EP3768971B1 - Verfahren und vorrichtung zum stabilisieren gestapelter windturbinenschaufeln - Google Patents

Verfahren und vorrichtung zum stabilisieren gestapelter windturbinenschaufeln Download PDF

Info

Publication number
EP3768971B1
EP3768971B1 EP19714540.2A EP19714540A EP3768971B1 EP 3768971 B1 EP3768971 B1 EP 3768971B1 EP 19714540 A EP19714540 A EP 19714540A EP 3768971 B1 EP3768971 B1 EP 3768971B1
Authority
EP
European Patent Office
Prior art keywords
blade
stacks
elements
frame
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19714540.2A
Other languages
English (en)
French (fr)
Other versions
EP3768971A1 (de
Inventor
Joris KOFMAN
Michael Kastrup
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vestas Wind Systems AS
Original Assignee
Vestas Wind Systems AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vestas Wind Systems AS filed Critical Vestas Wind Systems AS
Publication of EP3768971A1 publication Critical patent/EP3768971A1/de
Application granted granted Critical
Publication of EP3768971B1 publication Critical patent/EP3768971B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/40Arrangements or methods specially adapted for transporting wind motor components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60PVEHICLES ADAPTED FOR LOAD TRANSPORTATION OR TO TRANSPORT, TO CARRY, OR TO COMPRISE SPECIAL LOADS OR OBJECTS
    • B60P7/00Securing or covering of load on vehicles
    • B60P7/06Securing of load
    • B60P7/13Securing freight containers or forwarding containers on vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/02Transport, e.g. specific adaptations or devices for conveyance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • This invention relates generally to wind turbines, and more particularly to methods and apparatus for improving the stability of stacked wind turbine blades that are being stored or shipped.
  • Wind turbines of the type designed to provide electrical power to a utility grid are quite large, with many designs having a rotor hub height in excess of 100 meters.
  • the turbine blades for these machines can exceed 40 meters in length.
  • the sheer size and weight of these blades present significant logistical challenges in the storage and transportation of the blades for wind turbines.
  • the blades are typically transported by ship, truck or rail whereby they are supported by cradles or frames. Once on location, the blades may be lifted horizontally with straps or slings placed at various positions along the blade, for mounting to the hub. Generally, during shipment, the blades are held in frames at various positions along their length and are stacked on top of each other and the stacks are also placed side-by-side. Normally, the maximum stack height for large blades (e.g., longer than 50m) that are stored in stackable frames is three (3) blades.
  • the blade frames consist of a tip frame and a root frame, wherein the tip frames support a blade at some portion along the length of the blade, such as a mid-region.
  • ES2609308A1 discloses a fastening system for stacked hollow structures which may be wind turbine tower segments. It comprises modular devices interconnected with each other, which are anchored to flanges located at the ends of hollow structures stacked with a staggered distribution, forming the connection of said modular devices, two opposite reticular structures located in correspondence with two opposite vertical planes where the flanges are arranged.
  • the modular devices are anchored to the flanges of the hollow structures by means of groups of front connection mechanisms that include clips, sliding washers in combination with screws and nuts, at the same time that the devices modular elements are anchored to each other by means of pairs of corner connection mechanisms that comprise male elements and female elements.
  • the modular devices are also anchored to the ends of the hollow structures by means of clamp mechanisms.
  • WO2016183416A1 discloses a system for transporting wind turbine blades which includes a root support structure for supporting a wind turbine blade root and a tip section support structure for supporting a wind turbine blade tip.
  • Each of the root and tip support structures includes upper and lower frames, first and second side frames, a set of upper corner fittings disposed at upper corners of the support structure, and a set of lower fittings disposed at lower corners of the support structure.
  • the sets of corner fittings allow the root and tip support structures to be coupled to vertically or horizontally adjacent root and tip support structures to form an array of support structures for transporting multiple wind turbine blades.
  • the sets of corner fittings also allow for attachment to handling equipment, as well as to reinforcing structures for reinforcing an array of tip support structures.
  • CN101648539A discloses a transport system for transporting at least one wind turbine blade.
  • the blade is provided with a root and a tip.
  • the transport system includes a frame structure for maintaining the root of the blade, and a support device for fixing and supporting the blade between the root and the tip.
  • the frame structure includes a holding device used for supporting a plurality of roots, and the support device is used for fixing a plurality of blades between the root and the tip.
  • EP2487363A1 discloses a lifting system for lifting rotor blades of wind turbines, the lifting system comprising a plurality of frame structures each being configured to support a rotor blade.
