WO2021134781A1 - Multichannel multicasting or broadcasting of multizone video - Google Patents

Multichannel multicasting or broadcasting of multizone video Download PDF

Info

Publication number
WO2021134781A1
WO2021134781A1 PCT/CN2020/070245 CN2020070245W WO2021134781A1 WO 2021134781 A1 WO2021134781 A1 WO 2021134781A1 CN 2020070245 W CN2020070245 W CN 2020070245W WO 2021134781 A1 WO2021134781 A1 WO 2021134781A1
Authority
WO
WIPO (PCT)
Prior art keywords
video
zone
zones
channels
data
Prior art date
Application number
PCT/CN2020/070245
Other languages
French (fr)
Inventor
Yiqing Cao
Yan Li
Kazuki Takeda
Alberto Rico Alvarino
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/070245 priority Critical patent/WO2021134781A1/en
Publication of WO2021134781A1 publication Critical patent/WO2021134781A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • H04L12/189Arrangements for providing special services to substations for broadcast or conference, e.g. multicast in combination with wireless systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • H04L12/1886Arrangements for providing special services to substations for broadcast or conference, e.g. multicast with traffic restrictions for efficiency improvement, e.g. involving subnets or subdomains
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/51Discovery or management thereof, e.g. service location protocol [SLP] or web services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/52Network services specially adapted for the location of the user terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/268Signal distribution or switching

