EP3775750A1 - Echangeur haute performance anti-givre - Google Patents

Echangeur haute performance anti-givre

Info

Publication number
EP3775750A1
EP3775750A1 EP19719558.9A EP19719558A EP3775750A1 EP 3775750 A1 EP3775750 A1 EP 3775750A1 EP 19719558 A EP19719558 A EP 19719558A EP 3775750 A1 EP3775750 A1 EP 3775750A1
Authority
EP
European Patent Office
Prior art keywords
flanges
holes
tubes
heat exchanger
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19719558.9A
Other languages
German (de)
English (en)
Inventor
Mario BORRÀS PONS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Systemair Ac Sas
Original Assignee
Systemair Ac Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Systemair Ac Sas filed Critical Systemair Ac Sas
Publication of EP3775750A1 publication Critical patent/EP3775750A1/fr
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus

Definitions

  • the present invention relates to heat exchangers, its manufacture and use. It relates more particularly to those which are reversible and arranged outside especially those used in heat pumps or air conditioning.
  • Heat exchangers can frost in critical ice setting conditions, ie when the temperature is between -5 ° C and 2 ° C and humidity reaches 85%, this results in a loss of performance, and may cause the complete shutdown of the exchanger.
  • frost it is known to stop after a certain time the thermodynamic heating cycle to reverse evaporation and condensation. This has the effect of cooling the water on the warm side (the radiators), thus allowing the outdoor heat exchanger to heat up and melt the frost.
  • this has a direct impact on the heating and decreases the performance of the machine.
  • the transverse pitch the space between the copper tubes in the direction transverse to the direction of the air
  • the fin pitch the space between two fins
  • the object of the invention is to provide a high-performance anti-icing heat exchanger which allows a longer use in critical conditions while maintaining power and equivalent dimensions, while keeping the same amount of tubes and therefore in no time. not increasing the cost.
  • the heat exchanger according to the invention comprises fins punched with holes surrounded by flanges, n tubes passing through n holes and n flanges, each hole and its flange having a diameter di and a height h, characterized in that the number of holes is greater than n and the n flanges have a height hi of between 1.8 and 4.2 mm.
  • the free collars are additional obstacles to the air, to cause disturbances and forcing the heat exchange between the fin and the air.
  • the latter may have different shapes and dimensions of the n flanges crossed by the tubes.
  • the height hi n flanges will define the space between the fins.
  • the combination of the additional free collars with the greater distance between the fins makes it possible to compensate the loss of exchange (by-pass) which could result from this greater distance for an equivalent power while considerably limiting the frost in a critical situation.
  • the holes and the collars all have the same diameter. The manufacture and punching of the fins is thus easier.
  • the number of holes is equal to 2n.
  • the exchanges are thus doubled.
  • the holes are aligned longitudinally and the tubes pass through one hole in two by alignment.
  • the distribution of tubes and free collars are distributed evenly.
  • the holes with their flanges may be spaced from each other at a constant pitch both transversely and / or longitudinally.
  • the flanges are of cylindrical shape. This shape has the best surface of heat exchange with the air without generating a pressure drop on the air
  • the fins are made of aluminum.
  • the use of aluminum for the fins is a good compromise between thermal conductivity, ease of realization and cost.
  • the use of copper fins although better driver is possible, but it is harder to work and more expensive.
  • the tubes are made of copper. Copper is a good thermal conductor. The use of aluminum is also possible.
  • the holes of a row are offset from those of adjacent rows. This allows a better distribution of air around the tubes and collars.
  • This method has the advantage of being substantially close to the conventional method, except that more holes and flanges have to be stamped.
  • These holes and its flanges can be of different shape: circular and cylindrical of identical diameter for those who receive the tubes and of diameter and / or of different or identical shape for those intended to remain empty.
  • the method of heating a room according to the invention implements the heat exchanger with at least one of the preceding characteristics, it comprises two modes of operation:
  • a first heating mode when the temperature is higher than 2 ° C
  • a second heating mode when the outside temperature is between -5 ° C and 2 ° C and humidity reaches 85%
  • a defrost and a heating alternate with a time interval Dt the passage from one to the other being automatically regulated
  • tw is the humid temperature of the outside air in contact with the exchanger.
  • the pitch of the fins of the exchanger according to the invention makes it possible to significantly increase the time between two defrosting operations with respect to an equivalent heat exchanger.
  • the so-called "equivalent” heat exchanger a heat exchanger having the same number of tubes and which, for a given wet outside temperature, has the same the evaporation temperature. High humidity above 85% is the most unfavorable for the exchanger.
