EP3752715B1 - Lobe pump - Google Patents

Lobe pump Download PDF

Info

Publication number
EP3752715B1
EP3752715B1 EP19705493.5A EP19705493A EP3752715B1 EP 3752715 B1 EP3752715 B1 EP 3752715B1 EP 19705493 A EP19705493 A EP 19705493A EP 3752715 B1 EP3752715 B1 EP 3752715B1
Authority
EP
European Patent Office
Prior art keywords
lobe
sealing element
radius
rotary piston
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19705493.5A
Other languages
German (de)
French (fr)
Other versions
EP3752715A1 (en
Inventor
Hans-Heinrich Westendarp
Folker Aljets
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BMA Braunschweigische Maschinenbauanstalt AG
Original Assignee
BMA Braunschweigische Maschinenbauanstalt AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BMA Braunschweigische Maschinenbauanstalt AG filed Critical BMA Braunschweigische Maschinenbauanstalt AG
Publication of EP3752715A1 publication Critical patent/EP3752715A1/en
Application granted granted Critical
Publication of EP3752715B1 publication Critical patent/EP3752715B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/32Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in groups F04C2/02 and relative reciprocation between co-operating members
    • F04C2/332Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in groups F04C2/02 and relative reciprocation between co-operating members with vanes hinged to the outer member and reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • F04C15/0007Radial sealings for working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/40Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C2/08 or F04C2/22 and having a hinged member
    • F04C2/46Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C2/08 or F04C2/22 and having a hinged member with vanes hinged to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/20Geometry of the rotor

