EP3773351B1 - Orthesis or prosthesis system for open-loop or closed-loop orthesis or prosthesis control - Google Patents

Orthesis or prosthesis system for open-loop or closed-loop orthesis or prosthesis control Download PDF

Info

Publication number
EP3773351B1
EP3773351B1 EP19715444.6A EP19715444A EP3773351B1 EP 3773351 B1 EP3773351 B1 EP 3773351B1 EP 19715444 A EP19715444 A EP 19715444A EP 3773351 B1 EP3773351 B1 EP 3773351B1
Authority
EP
European Patent Office
Prior art keywords
phase
orthosis
signal
muscle
prosthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19715444.6A
Other languages
German (de)
French (fr)
Other versions
EP3773351A1 (en
Inventor
Martin Ryschka
Roman Kusche
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ottobock SE and Co KGaA
Original Assignee
Ottobock SE and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ottobock SE and Co KGaA filed Critical Ottobock SE and Co KGaA
Publication of EP3773351A1 publication Critical patent/EP3773351A1/en
Application granted granted Critical
Publication of EP3773351B1 publication Critical patent/EP3773351B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/68Operating or control means
    • A61F2/70Operating or control means electrical
    • A61F2/72Bioelectric control, e.g. myoelectric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • A61B5/397Analysis of electromyograms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4851Prosthesis assessment or monitoring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/68Operating or control means
    • A61F2/70Operating or control means electrical
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/015Input arrangements based on nervous system activity detection, e.g. brain waves [EEG] detection, electromyograms [EMG] detection, electrodermal response detection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2002/5058Prostheses not implantable in the body having means for restoring the perception of senses
    • A61F2002/5059Prostheses not implantable in the body having means for restoring the perception of senses the feeling of position
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/68Operating or control means
    • A61F2002/6827Feedback system for providing user sensation, e.g. by force, contact or position
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/68Operating or control means
    • A61F2/70Operating or control means electrical
    • A61F2002/701Operating or control means electrical operated by electrically controlled means, e.g. solenoids or torque motors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/68Operating or control means
    • A61F2/70Operating or control means electrical
    • A61F2002/704Operating or control means electrical computer-controlled, e.g. robotic control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/76Means for assembling, fitting or testing prostheses, e.g. for measuring or balancing, e.g. alignment means
    • A61F2002/7615Measuring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/76Means for assembling, fitting or testing prostheses, e.g. for measuring or balancing, e.g. alignment means
    • A61F2002/7615Measuring means
    • A61F2002/765Measuring means for measuring time or frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/01Orthopaedic devices, e.g. splints, casts or braces
    • A61F5/0102Orthopaedic devices, e.g. splints, casts or braces specially adapted for correcting deformities of the limbs or for supporting them; Ortheses, e.g. with articulations
    • A61F2005/0132Additional features of the articulation
    • A61F2005/0155Additional features of the articulation with actuating means

Definitions

  • the invention relates to an orthotic or prosthetic system.
  • An orthosis within the meaning of the invention is an aid that is used to stabilize, relieve, immobilize, guide or correct a part of the body.
  • a prosthesis within the meaning of the invention is an aid that replaces a part of the body.
  • orthoses and prostheses are used as supplementary aids or as a replacement for limbs and organs.
  • orthoses and prostheses cannot always be separated, especially since some orthoses also replace unusual body functions. This is why the term "orthoses or prostheses" is always used in the following. It is of course possible to use the subject matter of the invention only with a prosthesis or only with an orthosis.
  • the starting point for considerations about orthosis or prosthesis control or regulation is the wish of the user of an orthosis or prosthesis not to perceive them as a disadvantage or a handicap, but in daily use in the case of an orthosis as support or relief for the part of the body to be checked or in the case of the case to be able to use a prosthesis as a complete replacement for the missing part of the body.
  • the orthotic or prosthetic system should therefore compensate for the limitations of the user in the best possible way or create a replacement that prevents limitations.
  • Requirements for an orthotic or prosthetic system are, for example, the maintenance or restoration of the user's motor skills and suitability for everyday use. As many degrees of freedom of movement as possible enable the user to compensate for restrictions particularly well.
  • the orthotic or prosthesis is combined with a sensor system and an actuator system, which can be jointly inserted into a control sequence or also into a control loop.
  • sensors and actuators are understood to mean the acquisition of signals or the triggering of movements by signals.
  • Muscle-related signals are understood here, in particular electrical signals, which relate to a state of a muscle, in particular to the strength and / or direction of the contraction of the muscle or to the direction and / or speed of the movement of the muscle.
  • the DE 10 2008 002 933 A1 shows a data recording for patient analysis, as it can be used with conventional prostheses.
  • the electrical activity of the muscles or muscle groups is recorded and analyzed at a few, mostly two locations using different surface electrodes, for example by means of electromyography (EMG).
  • EMG electromyography
  • MMG mechanomyography
  • Electrophysiological signals from a contracting muscle are recorded using electrodes and sent to a control device.
  • a voltage is applied to the muscle and a change in the electrical impedance during muscle contraction is recorded and used as a signal.
  • the invention is based on the object of providing an orthotic or prosthetic system which in each case has an improved immunity to interference.
  • it is desirable to be able to differentiate as well as possible between disruptive influences and actual muscle contraction.
  • the orthosis or prosthesis system under consideration has the following components: at least one orthosis or prosthesis, at least one pair of electrodes which are provided for contacting the body of the user of the orthosis or prosthesis, for recording muscle-related signals, at least one evaluation unit for the at least one pair of electrodes detected muscle-related signals, at least one actuator for moving the at least one orthosis or prosthesis and at least one control unit for controlling the at least one actuator.
  • this is at least one pair of electrodes set up to acquire at least a first muscle-related signal using a first measurement frequency and a second muscle-related signal using a second measurement frequency.
  • the at least one evaluation unit is set up to evaluate a phase of the respective first signal and a phase of the respective second signal. The evaluation of the phase of the respective first signal and the phase of the respective second signal can make it possible to distinguish a “real” muscle-related signal from an interference signal.
  • the respective evaluation unit is set up to evaluate a phase curve of the respective first and respective second signal.
  • the phase profile of a muscle-related signal can have certain characteristics which do not occur in the case of an interference signal. In this way, a "real" muscle-related signal can be distinguished from any other type of signal, called a disturbance signal here.
  • the characteristics of a real muscle-related signal or an interference signal can be recognized and evaluated.
  • the reference phase is a phase, in particular a previously determined phase, which essentially corresponds to a measurement in a relaxed state of a muscle.
  • the evaluation unit is set up to determine whether the first phase change is a phase change in the same direction as the second phase change, or in an opposite direction.
  • the directions of the first and second phase change can be used to distinguish between real muscle-related signals and interference signals.
  • the evaluation unit is set up to evaluate the first and second signals as belonging to a muscle contraction when the first and second phase changes are phase changes in opposite directions.
  • the evaluation unit can be set up to evaluate the first and second signals as belonging to a disturbance if the first and second phase changes are phase changes in the same direction.
  • the first measurement frequency is more than approx. 60 kHz and the second measurement frequency is less than approx. 60 kHz.
  • phase profile below a frequency of approx. 60 kHz differs from the phase profile above a frequency of approx. 60 kHz, depending on whether the signal to be evaluated is a real muscle-related signal or an interference signal. A reliable differentiation can therefore be made for a measurement below and above approx. 60 kHz.
  • the first measurement frequency is significantly greater than 60 kHz and / or the second measurement frequency is significantly smaller than 60 kHz. This allows the distinction between the two types of signals to be made with even greater reliability.
  • the at least first and second muscle-related signal is a (complex) bioimpedance signal.
  • the characteristic phase behavior described above occurs in particular in the case of a bioimpedance signal.
  • the at least one pair of electrodes is also set up to supply electrical stimulation signals to the user of the orthosis or prosthesis.
  • the outlay on equipment is reduced, and it is ensured that the stimulation signals are supplied exactly at the measurement location of the signal measurements and are therefore carried out in the area of the same muscle to which the signal measurements are based.
  • the electrical stimulation signals are set up to give the user of the orthosis or prosthesis feedback about the movements and / or the state of the orthosis or prosthesis.
  • Movement or state parameters to which the feedback can relate are, in particular, the speed of the orthosis or prosthesis or the force generated by it. In this way, for example, the user of a hand prosthesis can be informed of how forcefully the prosthesis is gripping.
  • the orthotic or prosthetic system according to the invention can thus be used for a wide variety of applications in medical technology.
  • the invention enables an improvement in the interference immunity of the orthotic or prosthesis control through the acquisition of at least two muscle-related signals with different measurement frequencies. Since the two signals can be recorded by the same pair of electrodes, the outlay on equipment can be reduced, and it can be ensured that the two signals are measured precisely at the same location.
  • the inventors consider the measurement of two signals using different measurement frequencies according to the first aspect of the invention to be particularly reliable, measurement of only one signal, i.e. with only one measurement frequency, and subsequent evaluation of the phase of the measured signal may be possible be enough.
  • the first measurement frequency is significantly greater than 60 kHz and / or the evaluation unit is set up to compare a phase of the first signal with an, in particular frequency-dependent, reference phase in order to determine a first phase change at least qualitatively.
  • a first and a second muscle-related signal are recorded by the at least one pair of electrodes and their phase is evaluated by the at least one evaluation unit, one phase of the first signal is compared with a, in particular frequency-dependent, reference phase in order to determine a first phase change; a phase of the second signal is compared with the, in particular frequency-dependent, reference phase in order to determine a second phase change; and the first phase change and the second phase change are evaluated, in particular compared with one another.
  • the at least one actuator is controlled as a function of the result of the evaluation of the phases of the at least first and second muscle-related signals and the orthosis or prosthesis is moved by the at least one actuator.
  • the method can provide fast and simple signal processing for an orthotic or prosthetic system according to the invention.
  • the method and system presented here can also be used to control information technology, such as B. PC, game console or similar application to facilitate / enable the user to operate them.
  • the signals obtained from the human muscle can also be used in conjunction with a mechatronic device for electromechanical reinforcement of the muscles.
  • Fig. 1 shows part of an orthotic or prosthetic system 100 according to an embodiment of the present invention. Links in Fig. 1 an arm is indicated with skin 1 and muscle 2. Although the system according to the invention is mainly described with reference to an arm, it goes without saying that the orthotic or prosthetic system can also be used with other parts of the body. It is also understood that the muscle 2 described here is representative of muscles or muscle groups.
  • a set of electrodes 11 of the orthotic or prosthetic system 100 contact the skin 1, the electrode set in the example shown consisting of four electrodes 11, namely two electrodes each, which are used to impress current, and two electrons for voltage measurement.
  • the bioimpedance can be determined in a manner known per se from the measured voltage and the current measured or known in advance.
  • the orthosis or prosthesis itself is not in Fig. 1 shown. If necessary, as in Fig. 1 shown, further sensors and / or further actuators 12 may be present and, if necessary, contact the skin 1.
  • the electrodes 11 are connected to an evaluation unit 10, where the current and voltage signals can be further processed and / or stored.
  • the right part of the Fig. 1 illustrates schematically the further processing of the current and voltage signals or the further processing of signals derived from the current and voltage signals. These functions can be implemented either in the evaluation unit 10 or in an evaluation unit (not shown) coupled to it.
  • the bioimpedance Z can be determined and further processed.
  • other measured variables such as an electromyography (EMG) and / or mechanomyography signal (MMG), are determined and, if necessary, further processed.
  • EMG electromyography
  • MMG mechanomyography signal
  • the inventors have recognized that both the amount
  • the term “real” muscle-related signals is preferably understood to mean that these are signals that can be traced back to an actually occurring muscle contraction or the like.
  • interfering signals are preferably those signals which are at least partially, preferably predominantly, and more preferably essentially exclusively, due to interfering influences. Such a disruptive influence can be, for example, inadequate contact between an electrode 11 and the skin 1.
  • Fig. 2 shows an example of the frequency response of the amount
  • the upper curve 20 shows the course of the amount
  • decreases the bioimpedance during a muscle contraction in the entire frequency range shown.
  • the illustrated phase ⁇ of the bioimpedance has a different profile in the frequency range shown.
  • the curve which corresponds to a relaxed muscle state, is provided in a left area with the reference number 22 and in a right area with the reference number 26.
  • the curve sections 25 and 24 represent the phase of the bioimpedance during a muscle contraction.
  • the curve 22, 26 intersects the curve 24, 25 at a point 23.
  • the phase at a measurement frequency which corresponds to the intersection point 23 (approx. 60 kHz) is due to a muscle contraction compared to the relaxed one State does not change.
  • the phase ⁇ of the bioimpedance decreases due to a muscle contraction.
  • the phase ⁇ increases at higher measurement frequencies (to the right of the intersection 23) due to a muscle contraction.
  • the illustrated frequency response of the phase ⁇ of the bioimpedance can be evaluated according to exemplary embodiments of the present invention in order to recognize a muscle contraction and in particular in order to distinguish it from an interference signal.
  • the control unit which controls the actuator in order to move the orthosis or prosthesis, can then be operated as a function of a result of the evaluation carried out with the evaluation unit 10.
  • the bioimpedance or the phase ⁇ of the bioimpedance are measured at two different measuring frequencies f1 and f2, where f1 is smaller, in particular significantly smaller than fs, and where f2 is larger, in particular significantly larger than fs.
  • the phases ⁇ 1 and ⁇ 2 for the measurement frequencies f1 and f2 result from these measurements.
  • the phases ⁇ 1 and ⁇ 2 are then compared in the evaluation unit 10 with a reference phase ⁇ R.
  • the reference phase ⁇ R can have been stored in the evaluation unit 10 in advance.
  • the reference phase ⁇ R can in particular be the phase ⁇ of the bioimpedance in the relaxed muscle state, that is to say as shown by curve 22, 26.
  • phase change or phase difference therefore corresponds to the change in the phases caused by the muscle contraction at the respective measurement frequencies. If the comparator 13 detects phase changes in different directions for the two measurement frequencies (or phase differences with different signs), the signal measured by the electrodes 11 is evaluated as a real signal of a muscle contraction.
  • the comparator 13 detects phase changes in the same direction or phase differences with the same sign, the signal measured by the electrodes 11 is evaluated as an interference signal, or at least not as belonging to a muscle contraction.
  • the signal is not assessed as belonging to a muscle contraction, i.e. in this case the measurement is preferably interpreted in such a way that the muscle is in a relaxed state is.
  • the second variant differs from the first in particular in that one of the measurement frequencies f1, f2 is in the vicinity of the cutting frequency fs, in particular is essentially the same as the cutting frequency.
  • the evaluation is adjusted accordingly. This means, in particular, that a signal detected by the electrodes 11 is evaluated as a real muscle-related signal if a phase change or phase difference is determined for the measurement frequency, which differs (significantly) from the cutting frequency fs, and for the other measurement frequency, which is close to or is equal to the cutting frequency fs, but no or only a very small phase change or difference is determined.
  • the signal is assessed as not belonging to a muscle contraction if there is no or only a very slight change for both measurement frequencies the phase, or if there is a phase change in the same direction for both measurement frequencies.
  • the measurement frequencies f1 and f2 are selected so that either both are greater or both are less than the cutting frequency fs. However, one of the frequencies should be much closer to the cut frequency than the other. According to this variant, however, it would be necessary to evaluate the phase change or phase difference not only qualitatively (phase change in the same or different directions, phase differences with the same or different signs, no significant phase change), but also quantitatively, because it would be expected that with a muscle contraction the phases at the different measurement frequencies would change in the same direction, but the size of the changes would be different.
  • the phase change is evaluated relative to a reference phase, for example by forming a phase difference. This can in turn be carried out in the comparator 13. If the comparator 13 determines that the phase determined from the measurement is greater than the reference phase, the signal is evaluated as belonging to a muscle contraction. Otherwise it will The signal is evaluated either as an interference signal (the phase determined from the measurement is smaller than the reference phase) or as belonging to a relaxed muscle (no phase change).
  • orthotic or prosthetic systems can recognize real muscle-related signals, i.e. in particular signals attributable to a muscle contraction, with greater reliability and, in particular, can distinguish them from interference signals than was possible according to approaches in the prior art .
  • Fig. 4 shows the frequency-dependent course of the amount
  • the lower curve 28 shows the course with good electrode-skin contact of the negative current electrode and curve 27 shows the course with poor electrode-skin contact.
  • a bioimpedance that is larger in amount (upper curve 27) thus corresponds to a poorer contact than a bioimpedance that is smaller in amount (lower curve 28).
  • Fig. 5 shows the frequency response of the phase of bioimpedance in the case of good electrode-skin contact (upper curve 29) and in the case of poor electrode-skin contact (lower curve 30).
  • the in Fig. 5 The frequency response of the phase shown does not have that in Fig. 3 characteristic frequency response shown for real muscle-related signals. In particular, the curves 29 and 30 do not intersect.
  • the differences between a real muscle-related signal ( Fig. 3 ) and an interfering signal, such as poor electrode-skin contact ( Fig. 5 ) become particularly clear if a measurement and evaluation is carried out according to the first variant described above.
  • the evaluation described above provides a phase change in different directions for a real muscle-related signal.
  • an interfering signal such as a deterioration in the electrode-skin contact
  • it provides a phase change in the same direction. Due to this fact, the evaluation unit 10 can distinguish between a real muscle-related signal and an interference signal.
  • two or more measurements can be carried out at two or more different frequencies by means of the same set of electrodes 11 (using more than one measuring channel).
  • the measurements could be carried out quasi-simultaneously, i.e. with short intervals that are not noticeable to a user.
  • the measurements could be made at the two or more different frequencies using different sets of electrodes.
  • the evaluation unit 10 has an A / D converter (ADC) 14, which converts the determined phase of the bioimpedance and possibly also the amount of bioimpedance and / or other measured or derived variables into a digital format.
  • ADC A / D converter
  • the digital data output by the A / D converter can be temporarily stored in an intermediate memory (buffer) 15 and, if necessary, further processed by an extended signal processing unit 16.
  • further processing can include controlling an actuator for moving the orthosis or prosthesis.
  • Fig. 1 indicates yet another advantage of embodiments of the invention.
  • Embodiments of the invention provide that additional measuring methods and / or signal processing components are only switched on when a muscle contraction has been detected by means of the method described above, in particular by the comparator 13.
  • This is in Fig. 1 indicated by an arrow that of the comparator 13 goes out and leads to the symbol of an on / off switch 17 of the unit 16.
  • processes or components with, under certain circumstances, a comparatively high energy requirement can be carried out or operated in a more energy-saving manner, which can reduce the energy requirement of the entire system.
  • the battery capacity of the orthosis or prosthesis or of the orthosis or prosthesis system can possibly be saved, which can also lead to advantages in production.
  • Possible areas of application of the invention include prosthetics, orthotics, human-machine interfaces for controlling computers, machine control and controlling exoskeletons.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Transplantation (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Vascular Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Cardiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Dermatology (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Prostheses (AREA)