Definitions

  • aspects of the present disclosure generally relate to wireless communication and specifically, to techniques and apparatuses for multichannel multicasting or broadcasting of multizone video.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (for example, bandwidth, or transmit power, among other examples, or a combination thereof) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • New Radio which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the 3GPP.
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM or SC-FDMA (for example, also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDMA for example, also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • MIMO multiple-input multiple-output
  • a venue cast service may obtain video streams of an area (that is, a venue) from multiple viewpoints, and may multicast or broadcast the multiple video streams to one or more UEs.
  • a UE may receive data for the multiple video streams in a multicast or broadcast (MB) channel, and may decode the multiple video streams for potential display on the UE.
  • MB multicast or broadcast
  • the UE may utilize for display only a single video stream of the multiple video streams that were received and decoded. Accordingly, decoding the multiple video streams when only a single video stream may be utilized by the UE, consumes significant bandwidth resources and power resources of the UE.
  • a method of wireless communication may include monitoring a plurality of multicast or broadcast (MB) channels that are respectively associated with a plurality of video zones of an area.
  • the method may include determining a video zone of the plurality of video zones that corresponds to a particular view of the area.
  • the method may include decoding a data part of an MB channel, of the plurality of MB channels, that is associated with the determined video zone.
  • MB multicast or broadcast
  • a method of wireless communication may include obtaining video data for a plurality of video zones of an area.
  • the method may include transmitting the video data on a plurality of MB channels that are respectively associated with the plurality of video zones.
  • a UE for wireless communication may include memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to monitor a plurality of MB channels that are respectively associated with a plurality of video zones of an area.
  • the memory and the one or more processors may be configured to determine a video zone of the plurality of video zones that corresponds to a particular view of the area.
  • the memory and the one or more processors may be configured to decode a data part of an MB channel, of the plurality of MB channels, that is associated with the determined video zone.
  • a BS for wireless communication may include memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to obtain video data for a plurality of video zones of an area.
  • the memory and the one or more processors may be configured to transmit the video data on a plurality of MB channels that are respectively associated with the plurality of video zones.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a UE, may cause the one or more processors to monitor a plurality of MB channels that are respectively associated with a plurality of video zones of an area.
  • the one or more instructions may cause the one or more processors to determine a video zone of the plurality of video zones that corresponds to a particular view of the area.
  • the one or more instructions may cause the one or more processors to decode a data part of an MB channel, of the plurality of MB channels, that is associated with the determined video zone.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a BS, may cause the one or more processors to obtain video data for a plurality of video zones of an area.
  • the one or more instructions may cause the one or more processors to transmit the video data on a plurality of MB channels that are respectively associated with the plurality of video zones.
  • an apparatus for wireless communication may include means for monitoring a plurality of MB channels that are respectively associated with a plurality of video zones of an area.
  • the apparatus may include means for determining a video zone of the plurality of video zones that corresponds to a particular view of the area.
  • the apparatus may include means for decoding a data part of an MB channel, of the plurality of MB channels, that is associated with the determined video zone.
  • an apparatus for wireless communication may include means for obtaining video data for a plurality of video zones of an area.
  • the apparatus may include means for transmitting the video data on a plurality of MB channels that are respectively associated with the plurality of video zones.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described with reference to and as illustrated by the drawings and specification.
  • Figure 1 is a block diagram illustrating an example wireless network in accordance with various aspects of the present disclosure.
  • FIG. 2 is a block diagram illustrating an example base station (BS) in communication with a user equipment (UE) in a wireless network in accordance with various aspects of the present disclosure.
  • BS base station
  • UE user equipment
  • Figure 3 is a diagram illustrating an example of multichannel multicasting or broadcasting of multizone video in accordance with various aspects of the present disclosure.
  • Figure 4 is a flowchart illustrating an example process of multichannel multicasting or broadcasting of multizone video performed by a UE in accordance with various aspects of the present disclosure.
  • Figure 5 is a flowchart illustrating an example process of multichannel multicasting or broadcasting of multizone video performed by a BS in accordance with various aspects of the present disclosure.
  • a venue cast service may obtain video streams of an area from multiple viewpoints, and may multicast or broadcast the multiple video streams to one or more UEs.
  • a UE may receive data for the multiple video streams in a multicast or broadcast (MB) channel, and may decode the multiple video streams for potential display on the UE.
  • the UE may utilize for display only a single video stream of the multiple video streams that were received and decoded.
  • an application executing on the UE may command (for example, in accordance with a user input) display of a particular view of the area, which may correspond to a single video stream of the multiple video streams. Accordingly, decoding the multiple video streams, when only a single video stream may be utilized by the UE, consumes significant bandwidth resources and power resources of the UE.
  • a BS may transmit video data for multiple video zones of an area on respective MB channels (for example, a single video zone is associated with a single MB channel) .
  • a UE may decode video data of an MB channel corresponding to a particular video zone that is associated with a view that is to be displayed by the UE, while discarding (without decoding) video data for other MB channels.
  • the UE may consume MB transmissions of multiple video streams (for example, in connection with a venue cast) with improved conservation of bandwidth resources and power resources.
  • the UE may decode respective control data for each of the multiple MB channels in order to determine a mapping of video zones to MB channels. Accordingly, when the UE is to switch to a different view of the area than is currently displayed by the UE, the UE may, without using a request procedure, begin decoding video data of an MB channel corresponding to a video zone (for example, in accordance with the mapping) associated with the different view. In this way, the UE may switch between video zones with low latency and reduced video lag.
  • FIG. 1 is a block diagram illustrating an example wireless network in accordance with various aspects of the present disclosure.
  • the wireless network may be a Long Term Evolution (LTE) network or some other wireless network, such as a 5G or NR network.
  • the wireless network may include a quantity of base stations (BSs) 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • BSs base stations
  • a BS is an entity that communicates with user equipment (UE (s) ) and may also be referred to as a Node B, an eNodeB, an eNB, a gNB, a NR BS, a 5G node B (NB) , an access point (AP) , or a transmit receive point (TRP) , among other examples, or combinations thereof (these terms are used interchangeably herein) .
  • UE user equipment
  • UE user equipment
  • UE user equipment
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, or another type of cell.
  • a macro cell may cover a relatively large geographic area (for example, several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (for example, a home) and may allow restricted access by UEs having association with the femto cell (for example, UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS may support one or multiple (for example, three) cells.
  • the wireless network may be a heterogeneous network that includes BSs of different types, for example, macro BSs, pico BSs, femto BSs, or relay BSs, among other examples, or combinations thereof. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in the wireless network. For example, macro BSs may have a high transmit power level (for example, 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (for example, 0.1 to 2 Watts) .
  • macro BSs may have a high transmit power level (for example, 5 to 40 Watts)
  • pico BSs, femto BSs, and relay BSs may have lower transmit power levels (for example, 0.1 to 2 Watts) .
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a network controller 130 may couple to the set of BSs 102a, 102b, 110a and 110b, and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, for example, directly or indirectly via a wireless or wireline backhaul.
  • a cell may not be stationary, rather, the geographic area of the cell may move in accordance with the location of a mobile BS.
  • the BSs may be interconnected to one another or to one or more other BSs or network nodes (not shown) in the wireless network through various types of backhaul interfaces such as a direct physical connection, or a virtual network, among other examples, or combinations thereof using any suitable transport network.
  • the wireless network may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (for example, a BS or a UE) and send a transmission of the data to a downstream station (for example, a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay station may also be referred to as a relay BS, a relay base station, or a relay, among other examples, or combinations thereof.
  • UEs 120 may be dispersed throughout the wireless network, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, or a station, among other examples, or combinations thereof.
  • a UE may be a cellular phone (for example, a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (for example, smart ring, smart bracelet) ) , an entertainment device (for example, a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors or location tags, among other examples, or combinations thereof, that may communicate with a base station, another device (for example, remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (for example, a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, or may be implemented as NB-IoT (narrowband internet of things) devices.
  • Some UEs may be considered a Customer Premises Equipment (CPE) .
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, or memory components, among other examples, or combinations thereof.
  • any quantity of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies or frequency channels.
  • RAT radio access technology
  • a frequency may also be referred to as a carrier among other examples.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly with one another using one or more sidelink channels (for example, without using a base station 110 as an intermediary) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (for example, which may include a vehicle-to-vehicle (V2V) protocol, or a vehicle-to-infrastructure (V2I) protocol, among other examples, or combinations thereof) , or a mesh network, among other examples, or combinations thereof.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, or other operations described elsewhere herein as being performed by the base station 110.
  • FIG. 2 is a block diagram illustrating an example base station (BS) in communication with a user equipment (UE) in a wireless network in accordance with various aspects of the present disclosure.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCSs) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (for example, encode) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (for example, for semi-static resource partitioning information (SRPI) among other examples) and control information (for example, CQI requests, grants, or upper layer signaling, among other examples, or combinations thereof) and provide overhead symbols and control symbols.
  • MCSs modulation and coding schemes
  • CQIs channel quality indicators
  • Transmit processor 220 may also process system information (for example, for semi-static resource partitioning information (SRPI) among other examples) and control information (for example, CQI requests, grants, or upper layer signaling, among other examples, or combinations thereof) and
  • Transmit processor 220 may also generate reference symbols for reference signals (for example, the cell-specific reference signal (CRS) ) and synchronization signals (for example, the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (for example, precoding) on the data symbols, the control symbols, the overhead symbols, or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each MOD 232 may process a respective output symbol stream (for example, for OFDM among other examples) to obtain an output sample stream.
  • Each MOD 232 may further process (for example, convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • T downlink signals from MODs 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • the synchronization signals can be generated with location encoding to convey additional information.
  • antennas 252a through 252r may receive the downlink signals from base station 110 or other base stations and may provide received signals to R demodulators (DEMODs) 254a through 254r, respectively.
  • Each DEMOD 254 may condition (for example, filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each DEMOD 254 may further process the input samples (for example, for OFDM) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R DEMODs 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (for example, decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • a channel processor may determine a reference signal received power (RSRP) , a received signal strength indicator (RSSI) , a reference signal received quality (RSRQ) , or a channel quality indicator (CQI) , among other examples, or combinations thereof.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing.
  • a transmit processor 264 may receive and process data from a data source 262 as well as control information (for example, for reports including RSRP, RSSI, RSRQ, or CQI, among other examples, or combinations thereof) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals.
  • the symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by MODs 254a through 254r (for example, for discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-s-OFDM) , or orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) , among other examples, or combinations thereof) , and transmitted to base station 110.
  • DFT-s-OFDM discrete Fourier transform spread orthogonal frequency division multiplexing
  • OFDM orthogonal frequency division multiplexing with a cyclic prefix
  • CP-OFDM cyclic prefix
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by DEMODs 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, or any other component (s) of Figure 2 may perform one or more techniques associated with multichannel multicasting or broadcasting of multizone video, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, or any other component (s) of Figure 2 may perform or direct operations of, for example, process 400 of Figure 4, process 500 of Figure 5, or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • a scheduler 246 may schedule UEs for data transmission on the downlink or uplink.
  • UE 120 may include means for monitoring a plurality of MB channels that are respectively associated with a plurality of video zones of an area, means for determining a video zone of the plurality of video zones that corresponds to a particular view of the area, means for decoding a data part of an MB channel, of the plurality of MB channels, that is associated with the determined video zone, among other examples, or combinations thereof.
  • such means may include one or more components of UE 120 described in connection with Figure 2.
  • base station 110 may include means for obtaining video data for a plurality of video zones of an area, means for transmitting the video data on a plurality of MB channels that are respectively associated with the plurality of video zones, among other examples, or combinations thereof.
  • such means may include one or more components of base station 110 described in connection with Figure 2.
  • a BS may transmit video data for multiple video zones of an area on respective MB channels (for example, a single video zone may be associated with a single respective MB channel) .
