WO2021142708A1 - Beam indication for a physical uplink control channel - Google Patents

Beam indication for a physical uplink control channel Download PDF

Info

Publication number
WO2021142708A1
WO2021142708A1 PCT/CN2020/072450 CN2020072450W WO2021142708A1 WO 2021142708 A1 WO2021142708 A1 WO 2021142708A1 CN 2020072450 W CN2020072450 W CN 2020072450W WO 2021142708 A1 WO2021142708 A1 WO 2021142708A1
Authority
WO
WIPO (PCT)
Prior art keywords
beams
communication
pdsch
pucch
communications
Prior art date
Application number
PCT/CN2020/072450
Other languages
French (fr)
Inventor
Min Huang
Chao Wei
Qiaoyu Li
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/072450 priority Critical patent/WO2021142708A1/en
Publication of WO2021142708A1 publication Critical patent/WO2021142708A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for beam indication for a physical uplink control channel (PUCCH) .
  • PUCCH physical uplink control channel
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a user equipment (UE) may communicate with a base station (BS) via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
  • New Radio which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • 3GPP Third Generation Partnership Project
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • a method of wireless communication may include receiving, in one or more downlink control information (DCI) scheduling one or more physical downlink shared channel (PDSCH) communications, an indication of one or more beams that are to be used to transmit feedback for the one or more PDSCH communications; and transmitting the feedback for the one or more PDSCH communications in a physical uplink control channel (PUCCH) communication using the one or more beams.
  • DCI downlink control information
  • PDSCH physical downlink shared channel
  • PUCCH physical uplink control channel
  • a method of wireless communication may include transmitting, in one or more DCI scheduling one or more PDSCH communications, an indication of one or more beams that are to be used by a UE to transmit feedback for the one or more PDSCH communications; and receiving, from the UE, the feedback for the one or more PDSCH communications in a PUCCH communication that uses the one or more beams.
  • a UE for wireless communication may include memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to receive, in one or more DCI scheduling one or more PDSCH communications, an indication of one or more beams that are to be used to transmit feedback for the one or more PDSCH communications; and transmit the feedback for the one or more PDSCH communications in a PUCCH communication using the one or more beams.
  • a BS for wireless communication may include memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to transmit, in one or more DCI scheduling one or more PDSCH communications, an indication of one or more beams that are to be used by a UE to transmit feedback for the one or more PDSCH communications; and receive, from the UE, the feedback for the one or more PDSCH communications in a PUCCH communication that uses the one or more beams.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a UE, may cause the one or more processors to: receive, in one or more DCI scheduling one or more PDSCH communications, an indication of one or more beams that are to be used to transmit feedback for the one or more PDSCH communications; and transmit the feedback for the one or more PDSCH communications in a PUCCH communication using the one or more beams.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a BS, may cause the one or more processors to: transmit, in one or more DCI scheduling one or more PDSCH communications, an indication of one or more beams that are to be used by a UE to transmit feedback for the one or more PDSCH communications; and receive, from the UE, the feedback for the one or more PDSCH communications in a PUCCH communication that uses the one or more beams.
  • an apparatus for wireless communication may include means for receiving, in one or more DCI scheduling one or more PDSCH communications, an indication of one or more beams that are to be used to transmit feedback for the one or more PDSCH communications; and means for transmitting the feedback for the one or more PDSCH communications in a PUCCH communication using the one or more beams.
  • an apparatus for wireless communication may include means for transmitting, in one or more DCI scheduling one or more PDSCH communications, an indication of one or more beams that are to be used by a UE to transmit feedback for the one or more PDSCH communications; and means for receiving, from the UE, the feedback for the one or more PDSCH communications in a PUCCH communication that uses the one or more beams.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
  • Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
  • Fig. 2 is a block diagram conceptually illustrating an example of a base station (BS) in communication with a user equipment (UE) in a wireless communication network, in accordance with various aspects of the present disclosure.
  • BS base station
  • UE user equipment
  • Fig. 3 is a diagram illustrating an example of beam indication for a physical uplink control channel (PUCCH) , in accordance with various aspects of the present disclosure.
  • PUCCH physical uplink control channel
  • Fig. 4 is a diagram illustrating an example process performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Fig. 5 is a diagram illustrating an example process performed, for example, by a BS, in accordance with various aspects of the present disclosure.
  • Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced.
  • the wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network.
  • the wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • Some UEs may be considered a Customer Premises Equipment (CPE) .
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • TX transmit
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • the synchronization signals can be generated with location encoding to convey additional information.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110.
  • modulators 254a through 254r e.g., for DFT-s-OFDM, CP-OFDM, and/or the like
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with beam indication for a physical uplink control channel (PUCCH) , as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 400 of Fig. 4, process 500 of Fig. 5, and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • memory 242 and/or memory 282 may comprise a non-transitory computer-readable medium storing one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of base station 110 and/or UE 120, may perform or direct operations of, for example, process 400 of Fig. 4, process 500 of Fig. 5, and/or other processes as described herein.
  • a scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
  • UE 120 may include means for receiving, in one or more downlink control information (DCI) scheduling one or more physical downlink shared channel (PDSCH) communications, an indication of one or more beams that are to be used to transmit feedback for the one or more PDSCH communications, means for transmitting the feedback for the one or more PDSCH communications in a PUCCH communication using the one or more beams, and/or the like.
  • DCI downlink control information
  • PDSCH physical downlink shared channel
  • such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
  • base station 110 may include means for transmitting, in one or more DCI scheduling one or more PDSCH communications, an indication of one or more beams that are to be used by a UE to transmit feedback for the one or more PDSCH communications, means for receiving, from the UE, the feedback for the one or more PDSCH communications in a PUCCH communication that uses the one or more beams, and/or the like.
  • such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • one or more PDSCH communications may be transmitted to a UE by multiple transmit-receive points (TRPs) , for example, using respective beams.
  • the UE may transmit feedback (e.g., acknowledgment (ACK) feedback or negative ACK (NACK) feedback) for the one or more PDSCH communications in a PUCCH communication.
  • the UE may not be enabled to transmit the PUCCH communication using multiple beams.
  • the PUCCH communication may lack spatial diversity, which may impair the performance of the PUCCH communication and reduce the UE’s PUCCH coverage.
  • beams that are to be used by a UE for receiving a multiple-TRP transmission of one or more PDSCH communications may be indicated by DCI, which has a latency of one or several symbols.
  • a beam that is to be used by the UE to transmit a PUCCH communication providing feedback for the PDSCH communications is indicated by a medium access control control element (MAC-CE) , which has a latency of one or several slots.
  • MAC-CE medium access control control element
  • UE beam switching for transmitting PUCCH communications is slower than beam switching for receiving PDSCH communications, which may impair the performance of the PUCCH communications and further impair the performance of the PDSCH communications.
  • Some techniques and apparatuses described herein provide improved beam indication for PUCCH communications that include ACK/NACK feedback for one or more PDSCH communications.
  • one or more beams for a PUCCH communication may be indicated by one or more DCI scheduling the one or more PDSCH communications, thereby reducing transmission beam switching time.
  • multiple beams may be indicated for a PUCCH communication, thereby improving transmission diversity for the PUCCH communication. In this way, the performance of the PUCCH communication may be improved.
  • Fig. 3 is a diagram illustrating an example 300 of beam indication for a PUCCH, in accordance with various aspects of the present disclosure.
  • example 300 may illustrate an example in which a UE 120 communicates with a BS 110, such as in connection with a PDSCH communication and/or a PUCCH communication.
  • BS 110 may include one or more TRPs (which may also be referred to as BSs, NR BSs, Node Bs, 5G NBs, APs, a gNB, or some other term) .
  • TRP may be used interchangeably with “cell. ”
