification of the reason for triggering the short paging message.
  • a base station for wireless communication may include memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to determine a reason for triggering a short paging message; and transmit a paging grant that includes the short paging message and a notification of the reason for triggering the short paging message.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a base station, may cause the one or more processors to determine a reason for triggering a short paging message; and transmit a paging grant that includes the short paging message and a notification of the reason for triggering the short paging message.
  • an apparatus for wireless communication may include means for determining a reason for triggering a short paging message; and means for transmitting a paging grant that includes the short paging message and a notification of the reason for triggering the short paging message.
  • aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
  • Fig. 1 is a diagram illustrating a network 100 in which aspects of the present disclosure may be practiced.
  • the network 100 may be an LTE network or some other wireless network, such as a 5G or NR network.
  • Wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a NR BS, a Node B, a gNB, a 5G node B (NB), an access point, a transmit receive point (TRP), and/or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term "cell" can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG)).
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • the terms "eNB”, “base station”, “NR BS”, “gNB”, “TRP”, “AP”, "node B", “5GNB”, and “cell” may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the access network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS).
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impact on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts).
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like.
  • a UE may be a cellular phone (e.g., a smart phone), a personal digital assistant (PDA), a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet)), an entertainment device (e.g., a music or video device, or a satellite radio), a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • a cellular phone e.g., a smart phone
  • PDA personal digital assistant
  • WLL wireless local loop
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, such as sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device), or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE).
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular RAT and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another).
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like), a mesh network, and/or the like).
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • a network device 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network device 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • the network device 130 may be included in a 3GPP core network accessible to a UE 120.
  • the network device 130 may include a mobility management entity (MME) (e.g., in a 4G/LTE core network), a device that performs an access and mobility management function (AMF) (e.g., in a 5G/NR core network), and/or the like.
  • MME mobility management entity
  • AMF access and mobility management function
  • the network device 130 may manage authentication, activation, deactivation, and/or mobility functions associated with UE 120.
  • the network device 130 may facilitate the selection of a gateway (e.g., a serving gateway, a packet data network gateway, a user plane function, and/or the like) to serve traffic to and/or from a UE 120.
  • a gateway e.g., a serving gateway, a packet data network gateway, a user plane function, and/or the like
  • the network device 130 may perform operations associated with handing off the UE 120 from a first base station 110 to a second base station 110 when the UE 120 is transitioning from a first cell associated with the first base station 110 to a second cell associated with the second base station 110. Additionally, or alternatively, the network device 130 may select another network device 130, to which the UE 120 is to be handed off when the UE 120 moves out of range of the network device 130. In some aspects, the network device 130 may receive a public warning system (PWS) notification, may process the PWS notification, and may deliver (e.g., transmit) the PWS notification to one or more UEs 120 (e.g., via a base station 110), as described in more detail elsewhere herein.
  • PWS public warning system
  • the PWS notification may include, for example, an earthquake and tsunami warning system (ETWS) notification (also referred to as an ETWS message), a commercial mobile alert system (CMAS) notification (also referred to as a CMAS message), and/or the like.
  • EWS earthquake and tsunami warning system
  • CMAS commercial mobile alert system
  • Fig. 1 is provided merely as an example. Other examples are possible and may differ from what was described with regard to Fig. 1 .
  • Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1 .
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS(s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • CQIs channel quality indicators
  • Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signal
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS)) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS)).
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • the synchronization signals can be generated with location encoding to convey additional information.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • a channel processor may determine reference signal received power (RSRP), received signal strength indicator (RSSI), reference signal received quality (RSRQ), channel quality indicator (CQI), and/or the like.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like), and transmitted to base station 110.
  • control information e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like
  • Transmit processor 264 may also generate reference symbols for one or more reference signals.
  • the symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network device 130 via communication unit 244.
  • Network device 130 may include communication unit 294, controller/processor 290, and memory 292.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component(s) of Fig. 2 may perform one or more techniques associated with providing or receiving notifications in short paging messages, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component(s) of Fig. 2 may perform or direct operations of, for example, process 600 of Fig. 6 , process 700 of Fig. 7 , and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • a scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
  • UE 120 may include means for receiving a paging grant that includes a short paging message and a notification of a reason that the short paging message was triggered; means for determining that the paging grant includes the short paging message; means for obtaining the notification of the reason that the short paging message was triggered based at least in part on determining that the paging grant includes the short paging message; and/or the like.
  • such means may include one or more components of UE 120 described in connection with Fig. 2 .
  • base station 110 may include means for determining a reason for triggering a short paging message; means for transmitting a paging grant that includes the short paging message and a notification of the reason for triggering the short paging message; and/or the like.
  • such means may include one or more components of base station 110 described in connection with Fig. 2 .
  • Fig. 2 is provided merely as an example. Other examples are possible and may differ from what was described with regard to Fig. 2 .
  • Fig. 3 is a diagram illustrating an example 300 relating to providing notifications in short paging messages, in accordance with various aspects of the present disclosure.
  • a UE 120 may access an LTE core network, that includes a network device 130 (e.g., shown as an MME as an example) via a base station 110 (e.g., shown as an eNodeB as an example).
  • a UE 120 may access a 5G/NR core network, that includes a network device 130 (e.g., shown as an AMF as an example) via a base station 110 (e.g., shown as an gNodeB as an example).
  • the UE 120 may be capable of receiving public warning system (PWS) notifications (e.g., an earthquake and tsunami warning system (ETWS) notification, a commercial mobile alert system (CMAS) notification, and/or the like), transmitted via a cell broadcast entity (CBE) 330, a cell broadcast center (CBC) 340, the network device 130, and the base station 110 (e.g., via a 3GPP connection).
  • PWS public warning system
  • CMAS commercial mobile alert system
  • the CBE 330 and the CBC 340 may be part of a cell broadcast service (CBS) network architecture.
  • CBS cell broadcast service
  • a PWS notification may be used to alert the public about emergency events, such as natural emergencies (e.g., earthquakes, tsunamis, hurricanes, floods, tornados, severe weather, severe wind, and/or the like), child abductions, Presidential emergencies, imminent threats, government messages, and/or the like.
  • a PWS notification may include a notification associated with an Earthquake and Tsunami Warning service (ETWS), a notification associated with a commercial mobile alert system (CMAS), a notification and/or message defined by a 3GPP standard (e.g., TS 23.041), and/or the like.
  • a PWS notification may include a message identifier, a serial number, a warning type, warning message contents, and/or the like.
  • information for a PWS notification may be input to and/or generated by the CBE 330, which may transmit such information to one or more CBCs 340.
  • a CBC 340 may generate the PWS notification using the information, and/or may determine a geographic area to which the PWS notification is to be delivered.
  • the CBC 340 may transmit the PWS notification to one or more network devices 130.
  • Different network devices 130 may be associated with different geographic areas, and may facilitate delivery of PWS notifications to UEs 120 located in geographic areas pertaining to the contents of the PWS notification.
  • a network device 130 may transmit a PWS notification to one or more base stations 110 located in the relevant geographic areas, and the base station(s) 110 may transmit PWS notifications to UEs 120 connected to the base station(s) 110.
  • a base station 110 may transmit a paging grant to a UE 120 via a physical downlink control channel (PDCCH), and the paging grant may schedule a paging message for the UE 120.
  • the paging grant may include downlink control information (DCI) content that includes cyclic redundancy check (CRC) bits.
  • DCI downlink control information
  • CRC cyclic redundancy check
  • the CRC bits may be scrambled using a radio network temporary identifier (RNTI), such as a paging RNTI (P-RNTI).
  • RNTI radio network temporary identifier
  • P-RNTI paging RNTI
  • the UE 120 may use a P-RNTI assigned to the UE 120 to descramble the paging grant.
  • the UE 120 may determine that there is a paging message available for the UE 120, and may use scheduling information, included in the paging grant, to obtain the paging message on a physical downlink shared channel (PDSCH).
  • the scheduling information may indicate, for example, a location of the paging message (e.g., in time, frequency, and/or the like), a resource allocation for the paging message, a modulation and coding scheme (MCS) for the paging message, and/or the like.
  • MCS modulation and coding scheme
  • a system information block may be used to carry PWS notifications, such as ETWS notifications, CMAS notifications, and/or the like, and a UE 120 may be notified to read system information (e.g., one or more SIBs) when a PWS notification is available. Similarly, a UE 120 may be notified to read system information when there is a change to system information (e.g., a change to one or more SIBs).
  • SIB system information block
  • the UE 120 may need to obtain and descramble a paging grant carried on the PDCCH, determine whether the paging grant is intended for the UE 120 (e.g., by performing a CRC using a P-RNTI), obtain scheduling information from the paging grant if the paging grant is intended for the UE 120, use the scheduling information to obtain a paging message on the PDSCH, read the paging message to determine that the UE 120 needs to obtain system information, and obtain the system information to obtain the PWS notification and/or the updated system information.
  • This process can be time consuming, and may lead to delays in reception of urgent messages, especially PWS notifications.
  • Fig. 3 is provided as an example. Other examples are possible and may differ from what was described with respect to Fig. 3 .
  • Fig. 4 is a diagram illustrating an example 400 relating to providing notifications in short paging messages, in accordance with various aspects of the present disclosure.
  • a network device 130 may transmit, and a base station 110 may receive, an instruction to trigger a short paging message.
