EP3757457A1 - Dispositif de brûleur - Google Patents
Dispositif de brûleur Download PDFInfo
- Publication number
- EP3757457A1 EP3757457A1 EP19756559.1A EP19756559A EP3757457A1 EP 3757457 A1 EP3757457 A1 EP 3757457A1 EP 19756559 A EP19756559 A EP 19756559A EP 3757457 A1 EP3757457 A1 EP 3757457A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fuel gas
- burner
- burner head
- premixture
- gas supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002737 fuel gas Substances 0.000 claims abstract description 51
- 238000002485 combustion reaction Methods 0.000 claims abstract description 34
- 239000007789 gas Substances 0.000 claims abstract description 19
- 239000002245 particle Substances 0.000 claims abstract description 19
- 239000002184 metal Substances 0.000 claims abstract description 18
- 229910052751 metal Inorganic materials 0.000 claims abstract description 18
- 230000002093 peripheral effect Effects 0.000 claims description 34
- 238000011144 upstream manufacturing Methods 0.000 claims description 7
- 239000000446 fuel Substances 0.000 description 83
- 239000002923 metal particle Substances 0.000 description 12
- 238000002347 injection Methods 0.000 description 11
- 239000007924 injection Substances 0.000 description 11
- 239000011148 porous material Substances 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 230000001737 promoting effect Effects 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/02—Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/12—Radiant burners
- F23D14/16—Radiant burners using permeable blocks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/28—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid in association with a gaseous fuel source, e.g. acetylene generator, or a container for liquefied gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/46—Details, e.g. noise reduction means
- F23D14/66—Preheating the combustion air or gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2203/00—Gaseous fuel burners
- F23D2203/005—Radiant burner heads
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2203/00—Gaseous fuel burners
- F23D2203/10—Flame diffusing means
- F23D2203/105—Porous plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2203/00—Gaseous fuel burners
- F23D2203/10—Flame diffusing means
- F23D2203/106—Assemblies of different layers
Definitions
- the present invention relates to a burner device for mixing and burning, for example, a fuel gas such as hydrogen gas and another type of gas.
- Patent Document 1 U.S. Patent Application Publication No. 2012/0258409
- fuel having high combustion temperature is combusted
- NOx is likely to be generated.
- a fuel having high combustion speed is combusted, a backfire phenomenon is more likely to occur in which flame generated in a combustion chamber moves back to a burner side.
- fuels having high combustion temperature and high combustion speed may include, e.g., hydrogen and gases with high concentrations of hydrogen.
- An object of the present invention is to provide a burner device capable of suppressing generation of NOx as well as of preventing backfire even where a fuel having high combustion temperature and high combustion speed is used.
- the present invention provides a burner device for supplying a premixture of a fuel gas and a combustion-supporting gas into a combustion region, the burner device including:
- the inner layer having a large pore size because of being made of sintered metal particles having a large particle size rectifies the premixture, causing pressure loss to occur so as to promote premixing.
- the flow speed of the premixture increases such that the premixture is injected into the combustion region at high speed.
- At least a part of a fuel gas supply conduit that defines a fuel gas supply path configured to supply the fuel gas to the premixing path may be disposed in the burner head. According to this configuration, the fuel gas flowing through the fuel gas supply conduit can cool the burner head. This makes it possible to prevent the burner head from burning even when backfire occurs or when flame is formed near the burner.
- the burner head may form a circumferential wall of the burner device having a cylindrical shape
- the fuel gas supply conduit may include a plurality of outer peripheral fuel gas supply pipes disposed in the burner head
- the plurality of outer peripheral fuel gas supply pipes may extend parallel to an axial direction of the burner device and be arranged at equal intervals in a circumferential direction of the burner head.