  • the lifting system comprises a lifting structure which is attachable to a lifting device, and a number of lifting connectors being configured to connect a pack of frame structures to the lifting structure.
  • the invention describes a method for lifting rotor blades of wind turbines by using a lifting device and a method for installation of rotor blades of wind turbines.
  • EP2620389A1 relates to a holding system for holding blades for a wind turbine.
  • the holding system comprises a base frame, a support frame having a first holding section for holding a first blade of the wind turbine and a second holding section for holding a second blade of the wind turbine and a wheel arrangement.
  • the support frame is mounted to the base frame.
  • the wheel arrangement is mounted to the base frame such that the base frame is movable on a ground.
  • the invention relates to systems and methods for transporting a plurality of wind turbine blades includes a plurality of blade root frame elements that are configured for supporting a root portion of a wind turbine blade and are stacked on top of each other to form a plurality of blade stacks that are positioned in a side-by-side fashion with each other so the wind turbine blades may be supported in a stacked array.
  • Bridging elements span between root frame elements of adjacent blade stacks for laterally securing the blade stacks in a side-by-side fashion.
  • Cross-lashing elements span diagonally across root frame elements of adjacent blade stacks and are coupled to the root frame elements for increasing the stiffness of the blade stacks in the stacked array.
  • a system according to the invention is defined in appended independent claim 1. Further preferred features thereof are defined in subclaims 2-5.
  • a method according to the invention is defined in appended claim 6. Further preferred features thereof are defined in subclaims 7-11.
  • FIGS 1 and 2 illustrate exemplary embodiments of blade frame elements or structures that may be used in stacked arrays for transporting stacked wind turbine blades in accord with the invention.
  • Such frame elements are implemented generally at the ends of the blades (e.g., the root end) and also somewhere at a section or portion along the length of the blades for suitable support of a blade in transit.
  • Such frames may take a variety of shapes and thus the specific embodiments illustrated herein are not limiting with respect to the invention and the improvements provided thereby.
  • Such frame elements are also configured for being stacked on top of each other to form blade stacks that are then positioned next to each other in a side-by-side fashion to form the arrays that support the blades as discussed herein.
  • the end of a blade that attaches to the wind turbine or root end of the blade has a circular cross-section and will be supported by a root frame element 30 as illustrated in Figure 2 .
  • a tip frame element 20 as illustrated in Figure 1
  • the tip frame element will generally be configured for supporting a flattened body section/portion or tip section/portion of a blade that passes through the tip frame element.
  • a plurality of tip frame elements 20 and root frame elements 30 might be stacked in parallel stacks and utilized in an array or grid arrangement for supporting multiple blades together as illustrated in Figures 3 and 6 .
  • the exemplary blade frame elements 20 and 30 as illustrated have upright elements 22, 32 and cross elements 24, 34 that are arranged in a generally rectangular fashion. Within the defined rectangular frame may be other spanning elements 26, 36 which are configured to define an appropriately-shaped opening 25, 35 that aligns with the cross-sectional shape of the wind turbine blade that is to be supported.
  • the root frame element 30 might define a circular opening 35 for interfacing with the circular cross-section of the root end of the blade. The blade root end with no generally pass through the frame element and so the depth of the root frame element is less than the top frame element 20.
  • the tip frame element 20 may define a narrow but tall opening 25 for receiving a blade on its side and since the blade passes through frame element 20, the tip frame element 20 might also include multiple sets of upright elements and cross elements and other structural elements 38 that span between the sets of upright elements 22 to yield a frame of a desired depth to support a section of the blade along some length position of the blade. Also, the tip frame 20 and particularly upright elements 22 might telescope at an interface 40 for varying the height of the tip frame to accommodate different blade sizes.
  • the frame elements 20, 30 are formed of a suitably strong material, such as metal for supporting the blades.
  • each of the frames may include alignment structures 42, 44 that fit into openings or apertures 43, 45 so the frames may be stacked as illustrated in Figure 3 .
  • the blade stacks can then be placed side-by-side to form arrays 60, 62 that support effectively a three-dimensional group of blades as shown in Figure 3 .
  • the stacked frame arrays 60, 62 might then be lashed down to a deck or other support surface.
  • one embodiment of the invention incorporates stabilizing frame elements that are positioned between adjacent blade elements for increasing the overall stability of the stacked array, such as a stacked array of tip frames 60. More specifically, a plurality of stabilizing frame elements are stacked on top of each other to form a stabilizing stack and the stabilizing stack is positioned between at least two blade stacks and laterally secured to the blade stacks in a side-by-side fashion for stabilizing the stacked array.