  • the BS 110 may transmit, and the UE 120 may receive, one or more DCI scheduling one or more PDSCH communications.
  • one or more TRPs of the BS 110 may transmit the one or more DCI.
  • the DCI may schedule the PDSCH communications for transmission by multiple TRPs of the BS 110.
  • a first TRP may transmit DCI scheduling PDSCH communications that are to be transmitted by the first TRP and a second TRP.
  • a first TRP may transmit DCI scheduling a PDSCH communication that is to be transmitted by the first TRP
  • a second TRP may transmit DCI scheduling a PDSCH communication that is to be transmitted by the second TRP.
  • the DCI may include an indication of one or more beams that are to be used by the UE 120 to transmit a PUCCH communication that includes feedback (e.g., ACK/NACK feedback) for the PDSCH communications.
  • the beams may be indicated to the UE 120 with reduced latency, thereby enabling faster beam switching by the UE 120.
  • the indication may indicate that the beams are associated with quasi co-location (QCL) information (e.g., a transmission configuration indicator (TCI) state) used by the UE 120 to determine one or more beams for receiving a PDSCH communication (e.g., from one or more TRPs) .
  • QCL quasi co-location
  • TCI transmission configuration indicator
  • the DCI may indicate that the UE 120 is to determine the beams for transmitting the PUCCH communication based at least in part on QCL information that the UE 120 is also to use to determine the beams for receiving the PDSCH communication.
  • one or more of the DCI may identify the QCL information (e.g., one or more TCI states) that the UE 120 is to use to determine the beams for receiving the PDSCH communication.
  • the indication may include identifiers of one or more spatial relations that are to be used by the UE 120 to determine the beams for transmitting the PUCCH communication.
  • the BS 110 may provide (e.g., via radio resource control (RRC) signaling, a MAC-CE, and/or the like) the UE 120 with a configuration for a set of spatial relations, and the identifiers may map to spatial relations in the set of spatial relations.
  • RRC radio resource control
  • a MAC-CE e.g., MAC-CE, and/or the like
  • the identifiers may map to spatial relations in the set of spatial relations.
  • spatial relations in the set of spatial relations may be associated with respective indices, and the indication may include one or more of the indices.
  • the BS 110 may transmit, and the UE 120 may receive, a configuration for one or more parameters for PUCCH communications (e.g., one or more parameters other than the transmission beams that are to be used) .
  • the configuration may indicate PUCCH power control parameters.
  • the BS 110 may transmit the configuration by RRC signaling, a MAC-CE, or DCI (e.g., another DCI that does not include the indication of the one or more beams) . Accordingly, the one or more parameters may be updated less frequently than the beam indications.
  • the UE 120 may determine one or more beams for transmitting the PUCCH communication. For example, the UE 120 may determine the beams based at least in part on the indication of the DCI.
  • the UE 120 may determine the beams for transmitting the PUCCH communication based at least in part on the QCL information.
  • the beams for transmitting the PUCCH communication and the beams for receiving the PDSCH communication may share one or more of a beam number, a beamforming weight, a beamforming direction, a beamforming width, and/or the like.
  • the UE 120 may determine that a single beam is to be used to transmit the PUCCH communication based at least in part on a determination that single QCL information (e.g., a single TCI state) is associated with the PDSCH communication (i.e., the PDSCH communication is to be received by the UE 120 using a single beam, such as from a single TRP) .
  • single QCL information e.g., a single TCI state
  • the UE 120 may determine that multiple beams are to be used to transmit the PUCCH communication, based at least in part on a determination that multiple QCL information (e.g., multiple TCI states) are associated with the PDSCH communication (i.e., the PDSCH communication is to be received by the UE 120 using multiple beams, such as from multiple TRPs) .
  • multiple QCL information e.g., multiple TCI states
  • the PDSCH communication is to be received by the UE 120 using multiple beams, such as from multiple TRPs
  • the UE 120 may be scheduled to receive multiple PDSCH communications multiplexed in a time domain according to respective QCL information (e.g., each PDSCH communication may be associated with single QCL information or multiple QCL information) .
  • the UE 120 may determine the beams for transmitting the PUCCH communication based at least in part on the QCL information associated with a particular PDSCH communication, such as a last PDSCH communication, of the multiple PDSCH communications.
  • the UE 120 may determine the beams for transmitting the PUCCH communication based at least in part on the identifiers of the spatial relations. For example, the UE 120 may select spatial relations from the configured set of spatial relations according to the identifiers.
  • a spatial relation may identify a set of transmission parameters that the UE 120 may use to determine one or more transmission beams.
  • the transmission parameters may include identifiers of one or more reference signals (e.g., synchronization signal blocks, channel state information reference signals, sounding reference signals, and/or the like) that the UE 120 is to use to determine the one or more transmission beams (e.g., according to QCL information indicated by the one or more reference signals) .
  • the UE 120 may determine that a single beam is to be used to transmit the PUCCH communication based at least in part on a determination that a single spatial relation is identified by the indication. In some aspects, the UE 120 may determine that multiple beams are to be used to transmit the PUCCH communication based at least in part on a determination that multiple spatial relations are identified by the indication. In some aspects, the UE 120 may receive multiple DCI with respective indications that include identifiers of one or more spatial relations. In this case, the UE 120 may aggregate the identifiers of the respective indications into a set and determine that multiple beams are to be used to transmit the PUCCH communication based at least in part on the aggregated set of identifiers.
  • the PUCCH communication may be associated with a resource in which the PUCCH communication is to be transmitted (e.g., the DCI may identify a resource for the PUCCH communication) .
  • the resource may be associated with a set of spatial relations for transmitting the PUCCH communication (e.g., according to a configuration, which may be received by the UE 120 via RRC signaling, a MAC-CE, and/or the like) .
  • the spatial relations identified by the indication may be different from the spatial relations associated with the resource. In this case, the UE 120 may determine that the beams for transmitting the PUCCH communication are associated with the spatial relations identified by the indication based at least in part on a prioritization of the spatial relations identified by the indication over the spatial relations associated with the resource.
  • the BS 110 may transmit, and the UE 120 may receive, the one or more PDSCH communications (e.g., according to the one or more DCI) .
  • the UE 120 may receive the PDSCH communications from one or more TRPs of the BS 110.
  • the UE 120 may receive the PDSCH communications using one or more reception beams that are determined by the UE 120 based at least in part on QCL information (e.g., one or more TCI states) indicated by the one or more DCI scheduling the PDSCH communications.
  • QCL information e.g., one or more TCI states
  • the UE 120 may transmit, and the BS 110 may receive, the PUCCH communication using the one or more beams determined by the UE 120 (and according to the configuration for the one or more parameters for PUCCH communications) .
  • the UE 120 may transmit the PUCCH communication to one or more TRPs of the BS 110 using the one or more beams determined by the UE 120.
  • the PUCCH communication may include feedback (e.g., ACK/NACK feedback) for the one or more PDSCH communications.
  • the UE 120 may transmit the PUCCH communication using a single beam (i.e., to a single TRP) based at least in part on a determination that the indication in the DCI indicates a single beam, as described above. In some aspects, the UE 120 may transmit the PUCCH communication using multiple beams (i.e., to multiple TRPs) based at least in part on a determination that the indication in the DCI indicates multiple beams, as described above.
  • the UE 120 may transmit the PUCCH communication in a resource for the PUCCH communication (e.g., a resource indicated by the DCI) .
  • the UE 120 may transmit the PUCCH communication in the resource using multiple beams determined by the UE 120 (e.g., in a spatial division multiplexed manner) .
  • the UE 120 may transmit the PUCCH communication in the resource using multiple transmission power parts (e.g., where a quantity of transmission power parts corresponds to a quantity of beams determined by the UE 120) .
  • the UE 120 may transmit the PUCCH communication in the resource using a transmit power (e.g., a maximum transmit power of the UE 120) that is split (e.g., equally) between the multiple beams.
  • a transmit power e.g., a maximum transmit power of the UE 120
  • the UE 120 may transmit the PUCCH communication using multiple antenna panels of the UE 120, using a transmit power that is split between the multiple antenna panels.
  • the UE 120 may transmit the PUCCH communication in multiple time domain parts of the resource using respective beams of multiple beams determined by the UE 120 (e.g., where a quantity of time domain parts corresponds to a quantity of beams determined by the UE 120) .
  • the UE 120 may transmit the PUCCH communication in a first time domain part of the resource using a first beam, in a second time domain part of the resource using a second beam, and so forth.