  • the network device 130 may include an MME, an AMF, and/or the like, and the instruction may include an instruction to transmit a PWS notification (e.g., an ETWS notification, a CMAS notification, and/or the like), an instruction to change system information, and/or the like.
  • the base station 110 may trigger a short paging message without receiving an instruction from another device, such as when the base station 110 determines that system information is to be changed (e.g., based on cell load, channel conditions, and/or the like).
  • a short paging message may be a message transmitted in a paging grant, which may reduce delays associated with obtaining the PWS notification and/or the notification indicating a change to system information, as described below.
  • the base station 110 may determine a reason for triggering a short paging message.
  • the reason may include, for example, an ETWS notification, a CMAS notification, a change to system information, and/or the like.
  • the base station 110 may determine the reason for triggering the short paging message based at least in part on information included in an instruction (e.g., received from the network device 130) that triggers transmission of the short paging message. Additionally, or alternatively, the base station 110 may determine the reason for triggering the short paging message based at least in part on a determination by the base station 110 to trigger the short paging message (e.g., without receiving instructions from the network device 130).
  • the base station 110 may transmit, and the UE 120 may receive, a paging grant that includes the short paging message and a notification of the reason for triggering the short paging message.
  • the paging grant may be transmitted on a downlink control channel, such as the PDCCH.
  • the paging grant may include a first portion 420 that indicates whether the paging grant includes a short paging message or scheduling information for obtaining a paging message transmitted via a downlink shared channel, such as the PDSCH.
  • the first portion 420 may include one bit that indicates whether the paging grant includes the short paging message (e.g., when the bit is a first value) or the scheduling information (e.g., when the bit is a second value).
  • the first portion 420 may be a DCI format field of the paging grant, and a value of the first portion 420 may be used to interpret a second portion 425 of the paging grant.
  • the second portion 425 may include DCI content (e.g., a DCI content field) that includes either content of the short paging message or scheduling information for obtaining a separate paging message (e.g., a paging message not included in the paging grant). If the second portion 425 includes the content of the short paging message, then the second portion 425 may include the notification of the reason that the short paging message was triggered.
  • important messages may be transmitted in the paging grant (e.g., in the short paging message), thereby reducing a delay in obtaining the message (e.g., by avoiding obtaining of a separate paging message carried in the PDSCH and/or a SIB) and conserving UE resources and base station resources that would otherwise be used to transmit or obtain a separate paging message.
  • the UE 120 may determine that the paging grant includes the short paging message. For example, the UE 120 may read the first portion 420 (e.g., a DCI format field) of the paging grant, and may determine that the paging grant includes the short paging message based at least in part on a value of the first portion 420.
  • the first portion 420 e.g., a DCI format field
  • the UE 120 may obtain the notification of the reason that the short paging message was triggered based at least in part on determining that the paging grant includes the short paging message. For example, after reading the first portion 420 and determining that the paging grant includes the short paging message, the UE 120 may interpret one or more bits of the second portion 425 to obtain the notification of the reason that the short paging message was triggered.
  • the notification may include a PWS notification, such as an ETWS notification, a CMAS notification, and/or the like, as shown in Fig. 4 . Additionally, or alternatively, the notification may include a notification of a change to system information, as described in more detail below in connection with Fig. 5 .
  • the notification may be two bits in length. In this case, a first value of the two bits may indicate an ETWS notification, a second value of the two bits may indicate a CMAS notification, a third value of the two bits may indicate a change to system information, and a fourth value of the two bits may be reserved and/or may indicate another type of notification.
  • the DCI content may include a first field to indicate a primary reason for the short paging message (e.g., the ETWS notification, the CMAS notification, the notification of the change to system information, and/or the like), and the first field may include two bits.
  • the DCI content may include a second field that indicates additional information associated with the primary reason, such as additional information associated with the ETWS notification, the CMAS notification, the notification of the change to system information, and/or the like.
  • the DCI content may not include these separate fields, and may include a single field to indicate the primary reason and the additional information.
  • the notification (e.g., the DCI content) may include a first set of bits to indicate an ETWS notification, a CMAS notification, or a notification of a change to system information, and may include a second set of bits to indicate additional information regarding the ETWS notification, the CMAS notification, or the notification of the change to system information.
  • the first set of bits and the second set of bits may be jointly encoded.
  • the UE 120 may interpret the second set of bits based at least in part on the first set of bits (e.g., a value of the first set of bits).
  • the notification may indicate (e.g., using the first field) an ETWS notification, and may indicate (e.g., using the second field) a primary type of ETWS notification.
  • the primary type of ETWS notification may indicate only a tsunami (and not an earthquake), only an earthquake (and not a tsunami), or both a tsunami and an earthquake.
  • the primary type of ETWS notification may be indicated using, for example, 2 bits.
  • the notification may indicate (e.g., using the second field) a secondary type of ETWS notification.
  • the secondary type of ETWS notification may indicate, for example, a location of an epicenter of an earthquake or a tsunami, a distance between the epicenter and an area in which the UE 120 and/or the base station 110 is located, a seismic intensity of the earthquake or the tsunami, a time of arrival of the earthquake or the tsunami (e.g., to the area in which the UE 120 and/or the base station 110 is located), other information associated with the earthquake or the tsunami, and/or the like.
  • the notification may indicate (e.g., using the first field) a CMAS notification, and may indicate (e.g., using the second field) a type of CMAS notification.
  • the type of CMAS notification may include, for example, a first type of a CMAS notification that indicates an order issued by a president or highest authority, a second type of CMAS notification that indicates a threat to residents of an area in which the UE 120 and/or the base station 110 is located, a third type of CMAS notification that includes an amber alert indicating a child abduction, and/or the like.
  • the notification may further indicate whether the threat is severe, extreme, and/or the like.
  • the notification may indicate a change to remaining minimum system information (RMSI), other system information (OSI), and/or the like, as described in more detail below in connection with Fig. 5 .
  • RMSI remaining minimum system information
  • OSI system information
  • the UE 120 may obtain the notification without obtaining a paging message carried on a PDSCH. For example, based at least in part on determining that the paging grant includes the short paging message, the UE 120 may obtain the notification in the short paging message, and may prevent searching for and/or obtaining a paging message carried on the PDSCH.
  • the notification may indicate that the notification of the reason for triggering the short paging message is self-contained within the short paging message, and that there is no additional information, regarding the reason, available in a separate paging message and/or a SIB.
  • the UE 120 may not need to search for and/or obtain a separate paging message and/or the SIB, and the base station 110 may not need to transmit a separate paging message and/or transmit additional information in a SIB, thereby conserving resources of the UE 120 and/or the base station 110 (e.g., memory, processing resources, battery power, and/or the like), conserving network resources, reducing a delay in obtaining the notification, and/or the like.
  • resources of the UE 120 and/or the base station 110 e.g., memory, processing resources, battery power, and/or the like
  • conserving network resources reducing a delay in obtaining the notification, and/or the like.
  • the notification may indicate that there is additional information, regarding the reason, available in a separate paging message and/or a SIB.
  • the UE 120 may obtain the separate paging message and/or the SIB and may read contents of the separate paging message and/or the SIB to obtain the additional information.
  • the notification e.g., DCI content
  • the notification may include scheduling information for obtaining the separate paging message (e.g., a time and/or frequency location of the separate paging message, a resource allocation, an MCS, and/or the like).
  • the notification may include an indication of a SIB that includes the additional information (e.g., SIB1, SIB2, SIB3, and/or the like).
  • the UE 120 may perform an operation based at least in part on the notification in the paging grant. As shown in Fig. 4 , in some aspects, performing the operation may include outputting information indicated in the notification. For example, the UE 120 may output information included in the notification (e.g., the reason that the short paging message was triggered) based at least in part on determining that the notification is an ETWS notification or a CMAS notification. In some aspects, the UE 120 may provide the information for display, as shown by reference number 445. Additionally, or alternatively, performing the operation may include obtaining system information, as described in more detail below in connection with Fig. 5 .
  • the UE 120 may perform the operation without obtaining a separate paging message on the PDSCH. In this way, the UE 120 may conserve resources that would otherwise be used to obtain the separate paging message. Furthermore, the base station 110 may conserve resources that would otherwise be used to transmit the separate paging message. Furthermore, network resources may be conserved because such network resources may not need to be used to carry the separate paging message.
  • Fig. 4 is provided as an example. Other examples are possible and may differ from what was described with respect to Fig. 4 .
  • Fig. 5 is a diagram illustrating an example 500 relating to providing notifications in short paging messages, in accordance with various aspects of the present disclosure.
  • Fig. 5 shows example operations that are similar to the example operations described above in connection with Fig. 4 .
  • the operations described in connection with Fig. 4 focus on aspects of an ETWS notification and/or a CMAS operations
  • the operations described in connection with Fig. 5 focus on aspects of a notification of a change to system information.
  • the base station 110 may determine a reason for triggering a short paging message, in a similar manner as described above in connection with Fig. 4 .
  • the base station 110 may determine the reason for triggering the short paging message based at least in part on information included in an instruction (e.g., received from the network device 130) that triggers transmission of the short paging message, a determination by the base station 110 to trigger the short paging message (e.g., without receiving and instructions from the network device 130), and/or the like.
  • the base station 110 may transmit, and the UE 120 may receive, a paging grant that includes the short paging message and a notification of the reason for triggering the short paging message, in a similar manner as described above.
  • the paging grant may include a first portion 515 and a second portion 520, which may correspond to the first portion 420 and the second portion 425, respectively, as described above in connection with Fig. 4 .
  • the UE 120 may determine that the paging grant includes the short paging message, in a similar manner as described above in connection with Fig. 4 .