  • the heat exchanger is thus such that the operating time in evaporator mode, or heating, without defrost is doubled compared to a conventional heat exchanger of the same power. Thanks to its additional collars arranged on the passage of the air one can obtain an equivalent power with a greater distance between the fins while limiting the frost in critical conditions, avoiding any loss of exchange.
  • FIGS. 1 and 2 are views of the assembly of the exchanger according to the invention.
  • FIG. 3 is a side view of the exchanger of the preceding figures
  • FIG. 4 illustrates the heating capacity of a exchanger of the state of the art
  • FIG. 5 illustrates the heating capacity of an exchanger according to the invention
  • FIG. 6 is a heat exchanger of the state of the art
  • FIG. 7 is a graph showing the interval between two defrostings with respect to the humid temperature of the air in contact with the exchanger.
  • the top corresponds to the top of the figures and the bottom to the bottom
  • the longitudinal part is parallel to the z axis of FIG. 6
  • the transverse part is parallel to the x axis of FIG. .
  • a heat exchanger 1 of the state of the art as illustrated in FIG. 6 comprises tubes 2 and fins 3.
  • the tubes 2 are usually copper and bent pin 22. They are separated by a transverse pitch Pt.
  • the fins 3 can be flat, smooth, corrugated or louvered and are usually aluminum.
  • the stack of the fins 3 of the exchanger 1 has a length L.
  • the fins 3 are perforated with holes 30 in order to let the tubes 2 pass. These holes 30 are aligned in several vertical rows 33 spaced a distance, corresponding to the not longitudinal PI of space between the tubes 2.
  • the air passes through the exchanger 1 transversely in the direction of the arrow A.
  • a refrigerant circulates in the tubes 2 from an inlet tube 20 and exits through an outlet tube 31
  • This fluid can be for example of the water.
  • the tubes 2 and the fins 3 must be in close contact to ensure good conduction. To guarantee this contact, an expansion tube is introduced into each tube 2 after it has been inserted into the fins to widen it and ensure better contact with said fins 3.
  • the fins 3 must be spaced by a pitch Pa enough to let air circulate but not too important to avoid a loss of exchange (by-pass phenomenon).
  • This pitch Pa must be identical between each fin 3 in order to have a uniform exchange.
  • the pitch Pa of the fins 3 of the state of the art is such that under certain conditions of temperature and humidity of the frost can be formed the fins 3, it is then necessary to reverse the exchanger to heat the fins 3 and melt the frost. During this time, the room is no longer heated which causes inconvenience to the user.
  • the exchanger 1 according to the invention illustrated in FIGS. 1 to 3, also has fins 3 and tubes 2.
  • the fins 3 are pierced with holes 30 lined with flanges 31 and aligned in several rows 33. These flanges 31 have height Pa '> Pa.
  • Two successive rows 33 are offset vertically relative to each other which gives flanges 31 staggered and which allows a better distribution of air.
  • the holes 30 and the flanges 31 of a row 33 are regularly spaced.
  • the number of holes 30 and flanges 31 are greater than the number of n tubes 2 of the exchanger 1.
  • the tubes 2 together constitute a pin 22 and are inserted in two. These two tubes 2 are inserted in the main holes 300 of the same row 33, but with a free hole 301 intermediate them. There are therefore main flanges 310 traversed by a tube 2 and free flanges 311 not crossed by a tube 3.
  • the tubes 2 are for example 50cm apart.
  • a conventional heat exchanger will operate as shown in Figure 4.
  • the outdoor temperature and humidity drop to a certain level for example, if the temperature is between -5 ° C and 2 ° C and the humidity at 85%, it will begin to frost, its heating capacity 4 gradually decreases 40 as frost sets in, so you have to switch on a defrost mode 5 to melt the frost.
  • This defrosting mode 5 consists in reversing the operating mode of the exchanger 1 which will then heat the fins and this hot fluid will be missing in the room which will then be cooled.
  • This mode has a disadvantage for the user, in order to limit it, it is possible to provide a buffer tank of about 3001 which allows the heating of the fins.
  • the exchanger according to the invention illustrated in FIG. 5 has a heating capacity 4 which decreases twice as late as that of FIG. 4, here the offset is 1 hour, the operating time is therefore doubled with respect to exchanger of the state of the art and without the need for a buffer tank.
  • the interval between two defrost is 130 minutes instead of one every 60 minutes.
  • the table of FIG. 7 illustrates the time interval Dt between two defrostings as a function of the humid temperature of the air in contact with the exchanger.
  • Curve A shows this gap with a heat exchanger of the state of the art and curve B that of the invention.
  • curve B shows that if the absolute humidity of the air increases with the temperature, frost is formed around 0 ° C. Above 2 ° C, the temperature is too high for the water to frost and below -7 ° C, the air becomes too dry. The critical zone is around 0 ° C.
  • the measurements below show that the invention makes it possible to significantly increase the time Dt between two defrosts.
  • the heat exchanger can indifferently be used on an air conditioner or a heat pump without departing from the scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