  • the UE 120 may transmit the PUCCH communication in multiple frequency domain parts of the resource using respective beams of multiple beams determined by the UE 120 (e.g., where a quantity of frequency domain parts corresponds to a quantity of beams determined by the UE 120) .
  • the UE 120 may transmit the PUCCH communication in a first frequency domain part of the resource using a first beam, in a second frequency domain part of the resource using a second beam, and so forth.
  • the frequency domain parts may be frequency subbands.
  • an order in which the multiple beams are mapped to the frequency subbands may be a numerical order (e.g., beam 1 maps to frequency subband 1) or another configured order.
  • the UE 120 may transmit the PUCCH communication in a plurality of frequency hop locations (e.g., time domain and frequency domain parts) using respective beams of multiple beams determined by the UE 120 (e.g., where a quantity of frequency hops corresponds to a quantity of beams determined by the UE 120) .
  • the UE 120 may transmit the PUCCH communication in a first frequency hop location using a first beam, in a second frequency hop location using a second beam, and so forth.
  • the plurality of frequency hop locations may be intra-slot and/or inter-slot.
  • an order in which the multiple beams are mapped to the frequency hop locations may be a numerical order (e.g., beam 1 maps to frequency hop location 1) or another configured order.
  • the UE 120 may transmit the PUCCH communication to multiple TRPs using multiple beams. Accordingly, spatial diversity of the PUCCH communication is improved, thereby improving the performance of the PUCCH communication and the UE’s PUCCH coverage.
  • Fig. 3 is provided as an example. Other examples may differ from what is described with respect to Fig. 3.
  • Fig. 4 is a diagram illustrating an example process 400 performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Example process 400 is an example where the UE (e.g., UE 120, and/or the like) performs operations associated with beam indication for a PUCCH.
  • the UE e.g., UE 120, and/or the like
  • process 400 may include receiving, in one or more DCI scheduling one or more PDSCH communications, an indication of one or more beams that are to be used to transmit feedback for the one or more PDSCH communications (block 410) .
  • the UE e.g., using antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, controller/processor 280, and/or the like
  • process 400 may include transmitting the feedback for the one or more PDSCH communications in a PUCCH communication using the one or more beams (block 420) .
  • the UE e.g., using controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, and/or the like
  • Process 400 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the indication indicates that the one or more beams are associated with QCL information used to determine one or more beams for receiving the one or more PDSCH communications.
  • the one or more beams, and one or more beams used to receive the one or more PDSCH communications share at least one of a beam number, a beamforming weight, a beamforming direction, or a beamforming width.
  • a single beam is used to transmit the PUCCH communication, based at least in part on a determination that single QCL information is used to determine the one or more beams for receiving the one or more PDSCH communications.
  • multiple beams are used to transmit the PUCCH communication, based at least in part on a determination that multiple QCL information is used to determine the one or more beams for receiving the one or more PDSCH communications.
  • the one or more PDSCH communications include multiple PDSCH communications multiplexed in a time domain, and the QCL information is associated with a particular PDSCH communication of the multiple PDSCH communications.
  • the indication includes identifiers of one or more spatial relations that are to be used to determine the one or more beams.
  • the one or more DCI include multiple DCI that identify respective indications of identifiers of one or more spatial relations.
  • a single beam is used to transmit the PUCCH communication, based at least in part on a determination that the indication includes an identifier of a single spatial relation.
  • multiple beams are used to transmit the PUCCH communication, based at least in part on a determination that the indication includes identifiers of multiple spatial relations.
  • the one or more beams are associated with the one or more spatial relations based at least in part on a prioritization of the one or more spatial relations over one or more other spatial relations associated with a resource for the PUCCH communication.
  • process 400 includes receiving a configuration for one or more parameters of the PUCCH communication by RRC signaling, a MAC-CE, or another DCI.
  • the PUCCH communication is transmitted in multiple time domain parts of a resource for the PUCCH communication using respective beams of the one or more beams.
  • the PUCCH communication is transmitted in multiple frequency domain parts of a resource for the PUCCH communication using respective beams of the one or more beams.
  • the PUCCH communication is transmitted in a resource for the PUCCH communication using the one or more beams.
  • the PUCCH communication is transmitted in a plurality of frequency hops using respective beams of the one or more beams.
  • the PUCCH communication is transmitted in a plurality of frequency subbands using respective beams of the one or more beams.
  • the PUCCH communication is transmitted using a transmit power that is split between the one or more beams.
  • process 400 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 4. Additionally, or alternatively, two or more of the blocks of process 400 may be performed in parallel.
  • Fig. 5 is a diagram illustrating an example process 500 performed, for example, by a BS, in accordance with various aspects of the present disclosure.
  • Example process 500 is an example where the BS (e.g., BS 110, and/or the like) performs operations associated with beam indication for a PUCCH.
  • the BS e.g., BS 110, and/or the like
  • process 500 may include transmitting, in one or more DCI scheduling one or more PDSCH communications, an indication of one or more beams that are to be used by a UE to transmit feedback for the one or more PDSCH communications (block 510) .
  • the BS e.g., using controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like
  • process 500 may include receiving, from the UE, the feedback for the one or more PDSCH communications in a PUCCH communication that uses the one or more beams (block 520) .
  • the BS e.g., using antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, controller/processor 280, and/or the like
  • Process 500 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the indication indicates that the one or more beams are associated with QCL information used by the UE to determine one or more beams for receiving the one or more PDSCH communications.
  • the one or more beams, and one or more beams used by the UE to receive the one or more PDSCH communications share at least one of a beam number, a beamforming weight, a beamforming direction, or a beamforming width.
  • the PUCCH communication uses a single beam when single QCL information is used by the UE to determine the one or more beams for receiving the one or more PDSCH communications.
  • the PUCCH communication uses multiple beams when multiple QCL information is used by the UE to determine the one or more beams for receiving the one or more PDSCH communications.
  • the one or more PDSCH communications include multiple PDSCH communications multiplexed in a time domain, and the QCL information is associated with a particular PDSCH communication of the multiple PDSCH communications.
  • the indication includes identifiers of one or more spatial relations that are to be used by the UE to determine the one or more beams.
  • the one or more DCI include multiple DCI that identify respective indications of identifiers of one or more spatial relations.
  • the PUCCH communication uses a single beam when the indication includes an identifier of a single spatial relation.
  • the PUCCH communication uses multiple beams when the indication includes identifiers of multiple spatial relations.
  • the one or more beams are associated with the one or more spatial relations based at least in part on a prioritization of the one or more spatial relations over one or more other spatial relations associated with a resource for the PUCCH communication.
  • process 500 includes transmitting a configuration for one or more parameters of the PUCCH communication by RRC signaling, a MAC-CE, or another DCI.
  • the PUCCH communication is received in multiple time domain parts, of a resource for the PUCCH communication, associated with respective beams of the one or more beams.
  • the PUCCH communication is received in multiple frequency domain parts, of a resource for the PUCCH communication, associated with respective beams of the one or more beams.
  • the PUCCH communication that uses the one or more beams is received in a resource for the PUCCH communication.
  • the PUCCH communication is received in a plurality of frequency hops associated with respective beams of the one or more beams.
  • the PUCCH communication is received in a plurality of frequency subbands associated with respective beams of the one or more beams.
  • the PUCCH communication uses a transmit power of the UE that is split between the one or more beams.
  • process 500 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 5. Additionally, or alternatively, two or more of the blocks of process 500 may be performed in parallel.
  • ком ⁇ онент is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, and/or a combination of hardware and software.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive, in one or more downlink control information scheduling one or more physical downlink shared channel (PDSCH) communications, an indication of one or more beams that are to be used to transmit feedback for the one or more PDSCH communications. The UE may transmit the feedback for the one or more PDSCH communications in a physical uplink control channel communication using the one or more beams. Numerous other aspects are provided.