  • the UE 120 may obtain the notification of the reason that the short paging message was triggered based at least in part on determining that the paging grant includes the short paging message, in a similar manner as described above in connection with Fig. 4 .
  • the notification may include any of the information and/or may take any form described above in connection with Fig. 4 .
  • the notification may include a PWS notification, such as an ETWS notification, a CMAS notification, and/or the like, as described above in connection with Fig. 4 .
  • the notification may include a notification of a change to system information.
  • the notification may indicate (e.g., using a first field) a change to remaining minimum system information (RMSI), other system information (OSI), and/or the like.
  • a first value of the first field e.g., a DCI format field or a DCI content field
  • a second value of the first field may indicate a change to OSI.
  • the notification may indicate (e.g., using the second field) particular system information that has been changed and/or is to be obtained by the UE 120, a particular SIB that has been changed and/or is to be obtained by the UE 120, and/or the like.
  • the notification may directly indicate the change to the system information, such that the UE 120 need not obtain the SIB that carries the system information, thereby conserving resources of the UE 120.
  • the UE 120 may obtain the notification without obtaining a separate paging message carried on the PDSCH, as described above in connection with Fig. 4 .
  • the UE 120 may obtain additional information, regarding the reason for the short paging message, in a separate paging message based at least in part on an indication, in the short paging message, that such additional information is available in the separate paging message, in a similar manner as described above in connection with Fig. 4 .
  • the UE 120 may perform an operation based at least in part on the notification in the paging grant. As shown in Fig. 5 , and by reference number 540, performing the operation may include obtaining system information (e.g., RMSI, OSI, and/or the like). For example, the UE 120 may obtain the system information based at least in part on a determination that the notification is a notification of a change to system information. In this case, the UE 120 may obtain a SIB and may read the system information from the SIB. In some aspects, the UE 120 may perform this operation without obtaining a separate paging message on the PDSCH. In this way, the UE 120 may conserve resources that would otherwise be used to obtain the separate paging message. Furthermore, the base station 110 may conserve resources that would otherwise be used to transmit the separate paging message. Furthermore, network resources may be conserved because such network resources may not need to be used to carry the separate paging message.
  • system information e.g., RMSI, OSI, and/or the
  • Fig. 5 is provided as an example. Other examples are possible and may differ from what was described with respect to Fig. 5 .
  • Fig. 6 is a diagram illustrating an example process 600 performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Example process 600 is an example where a UE (e.g., UE 120 and/or the like) performs operations associated with receiving notifications in short paging messages.
  • a UE e.g., UE 120 and/or the like
  • process 600 may include receiving a paging grant that includes a short paging message and a notification of a reason that the short paging message was triggered (block 610).
  • the UE e.g., using antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, controller/processor 280, and/or the like
  • process 600 may include determining that the paging grant includes the short paging message (block 620).
  • the UE e.g., using controller/processor 280 and/or the like
  • process 600 may include obtaining the notification of the reason that the short paging message was triggered based at least in part on determining that the paging grant includes the short paging message (block 630).
  • the UE e.g., using controller/processor 280 and/or the like
  • Process 600 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the notification is obtained without obtaining a separate paging message on a physical downlink shared channel (PDSCH) based at least in part on determining that the paging grant includes the short paging message.
  • the notification indicates that the UE is to obtain a separate paging message or a system information block to obtain additional information regarding the reason of the short paging message.
  • the paging grant further includes at least one of scheduling information for obtaining the separate paging message or an indication of the system information block that includes the additional information.
  • the notification indicates that the notification of the reason is self-contained in the short paging message and that there is no additional information, regarding the reason of the short paging message, available in at least one of a separate paging message or a system information block.
  • the notification is included in downlink control information (DCI) content included in the paging grant.
  • the paging grant is a paging physical downlink control channel (PDCCH) communication with cyclic redundancy check (CRC) bits that are scrambled with a paging radio network temporary identifier (P-RNTI).
  • the notification includes at least one of: an earthquake and tsunami warning system (ETWS) notification, a commercial mobile alert system (CMAS) notification, a notification of a change to system information, or some combination thereof.
  • the notification is two bits in length.
  • the notification indicates a primary type of earthquake and tsunami warning system (ETWS) notification, wherein the primary type of ETWS notification indicates a tsunami, an earthquake, or a tsunami and an earthquake.
  • the notification indicates a secondary type of earthquake and tsunami warning system (ETWS) notification, wherein the secondary type of ETWS notification indicates at least one of: a location of an epicenter of an earthquake or a tsunami, a distance between the epicenter and an area in which the UE is located, a seismic intensity of the earthquake or the tsunami, a time of arrival of the earthquake or the tsunami, other information associated with the earthquake or the tsunami, or some combination thereof.
  • ETWS earthquake and tsunami warning system
  • the notification indicates at least one of: a first type of a commercial mobile alert system (CMAS) notification that indicates an order issues by a president or highest authority, a second type of CMAS notification that indicates a threat to residents of an area in which the UE is located, wherein the notification further indicates whether the threat is severe or extreme, a third type of CMAS notification that includes an amber alert indicating a child abduction, or some combination thereof.
  • CMAS commercial mobile alert system
  • the notification indicates a change to remaining minimum system information (RMSI) or other system information (OSI).
  • the notification includes a first set of bits to indicate an earthquake and tsunami warning system (ETWS) notification, a commercial mobile alert system (CMAS) notification, or a notification of a change to system information, and wherein the notification further includes a second set of bits to indicate additional information regarding the ETWS notification, the CMAS notification, or the notification of the change to system information.
  • the first set of bits and the second set of bits are jointly encoded.
  • the UE is configured to interpret the second set of bits based at least in part on the first set of bits.
  • the UE may perform an operation based at least in part on the notification.
  • the operation is performed without obtaining a separate paging message on a physical downlink shared channel (PDSCH) based at least in part on determining that the paging grant includes the short paging message.
  • PDSCH physical downlink shared channel
  • performing the operation comprises outputting information indicated in the notification based at least in part on a determination that the notification is an earthquake and tsunami warning system (ETWS) notification or a commercial mobile alert system (CMAS) notification.
  • outputting the information indicated in the notification comprises providing the information for display.
  • performing the operation comprises obtaining a system information block based at least in part on a determination that the notification is a notification of a change to system information.
  • process 600 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 6 . Additionally, or alternatively, two or more of the blocks of process 600 may be performed in parallel.
  • Fig. 7 is a diagram illustrating an example process 700 performed, for example, by a base station, in accordance with various aspects of the present disclosure.
  • Example process 700 is an example where a base station (e.g., base station 110 and/or the like) performs operations associated with providing notifications in short paging messages.
  • a base station e.g., base station 110 and/or the like
  • process 700 may include determining a reason for triggering a short paging message (block 710).
  • the base station e.g., using controller/processor 240 and/or the like
  • process 700 may include transmitting a paging grant that includes the short paging message and a notification of the reason for triggering the short paging message (block 720).
  • the base station e.g., using controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like
  • Process 700 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the reason for triggering the short paging message is determined based at least in part on information included in an instruction that triggers the short paging message.
  • the notification indicates that a user equipment (UE) is to obtain a separate paging message or a system information block to obtain additional information regarding the reason of the short paging message.
  • the paging grant further includes scheduling information for obtaining the separate paging message or an indication of the system information block that includes the additional information.
  • the notification indicates that the notification of the reason is self-contained in the short paging message and that there is no additional information, regarding the reason of the short paging message, available in at least one of a separate paging message or a system information block.
  • the notification is included in downlink control information (DCI) content included in the paging grant.
  • the notification includes at least one of: an earthquake and tsunami warning system (ETWS) notification, a commercial mobile alert system (CMAS) notification, a notification of a change to system information, or some combination thereof.
  • the notification is two bits in length.
  • the notification indicates a secondary type of earthquake and tsunami warning system (ETWS) notification, wherein the secondary type of ETWS notification indicates at least one of: a location of an epicenter of an earthquake or a tsunami, a distance between the epicenter and an area in which the base station is located, a seismic intensity of the earthquake or the tsunami, a time of arrival of the earthquake or the tsunami, other information associated with the earthquake or the tsunami, or some combination thereof.
  • ETWS earthquake and tsunami warning system
  • the notification indicates at least one of: a first type of a commercial mobile alert system (CMAS) notification that indicates an order issues by a president or highest authority, a second type of CMAS notification that indicates a threat to residents of an area in which the base station is located, wherein the notification further indicates whether the threat is severe or extreme, a third type of CMAS notification that includes an amber alert indicating a child abduction, or some combination thereof.
  • CMAS commercial mobile alert system
  • the notification indicates a change to remaining minimum system information (RMSI) or other system information (OSI).
  • the notification includes a first set of bits to indicate an earthquake and tsunami warning system (ETWS) notification, a commercial mobile alert system (CMAS) notification, or a notification of a change to system information, and wherein the notification further includes a second set of bits to indicate additional information regarding the ETWS notification, the CMAS notification, or the notification of the change to system information.
  • the first set of bits and the second set of bits are jointly encoded.
  • process 700 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 7 . Additionally, or alternatively, two or more of the blocks of process 700 may be performed in parallel.
  • the term component is intended to be broadly construed as hardware, firmware, or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, or a combination of hardware and software.
  • satisfying a threshold may refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • "at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c).