Description

Die Erfindung betrifft ein Orthesen- oder Prothesen-System.The invention relates to an orthotic or prosthetic system.

Eine Orthese im Sinne der Erfindung ist ein Hilfsmittel, das zur Stabilisierung, Entlastung, Ruhigstellung, Führung oder Korrektur eines Körperteils eingesetzt wird. Eine Prothese im Sinne der Erfindung ist ein Hilfsmittel, welches einen Körperteil ersetzt.An orthosis within the meaning of the invention is an aid that is used to stabilize, relieve, immobilize, guide or correct a part of the body. A prosthesis within the meaning of the invention is an aid that replaces a part of the body.

In der Medizin werden Orthesen und Prothesen somit als ergänzende Hilfsmittel bzw. als Ersatz für Gliedmaßen und Organe eingesetzt. Begrifflich sind Orthesen und Prothesen nicht immer trennbar, zumal einige Orthesen auch ausgefallene Körperfunktionen ersetzen. Daher wird im Folgenden stets von "Orthesen oder Prothesen" gesprochen. Es ist selbstverständlich möglich, den Erfindungsgegenstand auch nur bei einer Prothese oder nur bei einer Orthese anzuwenden.In medicine, orthoses and prostheses are used as supplementary aids or as a replacement for limbs and organs. Conceptually, orthoses and prostheses cannot always be separated, especially since some orthoses also replace unusual body functions. This is why the term "orthoses or prostheses" is always used in the following. It is of course possible to use the subject matter of the invention only with a prosthesis or only with an orthosis.

Ausgangspunkt für Überlegungen zur Orthesen- oder Prothesensteuerung oder - regelung ist der Wunsch des Nutzers einer Orthese oder Prothese, diese nicht als Nachteil oder Behinderung zu empfinden, sondern im täglichen Gebrauch im Falle einer Orthese als Unterstützung oder Entlastung des zu kontrollierenden Körperteils bzw. im Falle einer Prothese als möglichst vollständigen Ersatz für den fehlenden Körperteil nutzen zu können.The starting point for considerations about orthosis or prosthesis control or regulation is the wish of the user of an orthosis or prosthesis not to perceive them as a disadvantage or a handicap, but in daily use in the case of an orthosis as support or relief for the part of the body to be checked or in the case of the case to be able to use a prosthesis as a complete replacement for the missing part of the body.

Das Orthesen- oder Prothesen-System soll somit die Einschränkungen des Nutzers bestmöglich kompensieren bzw. einen Ersatz schaffen, der Einschränkungen verhindert. Anforderungen an ein Orthesen- oder Prothesen-System sind daher beispielsweise die Erhaltung bzw. Wiederherstellung der motorischen Fähigkeiten des Nutzers sowie die Alltagstauglichkeit. Dabei ermöglichen möglichst viele Bewegungs-Freiheitsgrade dem Nutzer eine besonders gute Kompensation von Einschränkungen. Bei einem Orthesen- oder Prothesen-System im Sinne der Erfindung wird die Orthese oder Prothese mit einer Sensorik und einer Aktorik kombiniert, welche gemeinsam in einen Steuerungsablauf oder auch in einen Regelkreis eingefügt sein können.The orthotic or prosthetic system should therefore compensate for the limitations of the user in the best possible way or create a replacement that prevents limitations. Requirements for an orthotic or prosthetic system are, for example, the maintenance or restoration of the user's motor skills and suitability for everyday use. As many degrees of freedom of movement as possible enable the user to compensate for restrictions particularly well. In the case of an orthotic or prosthetic system within the meaning of the invention, the orthotic or prosthesis is combined with a sensor system and an actuator system, which can be jointly inserted into a control sequence or also into a control loop.