  • the stabilizing frame element in one exemplary embodiment, may take the form of an unoccupied frame element, such as an unoccupied tip frame element 20 that is implemented between occupied tip frame elements in the blade stacks that support a portion of the blade.
  • stacks 50 of frame elements are position between adjacent stacks 52 of other frame elements, which are configured for being occupied and supporting a blade.
  • the stabilizing frame elements may or may not be configured for supporting a portion of a wind turbine blade, but one primary purpose in accordance with embodiments of the invention is to increase stability in the stacked array. More specifically, a stack of unoccupied frame elements (unoccupied stack or stabilizing stack) will be interposed between various occupied stacks 52 of blade frame elements.
  • the stabilizing stacks 50 may be laterally secured with the blade stacks 52, such as by being connected to adjacent occupied blade stacks 52 using appropriate connectors.
  • One suitable connector for laterally securing the stacks 50, 52 are bridge connectors 54 as illustrated.
  • the connectors 54 might be used to attach the top and bottom of each frame element to other adjacent and top/bottom frame elements as shown in Figures 5A and 5B for example.
  • a typical tip frame element 20 might incorporate other structures 26 for cradling or securing a portion of a blade
  • the individual stabilizing frame elements 50a might be more simply constructed to essentially form the rectangular frame element but not otherwise be configured for supporting a blade since those elements 58 will not be utilized to cradle or support a portion of a blade in one embodiment.
  • blade frame elements similar to element 20 shown in Figure 1 might be used to be a stabilizing frame element as well, but just left empty or unoccupied in use.
  • the unoccupied stacks 50 of frame elements 50a provide additional stabilizing elements to the tip frame element array 60 as shown in Figures 3 and 4 . Because the number of blades is the same, there is not a significant increase in the load. Furthermore, the additional stabilization does not rely upon increased securement or lashings between stack frames of the array 60 and a transport surface such as the deck of a ship.
  • the arrangement of occupied and unoccupied frame elements 50a, 52a, such as tip frame elements as illustrated in Figure 4 and the formed stacked array 60 provides greater stability to the stack by reducing shear loads under lateral accelerations and also by reducing compressive loads under lateral accelerations.
  • the inventive arrangement allows the individual stacks 50, 52 within an array 60 to be stacked higher, such as by adding another level to handle more blades in the array. This provides for greater efficiency and shipment of the blades to an installation site.
  • FIG. 5A a front perspective view of an array 60 is illustrated having essentially three occupied stacks 52 of blade frame elements for containing blades separated by two unoccupied, stabilizing stacks 50 of frame elements.
  • Each of the stacks is stacked four levels or four blades high as illustrated. While various of the illustrative Figures show arrays with frame stacks that go up four levels or four blades, a greater or lesser level of levels might be utilize in the enhanced frame array while realizing the same benefits of embodiments of the invention disclosed herein. Further, the widths of the arrays may vary from those shown in the Figures, such as Figures 5A , 5B .
  • the occupied stacks 50 may include frame elements 52a that are configured for receiving a shaped blade portion.
  • the frame elements 50a of the stabilizing stacks 50 may or may not incorporate structures for securing or cradling a portion of a blade, because they will remain unoccupied.
  • Figure 5B illustrates a further alternative embodiment for increasing stability of an array 60a of frame elements as discussed with respect to stabilizing stacks 50 of frame elements 50a.
  • the unoccupied, stabilizing frame elements 50a are reinforced with diagonal lashing elements 70 as shown in Figure 5B .
  • the diagonal lashing elements 70 span across at least one side or face of the stabilizing frame elements and generally diagonally across the frame elements 50a.
  • the diagonal lashing elements 70 generally span from one opposing corner to the other diagonal opposing corner and from top to bottom on at least one side of the stabilizing frame element. That is, for example, from an upper left-hand corner to a lower right-hand corner or from upper right-hand corner to a lower left-hand corner.
  • the points of attachment for the diagonal lashing elements 70 are in the corners of the stabilizing frame element.
  • similar diagonal lashing elements 70 might be used on the other side or on both sides/faces of the stabilizing frame elements for further stability.
  • Figure 5B shows one face side view of the stacked array, but the other face side might also use similar diagonal lashing elements 70. While Figure 5B shows the diagonal lashing elements going from corner to corner, in other embodiments of the invention, the attachment points for the diagonal lashing elements might be offset from at least one of the specific corners of the rectangular frame element as shown in Figure 5B .
  • Figure 7 illustrates other positioning of the diagonal lashing elements.
  • Suitable diagonal lashing elements might include at least one of cables or chains, or other spanning elements that can be tensioned to provide further stability to the stabilizing frame elements 50a.