Description

    FIELD OF THE DISCLOSURE
  • Aspects of the present disclosure generally relate to wireless communication, and more particularly to techniques and apparatuses for providing notifications in short paging messages.
  • BACKGROUND
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like). Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, singlecarrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE). LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP).
  • A wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs). A user equipment (UE) may communicate with a base station (BS) via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP), a radio head, a transmit receive point (TRP), a new radio (NR) BS, a 5G Node B, and/or the like.
  • The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user equipment to communicate on a municipal, national, regional, and even global level. New radio (NR), which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP). NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL), using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)) on the uplink (UL), as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
    US 2017/280481 A1 relates to DCIs for paging and/or system information update. If the DCI (e.g., DCI for paging and/or system information update) does not indicate a (e.g., any) system information change or indicates no system information change, there may be a PDSCH associated with the DCI. Whereas, the DCI format for system information update (e.g., system information update without a paging message or WTRU-specific paging message or record) may be separate or different from the DCI format for paging (e.g., for paging with an associated PCH or PDSCH).
    US 2017/105166 A1 discusses paging mechanisms that may be used to indicate the update of one or more SIBs, which may indicate the need for a WTRU to acquire or reacquire one or more SIBs. It is suggested to modify the paging mechanism, for example, by eliminating the need to acquire and/or read a paging message PDSCH in the same subframe as a paging in a DCI format.
    WO 2017/ 078023 A1 & EP 3,364,689 A1 relates to a flag in a DCI determining a structure of scheduling information of a PDSCH to which paging information is allocated. When the flag included in the DCI is "1" (S_flag =TRUE), the MTC terminal judges that the bit information in the bit field after this flag is allocation information of the PDSCH for paging information, and receives paging information based on this allocation information. When the flag included in the DCI is "0" (S_flag = FALSE), a structure can be employed, in which modification order information, including the content of modification of system information, is configured in a bit field that is configured after the flag in the DCI. NTT DOCOMO: "Views on Remaining issues of DCI", 3GPP DRAFT; R1-157344 VIEWS ON REMAINING ISSUES OF DCI, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE , vol. RAN WG1, no. Anaheim, USA; 20151115 - 20151122 15 November 2015 (2015-11-15), XP051003533 relates to a UE monitoring in RRC idle a DCI type including an indication (e.g. S_flag) used with P-RNTI for paging. If S_flag=TRUE, the rest of DCI bits carries scheduling information of PDSCH for paging message. If S_flag=FALSE, the rest of DCI bits carries system information update, ETWS, CMAS, and EAB without scheduling information of PDSCH.
    However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in LTE and NR technologies. Preferably, these improvements should be applicable to other multiple access technologies and the telecommunication standards that employ these technologies.
  • SUMMARY
  • Such a demand is addressed by the invention recited in the independent claims. Advantageous embodiments are subject to the dependent claims. In some aspects, a method of wireless communication, performed by a user equipment (UE), may include receiving a paging grant that includes a short paging message and a notification of a reason that the short paging message was triggered; determining that the paging grant includes the short paging message; and obtaining the notification of the reason that the short paging message was triggered based at least in part on determining that the paging grant includes the short paging message.
  • In some aspects, a user equipment for wireless communication may include memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to receive a paging grant that includes a short paging message and a notification of a reason that the short paging message was triggered; determine that the paging grant includes the short paging message; and obtain the notification of the reason that the short paging message was triggered based at least in part on determining that the paging grant includes the short paging message.
  • In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a user equipment, may cause the one or more processors to receive a paging grant that includes a short paging message and a notification of a reason that the short paging message was triggered; determine that the paging grant includes the short paging message; and obtain the notification of the reason that the short paging message was triggered based at least in part on determining that the paging grant includes the short paging message.
  • In some aspects, an apparatus for wireless communication may include means for receiving a paging grant that includes a short paging message and a notification of a reason that the short paging message was triggered; means for determining that the paging grant includes the short paging message; and means for obtaining the notification of the reason that the short paging message was triggered based at least in part on determining that the paging grant includes the short paging message.
  • In some aspects, a method of wireless communication, performed by a base station, may include determining a reason for triggering a short paging message; and transmitting a paging grant that includes the short paging message and a notification of the reason for triggering the short paging message.
  • In some aspects, a base station for wireless communication may include memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to determine a reason for triggering a short paging message; and transmit a paging grant that includes the short paging message and a notification of the reason for triggering the short paging message.
  • In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a base station, may cause the one or more processors to determine a reason for triggering a short paging message; and transmit a paging grant that includes the short paging message and a notification of the reason for triggering the short paging message.
  • In some aspects, an apparatus for wireless communication may include means for determining a reason for triggering a short paging message; and means for transmitting a paging grant that includes the short paging message and a notification of the reason for triggering the short paging message.
  • Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and processing system as substantially described herein with reference to and as illustrated by the accompanying drawings and specification.
  • The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purpose of illustration and description, and not as a definition of the limits of the claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • So that the manner in which the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
    • Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
    • Fig. 2 is a block diagram conceptually illustrating an example of a base station in communication with a user equipment (UE) in a wireless communication network, in accordance with various aspects of the present disclosure.
    • Figs. 3-5 are diagrams illustrating examples relating to providing notifications in short paging messages, in accordance with various aspects of the present disclosure.
    • Figs. 6 and 7 are diagrams illustrating example processes relating to providing notifications in short paging messages, in accordance with various aspects of the present disclosure.
    DETAILED DESCRIPTION
  • Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
  • Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as "elements"). These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
  • It is noted that while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
  • Fig. 1 is a diagram illustrating a network 100 in which aspects of the present disclosure may be practiced. The network 100 may be an LTE network or some other wireless network, such as a 5G or NR network. Wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a NR BS, a Node B, a gNB, a 5G node B (NB), an access point, a transmit receive point (TRP), and/or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term "cell" can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG)). A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms "eNB", "base station", "NR BS", "gNB", "TRP", "AP", "node B", "5GNB", and "cell" may be used interchangeably herein.
  • In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the access network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS). A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in Fig. 1, a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impact on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts).
  • UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like. A UE may be a cellular phone (e.g., a smart phone), a personal digital assistant (PDA), a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet)), an entertainment device (e.g., a music or video device, or a satellite radio), a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, such as sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device), or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE). UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
  • In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another). For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like), a mesh network, and/or the like. In this case, the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • A network device 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network device 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul. In some aspects, the network device 130 may be included in a 3GPP core network accessible to a UE 120.
  • In some aspects, the network device 130 may include a mobility management entity (MME) (e.g., in a 4G/LTE core network), a device that performs an access and mobility management function (AMF) (e.g., in a 5G/NR core network), and/or the like. In this case, the network device 130 may manage authentication, activation, deactivation, and/or mobility functions associated with UE 120. For example, the network device 130 may facilitate the selection of a gateway (e.g., a serving gateway, a packet data network gateway, a user plane function, and/or the like) to serve traffic to and/or from a UE 120. Additionally, or alternatively, the network device 130 may perform operations associated with handing off the UE 120 from a first base station 110 to a second base station 110 when the UE 120 is transitioning from a first cell associated with the first base station 110 to a second cell associated with the second base station 110. Additionally, or alternatively, the network device 130 may select another network device 130, to which the UE 120 is to be handed off when the UE 120 moves out of range of the network device 130. In some aspects, the network device 130 may receive a public warning system (PWS) notification, may process the PWS notification, and may deliver (e.g., transmit) the PWS notification to one or more UEs 120 (e.g., via a base station 110), as described in more detail elsewhere herein. The PWS notification (also referred to as a PWS message) may include, for example, an earthquake and tsunami warning system (ETWS) notification (also referred to as an ETWS message), a commercial mobile alert system (CMAS) notification (also referred to as a CMAS message), and/or the like.
  • As indicated above, Fig. 1 is provided merely as an example. Other examples are possible and may differ from what was described with regard to Fig. 1.
  • Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
  • At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS(s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS)) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS)). A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively. According to various aspects described in more detail below, the synchronization signals can be generated with location encoding to convey additional information.
  • At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. A channel processor may determine reference signal received power (RSRP), received signal strength indicator (RSSI), reference signal received quality (RSRQ), channel quality indicator (CQI), and/or the like.
  • On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like), and transmitted to base station 110. At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network device 130 via communication unit 244. Network device 130 may include communication unit 294, controller/processor 290, and memory 292.
  • In some aspects, one or more components of UE 120 may be included in a housing. Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component(s) of Fig. 2 may perform one or more techniques associated with providing or receiving notifications in short paging messages, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component(s) of Fig. 2 may perform or direct operations of, for example, process 600 of Fig. 6, process 700 of Fig. 7, and/or other processes as described herein. Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively. A scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
  • In some aspects, UE 120 may include means for receiving a paging grant that includes a short paging message and a notification of a reason that the short paging message was triggered; means for determining that the paging grant includes the short paging message; means for obtaining the notification of the reason that the short paging message was triggered based at least in part on determining that the paging grant includes the short paging message; and/or the like. In some aspects, such means may include one or more components of UE 120 described in connection with Fig. 2.
  • In some aspects, base station 110 may include means for determining a reason for triggering a short paging message; means for transmitting a paging grant that includes the short paging message and a notification of the reason for triggering the short paging message; and/or the like. In some aspects, such means may include one or more components of base station 110 described in connection with Fig. 2.
  • As indicated above, Fig. 2 is provided merely as an example. Other examples are possible and may differ from what was described with regard to Fig. 2.
  • Fig. 3 is a diagram illustrating an example 300 relating to providing notifications in short paging messages, in accordance with various aspects of the present disclosure.
  • As shown by reference number 310, a UE 120 may access an LTE core network, that includes a network device 130 (e.g., shown as an MME as an example) via a base station 110 (e.g., shown as an eNodeB as an example). As shown by reference number 320, a UE 120 may access a 5G/NR core network, that includes a network device 130 (e.g., shown as an AMF as an example) via a base station 110 (e.g., shown as an gNodeB as an example). In either case, the UE 120 may be capable of receiving public warning system (PWS) notifications (e.g., an earthquake and tsunami warning system (ETWS) notification, a commercial mobile alert system (CMAS) notification, and/or the like), transmitted via a cell broadcast entity (CBE) 330, a cell broadcast center (CBC) 340, the network device 130, and the base station 110 (e.g., via a 3GPP connection). In some aspects, the CBE 330 and the CBC 340 may be part of a cell broadcast service (CBS) network architecture.
  • A PWS notification may be used to alert the public about emergency events, such as natural emergencies (e.g., earthquakes, tsunamis, hurricanes, floods, tornados, severe weather, severe wind, and/or the like), child abductions, Presidential emergencies, imminent threats, government messages, and/or the like. For example, a PWS notification may include a notification associated with an Earthquake and Tsunami Warning service (ETWS), a notification associated with a commercial mobile alert system (CMAS), a notification and/or message defined by a 3GPP standard (e.g., TS 23.041), and/or the like. In some aspects, a PWS notification may include a message identifier, a serial number, a warning type, warning message contents, and/or the like.