- each of the outer peripheral fuel gas supply pipes may have a fuel gas inlet on an upstream side of the burner head in a flow direction of the premixture
- the fuel gas supply conduit may further include a central fuel gas supply pipe provided on an axis of the burner device, the central fuel gas supply pipe communicating with the plurality of outer peripheral fuel gas supply pipes at a downstream end portion of the burner head in the flow direction of the premixture and having a fuel gas outlet to the premixing path on the upstream side of the burner head.
- Fig. 1 shows a burner device according to one embodiment of the present invention.
- the burner device 1 shown in Fig. 1 is a device for supplying a premixture M of a fuel gas and a combustion-supporting gas into a combustion region R.
- the burner device 1 may be used as a heating device for a power apparatus, such as boilers and gas turbines.
- the fuel gas may be, for example, a fuel that has a high combustion temperature, a high combustion speed and a wide range of combustible concentrations.
- a hydrogen-containing gas such as a hydrogen gas is used as the fuel gas.
- an air A is used as the combustion-supporting gas.
- a gas in which the oxygen concentration in the air is adjusted or an exhaust gas may be used as the combustion-supporting gas.
- the fuel gas is represented as "fuel F" and the combustion-supporting gas is represented as "air A".
- the burner device 1 as a whole has a substantially cylindrical shape.
- the burner device 1 has an inner space defining a premixing path 3 in which the fuel F and the air A are premixed.
- the burner device 1 includes: an injection part 1a (right-side part in Fig. 1 ) that faces the combustion region R and configured to inject the premixture M into the combustion region R; and a base part 1b (left-side part in Fig. 1 ) that is configured to introduce the fuel F and the air A into the burner device 1.
- the injection part 1a and the base part 1b are arranged in an axial direction C of the burner device 1.
- a flange 5 is provided at an interface between the injection part 1a and the base part 1b of the burner device 1.
- the flange 5 serves as a connecting part to a heating apparatus in which the burner device 1 is to be used and separates the combustion region R from an introduction space of the fuel F and/or the air A.
- the term "rear side” or the like refers to the side of the combustion region R in the axial direction of the burner device 1 (i.e., the side of the injection part 1a), and the term “front side” or the like refers to the side opposite from the combustion region (i.e., the side of the base part 1b).
- the front side corresponds to an upstream side in a flow direction of the premixture M in the premixing path 3
- the rear side corresponds to a downstream side.
- a burner head 7 for injecting the premixture M into the combustion region R forms a circumferential wall of the injection part 1a of the burner device 1.
- the premixture M in the premixing path 3 passes through the burner head 7 in a radial direction and is injected into the combustion region R.
- An annular fuel introduction part 9 is provided at a rear end portion of the base part 1b, that is, a portion adjacent to the injection part 1a with the flange 5 interposed therebetween.
- Outer peripheral fuel supply paths 11 are defined so as to extend parallel to the axis C of the burner device 1 from an inside of the fuel introduction part 9 to an inside of the burner head 7.
- Each of the outer peripheral fuel supply paths 11 is defined by an outer peripheral fuel supply pipe 13.
- a plurality of outer peripheral fuel supply pipes 13 are arranged in a circumferential direction of the burner device 1.
- the fuel introduction part 9 has a circumferential wall 9a formed with a plurality of fuel introduction openings 15 that extend in the radial direction and allows an outer space of the fuel introduction part 9 and the respective outer peripheral fuel supply paths 11 to communicate with each other.
- Each of the fuel introduction openings 15 serves as a fuel inlet for each outer peripheral fuel supply path 11, and the fuel F from outside of the burner device 1 is introduced into the respective outer peripheral fuel supply paths 11 via the respective fuel introduction openings 15.
- the burner device 1 has one end portion that is a rear end portion of the injection part 1a and is closed in a bottomed manner.
- the rear end portion of the injection part 1a has an inner space which defines a common fuel header chamber 17 communicating with the respective outer peripheral fuel supply paths 11.
- the burner device 1 has a central part in which a common central fuel supply pipe 21 is disposed such that the central fuel supply pipe 21 communicates with the fuel header chamber 17 and defines a central fuel supply path 19 extending along the axis C.