Unter Sensorik und Aktorik wird dabei im üblichen Sinne die Erfassung von Signalen bzw. die Auslösung von Bewegungen durch Signale verstanden.In the usual sense, sensors and actuators are understood to mean the acquisition of signals or the triggering of movements by signals.

Zur Steuerung oder Regelung von Orthesen oder Prothesen muss der Wunsch des Nutzers, eine Bewegung vorzunehmen, möglichst schnell und zuverlässig ermittelt werden. Dies geschieht üblicherweise durch die Erfassung von muskelbezogenen Signalen. Unter muskelbezogenen Signalen werden dabei, insbesondere elektrische, Signale verstanden, die sich auf einen Zustand eines Muskels beziehen, insbesondere auf die Stärke und/oder Richtung der Kontraktion des Muskels oder auf die Richtung und/oder Geschwindigkeit der Bewegung des Muskels.To control or regulate orthotics or prostheses, the user's desire to move must be determined as quickly and reliably as possible. This is usually done through the acquisition of muscle-related signals. Muscle-related signals are understood here, in particular electrical signals, which relate to a state of a muscle, in particular to the strength and / or direction of the contraction of the muscle or to the direction and / or speed of the movement of the muscle.

Von besonderer Wichtigkeit ist dabei die Störsicherheit der erfassten muskelbezogenen Signale, welche für die Regelung verwendet werden, um Fehlfunktionen des Orthesen- oder Prothesen-Systems zu verhindern.Of particular importance is the interference immunity of the recorded muscle-related signals, which are used for the regulation in order to prevent malfunctions of the orthotic or prosthetic system.

Im Stand der Technik sind verschiedene Verfahren zur Erfassung von muskelbezogenen Signalen bekannt, die zur Steuerung oder Regelung von Orthesen oder Prothesen eingesetzt werden können:
Die DE 10 2008 002 933 A1 zeigt eine Datenaufzeichnung zur Patientenanalyse, wie sie bei herkömmlichen Prothesen genutzt werden kann. Dabei wird an wenigen, zumeist zwei Orten mittels unterschiedlicher Oberflächenelektroden die elektrische Aktivität der Muskeln oder Muskelgruppen, beispielsweise durch Elektromyografie (EMG), erfasst und analysiert.
In the prior art, various methods for recording muscle-related signals are known that can be used to control or regulate orthoses or prostheses:
the DE 10 2008 002 933 A1 shows a data recording for patient analysis, as it can be used with conventional prostheses. The electrical activity of the muscles or muscle groups is recorded and analyzed at a few, mostly two locations using different surface electrodes, for example by means of electromyography (EMG).

Eine weitere bekannte Methode zur Detektion von Muskelaktivitäten ist die Mechanomyografie (MMG), bei der die Vibrationen, die bei der Muskelanspannung entstehen, gemessen werden.Another well-known method for detecting muscle activity is mechanomyography (MMG), in which the vibrations that arise when the muscles are tensed are measured.

Wissenschaftliche Veröffentlichungen zeigen weiterhin, dass auch der Betrag der komplexen elektrischen Bioimpedanz durch Muskelkontraktionen beeinflusst wird (vgl. Soo- Chan Kim: Estimation of Hand Gestures Using EMG and Bioimpedance,The Transactions of the Korean Institute of Electrical Engineers, Vol. 65, No. 1, pp. 194-199, 2016, ISSN 1975-8359 (Print) / ISSN 2287-4364 (Online), http://dx.doi.org/10.5370/KIEE.2016.65.1.194 ), wobei sich die Diskussion auf die Art und Weise von möglichen Messungen mit Sensoren oder Elektroden und die Interpretation von Messergebnissen beschränkt.Scientific publications also show that the amount of complex electrical bioimpedance is also influenced by muscle contractions (cf. Soo- Chan Kim: Estimation of Hand Gestures Using EMG and Bioimpedance, The Transactions of the Korean Institute of Electrical Engineers, Vol. 65, No. 1, pp. 194-199, 2016, ISSN 1975-8359 (Print) / ISSN 2287-4364 (Online), http://dx.doi.org/10.5370/KIEE.2016.65.1.194 ), whereby the discussion is limited to the manner of possible measurements with sensors or electrodes and the interpretation of measurement results.

Aus der WO 2017/160183 A1 ist ein Verfahren zur bionischen Steuerung einer technischen Einrichtung, wie beispielsweise eines Exoskeletts oder einer Prothese, bekannt. Mittels Elektroden werden elektrophysiologische Signale eines kontrahierenden Muskels erfasst und einer Steuereinrichtung zugeleitet. Zur Erfassung des elektrophysiologischen Signals wird eine Spannung an den Muskel angelegt und eine Änderung der elektrischen Impedanz bei Muskelkontraktion erfasst und als Signal verwendet.From the WO 2017/160183 A1 a method for bionic control of a technical device, such as an exoskeleton or a prosthesis, is known. Electrophysiological signals from a contracting muscle are recorded using electrodes and sent to a control device. To record the electrophysiological signal, a voltage is applied to the muscle and a change in the electrical impedance during muscle contraction is recorded and used as a signal.

Der Erfindung liegt die Aufgabe zugrunde, ein Orthesen- oder Prothesen-System bereit zu stellen, welches jeweils eine verbesserte Störsicherheit aufweist. Insbesondere ist es wünschenswert, möglichst gut zwischen Störeinflüssen und tatsächlicher Muskelkontraktion differenzieren zu können.The invention is based on the object of providing an orthotic or prosthetic system which in each case has an improved immunity to interference. In particular, it is desirable to be able to differentiate as well as possible between disruptive influences and actual muscle contraction.

Diese Aufgabe wird gelöst durch ein Orthesen- oder Prothesen-System gemäß Anspruch 1. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen enthalten.This object is achieved by an orthotic or prosthetic system according to claim 1. Advantageous embodiments of the invention are contained in the subclaims.

Das betrachtete Orthesen- oder Prothesen-System weist die folgenden Komponenten auf: wenigstens eine Orthese oder Prothese, wenigstens ein Paar von Elektroden, welche zur Kontaktierung des Körpers des Nutzers der Orthese oder Prothese vorgesehen sind, zur Erfassung muskelbezogener Signale, wenigstens eine Auswerteeinheit für von dem wenigstens einen Elektrodenpaar erfasste muskelbezogene Signale, wenigstens einen Aktor zur Bewegung der wenigstens einen Orthese oder Prothese und wenigstens eine Steuereinheit zur Steuerung des wenigstens einen Aktors.The orthosis or prosthesis system under consideration has the following components: at least one orthosis or prosthesis, at least one pair of electrodes which are provided for contacting the body of the user of the orthosis or prosthesis, for recording muscle-related signals, at least one evaluation unit for the at least one pair of electrodes detected muscle-related signals, at least one actuator for moving the at least one orthosis or prosthesis and at least one control unit for controlling the at least one actuator.

Gemäß einem ersten Aspekt der Erfindung ist das wenigstens eine Elektrodenpaar dazu eingerichtet, wenigstens ein erstes muskelbezogenes Signal unter Verwendung einer ersten Messfrequenz und ein zweites muskelbezogenes Signal unter Verwendung einer zweiten Messfrequenz zu erfassen. Außerdem ist die wenigstens eine Auswerteeinheit dazu eingerichtet, eine Phase des jeweiligen ersten Signals und eine Phase des jeweiligen zweiten Signals auszuwerten. Die Auswertung der Phase des jeweiligen ersten Signals und der Phase des jeweiligen zweiten Signals kann es ermöglichen, ein "echtes" muskelbezogenes Signal von einem Störsignal zu unterscheiden.According to a first aspect of the invention, this is at least one pair of electrodes set up to acquire at least a first muscle-related signal using a first measurement frequency and a second muscle-related signal using a second measurement frequency. In addition, the at least one evaluation unit is set up to evaluate a phase of the respective first signal and a phase of the respective second signal. The evaluation of the phase of the respective first signal and the phase of the respective second signal can make it possible to distinguish a “real” muscle-related signal from an interference signal.

In einer bevorzugten Ausführung der Erfindung ist die jeweilige Auswerteeinheit dazu eingerichtet, einen Phasenverlauf des jeweiligen ersten und jeweiligen zweiten Signals auszuwerten. Wie nachfolgend beschrieben wird, kann der Phasenverlauf eines muskelbezogenen Signals bestimmte Charakteristiken aufweisen, die bei einem Störsignal nicht auftreten. So kann ein "echtes" muskelbezogenes Signal von einem beliebigen andersartigen Signal, hier Störsignal genannt, unterschieden werden.In a preferred embodiment of the invention, the respective evaluation unit is set up to evaluate a phase curve of the respective first and respective second signal. As will be described below, the phase profile of a muscle-related signal can have certain characteristics which do not occur in the case of an interference signal. In this way, a "real" muscle-related signal can be distinguished from any other type of signal, called a disturbance signal here.

Die jeweilige Auswerteeinheit ist dazu eingerichtet:

  • eine Phase des jeweiligen ersten Signals mit einer, insbesondere frequenzabhängigen, Referenzphase zu vergleichen, um eine erste Phasenveränderung wenigstens qualitativ zu ermitteln;
  • eine Phase des jeweiligen zweiten Signals mit der, insbesondere frequenzabhängigen, Referenzphase zu vergleichen, um eine zweite Phasenveränderung wenigstens qualitativ zu ermitteln; und
  • die erste Phasenveränderung und die zweite Phasenveränderung auszuwerten, insbesondere miteinander zu vergleichen.
The respective evaluation unit is set up for this:
  • to compare a phase of the respective first signal with a, in particular frequency-dependent, reference phase in order to determine a first phase change at least qualitatively;
  • to compare a phase of the respective second signal with the, in particular frequency-dependent, reference phase in order to determine a second phase change at least qualitatively; and
  • to evaluate the first phase change and the second phase change, in particular to compare them with one another.

Dadurch könnend die Charakteristiken eines echten muskelbezogenen Signals bzw. eines Störsignals erkannt und ausgewertet werden.As a result, the characteristics of a real muscle-related signal or an interference signal can be recognized and evaluated.

In einer bevorzugten Ausführung ist die Referenzphase eine, insbesondere zuvor bestimmte, Phase, die im Wesentlichen einer Messung in einem entspannten Zustand eines Muskels entspricht.In a preferred embodiment, the reference phase is a phase, in particular a previously determined phase, which essentially corresponds to a measurement in a relaxed state of a muscle.

Die Verwendung einer solchen Referenzphase kann dazu beitragen, dass die Signale richtig erkannt werden.Using such a reference phase can help ensure that the signals are correctly identified.