  • In an emergency, information for a PWS notification may be input to and/or generated by the CBE 330, which may transmit such information to one or more CBCs 340. A CBC 340 may generate the PWS notification using the information, and/or may determine a geographic area to which the PWS notification is to be delivered. The CBC 340 may transmit the PWS notification to one or more network devices 130. Different network devices 130 may be associated with different geographic areas, and may facilitate delivery of PWS notifications to UEs 120 located in geographic areas pertaining to the contents of the PWS notification. A network device 130 may transmit a PWS notification to one or more base stations 110 located in the relevant geographic areas, and the base station(s) 110 may transmit PWS notifications to UEs 120 connected to the base station(s) 110.
  • In 4G/LTE, a base station 110 may transmit a paging grant to a UE 120 via a physical downlink control channel (PDCCH), and the paging grant may schedule a paging message for the UE 120. For example, the paging grant may include downlink control information (DCI) content that includes cyclic redundancy check (CRC) bits. The CRC bits may be scrambled using a radio network temporary identifier (RNTI), such as a paging RNTI (P-RNTI). The UE 120 may use a P-RNTI assigned to the UE 120 to descramble the paging grant. If the CRC passes after such descrambling, then the UE 120 may determine that there is a paging message available for the UE 120, and may use scheduling information, included in the paging grant, to obtain the paging message on a physical downlink shared channel (PDSCH). The scheduling information may indicate, for example, a location of the paging message (e.g., in time, frequency, and/or the like), a resource allocation for the paging message, a modulation and coding scheme (MCS) for the paging message, and/or the like.
  • In 4G/LTE, a system information block (SIB) may be used to carry PWS notifications, such as ETWS notifications, CMAS notifications, and/or the like, and a UE 120 may be notified to read system information (e.g., one or more SIBs) when a PWS notification is available. Similarly, a UE 120 may be notified to read system information when there is a change to system information (e.g., a change to one or more SIBs). In these cases, to obtain the PWS notification and/or the updated system information, the UE 120 may need to obtain and descramble a paging grant carried on the PDCCH, determine whether the paging grant is intended for the UE 120 (e.g., by performing a CRC using a P-RNTI), obtain scheduling information from the paging grant if the paging grant is intended for the UE 120, use the scheduling information to obtain a paging message on the PDSCH, read the paging message to determine that the UE 120 needs to obtain system information, and obtain the system information to obtain the PWS notification and/or the updated system information. This process can be time consuming, and may lead to delays in reception of urgent messages, especially PWS notifications. Some techniques and apparatuses described herein reduce delays associated with receiving PWS notifications and/or notifications indicating a change to system information.
  • As indicated above, Fig. 3 is provided as an example. Other examples are possible and may differ from what was described with respect to Fig. 3.
  • Fig. 4 is a diagram illustrating an example 400 relating to providing notifications in short paging messages, in accordance with various aspects of the present disclosure.
  • As shown by reference number 405, in some aspects, a network device 130 may transmit, and a base station 110 may receive, an instruction to trigger a short paging message. As described above in connection with Fig. 3, the network device 130 may include an MME, an AMF, and/or the like, and the instruction may include an instruction to transmit a PWS notification (e.g., an ETWS notification, a CMAS notification, and/or the like), an instruction to change system information, and/or the like. In some aspects, the base station 110 may trigger a short paging message without receiving an instruction from another device, such as when the base station 110 determines that system information is to be changed (e.g., based on cell load, channel conditions, and/or the like). A short paging message may be a message transmitted in a paging grant, which may reduce delays associated with obtaining the PWS notification and/or the notification indicating a change to system information, as described below.
  • As shown by reference number 410, the base station 110 may determine a reason for triggering a short paging message. The reason may include, for example, an ETWS notification, a CMAS notification, a change to system information, and/or the like. In some aspects, the base station 110 may determine the reason for triggering the short paging message based at least in part on information included in an instruction (e.g., received from the network device 130) that triggers transmission of the short paging message. Additionally, or alternatively, the base station 110 may determine the reason for triggering the short paging message based at least in part on a determination by the base station 110 to trigger the short paging message (e.g., without receiving instructions from the network device 130).
  • As shown by reference number 415, the base station 110 may transmit, and the UE 120 may receive, a paging grant that includes the short paging message and a notification of the reason for triggering the short paging message. In some aspects, the paging grant may be transmitted on a downlink control channel, such as the PDCCH. As shown, the paging grant may include a first portion 420 that indicates whether the paging grant includes a short paging message or scheduling information for obtaining a paging message transmitted via a downlink shared channel, such as the PDSCH. In some aspects, the first portion 420 may include one bit that indicates whether the paging grant includes the short paging message (e.g., when the bit is a first value) or the scheduling information (e.g., when the bit is a second value).
  • In some aspects, the first portion 420 may be a DCI format field of the paging grant, and a value of the first portion 420 may be used to interpret a second portion 425 of the paging grant. In some aspects, the second portion 425 may include DCI content (e.g., a DCI content field) that includes either content of the short paging message or scheduling information for obtaining a separate paging message (e.g., a paging message not included in the paging grant). If the second portion 425 includes the content of the short paging message, then the second portion 425 may include the notification of the reason that the short paging message was triggered. In this way, important messages may be transmitted in the paging grant (e.g., in the short paging message), thereby reducing a delay in obtaining the message (e.g., by avoiding obtaining of a separate paging message carried in the PDSCH and/or a SIB) and conserving UE resources and base station resources that would otherwise be used to transmit or obtain a separate paging message.
  • As shown by reference number 430, the UE 120 may determine that the paging grant includes the short paging message. For example, the UE 120 may read the first portion 420 (e.g., a DCI format field) of the paging grant, and may determine that the paging grant includes the short paging message based at least in part on a value of the first portion 420.
  • As shown by reference number 435, the UE 120 may obtain the notification of the reason that the short paging message was triggered based at least in part on determining that the paging grant includes the short paging message. For example, after reading the first portion 420 and determining that the paging grant includes the short paging message, the UE 120 may interpret one or more bits of the second portion 425 to obtain the notification of the reason that the short paging message was triggered.
  • In some aspects, the notification may include a PWS notification, such as an ETWS notification, a CMAS notification, and/or the like, as shown in Fig. 4. Additionally, or alternatively, the notification may include a notification of a change to system information, as described in more detail below in connection with Fig. 5. In some aspects, the notification may be two bits in length. In this case, a first value of the two bits may indicate an ETWS notification, a second value of the two bits may indicate a CMAS notification, a third value of the two bits may indicate a change to system information, and a fourth value of the two bits may be reserved and/or may indicate another type of notification.
  • In some aspects, the DCI content may include a first field to indicate a primary reason for the short paging message (e.g., the ETWS notification, the CMAS notification, the notification of the change to system information, and/or the like), and the first field may include two bits. In some aspects, the DCI content may include a second field that indicates additional information associated with the primary reason, such as additional information associated with the ETWS notification, the CMAS notification, the notification of the change to system information, and/or the like. In some aspects, the DCI content may not include these separate fields, and may include a single field to indicate the primary reason and the additional information. In either case, the notification (e.g., the DCI content) may include a first set of bits to indicate an ETWS notification, a CMAS notification, or a notification of a change to system information, and may include a second set of bits to indicate additional information regarding the ETWS notification, the CMAS notification, or the notification of the change to system information. In some aspects, the first set of bits and the second set of bits may be jointly encoded. In this case, the UE 120 may interpret the second set of bits based at least in part on the first set of bits (e.g., a value of the first set of bits).
  • For example, the notification may indicate (e.g., using the first field) an ETWS notification, and may indicate (e.g., using the second field) a primary type of ETWS notification. The primary type of ETWS notification may indicate only a tsunami (and not an earthquake), only an earthquake (and not a tsunami), or both a tsunami and an earthquake. In this case, the primary type of ETWS notification may be indicated using, for example, 2 bits. Additionally, or alternatively, the notification may indicate (e.g., using the second field) a secondary type of ETWS notification. The secondary type of ETWS notification may indicate, for example, a location of an epicenter of an earthquake or a tsunami, a distance between the epicenter and an area in which the UE 120 and/or the base station 110 is located, a seismic intensity of the earthquake or the tsunami, a time of arrival of the earthquake or the tsunami (e.g., to the area in which the UE 120 and/or the base station 110 is located), other information associated with the earthquake or the tsunami, and/or the like.
  • Additionally, or alternatively, the notification may indicate (e.g., using the first field) a CMAS notification, and may indicate (e.g., using the second field) a type of CMAS notification. The type of CMAS notification may include, for example, a first type of a CMAS notification that indicates an order issued by a president or highest authority, a second type of CMAS notification that indicates a threat to residents of an area in which the UE 120 and/or the base station 110 is located, a third type of CMAS notification that includes an amber alert indicating a child abduction, and/or the like. In some aspects, if the type of CMAS notification is the second type, then the notification may further indicate whether the threat is severe, extreme, and/or the like.
  • Additionally, or alternatively, the notification may indicate a change to remaining minimum system information (RMSI), other system information (OSI), and/or the like, as described in more detail below in connection with Fig. 5.
  • In some aspects, the UE 120 may obtain the notification without obtaining a paging message carried on a PDSCH. For example, based at least in part on determining that the paging grant includes the short paging message, the UE 120 may obtain the notification in the short paging message, and may prevent searching for and/or obtaining a paging message carried on the PDSCH. In some aspects, the notification may indicate that the notification of the reason for triggering the short paging message is self-contained within the short paging message, and that there is no additional information, regarding the reason, available in a separate paging message and/or a SIB. In this case, the UE 120 may not need to search for and/or obtain a separate paging message and/or the SIB, and the base station 110 may not need to transmit a separate paging message and/or transmit additional information in a SIB, thereby conserving resources of the UE 120 and/or the base station 110 (e.g., memory, processing resources, battery power, and/or the like), conserving network resources, reducing a delay in obtaining the notification, and/or the like.
  • In some aspects, the notification may indicate that there is additional information, regarding the reason, available in a separate paging message and/or a SIB. In this case, the UE 120 may obtain the separate paging message and/or the SIB and may read contents of the separate paging message and/or the SIB to obtain the additional information. In some aspects, the notification (e.g., DCI content) may include scheduling information for obtaining the separate paging message (e.g., a time and/or frequency location of the separate paging message, a resource allocation, an MCS, and/or the like). Additionally, or alternatively, the notification may include an indication of a SIB that includes the additional information (e.g., SIB1, SIB2, SIB3, and/or the like).
  • As shown by reference number 440, the UE 120 may perform an operation based at least in part on the notification in the paging grant. As shown in Fig. 4, in some aspects, performing the operation may include outputting information indicated in the notification. For example, the UE 120 may output information included in the notification (e.g., the reason that the short paging message was triggered) based at least in part on determining that the notification is an ETWS notification or a CMAS notification. In some aspects, the UE 120 may provide the information for display, as shown by reference number 445. Additionally, or alternatively, performing the operation may include obtaining system information, as described in more detail below in connection with Fig. 5.
  • In some aspects, the UE 120 may perform the operation without obtaining a separate paging message on the PDSCH. In this way, the UE 120 may conserve resources that would otherwise be used to obtain the separate paging message. Furthermore, the base station 110 may conserve resources that would otherwise be used to transmit the separate paging message. Furthermore, network resources may be conserved because such network resources may not need to be used to carry the separate paging message.
  • As indicated above, Fig. 4 is provided as an example. Other examples are possible and may differ from what was described with respect to Fig. 4.
  • Fig. 5 is a diagram illustrating an example 500 relating to providing notifications in short paging messages, in accordance with various aspects of the present disclosure. Fig. 5 shows example operations that are similar to the example operations described above in connection with Fig. 4. However, the operations described in connection with Fig. 4 focus on aspects of an ETWS notification and/or a CMAS operations, whereas the operations described in connection with Fig. 5 focus on aspects of a notification of a change to system information.
  • As shown by reference number 505, the base station 110 may determine a reason for triggering a short paging message, in a similar manner as described above in connection with Fig. 4. In some aspects, the base station 110 may determine the reason for triggering the short paging message based at least in part on information included in an instruction (e.g., received from the network device 130) that triggers transmission of the short paging message, a determination by the base station 110 to trigger the short paging message (e.g., without receiving and instructions from the network device 130), and/or the like.