Description

BEAM INDICATION FOR A PHYSICAL UPLINK CONTROL CHANNEL
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for beam indication for a physical uplink control channel (PUCCH) .
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A user equipment (UE) may communicate with a base station (BS) via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user equipment to communicate on a municipal, national, regional, and even global level. New Radio (NR) , which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .  NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in LTE and NR technologies. Preferably, these improvements should be applicable to other multiple access technologies and the telecommunication standards that employ these technologies.
SUMMARY
In some aspects, a method of wireless communication, performed by a user equipment (UE) , may include receiving, in one or more downlink control information (DCI) scheduling one or more physical downlink shared channel (PDSCH) communications, an indication of one or more beams that are to be used to transmit feedback for the one or more PDSCH communications; and transmitting the feedback for the one or more PDSCH communications in a physical uplink control channel (PUCCH) communication using the one or more beams.
In some aspects, a method of wireless communication, performed by a base station (BS) , may include transmitting, in one or more DCI scheduling one or more PDSCH communications, an indication of one or more beams that are to be used by a UE to transmit feedback for the one or more PDSCH communications; and receiving, from the UE, the feedback for the one or more PDSCH communications in a PUCCH communication that uses the one or more beams.
In some aspects, a UE for wireless communication may include memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to receive, in one or more DCI scheduling one or more PDSCH communications, an indication of one or more beams that are to be used to transmit feedback for the one or more PDSCH communications; and transmit the feedback for the one or more PDSCH communications in a PUCCH communication using the one or more beams.
In some aspects, a BS for wireless communication may include memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to transmit, in one or more DCI scheduling one or more PDSCH communications, an indication of one or more beams that are to be used by a UE to transmit feedback for the one or more PDSCH communications; and receive, from the UE, the feedback for the one or more PDSCH communications in a PUCCH communication that uses the one or more beams.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a UE, may cause the one or more processors to: receive, in one or more DCI scheduling one or more PDSCH communications, an indication of one or more beams that are to be used to transmit feedback for the one or more PDSCH communications; and transmit the feedback for the one or more PDSCH communications in a PUCCH communication using the one or more beams.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a BS, may cause the one or more processors to: transmit, in one or more DCI scheduling one or more PDSCH communications, an indication of one or more beams that are to be used by a UE to transmit feedback for the one or more PDSCH communications; and receive, from the UE, the feedback for the one or more PDSCH communications in a PUCCH communication that uses the one or more beams.
In some aspects, an apparatus for wireless communication may include means for receiving, in one or more DCI scheduling one or more PDSCH communications, an indication of one or more beams that are to be used to transmit feedback for the one or more PDSCH communications; and means for transmitting the feedback for the one or more PDSCH communications in a PUCCH communication using the one or more beams.
In some aspects, an apparatus for wireless communication may include means for transmitting, in one or more DCI scheduling one or more PDSCH communications, an indication of one or more beams that are to be used by a UE to transmit feedback for the one or more PDSCH communications; and means for receiving, from the UE, the feedback for the one or more PDSCH communications in a PUCCH communication that uses the one or more beams.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 2 is a block diagram conceptually illustrating an example of a base station (BS) in communication with a user equipment (UE) in a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 3 is a diagram illustrating an example of beam indication for a physical uplink control channel (PUCCH) , in accordance with various aspects of the present disclosure.
Fig. 4 is a diagram illustrating an example process performed, for example, by a UE, in accordance with various aspects of the present disclosure.
Fig. 5 is a diagram illustrating an example process performed, for example, by a BS, in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
It should be noted that while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced. The wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network. The wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the  example shown in Fig. 1, a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular  network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like. In this case, the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource  partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively. According to various aspects described in more detail below, the synchronization signals can be generated with location encoding to convey additional information.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. A channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like. In some aspects, one or more components of UE 120 may be included in a housing.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor  264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110. At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with beam indication for a physical uplink control channel (PUCCH) , as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 400 of Fig. 4, process 500 of Fig. 5, and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. In some aspects, memory 242 and/or memory 282 may comprise a non-transitory computer-readable medium storing one or more instructions for wireless communication. For example, the one or more instructions, when executed by one or more processors of base station 110 and/or UE 120, may perform or direct operations of, for example, process 400 of Fig. 4, process 500 of Fig. 5, and/or other processes as described herein. A scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
In some aspects, UE 120 may include means for receiving, in one or more downlink control information (DCI) scheduling one or more physical downlink shared channel (PDSCH) communications, an indication of one or more beams that are to be used to transmit feedback for the one or more PDSCH communications, means for transmitting the feedback for the one or more PDSCH communications in a PUCCH communication using the one or more beams, and/or the like. In some aspects, such means may include one or more components of UE 120 described in connection with  Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
In some aspects, base station 110 may include means for transmitting, in one or more DCI scheduling one or more PDSCH communications, an indication of one or more beams that are to be used by a UE to transmit feedback for the one or more PDSCH communications, means for receiving, from the UE, the feedback for the one or more PDSCH communications in a PUCCH communication that uses the one or more beams, and/or the like. In some aspects, such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
In some wireless communication systems, one or more PDSCH communications may be transmitted to a UE by multiple transmit-receive points (TRPs) , for example, using respective beams. The UE may transmit feedback (e.g., acknowledgment (ACK) feedback or negative ACK (NACK) feedback) for the one or more PDSCH communications in a PUCCH communication. However, the UE may not be enabled to transmit the PUCCH communication using multiple beams. As a result, the PUCCH communication may lack spatial diversity, which may impair the performance of the PUCCH communication and reduce the UE’s PUCCH coverage.
In addition, beams that are to be used by a UE for receiving a multiple-TRP transmission of one or more PDSCH communications may be indicated by DCI, which has a latency of one or several symbols. However, in current wireless communication systems, a beam that is to be used by the UE to transmit a PUCCH communication providing feedback for the PDSCH communications is indicated by a medium access control control element (MAC-CE) , which has a latency of one or several slots. Accordingly, UE beam switching for transmitting PUCCH communications is slower than beam switching for receiving PDSCH communications, which may impair the performance of the PUCCH communications and further impair the performance of the PDSCH communications.
Some techniques and apparatuses described herein provide improved beam indication for PUCCH communications that include ACK/NACK feedback for one or more PDSCH communications. In some aspects, one or more beams for a PUCCH communication may be indicated by one or more DCI scheduling the one or more PDSCH communications, thereby reducing transmission beam switching time. In additional, multiple beams may be indicated for a PUCCH communication, thereby improving transmission diversity for the PUCCH communication. In this way, the performance of the PUCCH communication may be improved.
Fig. 3 is a diagram illustrating an example 300 of beam indication for a PUCCH, in accordance with various aspects of the present disclosure. As shown in Fig. 3, example 300 may illustrate an example in which a UE 120 communicates with a BS 110, such as in connection with a PDSCH communication and/or a PUCCH communication. In some aspects, BS 110 may include one or more TRPs (which may also be referred to as BSs, NR BSs, Node Bs, 5G NBs, APs, a gNB, or some other term) . As described above, “TRP” may be used interchangeably with “cell. ” 
As shown in Fig. 3, and by reference number 305, the BS 110 may transmit, and the UE 120 may receive, one or more DCI scheduling one or more PDSCH communications. In some aspects, one or more TRPs of the BS 110 may transmit the one or more DCI. In this case, the DCI may schedule the PDSCH communications for transmission by multiple TRPs of the BS 110. For example, a first TRP may transmit DCI scheduling PDSCH communications that are to be transmitted by the first TRP and a second TRP. As another example, a first TRP may transmit DCI scheduling a PDSCH communication that is to be transmitted by the first TRP, and a second TRP may transmit DCI scheduling a PDSCH communication that is to be transmitted by the second TRP.
The DCI may include an indication of one or more beams that are to be used by the UE 120 to transmit a PUCCH communication that includes feedback (e.g., ACK/NACK feedback) for the PDSCH communications. In this way, the beams may be indicated to the UE 120 with reduced latency, thereby enabling faster beam switching by the UE 120.