  • a UE may decode video data of an MB channel corresponding to a particular video zone that is associated with a view that is to be displayed by the UE, while discarding video data for other MB channels.
  • the UE may consume MB transmissions of multiple video streams (for example, in connection with a venue cast) with improved conservation of bandwidth resources and power resources.
  • the UE may decode respective control data for each of the multiple MB channels in order to determine a mapping of video zones to MB channels. Accordingly, when the UE is to switch to a different view of the area than is currently displayed by the UE, the UE may, without using a request procedure, begin decoding video data of an MB channel corresponding to a video zone (for example, in accordance with the mapping) associated with the different view. In this way, the UE may switch between video zones with low latency and reduced video lag.
  • FIG. 3 is a diagram illustrating multichannel multicasting or broadcasting of multizone video in accordance with various aspects of the present disclosure.
  • a BS 110 and a UE 120 may communicate in connection with a multicast or a broadcast transmission of video data 325 for multiple video zones 320.
  • multiple cameras 305 may capture video of an area 310 from multiple viewpoints (for example, to obtain a 360-degree view of the area 310 or a 180-degree view of the area 310, among other examples) . That is, each camera 305 may capture video of the area 310 from a respective viewpoint.
  • the area 310 may be associated with a venue (for example, a park, an attraction, a city, a building, or a shopping center) or an event (for example, a sporting event, a concert, or a presentation) , among other examples.
  • the BS 110 may obtain video data 325 for multiple video zones 320 of the area 310. As shown in Figure 3, in some examples, the BS 110 may obtain the video data 325 from a server 315 (for example, a video server) that obtains the video data 325 from the cameras 305. In some other examples, the BS 110 may obtain the video data 325 directly from the cameras 305.
  • the server 315 may be co-located with the BS 110 or may be remotely located from the BS 110. In some examples of the former, the server 315 may be a component or a module of the BS 110.
  • the BS 110 may identify or otherwise determine multiple video zones 320 for the area 310, and may assemble the video data 325 that is obtained in accordance with the multiple video zones 320 that are determined.
  • each video zone 320 that is determined by the BS 110 may include one or more cameras 305 (that is, include one or more video streams, for example, to achieve three-dimensional video for the video zone 320) , and the BS 110 may assemble the video data 325 for a video zone 320 to include video streams of the one or more cameras 305.
  • the server 315 may determine the multiple video zones 320, and may assemble the video data 325 in accordance with the multiple video zones 320.
  • the BS 110 may obtain, from the server 315, the assembled video data 325 as well as information identifying the video zones 320.
  • a video zone 320 may be identified by an alphanumeric identifier or a geographic identifier, among other examples.
  • the BS 110 may transmit, and the UE 120 may receive, a broadcast communication that includes information for each of the multiple video zones 320 that are determined.
  • the information for a video zone 320 may include an identifier of the video zone 320, one or more resources (for example, a time resource, a frequency resource, a spatial resource, a synchronization signal block resource, or a bandwidth part) associated with the video zone 320, or a position associated with the video zone 320, among other examples.
  • the position may be a geographic position (for example, latitude and longitude coordinates that define the video zone 320) or a relative position (for example, cartesian coordinates, relative to a center of the area 310, that define the video zone 320, or an angle of view that defines the video zone 320) .
  • a geographic position for example, latitude and longitude coordinates that define the video zone 320
  • a relative position for example, cartesian coordinates, relative to a center of the area 310, that define the video zone 320, or an angle of view that defines the video zone 320
  • the BS 110 may transmit the video data 325 on multiple MB channels that are respectively associated with the plurality of video zones 320. That is, the BS 110 may transmit video data 325 for a first video zone 320 on a first MB channel, video data 325 for a second video zone 320 on a second MB channel, and so forth.
  • the multiple MB channels may be time division multiplexed, frequency division multiplexed, or spatial division multiplexed (for example, each MB channel may be transmitted on a respective beam) .
  • the multiple MB channels may be associated with a single frequency network (SFN) or coordinated multipoint (COMP) communication.
  • SFN single frequency network
  • COMP coordinated multipoint
  • An MB channel may include a control part, that includes control information, and a data part (that is, a payload) that includes the video data 325.
  • the control part may occupy a beginning portion of a slot (such as, a beginning portion of a first symbol of the slot)
  • the data part may occupy a remainder of the slot.
  • the data part may occupy the remainder of the slot and one or more following slots (that is, the data part may be in multiple slots) .
  • a single control part may be for multiple slots or a frame (for example, 10 milliseconds) .
  • the control part may include information about a video zone 320 associated with the MB channel.
  • the information may include an identifier of the video zone 320.
  • the control part may include information about the data part, associated with the control part, for the video zone 320 associated with the MB channel.
  • the information may include a configuration for a reference signal (for example, a demodulation reference signal or a positioning reference signal, among other examples) for the data part.
  • the UE 120 may be configured to monitor the reference signal less frequently than a reference signal would be monitored for other communications that are not associated with video data transmitted on multiple MB channels.
  • the information may include a time and frequency resource of the data part for the video zone 320, a spatial resource of the data part for the video zone 320, or a precoding configuration of the data part for the video zone 320, among other examples.
  • the information may also include an MCS of the data part for the video zone 320, an interleaving scheme of the data part for the video zone 320, or a frequency hopping pattern of the data part for the video zone 320, among other examples.
  • the UE 120 may monitor the multiple MB channels. In some aspects, in connection with monitoring the multiple MB channels, the UE 120 may decode respective control parts of the multiple MB channels in order to identify the video zones 320 that correspond to the MB channels. In this way, the UE 120 may determine a mapping of video zones 320 to MB channels, which the UE 120 may use when switching between video zones 320.
  • the UE 120 may determine a video zone 320 that corresponds to a particular view of the area 310.
  • the particular view may be commanded by an application (for example, a venue cast application) executing on the UE 120 (for example, on an application layer of the UE 120) .
  • the application may cause the UE 120 to display the video data 325 associated with a particular view of the area 310 based at least in part on a user input.
  • a user may adjust (for example, rotate) a view of the area 310 that is displayed on the UE 120 by providing an input (for example, a swiping gesture) to the UE 120.
  • the UE 120 may indicate a user input, or another command of the application, to a modem of the UE 120 (for example, via an indication from an application layer of the UE 120 to a physical layer of the UE 120) to enable decoding of a particular MB channel, as described below.
  • the UE 120 may determine the video zone 320 that corresponds to the particular view based at least in part on information for the multiple video zones 320 that was obtained by the UE 120 (for example, received by the UE 120 in a broadcast communication from the BS 110, as described above) .
  • the information may identify respective positions for the multiple video zones 320, and the UE 120 may determine the video zone 320 that has a position that corresponds to the particular view.
  • the UE 120 may determine a default video zone 320 (for example, when the application has not commanded a particular view) that corresponds to a location of the UE 120 (for example, when the UE 120 is located in, or adjacent to, the area 310) .
  • the UE 120 may identify or otherwise determine an MB channel, of the multiple MB channels, that is associated with the determined video zone 320 (for example, based on a mapping of video zones 320 to MB channels, as described above) .
  • the UE 120 may decode a data part of (that is, the video data 325 associated with) only the identified MB channel. In some other examples, the UE 120 may decode data parts of the identified MB channel as well as one or more other MB channels that are associated with respective neighboring video zones 320 of the identified video zone 320. The UE 120 may determine a neighboring video zone 320 based at least in part on information (for example, position information) for the multiple video zones 320 obtained by the UE 120 (for example, received by the UE 120 in a broadcast communication from the BS 110, as described above) . In some aspects, video data 325 for the neighboring video zones 320 may be included in the data part for the identified video zone 320.
  • the UE 120 may discard, without decoding, data parts of MB channels other than the identified MB channel. In some other examples in which video data 325 is desired for selected neighboring video zones 320, the UE 120 may discard, without decoding, data parts of the MB channels other than the identified MB channel and the MB channels associated with the selected neighboring video zones 320. Moreover, the UE 120 may display (for example, using the application) video based at least in part on the video data 325 in the decoded data parts. In this way, the UE 120 may conserve bandwidth resources and power resources in connection with a venue cast.
  • FIG. 4 is a diagram illustrating an example process 400 of multichannel multicasting or broadcasting of multizone video performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Example process 400 is an example where the UE, such as UE 120, performs operations associated with multichannel multicasting or broadcasting of multizone video.
  • process 400 may include monitoring a plurality of MB channels that are respectively associated with a plurality of video zones of an area (block 410) .
  • the UE using antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, controller/processor 280, among other examples
  • process 400 may include determining a video zone of the plurality of video zones that corresponds to a particular view of the area (block 420) .
  • the UE using controller/processor 280, among other examples
  • process 400 may include decoding a data part of an MB channel, of the plurality of MB channels, that is associated with the determined video zone (block 430) .
  • the UE using antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, controller/processor 280, among other examples
  • Process 400 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the plurality of MB channels are time division multiplexed, frequency division multiplexed, or spatial division multiplexed.
  • process 400 includes receiving a broadcast communication including information for each of the plurality of video zones.
  • the information includes at least one of an identifier of a particular video zone of the plurality of video zones, a resource associated with the particular video zone, or a position associated with the particular video zone.
  • the MB channel carries a control part and the data part, and the control part includes information about at least one of the determined video zone or the data part.
  • the information includes at least one of an identifier of the determined video zone, an MCS of the data part for the determined video zone, an interleaving scheme of the data part for the determined video zone, a time and frequency resource of the data part for the determined video zone, a configuration for a reference signal for the data part for the determined video zone, a hopping pattern for the data part for the determined video zone, or a precoding configuration for the data part for the determined video zone.
  • the data part is in multiple slots.
  • process 400 includes identifying the particular view of the area based at least in part on a command from an application executing on the UE.
  • process 400 includes decoding a data part of another MB channel, of the plurality of MB channels, that is associated with a neighboring video zone to the determined video zone.
  • the data part includes video data for the determined video zone and video data for one or more neighboring video zones to the determined video zone.
  • each of the plurality of MB channels includes a control part and a data part
  • process 400 includes decoding respective control parts of the plurality of MB channels, and discarding, without decoding, respective data parts of MB channels, of the plurality of MB channels, that are not associated with at least one of the determined video zone or a neighboring video zone to the determined video zone.
  • the determined video zone is a default video zone based on a location of the UE.
  • the plurality of MB channels are associated with an SFN or COMP communication.
  • FIG. 5 is a diagram illustrating an example process 500 of multichannel multicasting or broadcasting of multizone video performed, for example, by a BS, in accordance with various aspects of the present disclosure.
  • Example process 500 is an example where the BS, such as BS 110, performs operations associated with multichannel multicasting or broadcasting of multizone video.
  • process 500 may include obtaining video data for a plurality of video zones of an area (block 510) .
  • the BS using antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, among other examples
  • process 500 may include transmitting the video data on a plurality of MB channels that are respectively associated with the plurality of video zones (block 520) .
  • the BS using controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, among other examples
  • Process 500 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the plurality of MB channels are time division multiplexed, frequency division multiplexed, or spatial division multiplexed.
  • process 500 includes transmitting a broadcast communication including information for each of the plurality of video zones.
  • the information includes at least one of an identifier of a particular video zone of the plurality of video zones, a resource associated with the particular video zone, or a position associated with the particular video zone.
  • an MB channel of the plurality of MB channels, carries a control part and a data part for a particular video zone of the plurality of video zones, and the control part includes information about at least one of the particular video zone or the data part.
  • the information includes at least one of an identifier of the particular video zone, an MCS of the data part for the particular video zone, an interleaving scheme of the data part for the particular video zone, a time and frequency resource of the data part for the particular video zone, a configuration for a reference signal for the data part for the particular video zone, a hopping pattern for the data part for the particular video zone, or a precoding configuration for the data part for the particular video zone.
  • the data part is in multiple slots.
  • the data part includes the video data for the particular video zone and the video data for one or more neighboring video zones to the particular video zone.
  • process 500 includes determining the plurality of video zones for the area, and assembling the video data in accordance with the plurality of video zones that are determined.
  • the plurality of MB channels are associated with an SFN or COMP communication.
  • ком ⁇ онент is intended to be broadly construed as hardware, firmware, or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, or a combination of hardware and software.
  • satisfying a threshold may refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, or not equal to the threshold, among other examples, or combinations thereof.
  • a or b may include a only, b only, or a combination of a and b.
  • a phrase referring to “at least one of” or “one or more of” a list of items refers to any combination of those items, including single members.
  • “at least one of: a, b, or c” is intended to cover the possibilities of: a only, b only, c only, a combination of a and b, a combination of a and c, a combination of b and c, and a combination of a and b and c.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may monitor a plurality of multicast or broadcast (MB) channels that are respectively associated with a plurality of video zones of an area. The UE may determine a video zone of the plurality of video zones that corresponds to a particular view of the area. The UE may decode a data part of an MB channel, of the plurality of MB channels, that is associated with the determined video zone. Numerous other aspects are provided.