  • As shown by reference number 510, the base station 110 may transmit, and the UE 120 may receive, a paging grant that includes the short paging message and a notification of the reason for triggering the short paging message, in a similar manner as described above. As shown, the paging grant may include a first portion 515 and a second portion 520, which may correspond to the first portion 420 and the second portion 425, respectively, as described above in connection with Fig. 4.
  • As shown by reference number 525, the UE 120 may determine that the paging grant includes the short paging message, in a similar manner as described above in connection with Fig. 4. As shown by reference number 530, the UE 120 may obtain the notification of the reason that the short paging message was triggered based at least in part on determining that the paging grant includes the short paging message, in a similar manner as described above in connection with Fig. 4. The notification may include any of the information and/or may take any form described above in connection with Fig. 4.
  • For example, in some aspects, the notification may include a PWS notification, such as an ETWS notification, a CMAS notification, and/or the like, as described above in connection with Fig. 4. Additionally, or alternatively, the notification may include a notification of a change to system information.
  • For example, the notification may indicate (e.g., using a first field) a change to remaining minimum system information (RMSI), other system information (OSI), and/or the like. In some aspects, a first value of the first field (e.g., a DCI format field or a DCI content field) may indicate a change to RMSI, and a second value of the first field may indicate a change to OSI. Additionally, or alternatively, the notification may indicate (e.g., using the second field) particular system information that has been changed and/or is to be obtained by the UE 120, a particular SIB that has been changed and/or is to be obtained by the UE 120, and/or the like. Additionally, or alternatively, the notification may directly indicate the change to the system information, such that the UE 120 need not obtain the SIB that carries the system information, thereby conserving resources of the UE 120.
  • In some aspects, the UE 120 may obtain the notification without obtaining a separate paging message carried on the PDSCH, as described above in connection with Fig. 4. Alternatively, the UE 120 may obtain additional information, regarding the reason for the short paging message, in a separate paging message based at least in part on an indication, in the short paging message, that such additional information is available in the separate paging message, in a similar manner as described above in connection with Fig. 4.
  • As shown by reference number 535, the UE 120 may perform an operation based at least in part on the notification in the paging grant. As shown in Fig. 5, and by reference number 540, performing the operation may include obtaining system information (e.g., RMSI, OSI, and/or the like). For example, the UE 120 may obtain the system information based at least in part on a determination that the notification is a notification of a change to system information. In this case, the UE 120 may obtain a SIB and may read the system information from the SIB. In some aspects, the UE 120 may perform this operation without obtaining a separate paging message on the PDSCH. In this way, the UE 120 may conserve resources that would otherwise be used to obtain the separate paging message. Furthermore, the base station 110 may conserve resources that would otherwise be used to transmit the separate paging message. Furthermore, network resources may be conserved because such network resources may not need to be used to carry the separate paging message.
  • As indicated above, Fig. 5 is provided as an example. Other examples are possible and may differ from what was described with respect to Fig. 5.
  • Fig. 6 is a diagram illustrating an example process 600 performed, for example, by a UE, in accordance with various aspects of the present disclosure. Example process 600 is an example where a UE (e.g., UE 120 and/or the like) performs operations associated with receiving notifications in short paging messages.
  • As shown in Fig. 6, in some aspects, process 600 may include receiving a paging grant that includes a short paging message and a notification of a reason that the short paging message was triggered (block 610). For example, the UE (e.g., using antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, controller/processor 280, and/or the like) may receive a paging grant that includes a short paging message and a notification of a reason that the short paging message was triggered, as described above in connection with Figs. 4-5.
  • As further shown in Fig. 6, in some aspects, process 600 may include determining that the paging grant includes the short paging message (block 620). For example, the UE (e.g., using controller/processor 280 and/or the like) may determine that the paging grant includes the short paging message, as described above in connection with Figs. 4-5.
  • As further shown in Fig. 6, in some aspects, process 600 may include obtaining the notification of the reason that the short paging message was triggered based at least in part on determining that the paging grant includes the short paging message (block 630). For example, the UE (e.g., using controller/processor 280 and/or the like) may obtain the notification of the reason that the short paging message was triggered based at least in part on determining that the paging grant includes the short paging message, as described above in connection with Figs. 4-5.
  • Process 600 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • In some aspects, the notification is obtained without obtaining a separate paging message on a physical downlink shared channel (PDSCH) based at least in part on determining that the paging grant includes the short paging message. In some aspects, the notification indicates that the UE is to obtain a separate paging message or a system information block to obtain additional information regarding the reason of the short paging message. In some aspects, the paging grant further includes at least one of scheduling information for obtaining the separate paging message or an indication of the system information block that includes the additional information. In some aspects, the notification indicates that the notification of the reason is self-contained in the short paging message and that there is no additional information, regarding the reason of the short paging message, available in at least one of a separate paging message or a system information block.
  • In some aspects, the notification is included in downlink control information (DCI) content included in the paging grant. In some aspects, the paging grant is a paging physical downlink control channel (PDCCH) communication with cyclic redundancy check (CRC) bits that are scrambled with a paging radio network temporary identifier (P-RNTI). In some aspects, the notification includes at least one of: an earthquake and tsunami warning system (ETWS) notification, a commercial mobile alert system (CMAS) notification, a notification of a change to system information, or some combination thereof. In some aspects, the notification is two bits in length.
  • In some aspects, the notification indicates a primary type of earthquake and tsunami warning system (ETWS) notification, wherein the primary type of ETWS notification indicates a tsunami, an earthquake, or a tsunami and an earthquake. In some aspects, the notification indicates a secondary type of earthquake and tsunami warning system (ETWS) notification, wherein the secondary type of ETWS notification indicates at least one of: a location of an epicenter of an earthquake or a tsunami, a distance between the epicenter and an area in which the UE is located, a seismic intensity of the earthquake or the tsunami, a time of arrival of the earthquake or the tsunami, other information associated with the earthquake or the tsunami, or some combination thereof.
  • In some aspects, the notification indicates at least one of: a first type of a commercial mobile alert system (CMAS) notification that indicates an order issues by a president or highest authority, a second type of CMAS notification that indicates a threat to residents of an area in which the UE is located, wherein the notification further indicates whether the threat is severe or extreme, a third type of CMAS notification that includes an amber alert indicating a child abduction, or some combination thereof. In some aspects, the notification indicates a change to remaining minimum system information (RMSI) or other system information (OSI).
  • In some aspects, the notification includes a first set of bits to indicate an earthquake and tsunami warning system (ETWS) notification, a commercial mobile alert system (CMAS) notification, or a notification of a change to system information, and wherein the notification further includes a second set of bits to indicate additional information regarding the ETWS notification, the CMAS notification, or the notification of the change to system information. In some aspects, the first set of bits and the second set of bits are jointly encoded. In some aspects, the UE is configured to interpret the second set of bits based at least in part on the first set of bits.
  • In some aspects, the UE may perform an operation based at least in part on the notification. In some aspects, the operation is performed without obtaining a separate paging message on a physical downlink shared channel (PDSCH) based at least in part on determining that the paging grant includes the short paging message.
  • In some aspects, performing the operation comprises outputting information indicated in the notification based at least in part on a determination that the notification is an earthquake and tsunami warning system (ETWS) notification or a commercial mobile alert system (CMAS) notification. In some aspects, outputting the information indicated in the notification comprises providing the information for display. In some aspects, performing the operation comprises obtaining a system information block based at least in part on a determination that the notification is a notification of a change to system information.
  • Although Fig. 6 shows example blocks of process 600, in some aspects, process 600 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 6. Additionally, or alternatively, two or more of the blocks of process 600 may be performed in parallel.
  • Fig. 7 is a diagram illustrating an example process 700 performed, for example, by a base station, in accordance with various aspects of the present disclosure. Example process 700 is an example where a base station (e.g., base station 110 and/or the like) performs operations associated with providing notifications in short paging messages.
  • As shown in Fig. 7, in some aspects, process 700 may include determining a reason for triggering a short paging message (block 710). For example, the base station (e.g., using controller/processor 240 and/or the like) may determine a reason for triggering a short paging message, as described above in connection with Figs. 4-5.
  • As further shown in Fig. 7, in some aspects, process 700 may include transmitting a paging grant that includes the short paging message and a notification of the reason for triggering the short paging message (block 720). For example, the base station (e.g., using controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like) may transmit a paging grant that includes the short paging message and a notification of the reason for triggering the short paging message, as described above in connection with Figs. 4-5.
  • Process 700 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • In some aspects, the reason for triggering the short paging message is determined based at least in part on information included in an instruction that triggers the short paging message. In some aspects, the notification indicates that a user equipment (UE) is to obtain a separate paging message or a system information block to obtain additional information regarding the reason of the short paging message. In some aspects, the paging grant further includes scheduling information for obtaining the separate paging message or an indication of the system information block that includes the additional information. In some aspects, the notification indicates that the notification of the reason is self-contained in the short paging message and that there is no additional information, regarding the reason of the short paging message, available in at least one of a separate paging message or a system information block.
  • In some aspects, the notification is included in downlink control information (DCI) content included in the paging grant. In some aspects, the notification includes at least one of: an earthquake and tsunami warning system (ETWS) notification, a commercial mobile alert system (CMAS) notification, a notification of a change to system information, or some combination thereof. In some aspects, the notification is two bits in length.
  • In some aspects, the notification indicates a secondary type of earthquake and tsunami warning system (ETWS) notification, wherein the secondary type of ETWS notification indicates at least one of: a location of an epicenter of an earthquake or a tsunami, a distance between the epicenter and an area in which the base station is located, a seismic intensity of the earthquake or the tsunami, a time of arrival of the earthquake or the tsunami, other information associated with the earthquake or the tsunami, or some combination thereof.
  • In some aspects, the notification indicates at least one of: a first type of a commercial mobile alert system (CMAS) notification that indicates an order issues by a president or highest authority, a second type of CMAS notification that indicates a threat to residents of an area in which the base station is located, wherein the notification further indicates whether the threat is severe or extreme, a third type of CMAS notification that includes an amber alert indicating a child abduction, or some combination thereof. In some aspects, the notification indicates a change to remaining minimum system information (RMSI) or other system information (OSI).
  • In some aspects, the notification includes a first set of bits to indicate an earthquake and tsunami warning system (ETWS) notification, a commercial mobile alert system (CMAS) notification, or a notification of a change to system information, and wherein the notification further includes a second set of bits to indicate additional information regarding the ETWS notification, the CMAS notification, or the notification of the change to system information. In some aspects, the first set of bits and the second set of bits are jointly encoded.
  • Although Fig. 7 shows example blocks of process 700, in some aspects, process 700 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 7. Additionally, or alternatively, two or more of the blocks of process 700 may be performed in parallel.
  • The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations are possible in light of the above disclosure or may be acquired from practice of the aspects.
  • As used herein, the term component is intended to be broadly construed as hardware, firmware, or a combination of hardware and software. As used herein, a processor is implemented in hardware, firmware, or a combination of hardware and software.
  • Some aspects are described herein in connection with thresholds. As used herein, satisfying a threshold may refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • It will be apparent that systems and/or methods, described herein, may be implemented in different forms of hardware, firmware, or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
  • Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of possible aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of possible aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to "at least one of" a list of items refers to any combination of those items, including single members. As an example, "at least one of: a, b, or c" is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c).
  • No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles "a" and "an" are intended to include one or more items, and may be used interchangeably with "one or more." Furthermore, as used herein, the terms "set" and "group" are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like), and may be used interchangeably with "one or more." Where only one item is intended, the term "one" or similar language is used. Also, as used herein, the terms "has," "have," "having," and/or the like are intended to be open-ended terms. Further, the phrase "based on" is intended to mean "based, at least in part, on" unless explicitly stated otherwise.