Nach einer bevorzugten Ausführung ist die Auswerteeinheit dazu eingerichtet zu ermitteln, ob die erste Phasenveränderung eine Phasenveränderung in die gleiche Richtung wie die zweite Phasenveränderung ist, oder in eine entgegengesetzte Richtung.According to a preferred embodiment, the evaluation unit is set up to determine whether the first phase change is a phase change in the same direction as the second phase change, or in an opposite direction.

Die Richtungen der ersten und zweiten Phasenveränderung können zur Unterscheidung von echten muskelbezogenen Signalen und Störsignalen dienen.The directions of the first and second phase change can be used to distinguish between real muscle-related signals and interference signals.

Nach einer Ausführungsform ist die Auswerteeinheit dazu eingerichtet ist, das erste und zweite Signal als zu einer Muskelkontraktion gehörend zu werten, wenn die erste und zweite Phasenveränderung Phasenveränderungen in entgegengesetzte Richtungen sind.According to one embodiment, the evaluation unit is set up to evaluate the first and second signals as belonging to a muscle contraction when the first and second phase changes are phase changes in opposite directions.

Auf diese Weise kann ein echtes muskelbezogenes Signal zuverlässig erkannt werden.In this way, a real muscle-related signal can be reliably recognized.

Entsprechend kann nach einer Ausführung die Auswerteeinheit dazu eingerichtet sein, das erste und zweite Signal als zu einer Störung gehörend zu werten, wenn die erste und zweite Phasenveränderung Phasenveränderungen in die gleiche Richtung sind.Correspondingly, according to one embodiment, the evaluation unit can be set up to evaluate the first and second signals as belonging to a disturbance if the first and second phase changes are phase changes in the same direction.

Somit kann eine Störung bzw. ein Störsignal richtig erkannt werden.In this way, a malfunction or an interfering signal can be correctly identified.

Nach einer Ausführung beträgt die erste Messfrequenz mehr als ca. 60 kHz und die zweite Messfrequenz weniger als ca. 60 kHz.According to one embodiment, the first measurement frequency is more than approx. 60 kHz and the second measurement frequency is less than approx. 60 kHz.

Die Erfinder haben festgestellt, dass sich der Phasenverlauf unterhalb einer Frequenz von ca. 60 kHz von dem Phasenverlauf oberhalb einer Frequenz von ca. 60 kHz unterscheidet, je nachdem, ob das auszuwertende Signal ein echtes muskelbezogenes Signal oder ein Störsignal ist. Bei einer Messung unterhalb und oberhalb von ca. 60 kHz kann also eine zuverlässige Unterscheidung erfolgen.The inventors have found that the phase profile below a frequency of approx. 60 kHz differs from the phase profile above a frequency of approx. 60 kHz, depending on whether the signal to be evaluated is a real muscle-related signal or an interference signal. A reliable differentiation can therefore be made for a measurement below and above approx. 60 kHz.

Nach einer bevorzugten Ausführung ist die erste Messfrequenz wesentlich größer als 60 kHz und / oder die zweite Messfrequenz wesentlich kleiner als 60 kHz. Dadurch kann die Unterscheidung zwischen den zwei Arten von Signalen mit noch größerer Zuverlässigkeit erfolgen.According to a preferred embodiment, the first measurement frequency is significantly greater than 60 kHz and / or the second measurement frequency is significantly smaller than 60 kHz. This allows the distinction between the two types of signals to be made with even greater reliability.

In einer bevorzugten Ausführung der Erfindung ist das wenigstens erste und zweite muskelbezogene Signal ein (komplexes) Bioimpedanz-Signal.In a preferred embodiment of the invention, the at least first and second muscle-related signal is a (complex) bioimpedance signal.

Insbesondere bei einem Bioimpedanz-Signal tritt das zuvor beschriebene charakteristische Phasenverhalten auf.The characteristic phase behavior described above occurs in particular in the case of a bioimpedance signal.

In einer bevorzugten Ausführung der Erfindung ist das wenigstens eine Elektrodenpaar weiterhin dazu eingerichtet, dem Nutzer der Orthese oder Prothese elektrische Stimulationssignale zuzuführen. Durch die Nutzung desselben Elektrodenpaares wie für die Signalmessungen wird wiederum der apparative Aufwand gesenkt, und es wird sichergestellt, dass die Stimulationssignale genau am Messort der Signalmessungen zugeführt werden und somit im Bereich desselben Muskels erfolgen, auf den auch die Signalmessungen bezogen sind.In a preferred embodiment of the invention, the at least one pair of electrodes is also set up to supply electrical stimulation signals to the user of the orthosis or prosthesis. By using the same pair of electrodes as for the signal measurements, the outlay on equipment is reduced, and it is ensured that the stimulation signals are supplied exactly at the measurement location of the signal measurements and are therefore carried out in the area of the same muscle to which the signal measurements are based.

In einer bevorzugten Variante dieser Ausführung sind die elektrischen Stimulationssignale dazu eingerichtet, dem Nutzer der Orthese oder Prothese ein Feedback über die Bewegungen und/oder den Zustand der Orthese oder Prothese zu geben. Bewegungs- oder Zustandsparameter, auf die sich das Feedback beziehen kann, sind insbesondere die Geschwindigkeit der Orthese oder Prothese oder die von dieser erzeugte Kraft. Auf diese Weise kann beispielsweise dem Nutzer einer Handprothese mitgeteilt werden, wie kräftig die Prothese zugreift.In a preferred variant of this embodiment, the electrical stimulation signals are set up to give the user of the orthosis or prosthesis feedback about the movements and / or the state of the orthosis or prosthesis. Movement or state parameters to which the feedback can relate are, in particular, the speed of the orthosis or prosthesis or the force generated by it. In this way, for example, the user of a hand prosthesis can be informed of how forcefully the prosthesis is gripping.

Eine modulare Nachrüstung bestehender Orthesen- oder Prothesen-Systeme ist möglich.A modular retrofitting of existing orthotic or prosthetic systems is possible.

Damit ist das erfindungsgemäße Orthesen- oder Prothesen-System für die unterschiedlichsten Anwendungen in der Medizintechnik einsetzbar.The orthotic or prosthetic system according to the invention can thus be used for a wide variety of applications in medical technology.

Insbesondere ermöglicht die Erfindung eine Verbesserung der Störsicherheit der Orthesen- oder Prothesensteuerung durch die Erfassung wenigstens zweier muskelbezogener Signale mit verschiedenen Messfrequenzen. Da die Erfassung der beiden Signale durch dasselbe Elektrodenpaar erfolgen kann, kann der apparative Aufwand verringert werden, und es kann sichergestellt werden, dass die beiden Signale genau am selben Ort gemessen werden.In particular, the invention enables an improvement in the interference immunity of the orthotic or prosthesis control through the acquisition of at least two muscle-related signals with different measurement frequencies. Since the two signals can be recorded by the same pair of electrodes, the outlay on equipment can be reduced, and it can be ensured that the two signals are measured precisely at the same location.

Obwohl das Messen von zwei Signalen unter Verwendung von verschiedenen Messfrequenzen gemäß dem ersten Aspekt der Erfindung von den Erfindern als besonders zuverlässig angesehen wird, kann unter Umständen die Messung von nur einem Signal, also mit nur einer Messfrequenz, und anschließender Auswertung der Phase des gemessenen Signals ausreichend sein.Although the inventors consider the measurement of two signals using different measurement frequencies according to the first aspect of the invention to be particularly reliable, measurement of only one signal, i.e. with only one measurement frequency, and subsequent evaluation of the phase of the measured signal may be possible be enough.

Hierbei ist es bevorzugt, dass die erste Messfrequenz wesentlich größer als 60 kHz ist und / oder die Auswerteeinheit dazu eingerichtet ist, eine Phase des ersten Signals mit einer, insbesondere frequenzabhängigen, Referenzphase zu vergleichen, um eine erste Phasenveränderung wenigstens qualitativ zu ermitteln.It is preferred here that the first measurement frequency is significantly greater than 60 kHz and / or the evaluation unit is set up to compare a phase of the first signal with an, in particular frequency-dependent, reference phase in order to determine a first phase change at least qualitatively.

Hierdurch kann die Unterscheidung zwischen echten muskelbezogenen Signalen und Störsignalen mit nur einer Messung mit ausreichender Zuverlässigkeit erfolgen.This allows the distinction between real muscle-related signals and interference signals to be made with just one measurement with sufficient reliability.

In einem Verfahren zur Steuerung oder Regelung einer Orthese oder Prothese durch ein erfindungsgemäßes Orthesen- oder Prothesen-System werden ein erstes und ein zweites muskelbezogenes Signal durch das wenigstens eine Elektrodenpaar erfasst und deren Phase durch die wenigstens eine Auswerteeinheit ausgewertet, wobei eine Phase des ersten Signals mit einer, insbesondere frequenzabhängigen, Referenzphase verglichen wird, um eine erste Phasenveränderung zu ermitteln; eine Phase des zweiten Signals mit der, insbesondere frequenzabhängigen, Referenzphase verglichen wird, um eine zweite Phasenveränderung zu ermitteln; und die erste Phasenveränderung und die zweite Phasenveränderung ausgewertet, insbesondere miteinander verglichen werden. Außerdem werden der wenigstens eine Aktor in Abhängigkeit des Ergebnisses der Auswertung der Phasen des wenigstens ersten und zweiten muskelbezogenen Signals gesteuert und die Orthese oder Prothese durch den wenigstens einen Aktor bewegt.In a method for controlling or regulating an orthotic or prosthesis by an orthotic or prosthetic system according to the invention, a first and a second muscle-related signal are recorded by the at least one pair of electrodes and their phase is evaluated by the at least one evaluation unit, one phase of the first signal is compared with a, in particular frequency-dependent, reference phase in order to determine a first phase change; a phase of the second signal is compared with the, in particular frequency-dependent, reference phase in order to determine a second phase change; and the first phase change and the second phase change are evaluated, in particular compared with one another. In addition, the at least one actuator is controlled as a function of the result of the evaluation of the phases of the at least first and second muscle-related signals and the orthosis or prosthesis is moved by the at least one actuator.

Durch das Verfahren kann eine schnelle und einfache Signalverarbeitung für ein erfindungsgemäßes Orthesen- oder Prothesen-System bereitgestellt werden.The method can provide fast and simple signal processing for an orthotic or prosthetic system according to the invention.

Neben der klassischen Orthetik und Prothetik kann das hier vorgestellte Verfahren und System auch bei der die Steuerung von Informationstechnologie, wie z. B. PC, Spielekonsole o.ä. Anwendung finden, um dem Nutzer deren Bedienung zu erleichtern/ermöglichen. Die vom menschlichen Muskel gewonnenen Signale können auch, in Verbindung mit einem mechatronischen Gerät, zur elektromechanischen Verstärkung der Muskulatur verwendet werden.In addition to classic orthotics and prosthetics, the method and system presented here can also be used to control information technology, such as B. PC, game console or similar application to facilitate / enable the user to operate them. The signals obtained from the human muscle can also be used in conjunction with a mechatronic device for electromechanical reinforcement of the muscles.