  • the diagonal lashing elements might use one or more turnbuckles for tensioning.
  • the combination of the diagonal lashing elements 70 in the stabilizing frame elements along with bridge connector elements 54 between the blade frame stacks and stabilizing stacks increase the overall stiffness of the stack array 60a as illustrated.
  • a stacked array and the stabilizing frame elements 50a within unoccupied, stabilizing stacks 50 of the array might be staggered with respect to another stacked array in order to overlap blades 74 in an interlocking relationship so that opposing stacked arrays of blades 74 may be arranged with the tip of the blades of a first array passing generally unsupported through an unoccupied, stabilizing frame element 50a of a second array.
  • Figure 6 shows a first stacked array/group 71 of stacked blades opposing a second stacked array/group 72 stacked blades with the blades extending in opposite directions.
  • the arrays which might resemble arrays 60 or 60a, may be positioned in a staggered fashion such that unoccupied, stabilizing frame elements 50a of one array are generally opposite and linearly aligned with an occupied frame element 52a of the opposite array.
  • the alignment is generally along an axis defined by the axis of the stacked blades 74.
  • Multiple blades are supported in a particular group 71, 72 by respective stacked arrays 62 of root frame elements 30 and stacked arrays 60, 60a of tip frame elements 50, 52.
  • the base/root of the blade is supported by a root frame element 30 within array 62. Another portion of the blade is supported by a tip frame element 52a of an array 60, 60a of tip frame elements as shown. Then, the unsupported tip 78 of blade 74a extends into an aligned and unoccupied stabilizing frame element 50a of an opposing array 60, 60a of array group 72 that contains and another plurality of blades. In that way, the blade 74 of opposing arrays of 70, 72 are interlocked and can be positioned closer together as the stabilizing stacks 50 do not interfere with the blade tips 78. The staggering allows the tips 78 of the blades to occupy the otherwise unoccupied frame elements 58, without being supported by the frame element.
  • the opposing and interlocking pluralities of blades in respective groups 71, 72 provide significant space savings because the arrays 60, 60a of root frame elements are laterally staggered with respect to each other and the blades may be positioned closer to each other in an interlocking fashion.
  • the arrays 60, 60a may include frame elements is illustrated in Figures 5A and 5B , for example in accordance with the invention.
  • the spanning elements might be arranged to reduce interference with the unsupported blade tips 78.
  • Figure 7 illustrates in front perspective view, an array of 60a of stabilizing frame elements wherein the diagonal lashing elements are positioned diagonally within the unoccupied frame elements but do not extend from corner to opposing corner.
  • Figure 7 also illustrates an embodiment of an array 60a which incorporates multiple sets of diagonal lashing elements incorporated with the stabilizing frame elements.
  • an array 60a frame elements is shown with unsupported blade tips 78 illustrated in phantom in the unoccupied frame elements 58.
  • the unoccupied tip frame elements 58 incorporates diagonal lashing elements shown with numeral 80.
  • These diagonal lashing elements 80 do not extend from diagonal corner to diagonal corner but rather extend diagonally across portions of the unoccupied frame elements 50a. While one end of the diagonal lashing element may originate in a corner 82 of the frame element, and be secured thereto, the other end of the diagonal lashing element 80 might be extend to an opposite side of the frame element and be secured to the side of the frame element, such as to an upright member 22 of the frame element.
  • the diagonal lashing elements while extending diagonally within the frame element are not position so as to extend from one corner to an opposing diagonal corner as illustrated in Figure 5B with diagonal lashing elements 70.
  • the diagonal lashing elements 80 might not be secured at either corner and may simply extend in a diagonal fashion across the frame elements from one side to the other, such as from one upright member 22 to another upright member.
  • the positioning of the diagonal lashing element 80 as shown in the array 60a Figure 7 is selected so as to open an area within the unoccupied frame elements 50a to receive an unsupported tip 78 of the blade without interfering with the diagonal lashing elements 80.
  • the diagonal lashing elements 80 may be positioned proximate to the top of the frame element and the bottom of the frame element 50a as shown in Figure 7 in order to clear and open space to receive the blade tips 78 while still providing the desired increase in stabilization and overall stiffness of the stacked array of framed elements.
  • the array 60a as illustrated in Figure 7 might be implemented as illustrated in Figure 6 where offset and opposing groups of supported blades 74 are placed together such as on the deck of a ship or other vehicle transporting the blades.
  • portions of blades 74 will occupy the frame elements 52a like is shown in Figure 3 .
  • FIG. 7 portions of the blades 74 are shown supported in an occupied column of stacked tip frame elements 52a.
  • the other frame elements 52a will also support a portion of a blade 74 along its length as illustrated in Figure 6 only one column is shown in figure 7 for illustrative purposes.