Claims (15)

  1. A method of wireless communication performed by a user equipment, UE, comprising:
    receiving (610) a paging grant that includes a short paging message and a notification of a reason that the short paging message was triggered;
    determining (620) that the paging grant includes the short paging message; and
    obtaining (630) the notification of the reason that the short paging message was triggered based at least in part on determining that the paging grant includes the short paging message; and
    wherein the notification indicates that the UE is to obtain a separate paging message to obtain additional information regarding the reason of the short paging message; and
    the paging grant further includes scheduling information for obtaining the separate paging message that includes the additional information.
  2. The method of claim 1, wherein the notification is included in downlink control information, DCI, content included in the paging grant; and/or
    wherein the paging grant is a paging physical downlink control channel, PDCCH, communication with cyclic redundancy check, CRC, bits that are scrambled with a paging radio network temporary identifier, P-RNTI.
  3. The method of claim 1, wherein the notification includes at least one of:
    an earthquake and tsunami warning system, ETWS, notification,
    a commercial mobile alert system, CMAS, notification,
    a notification of a change to system information, or
    some combination thereof; and preferably
    wherein the notification is two bits in length.
  4. The method of claim 1, wherein the notification indicates at least one of:
    a primary type of earthquake and tsunami warning system, ETWS, notification,
    a secondary type of ETWS notification,
    a first type of a commercial mobile alert system, CMAS, notification that indicates an order issues by a president or highest authority,
    a second type of CMAS notification that indicates a threat to residents of an area in which the UE is located, wherein the notification further indicates whether the threat is severe or extreme,
    a third type of CMAS notification that includes an amber alert indicating a child abduction, or
    some combination thereof.
  5. The method of claim 1, wherein the notification indicates a change to remaining minimum system information, RMSI, or other system information, OSI.
  6. The method of claim 1, wherein the notification includes a first set of bits to indicate an earthquake and tsunami warning system, ETWS, notification, a commercial mobile alert system, CMAS, notification, or a notification of a change to system information, and wherein the notification further includes a second set of bits to indicate additional information regarding the ETWS notification, the CMAS notification, or the notification of the change to system information; and preferably
    wherein the first set of bits and the second set of bits are jointly encoded.
  7. A method of wireless communication performed by a base station, comprising:
    determining (710) a reason for triggering a short paging message; and
    transmitting (720) a paging grant that includes the short paging message and a notification of the reason for triggering the short paging message, and
    wherein the notification indicates that a user equipment, UE, is to obtain a separate paging message to obtain additional information regarding the reason of the short paging message; and
    the paging grant further includes scheduling information for obtaining the separate paging message that includes the additional information.
  8. The method of claim 7, wherein the notification is included in downlink control information, DCI, content included in the paging grant; and/or
    wherein the notification includes at least one of:
    an earthquake and tsunami warning system, ETWS, notification,
    a commercial mobile alert system, CMAS, notification,
    a notification of a change to system information, or
    some combination thereof; and preferably
    wherein the notification is two bits in length.
  9. The method of claim 7, wherein the notification indicates at least one of:
    a primary type of earthquake and tsunami warning system, ETWS, notification,
    a secondary type of ETWS notification,
    a first type of a commercial mobile alert system, CMAS, notification that indicates an order issues by a president or highest authority,
    a second type of CMAS notification that indicates a threat to residents of an area in which the base station is located, wherein the notification further indicates whether the threat is severe or extreme,
    a third type of CMAS notification that includes an amber alert indicating a child abduction, or
    some combination thereof.
  10. The method of claim 7, wherein the notification indicates a change to remaining minimum system information, RMSI, or other system information, OSI.
  11. The method of claim 7, wherein the notification includes a first set of bits to indicate an earthquake and tsunami warning system, ETWS, notification, a commercial mobile alert system, CMAS, notification, or a notification of a change to system information, and wherein the notification further includes a second set of bits to indicate additional information regarding the ETWS notification, the CMAS notification, or the notification of the change to system information; and preferably
    wherein the first set of bits and the second set of bits are jointly encoded.
  12. A user equipment, UE, (120) for wireless communication, comprising:
    memory (282); and
    one or more processors (280) operatively coupled to the memory, the memory and the one or more processors configured to:
    receive a paging grant that includes a short paging message and a notification of a reason that the short paging message was triggered;
    determine that the paging grant includes the short paging message; and
    obtain the notification of the reason that the short paging message was triggered based at least in part on determining that the paging grant includes the short paging message, and
    wherein the notification indicates that the UE is to obtain a separate paging message to obtain additional information regarding the reason of the short paging message; and
    the paging grant further includes scheduling information for obtaining the separate paging message that includes the additional information.
  13. The UE of claim 12, wherein the memory and the one or more processors are further configured to perform the method of any one of claims 2- 6.
  14. A base station (110) for wireless communication, comprising:
    memory (242); and
    one or more processors (240) operatively coupled to the memory, the memory and the one or more processors configured to:
    determine a reason for triggering a short paging message; and
    transmit a paging grant that includes the short paging message and a notification of the reason for triggering the short paging message,
    wherein the notification indicates that a user equipment, UE, is to obtain a separate paging message to obtain additional information regarding the reason of the short paging message; and
    the paging grant further includes scheduling information for obtaining the separate paging message that includes the additional information.
  15. The base station of claim 14, wherein the memory and the one or more processors are further configured to perform the method of any one of claims 8- 11.
EP19706163.3A 2018-04-06 2019-02-06 Techniques and apparatuses for providing notifications in short paging messages Active EP3777375B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862654044P 2018-04-06 2018-04-06
US16/141,631 US10517067B2 (en) 2018-04-06 2018-09-25 Techniques and apparatuses for providing notifications in short paging messages
PCT/US2019/016785 WO2019194897A1 (en) 2018-04-06 2019-02-06 Techniques and apparatuses for providing notifications in short paging messages