Weitere Merkmale, Vorteile und Anwendungsmöglichkeiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung im Zusammenhang mit der jeweiligen Figur. Dabei zeigen:

Fig. 1
einen Teil eines Orthesen- oder Prothesen-Systems in schematischer Darstellung nach einer Ausführungsform;
Fig. 2
den Verlauf des Betrages eines Bioimpedanzsignals bei verschiedenen Messfrequenzen;
Fig. 3
den Verlauf der Phase eines Bioimpedanzsignals bei verschiedenen Messfrequenzen;
Fig. 4
den Verlauf des Betrages eines Bioimpedanzsignals bei verschiedenen Messfrequenzen, und
Fig. 5
den Verlauf der Phase eines Bioimpedanzsignals bei verschiedenen Messfrequenzen.
Further features, advantages and possible applications of the invention emerge from the following description in connection with the respective figure. Show:
Fig. 1
a part of an orthotic or prosthetic system in a schematic representation according to one embodiment;
Fig. 2
the course of the amount of a bioimpedance signal at different measurement frequencies;
Fig. 3
the course of the phase of a bioimpedance signal at different measurement frequencies;
Fig. 4
the course of the amount of a bioimpedance signal at different measurement frequencies, and
Fig. 5
the course of the phase of a bioimpedance signal at different measurement frequencies.

Fig. 1 zeigt einen Teil eines Orthesen- oder Prothesen-Systems 100 nach einem Ausführungsbeispiel der vorliegenden Erfindung. Links in Fig. 1 ist ein Arm angedeutet mit Haut 1 und Muskel 2. Obwohl das erfindungsgemäße System vorwiegend in Bezug auf einen Arm beschrieben wird, ist es selbstverständlich, dass das Orthesen- oder Prothesen- System auch mit anderen Körperpartien benutzt werden kann. Auch versteht es sich, dass der hier beschriebene Muskel 2 stellvertretend für Muskeln oder Muskelgruppen steht. Fig. 1 shows part of an orthotic or prosthetic system 100 according to an embodiment of the present invention. Links in Fig. 1 an arm is indicated with skin 1 and muscle 2. Although the system according to the invention is mainly described with reference to an arm, it goes without saying that the orthotic or prosthetic system can also be used with other parts of the body. It is also understood that the muscle 2 described here is representative of muscles or muscle groups.

Ein Satz von Elektroden 11 des Orthesen- oder Prothesen-Systems 100 kontaktieren die Haut 1, wobei der Elektrodensatz in dem gezeigten Beispiel aus vier Elektroden 11 besteht, nämlich jeweils zwei Elektroden, die der Stromeinprägung dienen, und zwei Elektronen zur Spannungsmessung. Aus der gemessenen Spannung und dem gemessenen oder im Voraus bekannten Strom kann die Bioimpedanz in an sich bekannter Weise ermittelt werden.A set of electrodes 11 of the orthotic or prosthetic system 100 contact the skin 1, the electrode set in the example shown consisting of four electrodes 11, namely two electrodes each, which are used to impress current, and two electrons for voltage measurement. The bioimpedance can be determined in a manner known per se from the measured voltage and the current measured or known in advance.

Die Orthese oder Prothese selbst ist nicht in Fig. 1 gezeigt. Gegebenenfalls kann, wie in Fig. 1 gezeigt, weitere Sensorik und/oder weitere Aktorik 12 vorhanden sein und gegebenenfalls die Haut 1 kontaktieren.The orthosis or prosthesis itself is not in Fig. 1 shown. If necessary, as in Fig. 1 shown, further sensors and / or further actuators 12 may be present and, if necessary, contact the skin 1.

Die Elektroden 11 sind mit einer Auswerteeinheit 10 verbunden, wo die Strom- und Spannungssignale weiterverarbeitet und/oder gespeichert werden können. Der rechte Teil der Fig. 1 illustriert schematisch die weitere Verarbeitung der Strom- und Spannungssignale bzw. die weitere Verarbeitung von aus den Strom- und Spannungssignalen abgeleiteten Signalen. Diese Funktionen können entweder in der Auswerteeinheit 10 oder in einer daran gekoppelten, nicht dargestellten Auswerteeinheit implementiert sein.The electrodes 11 are connected to an evaluation unit 10, where the current and voltage signals can be further processed and / or stored. The right part of the Fig. 1 illustrates schematically the further processing of the current and voltage signals or the further processing of signals derived from the current and voltage signals. These functions can be implemented either in the evaluation unit 10 or in an evaluation unit (not shown) coupled to it.

Wie nachfolgend noch näher erläutert wird, können insbesondere die Phase ϕ und der Betrag |Z| der Bioimpedanz Z ermittelt und weiterverarbeitet werden. Optional können, wie in Fig. 1 angedeutet, auch weitere Messgrößen, wie ein Elektromyographie (EMG) und/oder Mechanomyographie-Signal (MMG), ermittelt und gegebenenfalls weiterverarbeitet werden.As will be explained in more detail below, the phase ϕ and the amount | Z | the bioimpedance Z can be determined and further processed. Optionally, as in Fig. 1 indicated, other measured variables, such as an electromyography (EMG) and / or mechanomyography signal (MMG), are determined and, if necessary, further processed.

Die Erfinder haben erkannt, dass sich sowohl der Betrag |Z| als auch die Phase ϕ der Bioimpedanz bei einer Muskelkontraktion ändert. Dabei haben sie festgestellt, dass die Phasenänderung in Abhängigkeit von der Messfrequenz eine Charakteristik aufweist, die für die Unterscheidung zwischen "echten" muskelbezogenen Signalen und Störsignalen benutzt werden kann. Dabei wird unter dem Begriff "echte" muskelbezogene Signale vorzugsweise verstanden, dass es sich um Signale handelt, die auf eine tatsächlich auftretende Muskelkontraktion o.Ä. zurückgeführt werden können. Im Unterschied dazu sind Störsignale vorzugsweise solche Signale, die zumindest teilweise, vorzugsweise vorwiegend, und weiter vorzugsweise im Wesentlichen ausschließlich, auf Störeinflüsse zurückzuführen sind. Ein solcher Störeinfluss kann beispielsweise ein unzureichender Kontakt zwischen einer Elektrode 11 und der Haut 1 sein.The inventors have recognized that both the amount | Z | as well as the phase ϕ of the bioimpedance changes during a muscle contraction. They found that the phase change as a function of the measurement frequency has a characteristic which can be used to distinguish between "real" muscle-related signals and interference signals. The term “real” muscle-related signals is preferably understood to mean that these are signals that can be traced back to an actually occurring muscle contraction or the like. In contrast to this, interfering signals are preferably those signals which are at least partially, preferably predominantly, and more preferably essentially exclusively, due to interfering influences. Such a disruptive influence can be, for example, inadequate contact between an electrode 11 and the skin 1.

Fig. 2 zeigt beispielhaft den Frequenzgang des Betrages |Z| der Bioimpedanz in Abhängigkeit von der verwendeten Messfrequenz f für einen Körperteil. Dabei zeigt die obere Kurve 20 den Verlauf des Betrags |Z| der Bioimpedanz in einem entspannten Zustand des Muskels und die untere Kurve 21 den Verlauf des Betrages |Z| der Bioimpedanz bei einer Muskelkontraktion. Wie Fig. 2 deutlich zeigt, verringert sich der Betrag |Z| der Bioimpedanz bei einer Muskelkontraktion in dem gesamten dargestellten Frequenzbereich. Fig. 2 shows an example of the frequency response of the amount | Z | the bioimpedance as a function of the measurement frequency f used for a part of the body. The upper curve 20 shows the course of the amount | Z | the bioimpedance in a relaxed state of the muscle and the lower curve 21 the course of the amount | Z | the bioimpedance during a muscle contraction. As Fig. 2 clearly shows, the amount | Z | decreases the bioimpedance during a muscle contraction in the entire frequency range shown.

Die in Fig. 3 dargestellte Phase ϕ der Bioimpedanz weist einen anderen Verlauf in dem gezeigten Frequenzbereich auf. Die Kurve, die einem entspannten Muskelzustand entspricht, ist in einem linken Bereich mit dem Bezugszeichen 22 versehen und in einem rechten Bereich mit dem Bezugszeichen 26. Die Kurvenabschnitte 25 und 24 stellen die Phase der Bioimpedanz bei einer Muskelkontraktion dar. Wie in Fig. 3 deutlich zu sehen ist, schneidet die Kurve 22, 26 bei einem Punkt 23 die Kurve 24, 25. Dies bedeutet, dass sich die Phase bei einer Messfrequenz, die dem Schnittpunkt 23 entspricht (ca. 60 kHz), durch eine Muskelkontraktion gegenüber dem entspannten Zustand nicht ändert. Bei niedrigeren Messfrequenzen (links vom Schnittpunkt 23) verringert sich die Phase ϕ der Bioimpedanz aufgrund einer Muskelkontraktion. Dagegen vergrößert sich die Phase ϕ bei höheren Messfrequenzen (rechts des Schnittpunkts 23) durch eine Muskelkontraktion.In the Fig. 3 The illustrated phase ϕ of the bioimpedance has a different profile in the frequency range shown. The curve, which corresponds to a relaxed muscle state, is provided in a left area with the reference number 22 and in a right area with the reference number 26. The curve sections 25 and 24 represent the phase of the bioimpedance during a muscle contraction. As in FIG Fig. 3 As can be clearly seen, the curve 22, 26 intersects the curve 24, 25 at a point 23. This means that the phase at a measurement frequency which corresponds to the intersection point 23 (approx. 60 kHz) is due to a muscle contraction compared to the relaxed one State does not change. At lower measurement frequencies (to the left of the intersection 23), the phase ϕ of the bioimpedance decreases due to a muscle contraction. In contrast, the phase ϕ increases at higher measurement frequencies (to the right of the intersection 23) due to a muscle contraction.

Zu der Fig. 3 (und entsprechend auch zu der im Folgenden erläuterten Fig. 5) ist anzumerken, dass ein Verringern der Phase hier bedeutet, dass die Phase "noch negativer" wird. Der Betrag der Phase vergrößert sich also bei dem in Fig. 3 veranschaulichten Verringern der Phase.To the Fig. 3 (and accordingly also to the one explained below Fig. 5 ) it should be noted that reducing the phase here means that the phase is "even more negative" will. The amount of the phase increases with the in Fig. 3 the illustrated decrease in phase.

Der in Fig. 3 dargestellte Frequenzgang der Phase ϕ der Bioimpedanz kann nach Ausführungsbeispielen der vorliegenden Erfindung ausgewertet werden, um eine Muskelkontraktion zu erkennen und insbesondere, um eine solche von einem Störsignal zu unterscheiden. Die Steuereinheit, die den Aktor ansteuert, um die Orthese- oder Prothese zu bewegen, kann dann in Abhängigkeit von einem Ergebnis der mit der Auswerteeinheit 10 durchgeführten Auswertung betrieben werden.The in Fig. 3 The illustrated frequency response of the phase ϕ of the bioimpedance can be evaluated according to exemplary embodiments of the present invention in order to recognize a muscle contraction and in particular in order to distinguish it from an interference signal. The control unit, which controls the actuator in order to move the orthosis or prosthesis, can then be operated as a function of a result of the evaluation carried out with the evaluation unit 10.