  • the blades 74 and blade tip 78 will generally be extending in opposite directions.
  • array 90 includes a plurality of stacked root frame elements 92, such as root frame elements 30 as illustrated in Figure 2 .
  • Figure 8 illustrates a perspective front view to show features of the invention incorporated with stacked array 90.
  • bridging connector elements 94 are utilized between individual root frame elements 92 to connect the root frame elements, such as at their corners, to adjacent root frame elements.
  • Such bridging connector elements 94 may take the form of known bridging elements to connect frame elements 92 together (See Figure 4 ).
  • each of the frame elements 92 is configured to contain and support the root end 96 of a wind turbine blade within the support system for multiple stacked blades as illustrated in Figure 3 .
  • the array 90 shown in figure 80 is a 3x3 array of elements, but a greater or lesser number of root frame elements 92 might be utilized such as illustrated in Figures 9A-9C .
  • the individual root frame elements 92 are coupled together with the bridging connector elements 94 so as to present a unitary structure and thus further enhance the stiffness of the array 90 of stacked root frame elements 92.
  • the bridging connector elements are implemented between the blade frame elements 92 but not between the frame elements and a support surface, such as a deck 98 as illustrated in Figure 8 .
  • additional stiffness is achieved between the individual blade frame elements 92 by cross lashing elements 100 that connect various adjacent blade frame elements 92 together.
  • the blade frame elements 92 such as root frame elements, are generally placed at the root face of the blade root or end 96.
  • the frame elements 30, as illustrated in a perspective view in Figure 2 would receive the blade root in one face of the frame element and the blade would extend axially outboard of that face of the frame element.
  • the cross lashing elements might be secured on the axial outboard side of the frame element 30, 92 so as not to interfere with the blade root end 96.
  • a cross lashing element 100 would be positioned to extend between adjacent root frame elements 92 so as to couple at least two adjacent root frame elements together diagonally. As illustrated, the cross-lashing elements 100 are shown to extend diagonally between two diagonally adjacent root frame elements 92. For example, they may extend from one upper diagonal corner of an upper root frame element to the lower diagonal corner of the lower adjacent frame element. Referring to Figure 8 , frame elements 92a and 92b will be referred to for illustration. Those frame elements are connected by the cross-lashing element 100a which extends from an upper left-hand corner 102 of root frame element 92a and extends to the lower right-hand corner 104 of root frame element 92b.
  • cross-lashing elements 100 may be secured appropriately at those corners to span between the root frame elements and provide additional stiffness to the array 90.
  • the cross-lashing elements 100 might be suitably strong metal elements, such as cables or lengths of chain which can be tightly and securely applied between the corners 102, 104 for example to provide stiffness.
  • the cross-lashing elements 100 shown in Fig. 8 are secured between just two root frame elements 92 so as not to be too long and yielding and thereby provide the desired stiffness to the array of stacked frame elements 90. However, a greater number of frame elements might be secured together by the cross-lashing elements in accordance with the invention.
  • root frame elements 92 may be stacked and cross lashed in accordance with the invention for creating stacked arrays 90 that are both wider as well as higher than the array illustrated in Figure 8 . Furthermore, it may not be necessary to provide cross lashing elements 100 between all of the adjacent root frame elements to achieve the desired stiffness of the stacked array of frame elements. For example, referring to Figure 9A , the lower rows 110, 112 and the frame elements 92 therein might be secured together with cross lashing elements 100 as discussed with respect to Figure 8 .
  • the array 90 of Figure 9B might also couple row 114 to the frame elements of adjacent row 112 with cross lashing elements 100.
  • all of the rows 110-116 might be secured with cross lashing elements 100 to frame elements 92 of lower rows as discussed with respect to the Figure 8 .
  • the various improvements provided by embodiments in the invention may be utilize individually or together as noted herein.
  • the arrays 90 as illustrated in Figures 8-9C may be incorporated with tip frame element arrays as discussed with respect to Figures 4-5B and the arrangements of Figures 6 and 7 .
  • the improved stiffness of the stacks provided by the invention will enable the use and reuse of the arrays of stacked blade frame elements for handling larger and heavier blades with stacks at a greater height.
  • Such an invention provides significant economic savings by being able to place more blades in a transport vessel, such as a ship, and eliminates the need to invest in new systems for transporting the larger heavier blades. Therefore, additional rows of stacked blades might be added to the overall system and the size and weight of the blades might be increased and still used with existing stacked frame arrays while eliminating and reducing various of the bending stresses that are experienced during shipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Wind Motors (AREA)