Description

MULTICHANNEL MULTICASTING OR BROADCASTING OF MULTIZONE VIDEO
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and specifically, to techniques and apparatuses for multichannel multicasting or broadcasting of multizone video.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (for example, bandwidth, or transmit power, among other examples, or a combination thereof) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user equipments (UEs) to communicate on a municipal, national, regional, and even global level. New Radio (NR) , which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the 3GPP. NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM or SC-FDMA (for example, also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. However, as the demand for mobile  broadband access continues to increase, there exists a need for further improvements in LTE and NR technologies. Preferably, these improvements are applicable to other multiple access technologies and the telecommunication standards that employ these technologies.
A venue cast service may obtain video streams of an area (that is, a venue) from multiple viewpoints, and may multicast or broadcast the multiple video streams to one or more UEs. A UE may receive data for the multiple video streams in a multicast or broadcast (MB) channel, and may decode the multiple video streams for potential display on the UE. Typically, at a given time, the UE may utilize for display only a single video stream of the multiple video streams that were received and decoded. Accordingly, decoding the multiple video streams when only a single video stream may be utilized by the UE, consumes significant bandwidth resources and power resources of the UE.
SUMMARY
In some aspects, a method of wireless communication, performed by a user equipment (UE) , may include monitoring a plurality of multicast or broadcast (MB) channels that are respectively associated with a plurality of video zones of an area. The method may include determining a video zone of the plurality of video zones that corresponds to a particular view of the area. The method may include decoding a data part of an MB channel, of the plurality of MB channels, that is associated with the determined video zone.
In some aspects, a method of wireless communication, performed by a base station (BS) , may include obtaining video data for a plurality of video zones of an area. The method may include transmitting the video data on a plurality of MB channels that are respectively associated with the plurality of video zones.
In some aspects, a UE for wireless communication may include memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to monitor a plurality of MB channels that are respectively associated with a plurality of video zones of an area. The memory and the one or more processors may be configured to determine a video zone of the plurality of video zones that corresponds to a particular view of the area. The memory and the one or more processors may be configured to decode a data part of an MB channel, of the plurality of MB channels, that is associated with the determined video zone.
In some aspects, a BS for wireless communication may include memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to obtain video data for a plurality of video zones of an area. The memory and the one or more processors may be configured to transmit the video data on a plurality of MB channels that are respectively associated with the plurality of video zones.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a UE, may cause the one or more processors to monitor a plurality of MB channels that are respectively associated with a plurality of video zones of an area. The one or more instructions may cause the one or more processors to determine a video zone of the plurality of video zones that corresponds to a particular view of the area. The one or more instructions may cause the one or more processors to decode a data part of an MB channel, of the plurality of MB channels, that is associated with the determined video zone.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a BS, may cause the one or more processors to obtain video data for a plurality of video zones of an area. The one or more instructions may cause the one or more processors to transmit the video data on a plurality of MB channels that are respectively associated with the plurality of video zones.
In some aspects, an apparatus for wireless communication may include means for monitoring a plurality of MB channels that are respectively associated with a plurality of video zones of an area. The apparatus may include means for determining a video zone of the plurality of video zones that corresponds to a particular view of the area. The apparatus may include means for decoding a data part of an MB channel, of the plurality of MB channels, that is associated with the determined video zone.
In some aspects, an apparatus for wireless communication may include means for obtaining video data for a plurality of video zones of an area. The apparatus may include means for transmitting the video data on a plurality of MB channels that are respectively associated with the plurality of video zones.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless  communication device, and/or processing system as substantially described with reference to and as illustrated by the drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples in accordance with the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only some typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Figure 1 is a block diagram illustrating an example wireless network in accordance with various aspects of the present disclosure.
Figure 2 is a block diagram illustrating an example base station (BS) in communication with a user equipment (UE) in a wireless network in accordance with various aspects of the present disclosure.
Figure 3 is a diagram illustrating an example of multichannel multicasting or broadcasting of multizone video in accordance with various aspects of the present disclosure.
Figure 4 is a flowchart illustrating an example process of multichannel multicasting or broadcasting of multizone video performed by a UE in accordance with various aspects of the present disclosure.
Figure 5 is a flowchart illustrating an example process of multichannel multicasting or broadcasting of multizone video performed by a BS in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and are not to be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein one skilled in the art may appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any quantity of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. Any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, or algorithms, among other examples, or combinations thereof (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
A venue cast service may obtain video streams of an area from multiple viewpoints, and may multicast or broadcast the multiple video streams to one or more UEs. A UE may receive data for the multiple video streams in a multicast or broadcast (MB) channel, and may decode the multiple video streams for potential display on the UE. Typically, at a given time, the UE may utilize for display only a single video stream  of the multiple video streams that were received and decoded. For example, an application executing on the UE may command (for example, in accordance with a user input) display of a particular view of the area, which may correspond to a single video stream of the multiple video streams. Accordingly, decoding the multiple video streams, when only a single video stream may be utilized by the UE, consumes significant bandwidth resources and power resources of the UE.
Some techniques and apparatuses described herein enable a UE to selectively decode multicast or broadcast transmissions of multiple video streams. In some aspects, a BS may transmit video data for multiple video zones of an area on respective MB channels (for example, a single video zone is associated with a single MB channel) . Accordingly, a UE may decode video data of an MB channel corresponding to a particular video zone that is associated with a view that is to be displayed by the UE, while discarding (without decoding) video data for other MB channels. In this way, the UE may consume MB transmissions of multiple video streams (for example, in connection with a venue cast) with improved conservation of bandwidth resources and power resources.
Moreover, the UE may decode respective control data for each of the multiple MB channels in order to determine a mapping of video zones to MB channels. Accordingly, when the UE is to switch to a different view of the area than is currently displayed by the UE, the UE may, without using a request procedure, begin decoding video data of an MB channel corresponding to a video zone (for example, in accordance with the mapping) associated with the different view. In this way, the UE may switch between video zones with low latency and reduced video lag.
Figure 1 is a block diagram illustrating an example wireless network in accordance with various aspects of the present disclosure. The wireless network may be a Long Term Evolution (LTE) network or some other wireless network, such as a 5G or NR network. The wireless network may include a quantity of base stations (BSs) 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A BS is an entity that communicates with user equipment (UE (s) ) and may also be referred to as a Node B, an eNodeB, an eNB, a gNB, a NR BS, a 5G node B (NB) , an access point (AP) , or a transmit receive point (TRP) , among other examples, or combinations thereof (these terms are used interchangeably herein) . Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of  a BS or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, or another type of cell. A macro cell may cover a relatively large geographic area (for example, several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (for example, a home) and may allow restricted access by UEs having association with the femto cell (for example, UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. A BS may support one or multiple (for example, three) cells.
The wireless network may be a heterogeneous network that includes BSs of different types, for example, macro BSs, pico BSs, femto BSs, or relay BSs, among other examples, or combinations thereof. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in the wireless network. For example, macro BSs may have a high transmit power level (for example, 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (for example, 0.1 to 2 Watts) . In the example shown in Figure 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A network controller 130 may couple to the set of  BSs  102a, 102b, 110a and 110b, and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, for example, directly or indirectly via a wireless or wireline backhaul.
In some aspects, a cell may not be stationary, rather, the geographic area of the cell may move in accordance with the location of a mobile BS. In some aspects, the BSs may be interconnected to one another or to one or more other BSs or network nodes (not shown) in the wireless network through various types of backhaul interfaces such as a direct physical connection, or a virtual network, among other examples, or combinations thereof using any suitable transport network.
The wireless network may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (for example, a BS  or a UE) and send a transmission of the data to a downstream station (for example, a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in Figure 1, a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay station may also be referred to as a relay BS, a relay base station, or a relay, among other examples, or combinations thereof.
UEs 120 (for example, 120a, 120b, 120c) may be dispersed throughout the wireless network, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, or a station, among other examples, or combinations thereof. A UE may be a cellular phone (for example, a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (for example, smart ring, smart bracelet) ) , an entertainment device (for example, a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors or location tags, among other examples, or combinations thereof, that may communicate with a base station, another device (for example, remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (for example, a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, or memory components, among other examples, or combinations thereof.
In general, any quantity of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular radio access technology  (RAT) and may operate on one or more frequencies or frequency channels. A frequency may also be referred to as a carrier among other examples. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (for example, shown as UE 120a and UE 120e) may communicate directly with one another using one or more sidelink channels (for example, without using a base station 110 as an intermediary) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (for example, which may include a vehicle-to-vehicle (V2V) protocol, or a vehicle-to-infrastructure (V2I) protocol, among other examples, or combinations thereof) , or a mesh network, among other examples, or combinations thereof. In this case, the UE 120 may perform scheduling operations, resource selection operations, or other operations described elsewhere herein as being performed by the base station 110.