La présente invention se rapporte à un échangeur de chaleur (1) comprenant des ailettes (3) poinçonnées de trous (30, 300, 301) entourés de collerettes (31, 310, 311), n tubes (2) traversant n trous (300) et n collerettes (311), chaque trou (30) et sa collerette (31) ayant un diamètre d1 et une hauteur h, il est caractérisée en ce que le nombre de trous (30) est supérieur à n et les n collerettes (310) ont une hauteur h1 comprise entre 1,8 et 4,2 mm. Il y a donc des trous (301) et des collerettes (311) libres, c'est-à-dire non traversées par des tubes (2), ce qui augmente la surface d'échange. Les collerettes libres constituent des obstacles supplémentaires à l'air, elles peuvent avoir des formes et des dimensions différentes des n collerettes traversées par les tubes. La hauteur h des n collerettes va définir l'espace entre les ailettes. La combinaison des collerettes supplémentaires avec la distance plus grande entre les ailettes permet de compenser la perte d'echange (by-pass) qui pourrait résulter de cette distance plus grande en limitant de façon importante le givre en situation critique, pour une puissance et quantité de cuivre équivalente

Description

ECHANGEUR HAUTE PERFORMANCE ANTI-GIVRE
Domaine technique
La présente invention se rapporte aux échangeurs de chaleurs, sa fabrication et son utilisation. Elle porte plus particulièrement sur ceux qui sont réversibles et disposés à l'extérieur notamment ceux utilisés dans les pompes à chaleur ou des climatisations.
Etat de la technique
Les échangeurs de chaleur peuvent givrer en condition critique de prise de glace, c'est-à-dire quand la température est entre -5°C et 2°C et que l'humidité atteint 85%, ceci entraîne une perte de performances, et peut provoquer l'arrêt complet de l'échangeur. Pour éviter la formation de givre il est connu d'arrêter au bout d'un certain temps le cycle thermodynamique de chaffage afin d'inverser l'évaporation et la condensation. Cela a pour effet de refroidir l'eau qui se trouve du côté chaud (les radiateurs) , et de permettre ainsi à l'échangeur extérieur de se réchauffer et de faire fondre le givre. Cependant cela a un impact direct sur le chauffage et diminue la performance de la machine.
De nombreuses variantes de géométrie sont également proposées en fonction des fabricants et des applications (froid commercial, climatisation...) pour limiter au maximum la création de givre .
Les différentes variantes possibles sont d'agir sur:
- le pas transversal: l'espace entre les tubes cuivre dans le sens transversal par rapport au sens de l'air,
- le pas longitudinal: l'espace entre les tubes cuivre dans le sens longitudinal par rapport au sens de l'air,
- le pas d'ailette: l'espace entre deux ailettes,
- la forme des ailettes: lisse, ondulée, persienne... L'augmentation importante d'un de ces trois facteurs crée un phénomène de perte d'échange (by-pass) qu'il faut éviter pour garder un ratio dimension/performance acceptable.
Il est aussi important de limiter le coût, en limitant la quantité de cuivre et/ou d'aluminium utilisé.
Description de l ' invention
L'objet de l'invention est de proposer un échangeur de chaleur haute performance anti-givre qui permette une utilisation plus longue dans les conditions critiques tout en maintenant une puissance et des dimensions équivalentes, tout gardant la même quantité de tubes et donc en n'augmentant pas le coût .