Claims (11)

  1. System zum Transportieren einer Vielzahl von Windkraftanlagenblättern, umfassend:
    eine Vielzahl von Wurzelrahmenelementen (30, 92), die so konfiguriert sind, dass sie einen Wurzelabschnitt eines Windkraftanlagenblatts tragen, wobei die Wurzelrahmenelemente (30, 92) übereinander gestapelt sind, um eine Vielzahl von Blattstapeln zu bilden, die nebeneinander positioniert sind, so dass Windkraftanlagenblätter in einer gestapelten Anordnung (62, 90) getragen werden können;
    mindestens ein Überbrückungselement (54, 94), das sich zwischen einem Wurzelrahmenelement (30, 92) eines Blattstapels und einem Wurzelrahmenelement (30) eines benachbarten Blattstapels erstreckt, um die Blattstapel seitlich nebeneinander zu befestigen;
    mindestens ein Querspannelement (100), das sich diagonal über diagonal benachbarte Wurzelrahmenelemente (30, 92) benachbarter Blattstapel erstreckt und mit den diagonal benachbarten Wurzelrahmenelementen (30, 92) der benachbarten Blattstapel gekoppelt ist, um die Steifigkeit der Blattstapel in der gestapelten Anordnung (62, 90) zu erhöhen, und wobei mindestens ein Wurzelrahmenelement (30, 92) mit mehreren diagonal benachbarten Wurzelrahmenelementen (30, 92) durch Querspannelemente (100) gekoppelt ist, wobei mindestens ein Wurzelrahmenelement (30, 92) mit mehreren diagonal benachbarten Rahmenelementen (30, 92) mehrerer benachbarter Blattstapel durch Querspannelemente (100) gekoppelt ist, wobei das System dadurch gekennzeichnet ist, dass sich das Querspannelement (100) diagonal über die Wurzelrahmenelemente (30, 92) von mindestens zwei benachbarten Blattstapeln erstreckt, um mindestens zwei benachbarte Wurzelrahmenelemente (32, 90) diagonal miteinander zu koppeln, und ein Wurzelrahmenelement (30, 92) einer Anordnung (90) ein Querspannelement (100) einschließt, das sich mit einem oder mehreren anderen Querspannelementen (100) überlappt, die an dem Wurzelrahmenelement (30, 92) befestigt sind.
  2. System nach Anspruch 1, wobei die Querspannelemente (100) geeignet starke Metallelemente sind, wie z. B. Seile oder Kettenstücke.
  3. System nach einem der Ansprüche 1 bis 2, wobei ein Wurzelrahmenelement (30, 92) einer Anordnung (62, 90) mit vier anderen diagonal benachbarten Rahmenelementen (30, 92) in einer Anordnung mittels Querspannelementen (100) gekoppelt ist, die sich nur diagonal über zwei benachbarte Blattstapel erstrecken.
  4. System nach einem der vorstehenden Ansprüche, wobei das System weiter eine Vielzahl von Spitzenrahmenelementen (20, 52) umfasst, die so konfiguriert sind, dass sie einen Abschnitt eines Windkraftanlagenblatts entlang der Länge des Blatts tragen, wobei die Spitzenrahmenelemente (20, 52) übereinander gestapelt sind, um eine Vielzahl von Spitzenrahmenstapeln zu bilden, die nebeneinander positioniert sind, so dass Windkraftanlagenblätter in einer gestapelten Anordnung (60) getragen werden können;
    wobei das System weiter eine Vielzahl von stabilisierenden Rahmenelementen (50a) umfasst, die übereinander gestapelt sind, um mindestens einen Stabilisierungsstapel (50) zu bilden;
    wobei der mindestens eine Stabilisierungsstapel (50) zwischen mindestens zwei Spitzenrahmenstapeln (52) positioniert und seitlich an den Spitzenrahmenstapeln (52) nebeneinander befestigt ist, um die gestapelte Anordnung (60) zu stabilisieren; wobei das System bevorzugt eine Vielzahl von Stabilisierungsstapeln (50) umfasst, wobei jeder Stabilisierungsstapel (50) zwischen mindestens zwei Spitzenrahmenstapeln (52) positioniert und seitlich an den Spitzenrahmenstapeln (52) nebeneinander befestigt ist.
  5. System nach Anspruch 4, wobei mindestens ein Stabilisierungsrahmen (50a) durch mindestens ein diagonales Spannelement (80) gebildet wird, das sich über einen Abschnitt des Stabilisierungsrahmenelements (50a) erstreckt, um die Steifigkeit des Stabilisierungsrahmenelements (50a) zu erhöhen.
  6. Verfahren zum Transportieren einer gestapelten Anordnung (62, 90) von Windkraftanlagenblättern (74) mit Hilfe eines Systems nach einem vorstehenden Anspruch, wobei das Verfahren umfasst:
    Befestigen von Blättern (74) in einer Vielzahl von Stapeln, wobei ein Abschnitt jedes Blattes in einem Blattwurzelrahmenelement (30, 92) getragen wird, wobei die Blattrahmenelemente übereinander gestapelt sind, um eine Vielzahl von Blattstapeln zu bilden;
    Positionieren der Blattstapel nebeneinander, um eine gestapelte Anordnung (62, 90) von Blättern (74) zu bilden;
    Koppeln mindestens eines Wurzelrahmenelements (92) der Anordnung (62, 90) mit einem oder mehreren diagonal benachbarten Rahmenelementen (30, 92) durch Querspannelemente (100).
  7. Verfahren nach Anspruch 6, wobei die Querspannelemente (100) zwischen benachbarten Wurzelrahmenelementen (30, 92) befestigt sind, um die Steifigkeit der gesamten Anordnung (62, 90) zu erhöhen, und nicht an einer Tragfläche wie einem Deck (98) befestigt sind.
  8. Verfahren nach Anspruch 7, wobei die Anordnung (62, 90) an dem Deck (98) durch Befestigungselemente befestigt wird, die zusätzlich zu den mit den Wurzelrahmen (30, 92) verbundenen diagonalen Querspannelementen (100) vorhanden sind.
  9. Verfahren nach einem der Ansprüche 6 bis 8, weiter umfassend:
    Befestigen einer Vielzahl von Stabilisierungsrahmenelementen (50a) übereinander in einem Stapel, um mindestens einen Stabilisierungsstapel (50) zu bilden;
    Positionieren mindestens eines Stabilisierungsstapels (50) zwischen mindestens zwei Spitzenrahmenstapeln (52) der Anordnung (20) und seitliches Befestigen des Stabilisierungsstapels (50) an den Spitzenrahmenstapeln (52) nebeneinander zum Stabilisieren der gestapelten Anordnung (60); und
    seitliche Befestigung der benachbarten Spitzenrahmenstapel (52) und Stabilisierungsstapel (50) nebeneinander.
  10. Verfahren nach Anspruch 9, weiter umfassend:
    Befestigen eines ersten Satzes von Blättern (74) in einer Vielzahl von Stapeln (52), wobei ein Abschnitt jedes Blattes in einem Blattrahmenelement (52a) getragen wird, wobei die Blattrahmenelemente (52a) übereinander gestapelt sind, um eine erste Anordnung (60) der Vielzahl von Blattstapeln (52) zu bilden;
    Befestigen einer Vielzahl von stabilisierenden Rahmenelementen (50a) übereinander in einem Stapel, um mindestens einen Stabilisierungsstapel (50) zu bilden, und Positionieren und Befestigen mindestens eines Stabilisierungsstapels (50) zwischen mindestens zwei Blattstapeln (52) der ersten Anordnung (60) nebeneinander zum Stabilisieren der ersten Anordnung;
    Befestigen eines zweiten Satzes von Blättern (74) in einer Vielzahl von Stapeln, wobei ein Abschnitt jedes Blattes in einem Blattrahmenelement (52a) getragen wird, wobei die Blattrahmenelemente übereinander gestapelt sind, um eine zweite Anordnung (60) der Vielzahl von Blattstapeln zu bilden;
    Ausrichten der zweiten Anordnung, so dass die Spitzen der Blätter (74) des zweiten Satzes von Blättern in stabilisierenden Rahmenelementen (50a) der ersten Anordnung positioniert sind; und weiter umfassend:
    Befestigen einer Vielzahl von stabilisierenden Rahmenelementen (50a) übereinander in Stapeln, um mindestens einen Stabilisierungsstapel (50) zu bilden, und Positionieren und Befestigen mindestens eines Stabilisierungsstapels (50) zwischen mindestens zwei Blattstapeln der zweiten Anordnung nebeneinander zum Stabilisieren des zweiten Anordnung;
    Ausrichten der ersten Anordnung, so dass die Spitzen der Blätter (74) des ersten Satzes von Blättern in den stabilisierenden Rahmenelementen (50a) der zweiten Anordnung positioniert sind.
  11. Verfahren nach einem der Ansprüche 6-10, wobei das Verfahren das Befestigen von Blättern (74) in einer Vielzahl von Stapeln, die eine Stapelhöhe von vier oder mehr Blättern aufweisen, und das Positionieren der Blattstapel (52) nebeneinander, um eine gestapelte Anordnung (60, 62, 90) mit einer Höhe von vier oder mehr Blättern zu bilden, einschließt.
EP19714540.2A 2018-03-23 2019-03-19 Verfahren und vorrichtung zum stabilisieren gestapelter windturbinenschaufeln Active EP3768971B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1804666.4A GB2572211A (en) 2018-03-23 2018-03-23 Method and apparatus for stabilizing stacked wind turbine blades
PCT/DK2019/050095 WO2019179585A1 (en) 2018-03-23 2019-03-19 Method and apparatus for stabilizing stacked wind turbine blades