Figure 2 is a block diagram illustrating an example base station (BS) in communication with a user equipment (UE) in a wireless network in accordance with various aspects of the present disclosure. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCSs) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (for example, encode) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (for example, for semi-static resource partitioning information (SRPI) among other examples) and control information (for example, CQI requests, grants, or upper layer signaling, among other examples, or combinations thereof) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (for example, the cell-specific reference signal (CRS) ) and synchronization signals (for example, the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (for example, precoding) on the data symbols, the control symbols, the  overhead symbols, or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each MOD 232 may process a respective output symbol stream (for example, for OFDM among other examples) to obtain an output sample stream. Each MOD 232 may further process (for example, convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from MODs 232a through 232t may be transmitted via T antennas 234a through 234t, respectively. In accordance with various aspects described in more detail below, the synchronization signals can be generated with location encoding to convey additional information.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 or other base stations and may provide received signals to R demodulators (DEMODs) 254a through 254r, respectively. Each DEMOD 254 may condition (for example, filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each DEMOD 254 may further process the input samples (for example, for OFDM) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R DEMODs 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (for example, decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. A channel processor may determine a reference signal received power (RSRP) , a received signal strength indicator (RSSI) , a reference signal received quality (RSRQ) , or a channel quality indicator (CQI) , among other examples, or combinations thereof. In some aspects, one or more components of UE 120 may be included in a housing.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 as well as control information (for example, for reports including RSRP, RSSI, RSRQ, or CQI, among other examples, or combinations thereof) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by MODs 254a through 254r (for example, for discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-s-OFDM) , or orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) , among other examples, or  combinations thereof) , and transmitted to base station 110. At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by DEMODs 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, or any other component (s) of Figure 2 may perform one or more techniques associated with multichannel multicasting or broadcasting of multizone video, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, or any other component (s) of Figure 2 may perform or direct operations of, for example, process 400 of Figure 4, process 500 of Figure 5, or other processes as described herein.  Memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. A scheduler 246 may schedule UEs for data transmission on the downlink or uplink.
In some aspects, UE 120 may include means for monitoring a plurality of MB channels that are respectively associated with a plurality of video zones of an area, means for determining a video zone of the plurality of video zones that corresponds to a particular view of the area, means for decoding a data part of an MB channel, of the plurality of MB channels, that is associated with the determined video zone, among other examples, or combinations thereof. In some aspects, such means may include one or more components of UE 120 described in connection with Figure 2.
In some aspects, base station 110 may include means for obtaining video data for a plurality of video zones of an area, means for transmitting the video data on a plurality of MB channels that are respectively associated with the plurality of video zones, among other examples, or combinations thereof. In some aspects, such means may include one or more components of base station 110 described in connection with Figure 2.
As described above, some techniques and apparatuses described herein enable a UE to selectively decode multicast or broadcast transmissions of multiple video  streams. In some aspects, a BS may transmit video data for multiple video zones of an area on respective MB channels (for example, a single video zone may be associated with a single respective MB channel) . Accordingly, a UE may decode video data of an MB channel corresponding to a particular video zone that is associated with a view that is to be displayed by the UE, while discarding video data for other MB channels. In this way, the UE may consume MB transmissions of multiple video streams (for example, in connection with a venue cast) with improved conservation of bandwidth resources and power resources.
Moreover, the UE may decode respective control data for each of the multiple MB channels in order to determine a mapping of video zones to MB channels. Accordingly, when the UE is to switch to a different view of the area than is currently displayed by the UE, the UE may, without using a request procedure, begin decoding video data of an MB channel corresponding to a video zone (for example, in accordance with the mapping) associated with the different view. In this way, the UE may switch between video zones with low latency and reduced video lag.
Figure 3 is a diagram illustrating multichannel multicasting or broadcasting of multizone video in accordance with various aspects of the present disclosure. As shown in Figure 3, a BS 110 and a UE 120 may communicate in connection with a multicast or a broadcast transmission of video data 325 for multiple video zones 320. For example, multiple cameras 305 may capture video of an area 310 from multiple viewpoints (for example, to obtain a 360-degree view of the area 310 or a 180-degree view of the area 310, among other examples) . That is, each camera 305 may capture video of the area 310 from a respective viewpoint. The area 310 may be associated with a venue (for example, a park, an attraction, a city, a building, or a shopping center) or an event (for example, a sporting event, a concert, or a presentation) , among other examples.
The BS 110 may obtain video data 325 for multiple video zones 320 of the area 310. As shown in Figure 3, in some examples, the BS 110 may obtain the video data 325 from a server 315 (for example, a video server) that obtains the video data 325 from the cameras 305. In some other examples, the BS 110 may obtain the video data 325 directly from the cameras 305. The server 315 may be co-located with the BS 110 or may be remotely located from the BS 110. In some examples of the former, the server 315 may be a component or a module of the BS 110.
In some aspects, the BS 110 may identify or otherwise determine multiple video zones 320 for the area 310, and may assemble the video data 325 that is obtained in accordance with the multiple video zones 320 that are determined. For example, each video zone 320 that is determined by the BS 110 may include one or more cameras 305 (that is, include one or more video streams, for example, to achieve three-dimensional video for the video zone 320) , and the BS 110 may assemble the video data 325 for a video zone 320 to include video streams of the one or more cameras 305. In some aspects, the server 315 may determine the multiple video zones 320, and may assemble the video data 325 in accordance with the multiple video zones 320. In such examples, the BS 110 may obtain, from the server 315, the assembled video data 325 as well as information identifying the video zones 320. In some aspects, a video zone 320 may be identified by an alphanumeric identifier or a geographic identifier, among other examples.
In some aspects, the BS 110 may transmit, and the UE 120 may receive, a broadcast communication that includes information for each of the multiple video zones 320 that are determined. For example, the information for a video zone 320 may include an identifier of the video zone 320, one or more resources (for example, a time resource, a frequency resource, a spatial resource, a synchronization signal block resource, or a bandwidth part) associated with the video zone 320, or a position associated with the video zone 320, among other examples. In some aspects, the position may be a geographic position (for example, latitude and longitude coordinates that define the video zone 320) or a relative position (for example, cartesian coordinates, relative to a center of the area 310, that define the video zone 320, or an angle of view that defines the video zone 320) .
As shown in Figure 3, the BS 110 may transmit the video data 325 on multiple MB channels that are respectively associated with the plurality of video zones 320. That is, the BS 110 may transmit video data 325 for a first video zone 320 on a first MB channel, video data 325 for a second video zone 320 on a second MB channel, and so forth. The multiple MB channels may be time division multiplexed, frequency division multiplexed, or spatial division multiplexed (for example, each MB channel may be transmitted on a respective beam) . Moreover, the multiple MB channels may be associated with a single frequency network (SFN) or coordinated multipoint (COMP) communication.
An MB channel may include a control part, that includes control information, and a data part (that is, a payload) that includes the video data 325. In some aspects, the control part may occupy a beginning portion of a slot (such as, a beginning portion of a first symbol of the slot) , and the data part may occupy a remainder of the slot. In some aspects, the data part may occupy the remainder of the slot and one or more following slots (that is, the data part may be in multiple slots) . Thus, a single control part may be for multiple slots or a frame (for example, 10 milliseconds) .
The control part may include information about a video zone 320 associated with the MB channel. In some aspects, the information may include an identifier of the video zone 320. In addition, the control part may include information about the data part, associated with the control part, for the video zone 320 associated with the MB channel. In some aspects, the information may include a configuration for a reference signal (for example, a demodulation reference signal or a positioning reference signal, among other examples) for the data part. In some aspects, the UE 120 may be configured to monitor the reference signal less frequently than a reference signal would be monitored for other communications that are not associated with video data transmitted on multiple MB channels.
In addition, the information may include a time and frequency resource of the data part for the video zone 320, a spatial resource of the data part for the video zone 320, or a precoding configuration of the data part for the video zone 320, among other examples. In some aspects, the information may also include an MCS of the data part for the video zone 320, an interleaving scheme of the data part for the video zone 320, or a frequency hopping pattern of the data part for the video zone 320, among other examples.
The UE 120 may monitor the multiple MB channels. In some aspects, in connection with monitoring the multiple MB channels, the UE 120 may decode respective control parts of the multiple MB channels in order to identify the video zones 320 that correspond to the MB channels. In this way, the UE 120 may determine a mapping of video zones 320 to MB channels, which the UE 120 may use when switching between video zones 320.
The UE 120 may determine a video zone 320 that corresponds to a particular view of the area 310. In some aspects, the particular view may be commanded by an application (for example, a venue cast application) executing on the UE 120 (for example, on an application layer of the UE 120) . For example, the application may cause the UE  120 to display the video data 325 associated with a particular view of the area 310 based at least in part on a user input. As an example, a user may adjust (for example, rotate) a view of the area 310 that is displayed on the UE 120 by providing an input (for example, a swiping gesture) to the UE 120. In some aspects, the UE 120 may indicate a user input, or another command of the application, to a modem of the UE 120 (for example, via an indication from an application layer of the UE 120 to a physical layer of the UE 120) to enable decoding of a particular MB channel, as described below.