- the central fuel supply pipe 21 extends from the fuel header chamber 17 to an inner space of the base part 1b.
- the fuel F is fed from a fuel feed part 23 located at a downstream end portion (front end portion) of the central fuel supply pipe 21 to the premixing path 3.
- the outer peripheral fuel supply paths 11, the fuel header chamber 17 and the central fuel supply path 19 form the fuel supply paths 25 to the premixing path 3.
- the burner device 1 has the other end that is a front end portion of the base part 1b and is formed in a bottomless manner.
- the front end portion of the base part 1b has an opening that serves as an air introduction port 27.
- the air A introduced from the air introduction port 27 merges into the fuel F at the fuel feed part 23 of the central fuel supply pipe 21.
- a rectifying mechanism 29 configured to rectify the flow of the air A to form a uniform flow along the axial direction C is provided at the front end portion of the base part 1b.
- the rectifying mechanism 29 is provided at an opening part of the air introduction port 27 and includes dividing vanes 31 that equally divide the inner space of the opening part in the circumferential direction and a plurality (two in this example) of annular porous rectifying plates 33 that are disposed downstream of the dividing vanes 31.
- These components constituting the rectifying mechanism 29 are disposed on an outer periphery of a central support shaft 35 extending forward from the central fuel supply pipe 21.
- the aspect of the rectifying mechanism 29, however, is not limited to this example. For instance, there may be only one of the dividing vanes 31 and the porous rectifying plates 33 as the rectifying mechanism 33. Also, the rectifying mechanism 29 may be omitted.
- the fuel feed part 23 of the central fuel supply pipe 21 is provided as a pipe group 41 including multiple (8 in this example) spoke-like pipes 39 that radially protrude from the central fuel supply pipe 21.
- each of the spoke-like pipes 39 has fuel feed holes 43 that serve as outlets of the fuel F into the premixing path 3 on the rear side thereof.
- each of the spoke-like pipes 39 has a plurality of fuel feed holes 43 aligned at equal intervals along a longitudinal direction of the spoke-like pipe 39.
- the fuel feed part 23 of this example includes two pipe groups 41 of the spoke-like pipes 39. As schematically shown in Fig. 3 , the two pipe groups are arranged such that each spoke pipe 39A of the first pipe group 41A, which is illustrated with solid lines, is located at a circumferential position centered between circumferential positions of the adjacent spoke pipes 39B, 39B of the second pipe group 41B, which is illustrated with dashed lines.
- a premixing promoting member 45 configured to promote premixing of the fuel F and the air A is provided on the downstream side (rear side) of the fuel feed part 23 in the premixing path 3. More specifically, in this example, a plurality of (3 in this example) annular porous premixing plates 45 are provided as the premixing promoting member 45. The respective porous premixing plates 45 are disposed on the outer periphery of the central fuel supply pipe 21. The premixing promoting member 45 may be omitted.
- the structure for supplying gas to the premixing path 3 and the structure for promoting premixing in the premixing path 3 are not limited to the aspects as described above.
- the burner head 7 is formed as a porous member made of a sintered metal. Fine pores formed between sintered metal particles provide flow paths for the premixture M from the premixing path 3 to the combustion region R.
- the burner head 7 includes an inner layer 51 (i.e., layer shown by cross-hatching with wider intervals in Fig. 4 ) that faces the premixing path 3 and an outer layer 53 (i.e., layer shown by cross-hatching with narrower intervals in Fig. 4 ) that faces the combustion region R.
- the outer layer 53 and the inner layer 51 differ in particle sizes of the sintered metal particle forming the respective layers. That is, in this embodiment, the sintered metal particles forming the outer layer 53 have a smaller particle size than that of the sintered metal particles forming the inner layer 51.
- the inner layer 51 has a large pore size, i.e., a large flow path size because it is made of sintered metal particles having a large particle size. Such a flow path in the inner layer 51 makes it possible to rectify the premixture M and promote the premixing.