In some aspects, the indication may indicate that the beams are associated with quasi co-location (QCL) information (e.g., a transmission configuration indicator (TCI) state) used by the UE 120 to determine one or more beams for receiving a PDSCH communication (e.g., from one or more TRPs) . In other words, the DCI may  indicate that the UE 120 is to determine the beams for transmitting the PUCCH communication based at least in part on QCL information that the UE 120 is also to use to determine the beams for receiving the PDSCH communication. In this case, one or more of the DCI may identify the QCL information (e.g., one or more TCI states) that the UE 120 is to use to determine the beams for receiving the PDSCH communication.
In some aspects, the indication may include identifiers of one or more spatial relations that are to be used by the UE 120 to determine the beams for transmitting the PUCCH communication. For example, the BS 110 may provide (e.g., via radio resource control (RRC) signaling, a MAC-CE, and/or the like) the UE 120 with a configuration for a set of spatial relations, and the identifiers may map to spatial relations in the set of spatial relations. As an example, spatial relations in the set of spatial relations may be associated with respective indices, and the indication may include one or more of the indices.
In some aspects, the BS 110 may transmit, and the UE 120 may receive, a configuration for one or more parameters for PUCCH communications (e.g., one or more parameters other than the transmission beams that are to be used) . For example, the configuration may indicate PUCCH power control parameters. The BS 110 may transmit the configuration by RRC signaling, a MAC-CE, or DCI (e.g., another DCI that does not include the indication of the one or more beams) . Accordingly, the one or more parameters may be updated less frequently than the beam indications.
As shown by reference number 310, the UE 120 may determine one or more beams for transmitting the PUCCH communication. For example, the UE 120 may determine the beams based at least in part on the indication of the DCI.
In some aspects, when the indication indicates that the UE 120 is to use the QCL information associated with the PDSCH communication, the UE 120 may determine the beams for transmitting the PUCCH communication based at least in part on the QCL information. In this case, the beams for transmitting the PUCCH communication and the beams for receiving the PDSCH communication may share one or more of a beam number, a beamforming weight, a beamforming direction, a beamforming width, and/or the like.
In some aspects, the UE 120 may determine that a single beam is to be used to transmit the PUCCH communication based at least in part on a determination that single QCL information (e.g., a single TCI state) is associated with the PDSCH communication (i.e., the PDSCH communication is to be received by the UE 120 using  a single beam, such as from a single TRP) . In some aspects, the UE 120 may determine that multiple beams are to be used to transmit the PUCCH communication, based at least in part on a determination that multiple QCL information (e.g., multiple TCI states) are associated with the PDSCH communication (i.e., the PDSCH communication is to be received by the UE 120 using multiple beams, such as from multiple TRPs) .
In some aspects, the UE 120 may be scheduled to receive multiple PDSCH communications multiplexed in a time domain according to respective QCL information (e.g., each PDSCH communication may be associated with single QCL information or multiple QCL information) . In this case, the UE 120 may determine the beams for transmitting the PUCCH communication based at least in part on the QCL information associated with a particular PDSCH communication, such as a last PDSCH communication, of the multiple PDSCH communications.
In some aspects, when the indication includes identifiers of the spatial relations, the UE 120 may determine the beams for transmitting the PUCCH communication based at least in part on the identifiers of the spatial relations. For example, the UE 120 may select spatial relations from the configured set of spatial relations according to the identifiers. A spatial relation may identify a set of transmission parameters that the UE 120 may use to determine one or more transmission beams. For example, the transmission parameters may include identifiers of one or more reference signals (e.g., synchronization signal blocks, channel state information reference signals, sounding reference signals, and/or the like) that the UE 120 is to use to determine the one or more transmission beams (e.g., according to QCL information indicated by the one or more reference signals) .
In some aspects, the UE 120 may determine that a single beam is to be used to transmit the PUCCH communication based at least in part on a determination that a single spatial relation is identified by the indication. In some aspects, the UE 120 may determine that multiple beams are to be used to transmit the PUCCH communication based at least in part on a determination that multiple spatial relations are identified by the indication. In some aspects, the UE 120 may receive multiple DCI with respective indications that include identifiers of one or more spatial relations. In this case, the UE 120 may aggregate the identifiers of the respective indications into a set and determine that multiple beams are to be used to transmit the PUCCH communication based at least in part on the aggregated set of identifiers.
The PUCCH communication may be associated with a resource in which the PUCCH communication is to be transmitted (e.g., the DCI may identify a resource for the PUCCH communication) . In some aspects, the resource may be associated with a set of spatial relations for transmitting the PUCCH communication (e.g., according to a configuration, which may be received by the UE 120 via RRC signaling, a MAC-CE, and/or the like) . In some aspects, the spatial relations identified by the indication may be different from the spatial relations associated with the resource. In this case, the UE 120 may determine that the beams for transmitting the PUCCH communication are associated with the spatial relations identified by the indication based at least in part on a prioritization of the spatial relations identified by the indication over the spatial relations associated with the resource.
As shown by reference number 315, the BS 110 may transmit, and the UE 120 may receive, the one or more PDSCH communications (e.g., according to the one or more DCI) . For example, the UE 120 may receive the PDSCH communications from one or more TRPs of the BS 110. The UE 120 may receive the PDSCH communications using one or more reception beams that are determined by the UE 120 based at least in part on QCL information (e.g., one or more TCI states) indicated by the one or more DCI scheduling the PDSCH communications.
As shown by reference number 320, the UE 120 may transmit, and the BS 110 may receive, the PUCCH communication using the one or more beams determined by the UE 120 (and according to the configuration for the one or more parameters for PUCCH communications) . For example, the UE 120 may transmit the PUCCH communication to one or more TRPs of the BS 110 using the one or more beams determined by the UE 120. The PUCCH communication may include feedback (e.g., ACK/NACK feedback) for the one or more PDSCH communications.
In some aspects, the UE 120 may transmit the PUCCH communication using a single beam (i.e., to a single TRP) based at least in part on a determination that the indication in the DCI indicates a single beam, as described above. In some aspects, the UE 120 may transmit the PUCCH communication using multiple beams (i.e., to multiple TRPs) based at least in part on a determination that the indication in the DCI indicates multiple beams, as described above.
The UE 120 may transmit the PUCCH communication in a resource for the PUCCH communication (e.g., a resource indicated by the DCI) . For example, the UE 120 may transmit the PUCCH communication in the resource using multiple beams  determined by the UE 120 (e.g., in a spatial division multiplexed manner) . In some aspects, the UE 120 may transmit the PUCCH communication in the resource using multiple transmission power parts (e.g., where a quantity of transmission power parts corresponds to a quantity of beams determined by the UE 120) . For example, the UE 120 may transmit the PUCCH communication in the resource using a transmit power (e.g., a maximum transmit power of the UE 120) that is split (e.g., equally) between the multiple beams. As an example, the UE 120 may transmit the PUCCH communication using multiple antenna panels of the UE 120, using a transmit power that is split between the multiple antenna panels.
In some aspects, the UE 120 may transmit the PUCCH communication in multiple time domain parts of the resource using respective beams of multiple beams determined by the UE 120 (e.g., where a quantity of time domain parts corresponds to a quantity of beams determined by the UE 120) . For example, the UE 120 may transmit the PUCCH communication in a first time domain part of the resource using a first beam, in a second time domain part of the resource using a second beam, and so forth.
In some aspects, the UE 120 may transmit the PUCCH communication in multiple frequency domain parts of the resource using respective beams of multiple beams determined by the UE 120 (e.g., where a quantity of frequency domain parts corresponds to a quantity of beams determined by the UE 120) . For example, the UE 120 may transmit the PUCCH communication in a first frequency domain part of the resource using a first beam, in a second frequency domain part of the resource using a second beam, and so forth. The frequency domain parts may be frequency subbands. In some aspects, an order in which the multiple beams are mapped to the frequency subbands may be a numerical order (e.g., beam 1 maps to frequency subband 1) or another configured order.
In some aspects, the UE 120 may transmit the PUCCH communication in a plurality of frequency hop locations (e.g., time domain and frequency domain parts) using respective beams of multiple beams determined by the UE 120 (e.g., where a quantity of frequency hops corresponds to a quantity of beams determined by the UE 120) . For example, the UE 120 may transmit the PUCCH communication in a first frequency hop location using a first beam, in a second frequency hop location using a second beam, and so forth. The plurality of frequency hop locations may be intra-slot and/or inter-slot. In some aspects, an order in which the multiple beams are mapped to  the frequency hop locations may be a numerical order (e.g., beam 1 maps to frequency hop location 1) or another configured order.
In this way, the UE 120 may transmit the PUCCH communication to multiple TRPs using multiple beams. Accordingly, spatial diversity of the PUCCH communication is improved, thereby improving the performance of the PUCCH communication and the UE’s PUCCH coverage.
As indicated above, Fig. 3 is provided as an example. Other examples may differ from what is described with respect to Fig. 3.
Fig. 4 is a diagram illustrating an example process 400 performed, for example, by a UE, in accordance with various aspects of the present disclosure. Example process 400 is an example where the UE (e.g., UE 120, and/or the like) performs operations associated with beam indication for a PUCCH.