Definitions

  • the invention relates to a rotary lobe pump with a housing which has an inlet and an outlet for the medium to be pumped, at least one rotary lobe which is drivably and rotatably mounted in the housing and which has at least two transport vanes provided with a contour which convey the medium to be pumped Transport medium from the inlet to the outlet, and one sealing element per rotary piston, which is fastened to a sealing body that is in particular pivotably mounted and runs on the contour of the rotary piston during the rotation of the at least one rotary piston and an extension movement from a minimum diameter of the at least one rotary piston a maximum diameter of the at least one rotary lobe and a retraction movement from the maximum diameter of the at least one rotary lobe to the minimum diameter of the at least one rotary lobe.
  • Such a rotary piston pump is particularly suitable and intended for pumping highly viscous media, such as magma in sugar production.
  • Magma is a mixture of granulated sugar and syrup and is created during the cooking process as an intermediate product during sugar production.
  • such a rotary piston pump although it is particularly suitable for pumping crystal suspensions, is not limited to pumping magma.
  • a rotary piston pump with a folding symmetrical rotary piston is known, on the outer contour of which a sealing element runs.
  • the rotary piston has an essentially elliptical contour.
  • the sealing element is attached to a pivoting lever.
  • a rotary lobe pump having a housing, an inlet located below within the housing and an outlet located above it. Between the inlet and outlet is a spring-loaded Arranged slide, over which a sealing element is pressed against the rotary piston.
  • the rotary piston is designed as a rounded rhombus that is folding-symmetrical with respect to the short axis and the longitudinal axis.
  • DE-N 7251 relates to a rotary lobe pump for conveying viscous substances, in which a positively controlled abutment slide follows the outline of the rotary lobe.
  • the positive control is achieved via control cams, which cause a movement of a cylindrical sealing part following the contour of the transport piston.
  • the rotary piston has a cross-sectional shape curved in an S-shape.
  • the DE 125 174 C describes a rotary piston pump having two vanes.
  • a sealing element as a vibrating wall slides along the outside of the rotary piston.
  • the travel along the pressure side, on which the sealing element performs the extension movement, is longer than the travel on the suction side, along which the retraction movement is performed.
  • the NL 25 897 C describes a rotary lobe pump that is similar to this, in which the transport vanes of the rotary lobe have different contours on the pressure side and the suction side, with the extension movement performed by the sealing element on the pressure side being longer than the retraction movement performed on the opposite suction side.
  • the FR 626 596 A relates to a rotary lobe pump with a sealing element sliding along the outside of the rotary lobe, the rotary lobe having a different contour on the retraction and extension sides.
  • the DE 960 411 C describes a rotary piston pump which has two transport vanes and in which a sealing element as a vibrating wall rolls along the outside of the rotary piston.
  • the travel path is along the pressure side on which the sealing element makes the extension movement carried out, but shorter than the travel on the suction side, along which the retraction movement is carried out.
  • the object of the present invention is to provide a rotary lobe pump which has an increased pumping volume per revolution, so that the rotary lobe pump can be built smaller and cheaper with the same pumping volume.
  • the rotary lobe pump with a housing, which has an inlet and an outlet for the medium to be pumped, with at least one rotary lobe, which is drivably and rotatably mounted in the housing and which has at least two transport vanes provided with a contour, which transport the medium to be pumped from transport the inlet to the outlet, and with a sealing element per rotary lobe, which is mounted or formed on a sealing body and runs on the contour of the rotary lobe during the rotation of the rotary lobe and an extension movement from a minimum diameter of the rotary lobe to a maximum diameter of the rotary lobe and performs a retraction movement from the maximum diameter of the rotary piston to the minimum diameter of the rotary piston on different sides of the transport wing, provides that the distance that the sealing element executes on the retraction side of the transport wing during the retraction movement is shorter or smaller than the distance on the extension side during the extension movement.
  • the extension movement begins when the sealing element moves away from a minimum diameter of the rotary lobe from the axis of rotation of the rotary lobe, the retraction movement begins when the sealing element moves from the maximum diameter of the rotary lobe during rotation of the rotary lobe towards the minimum diameter of the rotary lobe.
  • the end of the retraction movement is reached when the contact point or the contact line between the contour of the rotary piston and the sealing element has reached the minimum diameter of the rotary piston, the extension movement ends when the maximum rotary piston radius of the contact point or the contact line has been reached.
  • the contour of the rotary piston is designed so that over a certain angular range of Diameter remains constant, in particular occupies the minimum diameter and/or maximum diameter of the rotary lobe, so that the total angle over which an inward movement and an outward movement is carried out is less than 180° if the rotary lobe is designed as a rotary lobe with two transport vanes.
  • the retraction speed of the sealing element as well as the extension speed is determined by the contour of the respective transport vane of the rotary piston at a constant speed.
  • the sealing element If it is possible for the sealing element to move very quickly in the direction of a minimum rotary piston radius or in the direction of the axis of rotation of the rotary piston, there is a high run-in speed, which is achieved by a steep drop in the contour over the angle of rotation. Conversely, the sealing element is slowly shifted radially outwards on the contour of the rotary piston if there is only a slight incline over a rotation angle. In particular when pumping highly viscous, viscous media, it is problematic to press the blocking element, which is mounted or formed on a sealing body, within the medium to the outside, ie from the minimum diameter of the rotary piston to the maximum diameter of the rotary piston.