- the outer layer 53 has a smaller pore size, i.e., a smaller flow path size than that of the inner layer 51 because it is made of sintered metal particles having a smaller particle size than that of the inner layer 51.
- the flow speed of the premixture M increases such that the premixture M is injected into the combustion region R at high speed.
- a metal material to be used as a raw material for the sintered metal for forming the burner head 7 may include, for example, stainless steel, bronze, and nickel.
- the sintered metal particles forming inner layer 51 may, for example, have a particle size (diameter) from 500 to 1500 ⁇ m.
- the sintered metal particle forming the outer layer 53 may, for example, have a particle size from 50 to 400 ⁇ m.
- the outer peripheral fuel supply pipes (fuel gas supply conduit) 13 that defines the outer peripheral fuel supply paths 11 are disposed in the burner head 7.
- a plurality of the outer peripheral fuel supply pipes 13 are arranged at equal intervals in the circumferential direction of the burner head 7.
- the outer layer 53 and the inner layer 51 have the substantially the same thickness (radial width).
- the outer peripheral fuel supply pipes 13 are disposed at an interface part between the outer layer 53 and the inner layer 51.
- the fuel supply pipes such as the outer peripheral fuel supply pipes 13 are disposed in the burner head 7 so that the burner head 7 is cooled by the fuel F flowing in the fuel supply pipes. This cooling makes it possible to prevent the burner head 7 from burning even when a backfire phenomenon occurs or when flame is formed near the burner.
- outer peripheral fuel supply pipes 13 are arranged at equal intervals in the circumferential direction of the burner head 7 such that the presence of the outer peripheral fuel supply pipes 13 between high-speed regions HR of the premixture M where no outer peripheral fuel supply pipes 13 are located in an injection surface of the premixture M of the burner head 7 allows flame holding regions FR where the premixture M flows at low speed to be formed in a regular manner.
- the presence of the flame holding regions FR restricts circumferential movement of large flame in the high-speed regions HR so that stable combustion can be achieved in the entire burner head 7.
- each of the outer peripheral fuel gas supply pipes 13 has a fuel inlet in the base part 1b located on the upstream side (front side) of the burner head 7 in the flow direction of the premixture M, and the central fuel supply pipe 21 communicates with the plurality of outer peripheral fuel supply pipes 13 at a downstream end portion (rear end portion) of the burner head 7 in the flow direction of the premixture M and has a fuel outlet to the premixing path 3 on the upstream side of the burner head.
- the burner head 7 may include one or more intermediate layers made of a sintered metal between the outer layer 53 and the inner layer 51.
- the sintered metal forming the intermediate layer(s) may have a particle size that is, for example, larger than that of the sintered metal of the outer layer 53 and smaller than that of the sintered metal of the inner layer.
- the shape of the burner head 7 is not limited to the cylindrical shape as described above.
- the burner head 7 may have, for example, a flat plate shape.
- a burner head 7 having a flat plate shape and including a premixing injection surface that is perpendicular to the axis C of the burner device 1 is attached at the downstream end portion of the premixing path 3 of the burner device 1.
- fuel supply pipes may also be provided in the burner head 7.
- the inner layer 51 having a large pore size because of being made of sintered metal particles having a large particle size rectifies the premixture M, and thereby premixing is promoted. Further, as the premixture M passes through the outer layer 53 having a small pore size because of being made of sintered metal particles having a small particle size, the flow speed of the premixture M increases such that the premixture M is injected into the combustion region R at high speed. Thus, it is possible to suppress generation of NOx and to prevent backfire.