As shown in Fig. 4, in some aspects, process 400 may include receiving, in one or more DCI scheduling one or more PDSCH communications, an indication of one or more beams that are to be used to transmit feedback for the one or more PDSCH communications (block 410) . For example, the UE (e.g., using antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, controller/processor 280, and/or the like) may receive, in one or more DCI scheduling one or more PDSCH communications, an indication of one or more beams that are to be used to transmit feedback for the one or more PDSCH communications, as described above.
As further shown in Fig. 4, in some aspects, process 400 may include transmitting the feedback for the one or more PDSCH communications in a PUCCH communication using the one or more beams (block 420) . For example, the UE (e.g., using controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, and/or the like) may transmit the feedback for the one or more PDSCH communications in a PUCCH communication using the one or more beams, as described above.
Process 400 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the indication indicates that the one or more beams are associated with QCL information used to determine one or more beams for receiving the one or more PDSCH communications. In a second aspect, alone or in combination with the first aspect, the one or more beams, and one or more beams used to receive the  one or more PDSCH communications, share at least one of a beam number, a beamforming weight, a beamforming direction, or a beamforming width.
In a third aspect, alone or in combination with one or more of the first and second aspects, a single beam is used to transmit the PUCCH communication, based at least in part on a determination that single QCL information is used to determine the one or more beams for receiving the one or more PDSCH communications. In a fourth aspect, alone or in combination with one or more of the first through third aspects, multiple beams are used to transmit the PUCCH communication, based at least in part on a determination that multiple QCL information is used to determine the one or more beams for receiving the one or more PDSCH communications.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the one or more PDSCH communications include multiple PDSCH communications multiplexed in a time domain, and the QCL information is associated with a particular PDSCH communication of the multiple PDSCH communications.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the indication includes identifiers of one or more spatial relations that are to be used to determine the one or more beams. In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the one or more DCI include multiple DCI that identify respective indications of identifiers of one or more spatial relations.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, a single beam is used to transmit the PUCCH communication, based at least in part on a determination that the indication includes an identifier of a single spatial relation. In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, multiple beams are used to transmit the PUCCH communication, based at least in part on a determination that the indication includes identifiers of multiple spatial relations.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, the one or more beams are associated with the one or more spatial relations based at least in part on a prioritization of the one or more spatial relations over one or more other spatial relations associated with a resource for the PUCCH communication.
In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, process 400 includes receiving a configuration for one or more parameters of the PUCCH communication by RRC signaling, a MAC-CE, or another DCI.
In a twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, the PUCCH communication is transmitted in multiple time domain parts of a resource for the PUCCH communication using respective beams of the one or more beams. In a thirteenth aspect, alone or in combination with one or more of the first through twelfth aspects, the PUCCH communication is transmitted in multiple frequency domain parts of a resource for the PUCCH communication using respective beams of the one or more beams. In a fourteenth aspect, alone or in combination with one or more of the first through thirteenth aspects, the PUCCH communication is transmitted in a resource for the PUCCH communication using the one or more beams.
In a fifteenth aspect, alone or in combination with one or more of the first through fourteenth aspects, the PUCCH communication is transmitted in a plurality of frequency hops using respective beams of the one or more beams. In a sixteenth aspect, alone or in combination with one or more of the first through fifteenth aspects, the PUCCH communication is transmitted in a plurality of frequency subbands using respective beams of the one or more beams. In a seventeenth aspect, alone or in combination with one or more of the first through sixteenth aspects, the PUCCH communication is transmitted using a transmit power that is split between the one or more beams.
Although Fig. 4 shows example blocks of process 400, in some aspects, process 400 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 4. Additionally, or alternatively, two or more of the blocks of process 400 may be performed in parallel.
Fig. 5 is a diagram illustrating an example process 500 performed, for example, by a BS, in accordance with various aspects of the present disclosure. Example process 500 is an example where the BS (e.g., BS 110, and/or the like) performs operations associated with beam indication for a PUCCH.
As shown in Fig. 5, in some aspects, process 500 may include transmitting, in one or more DCI scheduling one or more PDSCH communications, an indication of one or more beams that are to be used by a UE to transmit feedback for the one or more  PDSCH communications (block 510) . For example, the BS (e.g., using controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like) may transmit, in one or more DCI scheduling one or more PDSCH communications, an indication of one or more beams that are to be used by a UE to transmit feedback for the one or more PDSCH communications, as described above.
As further shown in Fig. 5, in some aspects, process 500 may include receiving, from the UE, the feedback for the one or more PDSCH communications in a PUCCH communication that uses the one or more beams (block 520) . For example, the BS (e.g., using antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, controller/processor 280, and/or the like) may receive, from the UE, the feedback for the one or more PDSCH communications in a PUCCH communication that uses the one or more beams, as described above.
Process 500 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the indication indicates that the one or more beams are associated with QCL information used by the UE to determine one or more beams for receiving the one or more PDSCH communications. In a second aspect, alone or in combination with the first aspect, the one or more beams, and one or more beams used by the UE to receive the one or more PDSCH communications, share at least one of a beam number, a beamforming weight, a beamforming direction, or a beamforming width.
In a third aspect, alone or in combination with one or more of the first and second aspects, the PUCCH communication uses a single beam when single QCL information is used by the UE to determine the one or more beams for receiving the one or more PDSCH communications. In a fourth aspect, alone or in combination with one or more of the first through third aspects, the PUCCH communication uses multiple beams when multiple QCL information is used by the UE to determine the one or more beams for receiving the one or more PDSCH communications.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the one or more PDSCH communications include multiple PDSCH communications multiplexed in a time domain, and the QCL information is  associated with a particular PDSCH communication of the multiple PDSCH communications.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the indication includes identifiers of one or more spatial relations that are to be used by the UE to determine the one or more beams. In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the one or more DCI include multiple DCI that identify respective indications of identifiers of one or more spatial relations.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, the PUCCH communication uses a single beam when the indication includes an identifier of a single spatial relation. In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, the PUCCH communication uses multiple beams when the indication includes identifiers of multiple spatial relations. In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, the one or more beams are associated with the one or more spatial relations based at least in part on a prioritization of the one or more spatial relations over one or more other spatial relations associated with a resource for the PUCCH communication.
In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, process 500 includes transmitting a configuration for one or more parameters of the PUCCH communication by RRC signaling, a MAC-CE, or another DCI.
In a twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, the PUCCH communication is received in multiple time domain parts, of a resource for the PUCCH communication, associated with respective beams of the one or more beams. In a thirteenth aspect, alone or in combination with one or more of the first through twelfth aspects, the PUCCH communication is received in multiple frequency domain parts, of a resource for the PUCCH communication, associated with respective beams of the one or more beams. In a fourteenth aspect, alone or in combination with one or more of the first through thirteenth aspects, the PUCCH communication that uses the one or more beams is received in a resource for the PUCCH communication.
In a fifteenth aspect, alone or in combination with one or more of the first through fourteenth aspects, the PUCCH communication is received in a plurality of  frequency hops associated with respective beams of the one or more beams. In a sixteenth aspect, alone or in combination with one or more of the first through fifteenth aspects, the PUCCH communication is received in a plurality of frequency subbands associated with respective beams of the one or more beams. In a seventeenth aspect, alone or in combination with one or more of the first through sixteenth aspects, the PUCCH communication uses a transmit power of the UE that is split between the one or more beams.
Although Fig. 5 shows example blocks of process 500, in some aspects, process 500 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 5. Additionally, or alternatively, two or more of the blocks of process 500 may be performed in parallel.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software. As used herein, a processor is implemented in hardware, firmware, and/or a combination of hardware and software.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways  not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items, and may be used interchangeably with “one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Claims (42)