Hinsichtlich der Messung der Bioimpedanz und der Auswertung der Phase der Bioimpedanz gibt es mehrere Varianten, die hier kurz beschrieben werden. Im Folgenden wird mehrmals auf den Begriff "Schnittfrequenz", abgekürzt fs, Bezug genommen. Diese Schnittfrequenz entspricht der Messfrequenz beim Schnittpunkt 23, wobei diese unter Umständen für verschiedene Muskeln bzw. bei verschiedenen Personen unterschiedlich sein könnte. Falls nötig, könnte diese Schnittfrequenz von Fall zu Fall empirisch bestimmt werden.With regard to the measurement of the bioimpedance and the evaluation of the phase of the bioimpedance, there are several variants that are briefly described here. In the following, the term "cut frequency", abbreviated fs, is referred to several times. This cutting frequency corresponds to the measurement frequency at the point of intersection 23, it being possible for this to be different under certain circumstances for different muscles or for different people. If necessary, this cut frequency could be determined empirically on a case-by-case basis.

Variante 1:Version 1:

Es werden die Bioimpedanz bzw. die Phase ϕ der Bioimpedanz bei zwei verschiedenen Messfrequenzen f1 und f2 gemessen, wobei f1 kleiner, insbesondere wesentlich kleiner als fs ist, und wobei f2 größer, insbesondere wesentlich größer als fs ist. Aus diesen Messungen ergeben sich die Phasen ϕ1 und ϕ2 für die Messfrequenzen f1 bzw. f2. Die Phasen ϕ1 und ϕ2 werden dann in der Auswerteeinheit 10 mit einer Referenzphase ϕR verglichen. Die Referenzphase ϕR kann im Voraus in der Auswerteeinheit 10 abgespeichert worden sein. Die Referenzphase ϕR kann insbesondere die Phase ϕ der Bioimpedanz im entspannten Muskelzustand sein, also wie durch Kurve 22, 26 dargestellt. Obwohl es sinnvoll sein kann, die Referenzphase ϕR für viele verschiedene Frequenzen zu ermitteln und abzuspeichern, wäre es auch möglich, die Referenzphase ϕR nur für die zwei zu verwendenden Messfrequenzen f1 und F zu ermitteln und abzuspeichern.The bioimpedance or the phase ϕ of the bioimpedance are measured at two different measuring frequencies f1 and f2, where f1 is smaller, in particular significantly smaller than fs, and where f2 is larger, in particular significantly larger than fs. The phases ϕ1 and ϕ2 for the measurement frequencies f1 and f2 result from these measurements. The phases ϕ1 and ϕ2 are then compared in the evaluation unit 10 with a reference phase ϕR. The reference phase ϕR can have been stored in the evaluation unit 10 in advance. The reference phase ϕR can in particular be the phase ϕ of the bioimpedance in the relaxed muscle state, that is to say as shown by curve 22, 26. Although it can make sense to determine and save the reference phase ϕR for many different frequencies, it would also be possible to determine and save the reference phase ϕR only for the two measurement frequencies f1 and F to be used.

In der Auswerteeinheit 10, insbesondere durch einen Vergleicher 13 (Fig. 1), werden nun die Phasen ϕ1 und ϕ2 mit entsprechenden Referenzphasen ϕR1 und ϕR2 verglichen. Durch einen solchen Vergleich kann eine Phasenveränderung oder Phasendifferenz ϕD1 und ϕD2 ermittelt werden. Diese Phasenveränderung bzw. Phasendifferenz entspricht also der durch die Muskelkontraktion hervorgerufene Veränderung der Phasen bei den jeweiligen Messfrequenzen. Stellt der Vergleicher 13 für die beiden Messfrequenzen Phasenveränderungen in unterschiedliche Richtungen fest (bzw. Phasendifferenzen mit unterschiedlichen Vorzeichen), wird das durch die Elektroden 11 gemessene Signal als echtes Signal einer Muskelkontraktion gewertet.In the evaluation unit 10, in particular by a comparator 13 ( Fig. 1 ), the phases ϕ1 and ϕ2 with corresponding reference phases ϕR1 and ϕR2 compared. Such a comparison can be used to determine a phase change or phase difference ϕD1 and ϕD2. This phase change or phase difference therefore corresponds to the change in the phases caused by the muscle contraction at the respective measurement frequencies. If the comparator 13 detects phase changes in different directions for the two measurement frequencies (or phase differences with different signs), the signal measured by the electrodes 11 is evaluated as a real signal of a muscle contraction.

Stellt der Vergleicher 13 hingegen Phasenveränderungen in die gleiche Richtung bzw. Phasendifferenzen mit gleichem Vorzeichen fest, so wird das durch die Elektroden 11 gemessene Signal als Störsignal gewertet, oder zumindest nicht als zu einer Muskelkontraktion gehörend.If, on the other hand, the comparator 13 detects phase changes in the same direction or phase differences with the same sign, the signal measured by the electrodes 11 is evaluated as an interference signal, or at least not as belonging to a muscle contraction.

Falls keine Phasenveränderung oder -differenz festzustellen ist, oder wenn die Phasenveränderung oder-differenz einen Mindestwert nicht überschritten hat, wird das Signal nicht als zu einer Muskelkontraktion gehörend gewertet, d.h. in diesem Fall wird die Messung vorzugsweise so interpretiert, dass der Muskel im entspannten Zustand ist.If no phase change or difference can be determined, or if the phase change or difference has not exceeded a minimum value, the signal is not assessed as belonging to a muscle contraction, i.e. in this case the measurement is preferably interpreted in such a way that the muscle is in a relaxed state is.

Variante 2:Variant 2:

Die zweite Variante unterscheidet sich von der ersten insbesondere dadurch, dass eine der Messfrequenzen f1, f2 in der Nähe der Schnittfrequenz fs liegt, insbesondere im Wesentlichen der Schnittfrequenz gleicht. Die Auswertung wird entsprechend angepasst. Das heißt insbesondere, dass ein durch die Elektroden 11 detektiertes Signal als echtes muskelbezogenes Signal gewertet wird, wenn für die Messfrequenz, die sich (wesentlich) von der Schnittfrequenz fs unterscheidet, eine Phasenveränderung oder Phasendifferenz festgestellt wird, für die andere Messfrequenz, die nahe oder gleich der Schnittfrequenz fs ist, hingegen keine oder nur eine sehr geringe Phasenveränderung oder-differenz festgestellt wird.The second variant differs from the first in particular in that one of the measurement frequencies f1, f2 is in the vicinity of the cutting frequency fs, in particular is essentially the same as the cutting frequency. The evaluation is adjusted accordingly. This means, in particular, that a signal detected by the electrodes 11 is evaluated as a real muscle-related signal if a phase change or phase difference is determined for the measurement frequency, which differs (significantly) from the cutting frequency fs, and for the other measurement frequency, which is close to or is equal to the cutting frequency fs, but no or only a very small phase change or difference is determined.

Das Signal wird hingegen als nicht zu einer Muskelkontraktion gehörend gewertet, wenn sich für beide Messfrequenzen keine bzw. nur eine sehr geringe Veränderung der Phase ergibt, oder wenn sich für beide Messfrequenzen eine Phasenveränderung in die gleiche Richtung ergibt.In contrast, the signal is assessed as not belonging to a muscle contraction if there is no or only a very slight change for both measurement frequencies the phase, or if there is a phase change in the same direction for both measurement frequencies.

Bei der ersten und zweiten Variante wäre es möglich, die Auswertung nur qualitativ durchzuführen, also nur zu ermitteln, in welche Richtungen die Phasen sich verändern (bzw. ob überhaupt eine Phasenveränderung vorliegt), ohne die Größe der Veränderung (weiter) zu berücksichtigen. Eine solche qualitative Auswertung würde ausreichen, um ein echtes muskelbezogenes Signal von einem Störsignal zu unterscheiden.In the first and second variant, it would be possible to carry out the evaluation only qualitatively, i.e. only to determine in which directions the phases change (or whether there is any phase change at all) without (further) taking into account the size of the change. Such a qualitative evaluation would be sufficient to distinguish a real muscle-related signal from an interfering signal.

Variante 3:Variation 3:

Diese Variante ist der zweiten Variante ähnlich. Bei der dritten Variante werden die Messfrequenzen f1 und f2 so gewählt, dass entweder beide größer oder beide kleiner als die Schnittfrequenz fs sind. Dabei sollte aber eine der Frequenzen deutlich näher an der Schnittfrequenz liegen als die andere. Nach dieser Variante wäre es aber nötig, die Phasenveränderung bzw. Phasendifferenz nicht nur qualitativ (Phasenveränderung in gleiche oder unterschiedliche Richtungen, Phasendifferenzen mit gleichen oder unterschiedlichen Vorzeichen, keine wesentliche Phasenveränderung), sondern auch quantitativ auszuwerten, weil zu erwarten wäre, dass bei einer Muskelkontraktion die Phasen bei den verschiedenen Messfrequenzen sich in die gleiche Richtung verändern würden, dass die Größe der Veränderungen aber unterschiedlich wäre.This variant is similar to the second variant. In the third variant, the measurement frequencies f1 and f2 are selected so that either both are greater or both are less than the cutting frequency fs. However, one of the frequencies should be much closer to the cut frequency than the other. According to this variant, however, it would be necessary to evaluate the phase change or phase difference not only qualitatively (phase change in the same or different directions, phase differences with the same or different signs, no significant phase change), but also quantitatively, because it would be expected that with a muscle contraction the phases at the different measurement frequencies would change in the same direction, but the size of the changes would be different.

Variante 4:Variation 4:

Nach dieser Variante reicht es aus, nur eine Phase, also nur bei einer Messfrequenz, zu ermitteln und auszuwerten. Die Messfrequenz liegt dabei vorzugsweise oberhalb der Schnittfrequenz fs und ist insbesondere wesentlich höher als die Schnittfrequenz fs, also in einem Frequenzbereich, für den in der Fig. 3 die Kurve 24 (Muskelkontraktion) wesentlich höher liegt als die Kurve 26 (entspannter Zustand). Es wird wiederum die Phasenveränderung relativ zu einer Referenzphase ausgewertet, beispielsweise durch das Bilden einer Phasendifferenz. Dies kann wiederum in dem Vergleicher 13 durchgeführt werden. Stellt der Vergleicher 13 fest, dass die aus der Messung ermittelte Phase größer ist als die Referenzphase, wird das Signal als zu einer Muskelkontraktion gehörend gewertet. Anderenfalls wird das Signal entweder als Störsignal (die aus der Messung ermittelte Phase ist kleiner als die Referenzphase) oder als zu einem entspannten Muskel (keine Phasenveränderung) gehörend gewertet.According to this variant, it is sufficient to determine and evaluate only one phase, i.e. only at one measuring frequency. The measuring frequency is preferably above the cutting frequency fs and is in particular significantly higher than the cutting frequency fs, that is to say in a frequency range for the in Fig. 3 curve 24 (muscle contraction) is significantly higher than curve 26 (relaxed state). Again, the phase change is evaluated relative to a reference phase, for example by forming a phase difference. This can in turn be carried out in the comparator 13. If the comparator 13 determines that the phase determined from the measurement is greater than the reference phase, the signal is evaluated as belonging to a muscle contraction. Otherwise it will The signal is evaluated either as an interference signal (the phase determined from the measurement is smaller than the reference phase) or as belonging to a relaxed muscle (no phase change).