- burner device 1 may be applied not only to boiler devices and gas turbines as described above, but also to other types of power apparatuses.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Gas Burners (AREA)
- Feeding And Controlling Fuel (AREA)
- Regulation And Control Of Combustion (AREA)
- Meat, Egg Or Seafood Products (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018028856A JP7014632B2 (ja) | 2018-02-21 | 2018-02-21 | バーナ装置 |
PCT/JP2019/003694 WO2019163488A1 (fr) | 2018-02-21 | 2019-02-01 | Dispositif de brûleur |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3757457A1 true EP3757457A1 (fr) | 2020-12-30 |
EP3757457A4 EP3757457A4 (fr) | 2021-12-01 |
EP3757457B1 EP3757457B1 (fr) | 2024-04-24 |
Family
ID=67687069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19756559.1A Active EP3757457B1 (fr) | 2018-02-21 | 2019-02-01 | Dispositif de brûleur |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3757457B1 (fr) |
JP (1) | JP7014632B2 (fr) |
KR (1) | KR102441453B1 (fr) |
CN (1) | CN111868441B (fr) |
WO (1) | WO2019163488A1 (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7425672B2 (ja) * | 2020-05-26 | 2024-01-31 | 株式会社アイホー | 加熱装置 |
CN114234232B (zh) * | 2021-12-24 | 2023-05-02 | 中国科学院工程热物理研究所 | 微预混直喷燃烧室 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2405785A (en) * | 1944-03-14 | 1946-08-13 | Daniel And Florence Guggenheim | Combustion chamber |
US2657745A (en) * | 1948-02-24 | 1953-11-03 | Edsell T Bleecker | Process of and apparatus for combustion of liquid fuel, vaporization of liquids, and mixing of gaseous fluids |
US3947233A (en) * | 1971-04-26 | 1976-03-30 | C. A. Sundberg Ab | Free-burning equipment |
JPS5211433A (en) * | 1975-07-18 | 1977-01-28 | Hitachi Ltd | Vaporizing burner for liquid fuel |
JPS61130719A (ja) * | 1984-11-30 | 1986-06-18 | Toshiba Corp | セラミツクバ−ナ |
FR2589555B1 (fr) * | 1985-11-06 | 1989-11-10 | Gaz De France | Bruleur a gaz a air souffle |
JP2751425B2 (ja) * | 1989-06-27 | 1998-05-18 | 日本鋼管株式会社 | バーナ板 |
DE4129711C2 (de) * | 1991-09-06 | 1993-09-30 | Buderus Heiztechnik Gmbh | Gasbrenner mit einem Brennelement aus einem porösen Körper |
FR2699963B1 (fr) * | 1992-12-24 | 1995-03-17 | Europ Propulsion | Générateur de gaz à combustion rapprochée. |
JPH06241419A (ja) * | 1993-02-17 | 1994-08-30 | Toho Gas Co Ltd | 環状火炎式のラジアントチューブバーナ |
US5685139A (en) * | 1996-03-29 | 1997-11-11 | General Electric Company | Diffusion-premix nozzle for a gas turbine combustor and related method |
JPH11125403A (ja) * | 1997-10-23 | 1999-05-11 | Matsushita Electric Ind Co Ltd | 燃焼器 |
US6183241B1 (en) * | 1999-02-10 | 2001-02-06 | Midwest Research Institute | Uniform-burning matrix burner |
KR100669221B1 (ko) * | 2003-03-10 | 2007-01-16 | 가부시키가이샤 리테크 | 가스연소 장치 |
JP4167608B2 (ja) * | 2004-03-02 | 2008-10-15 | 株式会社タクマ | 予混合ガス燃焼装置 |
JP2009186023A (ja) * | 2008-02-01 | 2009-08-20 | Ihi Corp | 燃焼加熱器 |
US8312722B2 (en) * | 2008-10-23 | 2012-11-20 | General Electric Company | Flame holding tolerant fuel and air premixer for a gas turbine combustor |
US8607569B2 (en) * | 2009-07-01 | 2013-12-17 | General Electric Company | Methods and systems to thermally protect fuel nozzles in combustion systems |
CN101806457A (zh) * | 2010-04-23 | 2010-08-18 | 佛山市顺德区辉洋环保科技有限公司 | 完全预混金属纤维表面燃烧红外辐射式燃气燃烧器 |