L'échangeur de chaleur selon l'invention comprend des ailettes poinçonnées de trous entourés de collerettes, n tubes traversant n trous et n collerettes, chaque trou et sa collerette ayant un diamètre di et une hauteur h, caractérisée en ce que le nombre de trous est supérieur à n et les n collerettes ont une hauteur hi comprise entre 1,8 et 4,2 mm. Il y a donc des trous et des collerettes libres, c'est-à-dire non traversées par des tubes, ce qui augmente la surface d'échange vis-à-vis de l'air le traversant. Les collerettes libres constituent des obstacles supplémentaires à l'air, afin de provoquer des perturbations et ainso forcer l' échangé thermique entre l'ailette et l'air. Ces dernieres peuvent avoir des formes et des dimensions différentes des n collerettes traversées par les tubes. La hauteur hi des n collerettes va définir l'espace entre les ailettes. La combinaison des collerettes libres supplémentaires avec la distance plus grande entre les ailettes permet de compenser la perte d' échangé (by-pass) qui pourrait résulter de cette distance plus grande pour une puissance équivalente tout en limitant de façon importante le givre en situation critique. Avantageusement, les trous et les collerettes ont tous le même diamètre. La fabrication et le poinçonnement des ailettes est ainsi plus aisée.
Avantageusement, le nombre de trous est égal à 2n. Les échanges sont ainsi doublés.
Avantageusement, les trous sont alignés longitudinalement et les tubes traversent un trou sur deux par alignement. La répartition des tubes et des collerettes libres sont ainsi réparti uniformément. Les trous avec leur collerettes pourront être distants les uns des autres d'un pas constant à la fois transversalement et/ou longitudinalement.
Avantageusement, les collerettes sont de forme cylindrique. Cette forme présente la meilleure surface d'échange de chaleur avec l'air sans générer une perte de charge sur l'air
Avantageusement, les ailettes sont en aluminium. L'utilisation d'aluminium pour les ailettes est un bon compromis entre la conductivité thermique, la facilité de réalisation et le coût. L'utilisation d'ailettes en cuivre bien que meilleur conducteur est possible, mais il est plus difficile à travailler et plus cher.
Avantageusement, les tubes sont en cuivre. Le cuivre est un bon conducteur thermique. L'utilisation de l'aluminium est également possible.
Avantageusement, les trous d'une rangée sont décalés par rapport à ceux des rangées adjacentes. Cela permet une meilleure répartition de l'air autour des tubes et des collerettes .
Le procédé de réalisation d'un échangeur de chaleur selon l'invention est caractérisé en ce qu'il comprend les étapes suivantes:
- poinçonnage de trous et de collerettes de diamètre do, tel que do = di - e, par emboutissage de chaque ailette d'une hauteur h - empilage des ailettes ainsi réalisées,
- insertion de n tubes de diamètre do dans certains trous et collerettes,
- insertion d'un second tube de diamètre di pour expandage
- retrait des seconds tubes des n tubes.
Ce procédé présente l'avantage d'être sensiblement proche du procédé classique, sauf qu'on doit emboutir plus de trous et de collerettes. Ces trous et ses collerettes peuvent être de forme différentes: circulaire et cylindrique de diamètre identique pour ceux qui recevrons les tubes et de diamètre et/ou de forme différent ou identique pour ceux destinés à rester vides.
Le procédé de chauffage d'un local selon l'invention met en œuvre l'échangeur de chaleur avec au moins une des caractéristiques précédentes, il comprend deux modes de fonctionnement :
- un premier mode de chauffage lorsque la température est supérieure à 2°C, un deuxième mode de chauffage lorsque la température extérieure est comprise entre -5°C et 2°C et que l'humidité atteint 85%, où un dégivrage et un chauffage alternent avec un intervalle de temps Dt, le passage de l'un à l'autre étant automatiquement régulé,
il est caractérisé en ce que l'intervalle de temps Dt est tel que
Dt = 119,91 + 9,36 tw + 10,4 tw2 + 0,074 tw3