Publications (2)

Publication Number Publication Date
EP3768971A1 EP3768971A1 (de) 2021-01-27
EP3768971B1 true EP3768971B1 (de) 2022-10-05

Family

ID=62068291

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19714540.2A Active EP3768971B1 (de) 2018-03-23 2019-03-19 Verfahren und vorrichtung zum stabilisieren gestapelter windturbinenschaufeln

Country Status (5)

Country Link
US (1) US20210025370A1 (de)
EP (1) EP3768971B1 (de)
CN (1) CN112055783B (de)
GB (1) GB2572211A (de)
WO (1) WO2019179585A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3885576A1 (de) * 2020-03-27 2021-09-29 Siemens Gamesa Renewable Energy A/S Transportanordnung für windturbinenkomponenten
EP4015817A1 (de) * 2020-12-17 2022-06-22 Nordex Energy Spain, S.A.U. Abstandshalter für windturbinenrotorblätter, transport- und lagersystem für windturbinenrotorblätter und zugehöriges verfahren
EP4060188A1 (de) * 2021-03-16 2022-09-21 Nordex Energy SE & Co. KG Verbinder für einen rotorblatttransportrahmen und system zum transportieren von rotorblättern
CN113799679B (zh) * 2021-10-26 2022-10-11 厦门双瑞风电科技有限公司 一种风电叶片附件智能化转运车

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101648539A (zh) * 2008-10-31 2010-02-17 维斯塔斯风力系统有限公司 用于运输转子叶片的运输系统
CN101850874B (zh) * 2009-04-01 2014-07-16 维斯塔斯风力系统有限公司 用于运输翼梁的运输系统、运输装置及其安装方法
EP2487363A1 (de) * 2011-01-31 2012-08-15 Siemens Aktiengesellschaft Hubsystem und Verfahren zum Heben von Rotorschaufeln von Windturbinen
DK2620389T3 (en) * 2012-01-26 2016-03-07 Siemens Ag Attachment for the blades of a wind turbine and method of transporting blades of a wind turbine thus
EP2669507B1 (de) * 2012-06-01 2015-11-25 Siemens Aktiengesellschaft Transportieren und Stapeln von einander gegenüber und übereinander liegenden gebogenen Schaufeln
EP2669506A1 (de) * 2012-06-01 2013-12-04 Siemens Aktiengesellschaft Handhabung von gebogenen Schaufeln mit versetzten gegenüber liegenden Fußenden während der Stapelung
US10030633B2 (en) * 2014-01-16 2018-07-24 Bnsf Logistics, Llc Systems and methods for transporting wind turbine blades
EP3126670A1 (de) * 2014-03-31 2017-02-08 Vestas Wind Systems A/S Stapelung von windturbinenschaufeln für den meerestransport
WO2016183416A1 (en) * 2015-05-14 2016-11-17 Bnsf Logistics, Llc Systems and methods for transporting wind turbine blades
ES2609308B1 (es) * 2015-10-16 2018-01-23 Vasco Gallega Sociedad De Cartera, S.L. Sistema de sujeción de estructuras huecas apiladas

Also Published As

Publication number Publication date
CN112055783A (zh) 2020-12-08
CN112055783B (zh) 2023-06-02
GB201804666D0 (en) 2018-05-09
GB2572211A (en) 2019-09-25
US20210025370A1 (en) 2021-01-28
WO2019179585A1 (en) 2019-09-26
EP3768971A1 (de) 2021-01-27

Similar Documents

Publication Publication Date Title
EP3768971B1 (de) Verfahren und vorrichtung zum stabilisieren gestapelter windturbinenschaufeln
EP2133558B1 (de) System und Verfahren zum Transport von Windturbinenturmteilen auf einem Transportschiff
EP1836389B1 (de) Verpackungsvorrichtungen zum transport von windrotorschaufeln
US10030633B2 (en) Systems and methods for transporting wind turbine blades
US10323623B2 (en) System and method for transporting or storing wind turbine tower sections
EP3026258B1 (de) Transport- und speichersystem für windturbinenschaufeln
US9494140B2 (en) Frame support assembly for transporting wind turbine blades
EP1849719B1 (de) Transporteinheit für ein Rotorblatt einer Windenergieanlage
US10066606B2 (en) Stacking wind turbine blades for sea transport
US20050019127A1 (en) Contrail shipping platform
US20190023356A1 (en) Container Lashing Bridge
EP4060188A1 (de) Verbinder für einen rotorblatttransportrahmen und system zum transportieren von rotorblättern
US10731634B2 (en) Transportation and storage system for a wind turbine blade
EP4202214A1 (de) System zur handhabung eines windturbinenturmabschnitts und zugehöriges verfahren
WO2016183416A1 (en) Systems and methods for transporting wind turbine blades
CN217682099U (zh) 一种风力发电机支架的发运装置
WO2020001721A1 (en) Preassembly system and method for optimal positioning of tower structures
CN217778899U (zh) 一种船舶机舱中间平台
CN113148397B (zh) 一种海上风电叶片运输和储存支架系统
EP4015817A1 (de) Abstandshalter für windturbinenrotorblätter, transport- und lagersystem für windturbinenrotorblätter und zugehöriges verfahren
WO2024067931A1 (en) Transporting wind turbine components
JPH0738073Y2 (ja) 貸物搭載用架台付き船舶

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200922

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20220811

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1522895

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019020273

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221005

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1522895

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230206

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230105

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230205

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230106

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230521

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019020273

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

26N No opposition filed

Effective date: 20230706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230319

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230319

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240328

Year of fee payment: 6

Ref country code: GB

Payment date: 20240319

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240327

Year of fee payment: 6