Weitere ErläuterungenFurther explanations

Es wurde bereits erwähnt, dass Orthesen- oder Prothesen-Systeme nach Ausführungsformen der Erfindung echte muskelbezogene Signale, also insbesondere auf eine Muskelkontraktion zurückzuführende Signale, mit größerer Zuverlässigkeit erkennen können und insbesondere von Störsignalen unterscheiden können, als dies nach Ansätzen im Stand der Technik möglich war. In diesem Zusammenhang ist es zweckmäßig zu erläutern, welchen Verlauf der Betrag |Z| der Bioimpedanz bzw. die Phase ϕ der Bioimpedanz eines möglichen Störsignals aufweist. In diesem Zusammenhang wird auf die Figuren 4 und 5 Bezug genommen.It has already been mentioned that orthotic or prosthetic systems according to embodiments of the invention can recognize real muscle-related signals, i.e. in particular signals attributable to a muscle contraction, with greater reliability and, in particular, can distinguish them from interference signals than was possible according to approaches in the prior art . In this context, it is useful to explain the course of the amount | Z | the bioimpedance or the phase ϕ of the bioimpedance of a possible interference signal. In this context, the Figures 4 and 5 Referenced.

Fig. 4 zeigt den frequenzabhängigen Verlauf des Betrages |Z| der Bioimpedanz für einen gegebenen Muskelzustand. Hierbei zeigt die untere Kurve 28 den Verlauf bei einem guten Elektrode-Haut-Kontakt der negativen Strom-Elektrode und Kurve 27 den Verlauf bei einem schlechten Elektrode-Haut-Kontakt. Eine betragsmäßig größere Bioimpedanz (obere Kurve 27) entspricht also einem schlechteren Kontakt als eine betragsmäßig kleinere Bioimpedanz (untere Kurve 28). Eine Auswertung der Signale, die sich allein auf den Betrag |Z| der Bioimpedanz stützt, könnte aber unter Umständen unzuverlässige Ergebnisse liefern. So kann beispielsweise ein Zunehmen des Betrages der Bioimpedanz entweder bedeuteten, dass sich der Muskel gegenüber einem Vergleichszustand (mehr) entspannt hat, oder dass sich der Elektrode-Haut-Kontakt verschlechtert hat. Fig. 4 shows the frequency-dependent course of the amount | Z | the bioimpedance for a given muscle condition. Here, the lower curve 28 shows the course with good electrode-skin contact of the negative current electrode and curve 27 shows the course with poor electrode-skin contact. A bioimpedance that is larger in amount (upper curve 27) thus corresponds to a poorer contact than a bioimpedance that is smaller in amount (lower curve 28). An evaluation of the signals that relate solely to the amount | Z | that supports bioimpedance, but could give unreliable results under certain circumstances. For example, an increase in the amount of bioimpedance can either mean that the muscle has relaxed (more) compared to a comparison state, or that the electrode-skin contact has worsened.

Fig. 5 zeigt den Frequenzgang der Phase der Bioimpedanz im Falle eines guten Elektrode- Haut-Kontaktes (obere Kurve 29) und im Falle eines schlechten Elektrode-Haut-Kontaktes (untere Kurve 30). Der in Fig. 5 gezeigte Frequenzgang der Phase weist nicht den in Fig. 3 gezeigten charakteristischen Frequenzgang für echte muskelbezogene Signale auf. Insbesondere schneiden sich die Kurven 29 und 30 nicht. Die Unterschiede zwischen einem echten muskelbezogenen Signal (Fig. 3) und einem Störsignal, wie beispielsweise einem schlechten Elektrode-Haut-Kontakt (Fig. 5), werden besonders deutlich, wenn man eine Messung und Auswertung gemäß der oben beschriebenen ersten Variante durchführt. Bei den zwei Messungen mit den zwei Messfrequenzen f1 und f2 (mit f1 < fs < f2) liefert die zuvor beschriebene Auswertung für ein echtes muskelbezogenes Signal eine Phasenveränderung in verschiedene Richtungen. Für ein Störsignal, wie z.B. eine Verschlechterung des Elektrode-Haut-Kontaktes, liefert sie dagegen eine Phasenveränderung in die gleiche Richtung. Aufgrund dieser Tatsache kann die Auswerteeinheit 10 zwischen einem echten muskelbezogenen Signal und einem Störsignal unterscheiden. Fig. 5 shows the frequency response of the phase of bioimpedance in the case of good electrode-skin contact (upper curve 29) and in the case of poor electrode-skin contact (lower curve 30). The in Fig. 5 The frequency response of the phase shown does not have that in Fig. 3 characteristic frequency response shown for real muscle-related signals. In particular, the curves 29 and 30 do not intersect. The differences between a real muscle-related signal ( Fig. 3 ) and an interfering signal, such as poor electrode-skin contact ( Fig. 5 ), become particularly clear if a measurement and evaluation is carried out according to the first variant described above. In the two measurements with the two measurement frequencies f1 and f2 (with f1 <fs <f2), the evaluation described above provides a phase change in different directions for a real muscle-related signal. For an interfering signal, such as a deterioration in the electrode-skin contact, on the other hand, it provides a phase change in the same direction. Due to this fact, the evaluation unit 10 can distinguish between a real muscle-related signal and an interference signal.

Ähnliches gilt für die weiteren oben beschriebenen Varianten.The same applies to the other variants described above.

Nach Ausführungsformen der Erfindung können zwei oder mehr Messungen bei zwei oder mehr unterschiedlichen Frequenzen mittels des gleichen Satzes von Elektroden 11 (unter Verwendung von mehr als einem Messkanal) durchgeführt werden. Die Messungen könnten quasi-simultan erfolgen, d.h. mit für einen Anwender nicht merklichen, kurzen Abständen. Alternativ könnten die Messungen bei den zwei oder mehr unterschiedlichen Frequenzen mittels verschiedener Sätze von Elektroden durchgeführt werden.According to embodiments of the invention, two or more measurements can be carried out at two or more different frequencies by means of the same set of electrodes 11 (using more than one measuring channel). The measurements could be carried out quasi-simultaneously, i.e. with short intervals that are not noticeable to a user. Alternatively, the measurements could be made at the two or more different frequencies using different sets of electrodes.

Wie in Fig. 1 gezeigt, weist die Auswerteeinheit 10 gemäß dem gezeigten Ausführungsbeispiel einen A/D-Wandler (ADC) 14 auf, der die ermittelte Phase der Bioimpedanz und gegebenenfalls auch den Betrag der Bioimpedanz und/oder andere gemessene oder daraus abgeleitete Größen in ein digitales Format umwandelt. Die von dem A/D-Wandler ausgegebenen digitalen Daten können in einem Zwischenspeicher (Buffer) 15 zwischengespeichert werden und gegebenenfalls durch eine erweiterte Signalverarbeitungseinheit 16 weiterverarbeitet werden. Insbesondere kann ein solches Weiterverarbeiten das Steuern eines Aktors zur Bewegung der Orthese oder Prothese aufweisen.As in Fig. 1 As shown, the evaluation unit 10 according to the embodiment shown has an A / D converter (ADC) 14, which converts the determined phase of the bioimpedance and possibly also the amount of bioimpedance and / or other measured or derived variables into a digital format. The digital data output by the A / D converter can be temporarily stored in an intermediate memory (buffer) 15 and, if necessary, further processed by an extended signal processing unit 16. In particular, such further processing can include controlling an actuator for moving the orthosis or prosthesis.

Fig. 1 weist noch auf einen weiteren Vorteil von Ausführungsformen der Erfindung hin. Ausführungsformen der Erfindung sehen vor, dass zusätzliche Messverfahren und/oder Signalverarbeitungskomponenten erst eingeschaltet werden, wenn eine Muskelkontraktion mittels der zuvor beschriebenen Verfahren, insbesondere durch den Vergleicher 13, detektiert wurde. Dies ist in Fig. 1 durch einen Pfeil angedeutet, der von dem Vergleicher 13 ausgeht und auf das Symbol eines Ein/Aus-Schalters 17 der Einheit 16 führt. So können Prozesse bzw. Komponenten mit unter Umständen vergleichsweise hohem Energiebedarf energiesparender ausgeführt bzw. betrieben werden, was den Energiebedarf des gesamten Systems verringern kann. Dadurch kann eventuell Batteriekapazität der Orthese oder Prothese bzw. des Orthesen- oder Prothesen-Systems eingespart werden, was auch zu Vergünstigungen bei der Herstellung führen kann. Fig. 1 indicates yet another advantage of embodiments of the invention. Embodiments of the invention provide that additional measuring methods and / or signal processing components are only switched on when a muscle contraction has been detected by means of the method described above, in particular by the comparator 13. This is in Fig. 1 indicated by an arrow that of the comparator 13 goes out and leads to the symbol of an on / off switch 17 of the unit 16. In this way, processes or components with, under certain circumstances, a comparatively high energy requirement can be carried out or operated in a more energy-saving manner, which can reduce the energy requirement of the entire system. As a result, the battery capacity of the orthosis or prosthesis or of the orthosis or prosthesis system can possibly be saved, which can also lead to advantages in production.

Nach einer weiteren Ausgestaltung der Erfindung ist es möglich, mehrere Elektroden(sätze) 11 in einem Elektrodenarray anzuordnen. Dadurch ist eine hohe geometrische Auflösung realisierbar.According to a further embodiment of the invention, it is possible to arrange several electrodes (sets) 11 in an electrode array. This enables a high geometric resolution to be achieved.