où tw est la température humide de l'air extérieur en contact avec l'échangeur. Le pas des ailettes de l'échangeur selon l'invention permet d'augmenter de façon significative le temps entre deux dégivrages par rapport à un échangeur de chaleur équivalent. On appelle échangeur de chaleur "équivalent", un échangeur de chaleur ayant le même nombre de tubes et qui, pour une température extérieure humide donnée, a la même la température d'évaporation. Une humidité élevée supérieure à 85% est la plus défavorable pour l'échangeur.
L'échangeur de chaleur est ainsi tel que le temps de fonctionnement en mode évaporateur, ou chauffage, sans dégivrage est doublé par rapport à un échangeur classique de même puissance. Grâce à ses collerettes supplémentaires disposées sur le passage de l'air on peut obtenir une puissance équivalente avec une distance plus grande entre les ailettes tout en limitant le givre en conditions critiques, en évitant toute perte d'échange.
D'autres avantages pourront encore apparaître à l'homme du métier à la lecture des exemples ci-dessous, illustrés par les figures annexées, donnés à titre d'exemple :
- Les figures 1 et 2 sont des vues du montage de l'échangeur selon l'invention,
- La figure 3 est une vue de coté de l'échangeur des figures précédentes,
- La figure 4 illustre la capacité de chauffage d'un échangeur de l'état de la technique,
- la figure 5 illustre la capacité de chauffage d'un échangeur selon l'invention,
- la figure 6 est un échangeur de chaleur de l'état de la technique
- la figure 7 est un graphique montrant l'intervalle entre deux dégivrages par rapport à la température humide de l'air en contact avec l'échangeur.
Dans la présente description, on considérera que le haut correspond au haut des figures et le bas au bas, la partie longitudinale est parallèle à l'axe z de la figure 6, la partie transversale est parallèle à l'axe x de la figure 6.
Un échangeur de chaleur 1 de l'état de la technique tel qu'illustré figure 6, comprend des tubes 2 et des ailettes 3. Les tubes 2 sont le plus souvent en cuivre et pliés en épingle 22. Ils sont distants d'un pas transversal Pt.
Les ailettes 3 peuvent être plates, lisses, ondulées ou en persienne et sont en général en aluminium. L'empilement des ailettes 3 de l'échangeur 1 a une longueur L. Les ailettes 3 sont perforées de trous 30 afin de laisser passer les tubes 2. Ces trous 30 sont alignés selon plusieurs rangées 33 verticales espacées d'une distance, correspondant au pas longitudinal PI d'espace entre les tubes 2.
L'air traverse l'échangeur 1 transversalement suivant le sens de la flèche A. Un fluide réfrigérant circule dans les tubes 2 à partir d'un tube d'entrée 20 et ressort par un tube de sortie 31 Ce fluide peut être par exemple de l'eau.
Les tubes 2 et les ailettes 3 doivent être en contact étroit afin de garantir une bonne conduction. Pour garantir ce contact, un tube d'expandage est introduit dans chaque tube 2 après que celui-ci ait été inséré dans les ailettes pour l'élargir et assurer un meilleur contact avec lesdites ailettes 3.
Les ailettes 3 doivent être espacées d'un pas Pa suffisant pour laisser circuler l'air mais pas trop important afin d'éviter une perte d'échange (phénomène de by-pass). Ce pas Pa doit être identique entre chaque ailette 3 afin d'avoir un échange uniforme. Afin d'avoir un pas identique entre chaque ailette, une collerette 31 peut prolonger chaque trou 30 d'une hauteur h = Pa. Alors, l'ensemble des collerettes 31 d'une ailette 3 sert d'appui à l'ailette suivante et garantit un pas uniforme entre chacune.