In some aspects, the UE 120 may determine the video zone 320 that corresponds to the particular view based at least in part on information for the multiple video zones 320 that was obtained by the UE 120 (for example, received by the UE 120 in a broadcast communication from the BS 110, as described above) . For example, the information may identify respective positions for the multiple video zones 320, and the UE 120 may determine the video zone 320 that has a position that corresponds to the particular view. In some aspects, the UE 120 may determine a default video zone 320 (for example, when the application has not commanded a particular view) that corresponds to a location of the UE 120 (for example, when the UE 120 is located in, or adjacent to, the area 310) . Furthermore, the UE 120 may identify or otherwise determine an MB channel, of the multiple MB channels, that is associated with the determined video zone 320 (for example, based on a mapping of video zones 320 to MB channels, as described above) .
In some examples, the UE 120 may decode a data part of (that is, the video data 325 associated with) only the identified MB channel. In some other examples, the UE 120 may decode data parts of the identified MB channel as well as one or more other MB channels that are associated with respective neighboring video zones 320 of the identified video zone 320. The UE 120 may determine a neighboring video zone 320 based at least in part on information (for example, position information) for the multiple video zones 320 obtained by the UE 120 (for example, received by the UE 120 in a broadcast communication from the BS 110, as described above) . In some aspects, video data 325 for the neighboring video zones 320 may be included in the data part for the identified video zone 320.
In some examples, the UE 120 may discard, without decoding, data parts of MB channels other than the identified MB channel. In some other examples in which video data 325 is desired for selected neighboring video zones 320, the UE 120 may  discard, without decoding, data parts of the MB channels other than the identified MB channel and the MB channels associated with the selected neighboring video zones 320. Moreover, the UE 120 may display (for example, using the application) video based at least in part on the video data 325 in the decoded data parts. In this way, the UE 120 may conserve bandwidth resources and power resources in connection with a venue cast.
Figure 4 is a diagram illustrating an example process 400 of multichannel multicasting or broadcasting of multizone video performed, for example, by a UE, in accordance with various aspects of the present disclosure. Example process 400 is an example where the UE, such as UE 120, performs operations associated with multichannel multicasting or broadcasting of multizone video.
As shown in Figure 4, in some aspects, process 400 may include monitoring a plurality of MB channels that are respectively associated with a plurality of video zones of an area (block 410) . For example, the UE (using antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, controller/processor 280, among other examples) may monitor a plurality of MB channels that are respectively associated with a plurality of video zones of an area, as described above.
As further shown in Figure 4, in some aspects, process 400 may include determining a video zone of the plurality of video zones that corresponds to a particular view of the area (block 420) . For example, the UE (using controller/processor 280, among other examples) may determine a video zone of the plurality of video zones that corresponds to a particular view of the area, as described above.
As further shown in Figure 4, in some aspects, process 400 may include decoding a data part of an MB channel, of the plurality of MB channels, that is associated with the determined video zone (block 430) . For example, the UE (using antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, controller/processor 280, among other examples) may decode a data part of an MB channel, of the plurality of MB channels, that is associated with the determined video zone, as described above.
Process 400 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the plurality of MB channels are time division multiplexed, frequency division multiplexed, or spatial division multiplexed.
In a second additional aspect, alone or in combination with the first aspect, process 400 includes receiving a broadcast communication including information for each of the plurality of video zones. In a third additional aspect, alone or in combination with one or more of the first and second aspects, the information includes at least one of an identifier of a particular video zone of the plurality of video zones, a resource associated with the particular video zone, or a position associated with the particular video zone.
In a fourth additional aspect, alone or in combination with one or more of the first through third aspects, the MB channel carries a control part and the data part, and the control part includes information about at least one of the determined video zone or the data part. In a fifth additional aspect, alone or in combination with one or more of the first through fourth aspects, the information includes at least one of an identifier of the determined video zone, an MCS of the data part for the determined video zone, an interleaving scheme of the data part for the determined video zone, a time and frequency resource of the data part for the determined video zone, a configuration for a reference signal for the data part for the determined video zone, a hopping pattern for the data part for the determined video zone, or a precoding configuration for the data part for the determined video zone. In a sixth additional aspect, alone or in combination with one or more of the first through fifth aspects, the data part is in multiple slots.
In a seventh additional aspect, alone or in combination with one or more of the first through sixth aspects, process 400 includes identifying the particular view of the area based at least in part on a command from an application executing on the UE.
In an eighth additional aspect, alone or in combination with one or more of the first through seventh aspects, process 400 includes decoding a data part of another MB channel, of the plurality of MB channels, that is associated with a neighboring video zone to the determined video zone. In a ninth additional aspect, alone or in combination with one or more of the first through eighth aspects, the data part includes video data for the determined video zone and video data for one or more neighboring video zones to the determined video zone.
In a tenth additional aspect, alone or in combination with one or more of the first through ninth aspects, each of the plurality of MB channels includes a control part and a data part, and process 400 includes decoding respective control parts of the plurality of MB channels, and discarding, without decoding, respective data parts of MB channels,  of the plurality of MB channels, that are not associated with at least one of the determined video zone or a neighboring video zone to the determined video zone.
In an eleventh additional aspect, alone or in combination with one or more of the first through tenth aspects, the determined video zone is a default video zone based on a location of the UE.
In a twelfth additional aspect, alone or in combination with one or more of the first through eleventh aspects, the plurality of MB channels are associated with an SFN or COMP communication.
Figure 5 is a diagram illustrating an example process 500 of multichannel multicasting or broadcasting of multizone video performed, for example, by a BS, in accordance with various aspects of the present disclosure. Example process 500 is an example where the BS, such as BS 110, performs operations associated with multichannel multicasting or broadcasting of multizone video.
As shown in Figure 5, in some aspects, process 500 may include obtaining video data for a plurality of video zones of an area (block 510) . For example, the BS (using antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, among other examples) may obtain video data for a plurality of video zones of an area, as described above.
As further shown in Figure 5, in some aspects, process 500 may include transmitting the video data on a plurality of MB channels that are respectively associated with the plurality of video zones (block 520) . For example, the BS (using controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, among other examples) may transmit the video data on a plurality of MB channels that are respectively associated with the plurality of video zones, as described above.
Process 500 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the plurality of MB channels are time division multiplexed, frequency division multiplexed, or spatial division multiplexed.
In a second additional aspect, alone or in combination with the first aspect, process 500 includes transmitting a broadcast communication including information for each of the plurality of video zones. In a third additional aspect, alone or in combination  with one or more of the first and second aspects, the information includes at least one of an identifier of a particular video zone of the plurality of video zones, a resource associated with the particular video zone, or a position associated with the particular video zone.
In a fourth additional aspect, alone or in combination with one or more of the first through third aspects, an MB channel, of the plurality of MB channels, carries a control part and a data part for a particular video zone of the plurality of video zones, and the control part includes information about at least one of the particular video zone or the data part. In a fifth additional aspect, alone or in combination with one or more of the first through fourth aspects, the information includes at least one of an identifier of the particular video zone, an MCS of the data part for the particular video zone, an interleaving scheme of the data part for the particular video zone, a time and frequency resource of the data part for the particular video zone, a configuration for a reference signal for the data part for the particular video zone, a hopping pattern for the data part for the particular video zone, or a precoding configuration for the data part for the particular video zone. In a sixth additional aspect, alone or in combination with one or more of the first through fifth aspects, the data part is in multiple slots. In a seventh additional aspect, alone or in combination with one or more of the first through sixth aspects, the data part includes the video data for the particular video zone and the video data for one or more neighboring video zones to the particular video zone.
In an eighth additional aspect, alone or in combination with one or more of the first through seventh aspects, process 500 includes determining the plurality of video zones for the area, and assembling the video data in accordance with the plurality of video zones that are determined.
In a ninth additional aspect, alone or in combination with one or more of the first through eighth aspects, the plurality of MB channels are associated with an SFN or COMP communication.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, firmware, or a combination of hardware and software. As used herein, a  processor is implemented in hardware, firmware, or a combination of hardware and software.
Some aspects are described herein in connection with thresholds. As used herein, satisfying a threshold may refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, or not equal to the threshold, among other examples, or combinations thereof.
It will be apparent that systems or methods described herein may be implemented in different forms of hardware, firmware, or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems or methods is not limiting of the aspects. Thus, the operation and behavior of the systems or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems or methods based, at least in part, on the description herein.
Even though particular combinations of features are recited in the claims or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set.
As used herein, “or” is used intended to be interpreted in the inclusive sense, unless otherwise explicitly indicated. For example, “a or b” may include a only, b only, or a combination of a and b. As used herein, a phrase referring to “at least one of” or “one or more of” a list of items refers to any combination of those items, including single members. For example, “at least one of: a, b, or c” is intended to cover the possibilities of: a only, b only, c only, a combination of a and b, a combination of a and c, a combination of b and c, and a combination of a and b and c.
No element, act, or instruction used herein is to be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items, and may be used interchangeably with “one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (for example, related items, unrelated items, or a combination  of related and unrelated items) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” or the like, or combinations thereof are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Claims (29)