  1. A method of wireless communication performed by a user equipment (UE) , comprising:
    receiving, in one or more downlink control information (DCI) scheduling one or more physical downlink shared channel (PDSCH) communications, an indication of one or more beams that are to be used to transmit feedback for the one or more PDSCH communications; and
    transmitting the feedback for the one or more PDSCH communications in a physical uplink control channel (PUCCH) communication using the one or more beams.
  2. The method of claim 1, wherein the indication indicates that the one or more beams are associated with quasi co-location (QCL) information used to determine one or more beams for receiving the one or more PDSCH communications.
  3. The method of claim 2, wherein the one or more beams, and one or more beams used to receive the one or more PDSCH communications, share at least one of a beam number, a beamforming weight, a beamforming direction, or a beamforming width.
  4. The method of claim 2, wherein a single beam is used to transmit the PUCCH communication, based at least in part on a determination that single QCL information is used to determine the one or more beams for receiving the one or more PDSCH communications.
  5. The method of claim 2, wherein multiple beams are used to transmit the PUCCH communication, based at least in part on a determination that multiple QCL information is used to determine the one or more beams for receiving the one or more PDSCH communications.
  6. The method of claim 2, wherein the one or more PDSCH communications include multiple PDSCH communications multiplexed in a time domain, and
    wherein the QCL information is associated with a particular PDSCH communication of the multiple PDSCH communications.
  7. The method of claim 1, wherein the indication includes identifiers of one or more spatial relations that are to be used to determine the one or more beams.
  8. The method of claim 7, wherein the one or more DCI include multiple DCI that identify respective indications of identifiers of one or more spatial relations.
  9. The method of claim 7, wherein a single beam is used to transmit the PUCCH communication, based at least in part on a determination that the indication includes an identifier of a single spatial relation.
  10. The method of claim 7, wherein multiple beams are used to transmit the PUCCH communication, based at least in part on a determination that the indication includes identifiers of multiple spatial relations.
  11. The method of claim 7, wherein the one or more beams are associated with the one or more spatial relations based at least in part on a prioritization of the one or more spatial relations over one or more other spatial relations associated with a resource for the PUCCH communication.
  12. The method of claim 1, further comprising:
    receiving a configuration for one or more parameters of the PUCCH communication by radio resource control signaling, a medium access control control element, or another DCI.
  13. The method of claim 1, wherein the PUCCH communication is transmitted in multiple time domain parts of a resource for the PUCCH communication using respective beams of the one or more beams.
  14. The method of claim 1, wherein the PUCCH communication is transmitted in multiple frequency domain parts of a resource for the PUCCH communication using respective beams of the one or more beams.
  15. The method of claim 1, wherein the PUCCH communication is transmitted in a resource for the PUCCH communication using the one or more beams.
  16. The method of claim 1, wherein the PUCCH communication is transmitted in a plurality of frequency hops using respective beams of the one or more beams.
  17. The method of claim 1, wherein the PUCCH communication is transmitted in a plurality of frequency subbands using respective beams of the one or more beams.
  18. The method of claim 1, wherein the PUCCH communication is transmitted using a transmit power that is split between the one or more beams.
  19. A method of wireless communication performed by a base station, comprising:
    transmitting, in one or more downlink control information (DCI) scheduling one or more physical downlink shared channel (PDSCH) communications, an indication of one or more beams that are to be used by a user equipment (UE) to transmit feedback for the one or more PDSCH communications; and
    receiving, from the UE, the feedback for the one or more PDSCH communications in a physical uplink control channel (PUCCH) communication that uses the one or more beams.
  20. The method of claim 19, wherein the indication indicates that the one or more beams are associated with quasi co-location (QCL) information used by the UE to determine one or more beams for receiving the one or more PDSCH communications.
  21. The method of claim 20, wherein the one or more beams, and one or more beams used by the UE to receive the one or more PDSCH communications, share at least one of a beam number, a beamforming weight, a beamforming direction, or a beamforming width.
  22. The method of claim 20, wherein the PUCCH communication uses a single beam when single QCL information is used by the UE to determine the one or more beams for receiving the one or more PDSCH communications.
  23. The method of claim 20, wherein the PUCCH communication uses multiple beams when multiple QCL information is used by the UE to determine the one or more beams for receiving the one or more PDSCH communications.
  24. The method of claim 20, wherein the one or more PDSCH communications include multiple PDSCH communications multiplexed in a time domain, and
    wherein the QCL information is associated with a particular PDSCH communication of the multiple PDSCH communications.
  25. The method of claim 19, wherein the indication includes identifiers of one or more spatial relations that are to be used by the UE to determine the one or more beams.
  26. The method of claim 25, wherein the one or more DCI include multiple DCI that identify respective indications of identifiers of one or more spatial relations.
  27. The method of claim 25, wherein the PUCCH communication uses a single beam when the indication includes an identifier of a single spatial relation.
  28. The method of claim 25, wherein the PUCCH communication uses multiple beams when the indication includes identifiers of multiple spatial relations.
  29. The method of claim 25, wherein the one or more beams are associated with the one or more spatial relations based at least in part on a prioritization of the one or more spatial relations over one or more other spatial relations associated with a resource for the PUCCH communication.
  30. The method of claim 19, further comprising:
    transmitting a configuration for one or more parameters of the PUCCH communication by radio resource control signaling, a medium access control control element, or another DCI.
  31. The method of claim 19, wherein the PUCCH communication is received in multiple time domain parts, of a resource for the PUCCH communication, associated with respective beams of the one or more beams.
  32. The method of claim 19, wherein the PUCCH communication is received in multiple frequency domain parts, of a resource for the PUCCH communication, associated with respective beams of the one or more beams.
  33. The method of claim 19, wherein the PUCCH communication that uses the one or more beams is received in a resource for the PUCCH communication.
  34. The method of claim 19, wherein the PUCCH communication is received in a plurality of frequency hops associated with respective beams of the one or more beams.
  35. The method of claim 19, wherein the PUCCH communication is received in a plurality of frequency subbands associated with respective beams of the one or more beams.
  36. The method of claim 19, wherein the PUCCH communication uses a transmit power of the UE that is split between the one or more beams.
  37. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    receive, in one or more downlink control information (DCI) scheduling one or more physical downlink shared channel (PDSCH) communications, an indication of one or more beams that are to be used to transmit feedback for the one or more PDSCH communications; and
    transmit the feedback for the one or more PDSCH communications in a physical uplink control channel (PUCCH) communication using the one or more beams.
  38. A base station for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    transmit, in one or more downlink control information (DCI) scheduling one or more physical downlink shared channel (PDSCH) communications, an indication of one or more beams that are to be used by a user equipment (UE) to transmit feedback for the one or more PDSCH communications; and
    receive, from the UE, the feedback for the one or more PDSCH communications in a physical uplink control channel (PUCCH) communication that uses the one or more beams.
  39. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a user equipment (UE) , cause the one or more processors to:
    receive, in one or more downlink control information (DCI) scheduling one or more physical downlink shared channel (PDSCH) communications, an indication of one or more beams that are to be used to transmit feedback for the one or more PDSCH communications; and
    transmit the feedback for the one or more PDSCH communications in a physical uplink control channel (PUCCH) communication using the one or more beams.
  40. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a base station, cause the one or more processors to:
    transmit, in one or more downlink control information (DCI) scheduling one or more physical downlink shared channel (PDSCH) communications, an indication of one or more beams that are to be used by a user equipment (UE) to transmit feedback for the one or more PDSCH communications; and
    receive, from the UE, the feedback for the one or more PDSCH communications in a physical uplink control channel (PUCCH) communication that uses the one or more beams.
  41. An apparatus for wireless communication, comprising:
    means for receiving, in one or more downlink control information (DCI) scheduling one or more physical downlink shared channel (PDSCH) communications, an indication of one or more beams that are to be used to transmit feedback for the one or more PDSCH communications; and
    means for transmitting the feedback for the one or more PDSCH communications in a physical uplink control channel (PUCCH) communication using the one or more beams.
  42. An apparatus for wireless communication, comprising:
    means for transmitting, in one or more downlink control information (DCI) scheduling one or more physical downlink shared channel (PDSCH) communications, an indication of one or more beams that are to be used by a user equipment (UE) to transmit feedback for the one or more PDSCH communications; and
    means for receiving, from the UE, the feedback for the one or more PDSCH communications in a physical uplink control channel (PUCCH) communication that uses the one or more beams.
PCT/CN2020/072450 2020-01-16 2020-01-16 Beam indication for a physical uplink control channel WO2021142708A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072450 WO2021142708A1 (en) 2020-01-16 2020-01-16 Beam indication for a physical uplink control channel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072450 WO2021142708A1 (en) 2020-01-16 2020-01-16 Beam indication for a physical uplink control channel