Le pas Pa des ailettes 3 de l'état de la technique est tel que dans certaines conditions de température et d'humidité du givre peut se former être les ailettes 3, il est alors nécessaire d'inverser l'échangeur pour réchauffer les ailettes 3 et faire fondre le givre. Pendant ce temps-là, le local n'est plus chauffé ce qui entraîne des désagréments à l'utilisateur. L'échangeur 1 selon l'invention illustré aux figures 1 à 3, a lui aussi des ailettes 3 et des tubes 2. Les ailettes 3 sont percées de trous 30 bordées de collerettes 31 et alignés selon plusieurs rangées 33. Ces collerettes 31 ont une hauteur Pa' > Pa. Deux rangées 33 successives sont décalées verticalement l'une par rapport à l'autre ce qui donne des collerettes 31 en quinconce et qui permet une meilleure répartition de l'air. Les trous 30 et les collerettes 31 d'une rangée 33 sont régulièrement espacés.
Le nombre de trous 30 et de collerettes 31 sont supérieur au nombre de n tubes 2 de l'échangeur 1. Dans l'exemple illustré, les tubes 2 constituent ensembles une épingle 22 et sont insérés par deux. Ces deux tubes 2 sont insérés dans les trous principaux 300 d'une même rangée 33, mais avec un trou libre 301 intermédiaire entre eux. Il y a donc des collerettes principales 310 traversées par un tube 2 et des collerettes libres 311 non traversées par un tube 3. Les tubes 2 sont par exemple distants de 50cm.
On peut voir à la figure 3 que l'air va traverser l'échangeur 1 et rencontrer les collerettes 310 qui vont permettre une conduction aves les ailettes 3 et les tubes 2 et les collerettes libres 311 qui vont permettre une conduction avec les ailettes 3. Comme les collerettes 31 sont plus nombreuses que le nombre de tubes 2, on peut avoir un espace plus important entre les ailettes 3 que si on a un même nombre de tubes 2 et de trous 30.
Nous allons maintenant décrire le fonctionnement de l'échangeur 1 pour chauffer un local.
Un échangeur classique va fonctionner comme illustré à la figure 4. Lorsque la température et l'humidité extérieures tombent à un certain niveau, par exemple, si la température est entre -5°C et 2°C et l'humidité à 85%, il va commencer à givrer, sa capacité de chauffage 4 diminue progressivement 40 au fur et à mesure que le givre s'installe, il faut donc enclencher un mode dégivrage 5 pour faire fondre le givre. Ce mode dégivrage 5 consiste à inverser le mode de fonctionnement de l'échangeur 1 qui va alors chauffer les ailettes et ce fluide chaud va manquer au local qui sera alors refroidi. Ce mode présente un inconvénient pour l'utilisateur, afin de le limiter, il est possible de prévoir un réservoir tampon d'environ 3001 qui permet le chauffage des ailettes.
L'échangeur selon l'invention illustré à la figure 5, a une capacité de chauffage 4 qui diminue deux fois plus tard que celui de la figure 4, ici le décalage est de 1 heure, le temps de fonctionnement est donc doublé par rapport à l'échangeur de l'état de la technique et sans nécessiter de réservoir tampon. Dans l'exemple illustré, l'intervalle entre deux dégivrage est de 130mn au lieu d'un toute les 60mn.
Le tableau de la figure 7 illustre l'intervalle de temps Dt entre deux dégivrages en fonction de la température humide de l'air en contact avec l'échangeur. La courbe A montre cet intervalle avec un échangeur de chaleur de l'état de la technique et la courbe B celui de l'invention. Ces courbes montrent que si l'humidité absolue de l'air augmente avec la température, le givre se forme autour de 0°C. Au-dessus de 2°C, la température est trop haute pour que l'eau givre et en dessous de -7°C, l'air devient trop sec. La zone critique se situe donc autour de 0°C. Les mesures ci-dessous montrent que l'invention permet d'augmenter de façon significative le temps Dt entre deux dégivrages.
Il est possible d'utiliser des ailettes ondulées, en Persiennes, etc. sans sortir du cadre de la présente invention.
L'échangeur de chaleur pourra indifféremment être utilisé sur un climatiseur ou une pompe à chaleur sans sortir du cadre de l'invention.