  1. A method of wireless communication performed by a user equipment (UE) , comprising:
    monitoring a plurality of multicast or broadcast (MB) channels that are respectively associated with a plurality of video zones of an area;
    determining a video zone of the plurality of video zones that corresponds to a particular view of the area; and
    decoding a data part of an MB channel, of the plurality of MB channels, that is associated with the determined video zone.
  2. The method of claim 1, wherein the plurality of MB channels are time division multiplexed, frequency division multiplexed, or spatial division multiplexed.
  3. The method of claim 1, further comprising receiving a broadcast communication including information for each of the plurality of video zones.
  4. The method of claim 3, wherein the information includes at least one of:
    an identifier of a particular video zone of the plurality of video zones;
    a resource associated with the particular video zone; or
    a position associated with the particular video zone.
  5. The method of claim 1, wherein the MB channel carries a control part and the data part, and
    wherein the control part includes information about at least one of the determined video zone or the data part.
  6. The method of claim 5, wherein the information includes at least one of:
    an identifier of the determined video zone;
    a modulation and coding scheme of the data part for the determined video zone;
    an interleaving scheme of the data part for the determined video zone;
    a time and frequency resource of the data part for the determined video zone;
    a configuration for a reference signal for the data part for the determined video zone;
    a hopping pattern for the data part for the determined video zone; or
    a precoding configuration for the data part for the determined video zone.
  7. The method of claim 5, wherein the data part is in multiple slots.
  8. The method of claim 1, further comprising identifying the particular view of the area based at least in part on a command from an application executing on the UE.
  9. The method of claim 1, further comprising decoding a data part of another MB channel, of the plurality of MB channels, that is associated with a neighboring video zone to the determined video zone.
  10. The method of claim 1, wherein the data part includes video data for the determined video zone and video data for one or more neighboring video zones to the determined video zone.
  11. The method of claim 1, wherein each of the plurality of MB channels includes a control part and a data part, the method further comprising:
    decoding respective control parts of the plurality of MB channels; and
    discarding, without decoding, respective data parts of MB channels, of the plurality of MB channels, that are not associated with at least one of the determined video zone or a neighboring video zone to the determined video zone.
  12. The method of claim 1, wherein the determined video zone is a default video zone based on a location of the UE.
  13. The method of claim 1, wherein the plurality of MB channels are associated with a single frequency network or coordinated multipoint communication.
  14. A method of wireless communication performed by a base station, comprising:
    obtaining video data for a plurality of video zones of an area; and
    transmitting the video data on a plurality of multicast or broadcast (MB) channels that are respectively associated with the plurality of video zones.
  15. The method of claim 14, wherein the plurality of MB channels are time division multiplexed, frequency division multiplexed, or spatial division multiplexed.
  16. The method of claim 14, further comprising transmitting a broadcast communication including information for each of the plurality of video zones.
  17. The method of claim 16, wherein the information includes at least one of:
    an identifier of a particular video zone of the plurality of video zones;
    a resource associated with the particular video zone; or
    a position associated with the particular video zone.
  18. The method of claim 14, wherein an MB channel, of the plurality of MB channels, carries a control part and a data part for a particular video zone of the plurality of video zones, and
    wherein the control part includes information about at least one of the particular video zone or the data part.
  19. The method of claim 18, wherein the information includes at least one of:
    an identifier of the particular video zone;
    a modulation and coding scheme of the data part for the particular video zone;
    an interleaving scheme of the data part for the particular video zone;
    a time and frequency resource of the data part for the particular video zone;
    a configuration for a reference signal for the data part for the particular video zone;
    a hopping pattern for the data part for the particular video zone; or
    a precoding configuration for the data part for the particular video zone.
  20. The method of claim 18, wherein the data part is in multiple slots.
  21. The method of claim 18, wherein the data part includes the video data for the particular video zone and the video data for one or more neighboring video zones to the particular video zone.
  22. The method of claim 14, further comprising:
    determining the plurality of video zones for the area; and
    assembling the video data in accordance with the plurality of video zones that are determined.
  23. The method of claim 14, wherein the plurality of MB channels are associated with a single frequency network or coordinated multipoint communication.
  24. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    monitor a plurality of multicast or broadcast (MB) channels that are respectively associated with a plurality of video zones of an area;
    determine a video zone of the plurality of video zones that corresponds to a particular view of the area; and
    decode a data part of an MB channel, of the plurality of MB channels, that is associated with the determined video zone.
  25. A base station for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    obtain video data for a plurality of video zones of an area; and
    transmit the video data on a plurality of multicast or broadcast (MB) channels that are respectively associated with the plurality of video zones.
  26. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a user equipment (UE) , cause the one or more processors to:
    monitor a plurality of multicast or broadcast (MB) channels that are respectively associated with a plurality of video zones of an area;
    determine a video zone of the plurality of video zones that corresponds to a particular view of the area; and
    decode a data part of an MB channel, of the plurality of MB channels, that is associated with the determined video zone.
  27. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a base station, cause the one or more processors to:
    obtain video data for a plurality of video zones of an area; and
    transmit the video data on a plurality of multicast or broadcast (MB) channels that are respectively associated with the plurality of video zones.
  28. An apparatus for wireless communication, comprising:
    means for monitoring a plurality of multicast or broadcast (MB) channels that are respectively associated with a plurality of video zones of an area;
    means for determining a video zone of the plurality of video zones that corresponds to a particular view of the area; and
    means for decoding a data part of an MB channel, of the plurality of MB channels, that is associated with the determined video zone.
  29. An apparatus for wireless communication, comprising:
    means for obtaining video data for a plurality of video zones of an area; and
    means for transmitting the video data on a plurality of multicast or broadcast (MB) channels that are respectively associated with the plurality of video zones.
PCT/CN2020/070245 2020-01-03 2020-01-03 Multichannel multicasting or broadcasting of multizone video WO2021134781A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/070245 WO2021134781A1 (en) 2020-01-03 2020-01-03 Multichannel multicasting or broadcasting of multizone video