Publications (3)

Publication Number Publication Date
EP3777375A1 EP3777375A1 (en) 2021-02-17
EP3777375C0 EP3777375C0 (en) 2023-09-27
EP3777375B1 true EP3777375B1 (en) 2023-09-27

Family

ID=68097564

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19706163.3A Active EP3777375B1 (en) 2018-04-06 2019-02-06 Techniques and apparatuses for providing notifications in short paging messages

Country Status (9)

Country Link
US (1) US10517067B2 (en)
EP (1) EP3777375B1 (en)
JP (1) JP7370999B2 (en)
KR (1) KR20200139176A (en)
CN (1) CN111919478B (en)
AU (1) AU2019248382B2 (en)
BR (1) BR112020020178A2 (en)
TW (1) TWI794409B (en)
WO (1) WO2019194897A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019169359A1 (en) * 2018-03-02 2019-09-06 Futurewei Technologies, Inc. System and method for hierarchical paging, cell selection and cell reselection
CN110475213B (en) * 2018-05-11 2021-06-22 华为技术有限公司 Paging message transmission method and device
JP7147857B2 (en) * 2018-09-25 2022-10-05 富士通株式会社 Communication device and wireless communication system
US11546738B2 (en) 2019-11-14 2023-01-03 Qualcomm Incorporated Always-on short messages
WO2022005254A1 (en) * 2020-07-02 2022-01-06 엘지전자 주식회사 Method for transmitting and receiving signal in wireless communication system, and apparatus supporting same
WO2022126536A1 (en) * 2020-12-17 2022-06-23 北京小米移动软件有限公司 Short message acquisition method and apparatus, user equipment and storage medium
WO2022133950A1 (en) * 2020-12-24 2022-06-30 北京小米移动软件有限公司 Information indication method and apparatus, and information determination method and apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170105166A1 (en) * 2014-03-19 2017-04-13 Interdigital Patent Holdings, Inc. Method and apparatus for system information block (sib) acquisition for wireless transmit/receive units (wtrus) in non-ce and coverage enhanced (ce) modes
WO2017078023A1 (en) * 2015-11-02 2017-05-11 株式会社Nttドコモ User terminal, radio base station and radio communication method
US20170280481A1 (en) * 2014-08-15 2017-09-28 Interdigital Patent Holdings, Inc. Supporting Random Access and Paging Procedures for Reduced Capability WTRUS in an LTE System

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101540480B1 (en) * 2008-03-18 2015-07-31 엘지전자 주식회사 Method of receiving a disaster warning message using a paging message in mobile communication system
CN103120002B (en) * 2010-10-01 2018-05-15 三菱电机株式会社 Communication system
US9241307B2 (en) * 2012-10-24 2016-01-19 Qualcomm Incorporated Method and apparatus using an ultra low power signal with scheduled power save modes
US8989784B2 (en) * 2012-11-29 2015-03-24 Intel Mobile Communications GmbH Radio communication devices and methods for controlling a radio communication device
US10028247B2 (en) * 2013-10-16 2018-07-17 Telefonaktiebolaget Lm Ericsson (Publ) Managing of paging of a wireless device in a wireless communication network
US9485664B2 (en) * 2014-06-19 2016-11-01 Intel Corporation Idle mode cell selection for licensed shared access
US10178536B2 (en) * 2016-08-12 2019-01-08 Telefonaktiebolaget Lm Ericsson (Publ) Update indication information
KR102075016B1 (en) * 2018-02-14 2020-02-10 엘지전자 주식회사 Method and apparatus for trnsmitting and receiving control information for paging in a wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170105166A1 (en) * 2014-03-19 2017-04-13 Interdigital Patent Holdings, Inc. Method and apparatus for system information block (sib) acquisition for wireless transmit/receive units (wtrus) in non-ce and coverage enhanced (ce) modes
US20170280481A1 (en) * 2014-08-15 2017-09-28 Interdigital Patent Holdings, Inc. Supporting Random Access and Paging Procedures for Reduced Capability WTRUS in an LTE System
WO2017078023A1 (en) * 2015-11-02 2017-05-11 株式会社Nttドコモ User terminal, radio base station and radio communication method
EP3364689A1 (en) * 2015-11-02 2018-08-22 NTT DoCoMo, Inc. User terminal, radio base station and radio communication method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO: "Views on Remaining issues of DCI", vol. RAN WG1, no. Anaheim, USA; 20151115 - 20151122, 15 November 2015 (2015-11-15), XP051003533, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/Meetings_3GPP_SYNC/RAN1/Docs/> [retrieved on 20151115] *

Also Published As

Publication number Publication date
JP7370999B2 (en) 2023-10-30
CN111919478A (en) 2020-11-10
EP3777375A1 (en) 2021-02-17
AU2019248382B2 (en) 2022-12-22
EP3777375C0 (en) 2023-09-27
CN111919478B (en) 2023-07-21
WO2019194897A1 (en) 2019-10-10
AU2019248382A1 (en) 2020-10-01
US10517067B2 (en) 2019-12-24
BR112020020178A2 (en) 2021-01-05
TW201944822A (en) 2019-11-16
JP2021520706A (en) 2021-08-19
KR20200139176A (en) 2020-12-11
TWI794409B (en) 2023-03-01
US20190313365A1 (en) 2019-10-10

Similar Documents

Publication Publication Date Title
EP3777375B1 (en) Techniques and apparatuses for providing notifications in short paging messages
TWI766232B (en) Method, apparatus, and computer-readable medium for wireless communication
US11805533B2 (en) Monitoring multicast broadcast control information
WO2021018146A1 (en) Techniques for using a first subscription of a user equipment to perform idle mode operations for a second subscription of the user equipment
EP4088540A1 (en) Reference signal resource configuration
WO2021237547A1 (en) Attach request for disabling new radio with dual subscriber identity modules
US10531367B2 (en) Techniques and apparatuses for handling extended access barring
WO2020167555A1 (en) Access barring and radio resource control connection in new radio to long-term evolution voice fallback
US20230422150A1 (en) System information block reacquisition after system information schedule modification
US11432260B2 (en) Unified access control parameter update
WO2021134781A1 (en) Multichannel multicasting or broadcasting of multizone video
WO2020068772A1 (en) Threshold-based system information on demand
CN116762427A (en) Signaling to indicate desired slice information in paging
CN116803145A (en) Remote UE group paging for relay power saving

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200903

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220202

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230413

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019038151

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

U01 Request for unitary effect filed

Effective date: 20231017

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20231026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231227

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231228

U20 Renewal fee paid [unitary effect]

Year of fee payment: 6

Effective date: 20240111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20240126

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240127

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240111

Year of fee payment: 6