Publications (1)

Publication Number Publication Date
WO2021142708A1 true WO2021142708A1 (en) 2021-07-22

Family

ID=76863472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072450 WO2021142708A1 (en) 2020-01-16 2020-01-16 Beam indication for a physical uplink control channel

Country Status (1)

Country Link
WO (1) WO2021142708A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110080965A1 (en) * 2009-10-05 2011-04-07 Samsung Electronics Co., Ltd. Method and system for feedback of channel information
WO2019051242A2 (en) * 2017-09-08 2019-03-14 Convida Wireless, Llc Communications management using down link control information
US20190199412A1 (en) * 2016-06-23 2019-06-27 Nokia Technologies Oy Beam change
CN110326243A (en) * 2017-01-05 2019-10-11 Lg电子株式会社 For sending and receiving the method and device thereof of uplink channel in a wireless communication system
US20190342911A1 (en) * 2018-07-13 2019-11-07 Intel Corporation Techniques in configured grant uplink transmission in new radio (nr) systems operating in unlicensed spectrum

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110080965A1 (en) * 2009-10-05 2011-04-07 Samsung Electronics Co., Ltd. Method and system for feedback of channel information
US20190199412A1 (en) * 2016-06-23 2019-06-27 Nokia Technologies Oy Beam change
CN110326243A (en) * 2017-01-05 2019-10-11 Lg电子株式会社 For sending and receiving the method and device thereof of uplink channel in a wireless communication system
WO2019051242A2 (en) * 2017-09-08 2019-03-14 Convida Wireless, Llc Communications management using down link control information
US20190342911A1 (en) * 2018-07-13 2019-11-07 Intel Corporation Techniques in configured grant uplink transmission in new radio (nr) systems operating in unlicensed spectrum

Similar Documents

Publication Publication Date Title
WO2021168597A1 (en) Association of phase tracking reference signal ports and demodulation reference signal ports for multi-beam uplink repetitions
US11996922B2 (en) Techniques for channel state information processing unit occupancy determination for layer 1 signal to interference plus noise ratio reporting
US11445447B2 (en) Techniques for activating a pathloss reference signal
US20200366407A1 (en) Capability-based bandwidth part switching
US11424800B2 (en) Techniques for scheduling a front-loaded sidelink channel state information reference signal
WO2021056009A1 (en) Techniques for transmitting sidelink channel state information feedback
WO2021179108A1 (en) Beam hopping for repetitions in a physical uplink control channel resource
WO2021179113A1 (en) Beam hopping within a single physical uplink control channel resource
WO2021120083A1 (en) Beam indication for downlink control information scheduled sidelink transmission
US11606127B2 (en) Techniques for sidelink channel state information reporting
WO2021232390A1 (en) Group common sounding reference signal downlink control information configuration
EP4098036A1 (en) Timing advance command in downlink control information
WO2021154450A1 (en) Techniques for indicating beams for user equipment beam reporting
WO2021134089A1 (en) Multiple selected/deselected cells for layer 1/layer 2 based mobility
WO2021003660A1 (en) Data transfer for integrated access and backhaul system using full-duplex
WO2020146601A1 (en) Feedback transmission using multiple access signatures
WO2021142708A1 (en) Beam indication for a physical uplink control channel
WO2021151225A1 (en) Flexible channel state information reference signal and sounding reference signal association for uplink multiple-input multiple- output
WO2021159692A1 (en) Multi-slot aperiodic sounding reference signal
WO2022032553A1 (en) Uplink control information multiplexing
WO2021102724A1 (en) Multiple downlink control information for group scheduling
EP4011137A1 (en) Sidelink transmit power control commands

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20913608

Country of ref document: EP

Kind code of ref document: A1