Claims

REVENDICATIONS
1. Echangeur de chaleur (1) comprenant des ailettes (3) poinçonnées de trous (30, 300, 301) entourés de collerettes (31, 310, 311) et n tubes (2) traversant n trous (300) et n collerettes (310), chaque trou (300) et sa collerette (310) ayant un diamètre di et une hauteur h, caractérisée en ce que le nombre de trous (30) est supérieur à n et que les n collerettes (31) ont une hauteur hi comprise entre 1,80 et 4,2 mm.
2. Echangeur de chaleur (1) selon la revendication 1 caractérisé en ce que les trous (30, 300, 301) et les collerettes (31, 310, 311) ont tous le même diamètre.
3. Echangeur de chaleur (1) selon la revendication précédente, caractérisé en ce que le nombre de trous (30) est égal à 2n.
4. Echangeur de chaleur (1) selon la revendication précédente, caractérisé en ce que les trous (30) sont alignés longitudinalement sur plusieurs rangées (33) et que les tubes
(2) traversent un trou (300) sur deux par rangée (33) .
5. Echangeur de chaleur (1) selon une des revendications précédentes, caractérisé en ce que les collerettes (31, 310, 311) sont de forme cylindrique.
6. Echangeur de chaleur (1) selon une des revendications précédentes, caractérisé en ce que les ailettes
(3) sont en aluminium.
7. Echangeur de chaleur (1) selon une des revendications précédentes, caractérisé en ce que les tubes (2) sont en cuivre.
8. Echangeur de chaleur (1) selon la revendication 5, caractérisé en ce que les trous (30) d'une rangée (33) sont décalés par rapport à ceux des rangées adjacentes.
9. Procédé de réalisation d'un échangeur de chaleur (1) selon une des revendications précédentes, caractérisé en ce qu'il comprend les étapes suivantes:
- poinçonnage de trous (30) et de collerettes (31) de diamètre do, tel que do = di - e, par emboutissage de chaque ailette (3) d'une hauteur h,
- empilage des ailettes (3) ainsi réalisées,
- insertion de n tubes (2) de diamètre do dans certains trous (300) et collerettes (310),
- insertion d'un second tube de diamètre di pour expandage des n tubes (2),
- retrait des seconds tubes des n tubes (2) .
10. Procédé de chauffage d'un local mettant en œuvre l'échangeur de chaleur (1) tel que définit selon une des revendications 1 à 9, comprenant deux modes de fonctionnement:
- un premier mode de chauffage lorsque la température est supérieure à 2°C,
- un deuxième mode de chauffage lorsque la température extérieure est comprise entre -5 et 2°C et que l'humidité atteint 85%, où un dégivrage et un chauffage alternent avec un intervalle de temps Dt, le passage de l'un à l'autre étant automatiquement régulé,
caractérisé en ce que l'intervalle de temps Dt est tel que Dt = 119,91 + 9,36 tw + 10,4 tw2 + 0, 074 tw3
où tw est la température humide de l'air extérieur en contact avec l'échangeur.
EP19719558.9A 2018-03-27 2019-03-27 Echangeur haute performance anti-givre Pending EP3775750A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1852660A FR3079604B1 (fr) 2018-03-27 2018-03-27 Echangeur haute performance anti-givre
PCT/FR2019/050711 WO2019186071A1 (fr) 2018-03-27 2019-03-27 Echangeur haute performance anti-givre