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/070245 WO2021134781A1 (en) 2020-01-03 2020-01-03 Multichannel multicasting or broadcasting of multizone video

Publications (1)

Publication Number Publication Date
WO2021134781A1 true WO2021134781A1 (en) 2021-07-08

Family

ID=76686256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070245 WO2021134781A1 (en) 2020-01-03 2020-01-03 Multichannel multicasting or broadcasting of multizone video

Country Status (1)

Country Link
WO (1) WO2021134781A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070204294A1 (en) * 2006-02-27 2007-08-30 Qualcomm Incorporated Methods, apparatus, and system for venue-cast
CN101321026A (en) * 2007-06-05 2008-12-10 Lg电子株式会社 Method of transmitting/receiving broadcasting signals and receiver
CN104168443A (en) * 2013-05-16 2014-11-26 杭州海康威视数字技术股份有限公司 Method for carrying out video recording on video monitor and network video recorder
US20170295102A1 (en) * 2016-04-12 2017-10-12 Pexip AS In multimedia conferencing
WO2017178263A1 (en) * 2016-04-12 2017-10-19 Evs Broadcast Equipment Sa Modular software based video production server, method for operating the video production server and distributed video production system
CN110225266A (en) * 2019-04-25 2019-09-10 视联动力信息技术股份有限公司 Data processing method, device and storage medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070204294A1 (en) * 2006-02-27 2007-08-30 Qualcomm Incorporated Methods, apparatus, and system for venue-cast
CN101321026A (en) * 2007-06-05 2008-12-10 Lg电子株式会社 Method of transmitting/receiving broadcasting signals and receiver
CN104168443A (en) * 2013-05-16 2014-11-26 杭州海康威视数字技术股份有限公司 Method for carrying out video recording on video monitor and network video recorder
US20170295102A1 (en) * 2016-04-12 2017-10-12 Pexip AS In multimedia conferencing
WO2017178263A1 (en) * 2016-04-12 2017-10-19 Evs Broadcast Equipment Sa Modular software based video production server, method for operating the video production server and distributed video production system
CN110225266A (en) * 2019-04-25 2019-09-10 视联动力信息技术股份有限公司 Data processing method, device and storage medium

Similar Documents

Publication Publication Date Title
EP3718344B1 (en) Techniques and apparatuses for providing system information updates in a system using bandwidth parts
WO2021237666A1 (en) Precoder indication for non-codebook-based uplink transmissions
WO2021168597A1 (en) Association of phase tracking reference signal ports and demodulation reference signal ports for multi-beam uplink repetitions
US11457350B2 (en) Signaling user equipment multi-panel capability
WO2021159362A1 (en) Demodulation reference signal time domain bundling
US11424800B2 (en) Techniques for scheduling a front-loaded sidelink channel state information reference signal
US20200059939A1 (en) Cross-carrier scheduling for bandwidth parts
WO2021127673A1 (en) Techniques for activating a pathloss reference signal
EP3925314A1 (en) Reduced monitoring state
US11589323B2 (en) Minimum time gap for uplink transmission in multiple timing advance groups
WO2021226861A1 (en) Multiple uplink configurations for multiple antenna panel transmissions
WO2021120083A1 (en) Beam indication for downlink control information scheduled sidelink transmission
WO2021011107A1 (en) Autonomous selection of a physical downlink control channel beam
EP4118904A1 (en) Beam hopping for repetitions in a physical uplink control channel resource
US20210235307A1 (en) Techniques for indicating beams for user equipment beam reporting
WO2021232390A1 (en) Group common sounding reference signal downlink control information configuration
EP3888399B1 (en) Resource allocation for reserved resources
WO2021134781A1 (en) Multichannel multicasting or broadcasting of multizone video
US11696236B2 (en) Techniques for selecting an uplink beam
WO2021142708A1 (en) Beam indication for a physical uplink control channel
WO2021237657A1 (en) Enhancement of mobility in a non-standalone network
US20240129782A1 (en) Techniques for excluding signal measurements from a measurement report
WO2021196151A1 (en) Inter-operator multicast and unicast convergence transmission
WO2021068228A1 (en) Demodulation reference signal configuration for multiple configured grant physical uplink shared channel configurations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20910443

Country of ref document: EP

Kind code of ref document: A1