US20120258409A1 (en) | 2011-04-11 | 2012-10-11 | Mansour Adel B | Distributed injection with fuel flexible micro-mixing injectors |
JP5687163B2 (ja) * | 2011-09-08 | 2015-03-18 | 東邦瓦斯株式会社 | ラジアントチューブバーナ |
US9303874B2 (en) * | 2012-03-19 | 2016-04-05 | General Electric Company | Systems and methods for preventing flashback in a combustor assembly |
CN103453525B (zh) * | 2013-09-16 | 2015-12-23 | 广西有色再生金属有限公司 | 富氧燃烧器的使用方法 |
BR112017014146B1 (pt) * | 2014-12-30 | 2021-12-21 | Instituto Tecnológico Metropolitano | Sistema de combustão em leito poroso e de combustão turbulenta |
-
2018
- 2018-02-21 JP JP2018028856A patent/JP7014632B2/ja active Active
-
2019
- 2019-02-01 WO PCT/JP2019/003694 patent/WO2019163488A1/fr unknown
- 2019-02-01 EP EP19756559.1A patent/EP3757457B1/fr active Active
- 2019-02-01 CN CN201980013788.0A patent/CN111868441B/zh active Active
- 2019-02-01 KR KR1020207027107A patent/KR102441453B1/ko active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
EP3757457B1 (fr) | 2024-04-24 |
WO2019163488A1 (fr) | 2019-08-29 |
EP3757457A4 (fr) | 2021-12-01 |
KR102441453B1 (ko) | 2022-09-06 |
JP7014632B2 (ja) | 2022-02-01 |
JP2019143895A (ja) | 2019-08-29 |
CN111868441B (zh) | 2023-04-11 |
CN111868441A (zh) | 2020-10-30 |
KR20200119878A (ko) | 2020-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11002190B2 (en) | Segmented annular combustion system | |
JP4872992B2 (ja) | 燃焼器,燃焼器の燃料供給方法及び燃焼器の改造方法 | |
US8113000B2 (en) | Flashback resistant pre-mixer assembly | |
JP5078237B2 (ja) | 低エミッションガスタービン発電のための方法及び装置 | |
EP3282191B1 (fr) | Buse de prémélange pilote et un ensemble de buse de combustible | |
EP2065645B1 (fr) | Brûleur et chambre de combustion de turbine à gaz | |
CN100554785C (zh) | 用于对燃气轮机中的空气和气体进行混合的燃烧管及方法 | |
EP1826485B1 (fr) | Brûleur et procédé de combustion avec le brûleur | |
EP2754963A1 (fr) | Chambre de combustion de turbine à gaz | |
CN101769533A (zh) | 用于在燃气涡轮发动机内促进冷却扩散末端的方法和设备 | |
CN103930723A (zh) | 在燃气涡轮机上使用的、具有预混合的燃料和空气的切向环形燃烧器 | |
EP3719396A1 (fr) | Dispositif brûleur et dispositif chaudière à écoulement transversal et à tubes multiples | |
EP3757457B1 (fr) | Dispositif de brûleur | |
US20180340689A1 (en) | Low Profile Axially Staged Fuel Injector | |
JP2016023916A (ja) | ガスタービン燃焼器 | |
WO2021215023A1 (fr) | Ensemble brûleur, chambre de combustion de turbine à gaz, et turbine à gaz | |
JP5718796B2 (ja) | シール部材を備えたガスタービン燃焼器 | |
US11573007B2 (en) | Burner device | |
JP2016084961A (ja) | 燃焼器、ガスタービン | |
JP2011058758A (ja) | ガスタービン燃焼器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200918 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20211102 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F23D 14/16 20060101AFI20211026BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20231211 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602019050910 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20240424 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1679972 Country of ref document: AT Kind code of ref document: T Effective date: 20240424 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240424 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240424 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240424 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240424 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240424 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240826 |