Publications (1)

Publication Number Publication Date
EP3775750A1 true EP3775750A1 (fr) 2021-02-17

Family

ID=62948213

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19719558.9A Pending EP3775750A1 (fr) 2018-03-27 2019-03-27 Echangeur haute performance anti-givre

Country Status (3)

Country Link
EP (1) EP3775750A1 (fr)
FR (1) FR3079604B1 (fr)
WO (1) WO2019186071A1 (fr)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5185611B2 (ja) * 2007-12-28 2013-04-17 三菱重工業株式会社 フィンアンドチューブ型熱交換器
DE102010046482A1 (de) * 2010-09-24 2012-03-29 Rawema Countertrade Handelsgesellschaft Mbh Wärmetauscher
IN2014DN08791A (fr) * 2012-04-13 2015-05-22 Uacj Corp

Also Published As

Publication number Publication date
FR3079604B1 (fr) 2020-06-26
FR3079604A1 (fr) 2019-10-04
WO2019186071A1 (fr) 2019-10-03

Similar Documents

Publication Publication Date Title
EP2831527B1 (fr) Echangeur thermique, notamment pour vehicule
JP6710205B2 (ja) 熱交換器及び冷凍サイクル装置
JPS589911B2 (ja) 冷凍機用蒸発器
CA2747353A1 (fr) Echangeur de chaleur comprenant des tubes a ailettes rainurees
JP6701371B2 (ja) 熱交換器及び冷凍サイクル装置
EP3537082B1 (fr) Ventilo-convecteur avec echangeur thermique et repartition du debit d'air optimises
CN101957117A (zh) 化霜加热器、制冷设备的蒸发器组件及具有其的冰箱
EP3775750A1 (fr) Echangeur haute performance anti-givre
CN100378424C (zh) 冰箱热交换器及制造该热交换器的制冷剂管的方法
EP0117829B1 (fr) Echangeur de chaleur à tuyaux
WO2005100901A1 (fr) Tubes d'echangeur de chaleur favorisant le drainage des condensats
JP2005201492A (ja) 熱交換器
FR2991034A1 (fr) Intercalaire pour echangeur thermique et echangeur thermique associe
WO2020084786A1 (fr) Échangeur de chaleur et dispositif à cycle frigorifique faisant appel audit échangeur
JP2004271113A (ja) 熱交換器
WO2013017572A1 (fr) Installation et procédé d'optimisation de fonctionnement d'une installation de pompe à chaleur
FR2909440A1 (fr) Installation de pompe a chaleur a rendement ameliore, utilisant une serie d'echanges avec un fluide exterieur introduit en amont du detenteur
CN100458348C (zh) 一种电制冷机组蒸发器用高效换热管
JPH0682189A (ja) 熱交換器
CH640629A5 (fr) Pompe a chaleur.
FR3063341A1 (fr) Evaporateur pour installation de climatisation
EP3002538A1 (fr) Echangeur de chaleur, notamment pour véhicule automobile
JP2009281659A (ja) 冷凍サイクル装置
FR2963418A1 (fr) Echangeur pour pompe a chaleur
FR2466728A1 (fr) Dispositif de deshumidification d'un fluide gazeux pour le sechage en cellule de materiaux ou produits

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200910

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20231009