Vorteile (oder weitere Vorteile) von zumindest manchen Ausgestaltungen der Erfindung sind:

  • Kostengünstiges System, beispielsweise dadurch, dass kein (signifikant) höherer Schaltungsaufwand im Vergleich zu bereits bekannten Systemen entsteht
  • (Signifikante) Erhöhung der Messsicherheit von Muskelkontraktionen und bessere Erkennung des Nutzerwunsches nach einer Prothesenbewegung
  • Geringe Anzahl von Elektroden notwendig
Advantages (or further advantages) of at least some embodiments of the invention are:
  • Inexpensive system, for example in that there is no (significantly) higher circuit complexity compared to already known systems
  • (Significant) increase in the measurement reliability of muscle contractions and better recognition of the user's wish for a prosthesis movement
  • Small number of electrodes required

Mögliche Erweiterungen / Varianten:

  • Wie die anderen Komponenten auch, kann der Vergleicher sowohl digital, als auch analog realisiert werden.
  • Zusätzlich kann das Verfahren um die Information der Bioimpedanz-Betragsänderungen bei Muskelkontraktion erweitert werden.
  • Das anisotrope Impedanzverhalten von Muskelgewebe kann ausgenutzt werden, indem mehrere (quasi-)simultane Messungen an der gleichen Muskelgruppe in unterschiedlichen geometrischen Elektroden-Anordnungen durchgeführt werden.
  • Messung des Zustands der Elektrode-Haut-Übergänge. Aus dieser Information kann auch geschlossen werden, wie zuverlässig die zusätzliche Messung des EMG-Signals ist.
  • Mittels der Bioimpedanzmessung kann auch die arterielle Pulswelle detektiert werden. Aus dieser lassen sich Informationen wie Herzschlagfrequenz, Pulswellengeschwindigkeit, Augmentationsindex, Blutdruck und Atemfrequenz ableiten.
  • Der entstehende Informationsgewinn durch das Messen bei mindestens 2 Frequenzpunkten liefert zusätzliche Informationen über die Kontraktionsstärke.
Possible extensions / variants:
  • Like the other components, the comparator can be implemented digitally as well as analog.
  • In addition, the method can be expanded to include information on changes in the amount of bioimpedance in the event of muscle contraction.
  • The anisotropic impedance behavior of muscle tissue can be exploited by carrying out several (quasi-) simultaneous measurements on the same muscle group in different geometric electrode arrangements.
  • Measurement of the state of the electrode-skin junctions. This information can also be used to determine how reliable the additional measurement of the EMG signal is.
  • The arterial pulse wave can also be detected by means of the bioimpedance measurement. From this information such as heart rate, Derive pulse wave velocity, augmentation index, blood pressure and respiratory rate.
  • The resulting information gain by measuring at least 2 frequency points provides additional information about the contraction strength.

Mögliche Einsatzgebiete der Erfindung sind unter anderem Prothetik, Orthetik, Mensch-Maschine-Schnittstelle zum Ansteuern von Computern, Maschinensteuerung und Ansteuerung von Exoskeletten.Possible areas of application of the invention include prosthetics, orthotics, human-machine interfaces for controlling computers, machine control and controlling exoskeletons.

BezugszeichenlisteList of reference symbols

11
Hautskin
22
Muskelmuscle
1010
AuswerteeinheitEvaluation unit
1111
ElektrodenpaarPair of electrodes
1212th
weitere Sensorik/Aktorikfurther sensors / actuators
1313th
VergleicherComparator
1414th
A/D-WandlerA / D converter
1515th
ZwischenspeicherCache
1616
SignalverarbeitungseinheitSignal processing unit
1717th
Schaltercounter
20,21,27,2820,21,27,28
Messkurven (Betrag der Bioimpedanz)Measurement curves (amount of bioimpedance)
22,24-26,29,3022.24-26.29.30
Messkurven (Phase der Bioimpedanz)Measurement curves (phase of bioimpedance)
100100
Orthesen- oder Prothesen-SystemOrthosis or prosthesis system

Claims (11)

  1. An orthosis or prosthesis system (100), comprising
    - at least one orthosis or prosthesis,
    - at least one pair of electrodes as an electrode pair (11), provided for contacting the body (1) of the user of the respective orthosis or prosthesis for the purpos of detecting muscle-related signals,
    - at least one evaluation unit (10) for muscle-related signals detected by the at least one electrode pair (11),
    - at least one actuator (12) for moving the respective at least one orthosis or prosthesis, and
    - at least one control unit for controlling the at least one actuator (12), wherein the at least one electrode pair (11) is configured to detect at least a first muscle-related signal using a first measurement frequency and a second muscle-related signal using a second measurement frequency and the at least one evaluation unit (10) is configured to evaluate a phase of the first signal and a phase of the second signal characterized in that the evaluation unit (10) is configured:
    - to compare a phase of the first signal to a reference phase, in particular to a frequency-dependent reference phase, in order to ascertain a first phase change;
    - to compare a phase of the second signal to the reference phase, in particular to the frequency-dependent reference phase, in order to ascertain a second phase change; and
    - to evaluate the first phase change and the second phase change, in particular to compare these to one another.
  2. The orthosis or prosthesis system (100) as claimed in claim 1, characterized in that the evaluation unit (10) is configured to evaluate a phase response of the first and second signal.
  3. The orthosis or prosthesis system (100) as claimed in any one of the preceding claims , characterized in that the reference phase is a phase (22, 26), in particular a phase determined in advance, which substantially corresponds to a measurement in a relaxed state of a muscle.
  4. The orthosis or prosthesis system (100) as claimed in any of the preceding claims, characterized in that the evaluation unit (10) is configured to ascertain whether the first phase change is a phase change in the same direction as the second phase change or in an opposite direction thereto.
  5. The orthosis or prosthesis system (100) as claimed in claim 4, characterized in that the evaluation unit (10) is configured to assess the first and second signal as belonging to a muscle contraction if the first and second phase change are phase changes in opposite directions.
  6. The orthosis or prosthesis system (100) as claimed in claim 4 or 5, characterized in that the evaluation unit (10) is configured to assess the first and second signal as belonging to a disturbance if the first and second phase change are phase changes in the same direction.
  7. The orthosis or prosthesis system (100) as claimed in any one of the preceding claims, characterized in that the first measurement frequency is more than approximately 60 kHz and the second measurement frequency is less than approximately 60 kHz.
  8. The orthosis or prosthesis system as claimed in any one of the preceding claims, characterized in that the first measurement frequency is substantially greater than 60 kHz and/or the second measurement frequency is substantially less than 60 kHz.
  9. The orthosis or prosthesis system (100) as claimed in any one of the preceding claims, characterized in that the at least first and second muscle-related signal is a bioimpedance signal.
  10. The orthosis or prosthesis system (100) as claimed in any one of the preceding claims, characterized in that the at least one electrode pair (11) is further configured to supply electrical stimulation signals to the user of the orthosis or prosthesis.
  11. The orthosis or prosthesis system (100) as claimed in claim 10, characterized in that the electrical stimulation signals are configured to provide the user of the orthosis or prosthesis with feedback about the movements and/or the state of the orthosis or prosthesis.
EP19715444.6A 2018-04-09 2019-04-01 Orthesis or prosthesis system for open-loop or closed-loop orthesis or prosthesis control Active EP3773351B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018205306.5A DE102018205306B3 (en) 2018-04-09 2018-04-09 Orthosis or prosthesis system and method for orthosis or prosthesis control or regulation
PCT/EP2019/058135 WO2019197189A1 (en) 2018-04-09 2019-04-01 Orthesis or prosthesis system and method for open-loop or closed-loop orthesis or prosthesis control

Publications (2)

Publication Number Publication Date
EP3773351A1 EP3773351A1 (en) 2021-02-17
EP3773351B1 true EP3773351B1 (en) 2021-08-25

Family

ID=66041465

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19715444.6A Active EP3773351B1 (en) 2018-04-09 2019-04-01 Orthesis or prosthesis system for open-loop or closed-loop orthesis or prosthesis control

Country Status (4)

Country Link
US (1) US11679009B2 (en)
EP (1) EP3773351B1 (en)
DE (1) DE102018205306B3 (en)
WO (1) WO2019197189A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019101143B4 (en) * 2019-01-17 2020-08-06 Otto Bock Healthcare Products Gmbh Method for controlling an orthotic or prosthetic device and orthetic or prosthetic device
DE102019203052B4 (en) 2019-03-06 2022-01-13 Technische Hochschule Lübeck Method and device for detecting diaphragmatic contractions
RU2748428C1 (en) * 2020-02-05 2021-05-25 Андрей Николаевич Брико Complex for bionic control of technical devices
RU2756162C1 (en) * 2020-07-05 2021-09-28 Андрей Николаевич Брико Method and complex for bionic control of technical apparatuses

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808187A (en) * 1987-10-05 1989-02-28 Iowa State University Research Foundation, Inc. Tactile stimulus receptor for a hand prosthesis
DE102007013660A1 (en) 2007-03-19 2008-09-25 Genesis Adaptive Systeme Deutschland Gmbh Artificial hand prosthesis, with moving fingers, has integrated electro-active sensors and actuators controlled by electrical signals for the range of movements
US20090024044A1 (en) 2007-07-17 2009-01-22 The General Electric Company Data recording for patient status analysis
US8828093B1 (en) 2008-04-15 2014-09-09 Rehabilitation Institute Of Chicago Identification and implementation of locomotion modes using surface electromyography
EP2588039B1 (en) 2010-07-01 2015-10-07 Vanderbilt University Systems and method for volitional control of jointed mechanical devices based on surface electromyography
WO2013029619A1 (en) 2011-08-29 2013-03-07 Neurodan A/S A system for recording electroneurographic activity
RU2627818C1 (en) 2016-03-15 2017-08-11 Сергей Игоревич Щукин Method of bionic control of technical devices
CN105771182B (en) * 2016-05-13 2018-06-29 中国科学院自动化研究所 A kind of healing robot active training control method and device

Also Published As

Publication number Publication date
US11679009B2 (en) 2023-06-20
US20210161685A1 (en) 2021-06-03
DE102018205306B3 (en) 2019-07-18
WO2019197189A1 (en) 2019-10-17
EP3773351A1 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
EP3773351B1 (en) Orthesis or prosthesis system for open-loop or closed-loop orthesis or prosthesis control
EP1988828B1 (en) Probe for data transmission between a brain and a data processing device
DE2811463C2 (en) Electric stimulator for human muscles with bioelectrical control
DE69722821T2 (en) DEVICE FOR THE TREATMENT OF MOTION DISORDERS BY BRAIN STIMULATION WITH A FEEDBACK
EP0402508B2 (en) Means for detecting a series of abnormal events in an electrical signal, especially the depolarisation signal of a heart
EP2389859B1 (en) BCI device for use in stroke rehabilitation
EP0793976B1 (en) Rate adaptive pacemaker
EP0783902B1 (en) Extracorporal control device for an implantable medical device
DE102006008495B4 (en) Device and method for real-time control of an effector
DE102004025945A1 (en) Method and device for decoupling and / or desynchronizing neuronal brain activity
WO2005053787A1 (en) Method and device for desynchronising neuronal cerebral activity
EP2879622B1 (en) Control for orthotic devices
EP1085926B1 (en) Device for magnetically stimulating a body part
EP1062979A2 (en) Cardiac pacemaker
EP2338566B1 (en) Implantable medical device with means for reconstructing an imperfectly sensed signal
DE102017217905A1 (en) Orthosis or prosthesis system and method for orthosis or prosthesis control or regulation
DE102018210051A1 (en) Measuring device and method for determining at least one respiratory parameter
DE102019203052B4 (en) Method and device for detecting diaphragmatic contractions
DE102014214994A1 (en) Suppression of common mode noise in the measurement of bioelectric signals
EP2111891A1 (en) Neurostimulator
EP3870117B1 (en) Method for setting up a control of an orthopedic technical device and system for implementing the method
EP3535019B1 (en) Device for transcranial brain stimulation
DE212021000559U1 (en) Medical device
DE102021133404A1 (en) prosthetic socket
EP4104756A1 (en) Differential voltage measuring system for measuring the breathing activity of a patient

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201019

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20210310

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: AT

Ref legal event code: REF

Ref document number: 1423026

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019002138

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211125

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211125

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211227

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019002138

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

26N No opposition filed

Effective date: 20220527

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220401

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230413

Year of fee payment: 5

Ref country code: DE

Payment date: 20230418

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230420

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825