  • the sealing element and the sealing body must also be moved through the highly viscous medium during the retraction movement. As a rule, these movements have to be applied against the resistance of the sealing body that is placed in the medium to be transported.
  • the transport wing itself, on which the sealing body with the sealing element slides along, cannot be made as thin as you like, since on the one hand strength conditions must be met and on the other hand acceleration limits must be observed, for example to prevent the sealing element from lifting off the surface of the rotary piston. It has proven to be advantageous to allow the sealing element to move out comparatively slowly. In the area of the maximum rotary lobe radius, a rounding is generally formed in order to avoid an abrupt reversal of movement of the sealing element running on the rotating rotary lobe.
  • the transport wing is narrower and steeper on the entry side than on the exit side.
  • the chamber volume formed by the housing and the contour of the transport wing is formed by the reduced volume of the transport wing on the retract side in relation to the exit side is increased in comparison to a folding-symmetrical contour on both sides of the connecting line of the respective maximum rotary piston radius through the axis of rotation and at the same time avoiding excessive loads on the material due to excessive acceleration during the extension movement.
  • the lower extension speed compared to the retraction speed takes place on an embodiment of the rotary piston with two transport vanes over an angle of rotation of at least greater than 90° up to an angle of rotation of up to 160°, in particular in a range of 110° to 130°, which means that the Sealing element and thereby an increase in the pump chamber can be achieved.
  • the contour on the extension side of the rotary piston has a curvature without turning points in the gradient of the contour, while the contour on the entry side preferably has at least one turning point, which defines that on the entry side there is a maximum reduction in the volume of the transport leaf and after a Phase with a very high entry speed, i.e. a very steep contour of the transport wing on the entry side, this is flattened to provide a smooth transition until the minimum diameter of the rotary piston is reached.
  • a variant of the invention provides that the minimum rotary lobe radius on the entry side of the sealing element is reached at a rotary angle between 30° and 90°, measured from the maximum rotary lobe radius. This ensures that the minimum rotary lobe radius is reached very quickly.
  • the extension movement can begin between 90° and 150° before the maximum rotary piston radius is reached, with the contour on the extension side preferably having a curvature without a turning point or points of discontinuity in order to achieve a uniform, comparatively slow extension movement of the sealing element and thus of the sealing body. Due to the fact that the discharge side is more solid than the entry side and has more material, it is still possible to apply the high forces and moments that have to be applied to transport the viscous product through the pump.
  • the maximum rotary lobe radius can be reached by the sealing element after leaving the minimum rotary lobe radius on the extension side at a rotary angle of between 90° and 150°, so that in a corresponding configuration on the retraction side the volume of the transport vane is reduced when the contour at the minimum rotary lobe radius is reached comparatively early on the entry side must be less than on the exit side.
  • the rotary piston particularly preferably has two transport wings, the contours of which are point-symmetrical to the axis of rotation of the rotary piston.
  • a large chamber volume is provided by the two-wing design.
  • the sealing body is pivotably mounted on a swivel arm inside the housing.
  • This makes it possible to achieve robust mounting with a comparatively compact design without complex spring and/or bearing mechanisms.
  • the position of the bearing point of the pivotable bearing in the housing makes it possible to utilize the pressure present within the pump housing, in particular the pressure difference between the inlet and the outlet, by exerting a force on the sealing element which, with a higher pressure difference, presses the sealing element more strongly pressed against the piston contour, thus reducing losses and increasing operational reliability.
  • the width of the sealing element is also a factor that, together with the pressure difference, influences the contact pressure on the contour of the transport wing.
  • the distance between the bearing point of the pivoted pivot arm and the point of contact of the sealing element on the transport vane is preferably large compared to the rotary piston radius.
  • An approximately linear movement of the sealing element in the extension or retraction direction is desirable.
  • This is achieved in that the swivel arm is chosen to be as long as possible.
  • the distance between the bearing point of the swivel arm and the contact point of the sealing element with the transport vane is preferably 1.5 to 2 times the radius of the rotary piston.
  • the length of the swivel arm is in competition with the most compact possible housing dimensions. The longer the Swivel arm is formed and must be stored in the housing, the larger the housing must be designed.
  • a radius of 1.5 to 2 times the radius of the rotary piston, preferably 1.65 to 1.85 times the radius, has therefore proven to be a good compromise in order to achieve the most linear possible retraction and extension movement of the sealing element.
  • the swivel arm is preferably mounted in the housing on the outlet side so as not to reduce the pump volume per revolution and to press the sealing element against the transport vane via the differential pressure between the inlet and outlet.
  • the swivel arm is rounded or has an oval cross-section in order to ensure a flow-optimized arrangement of the swivel arm within the pumped medium.
  • the sealing element has a wide, possibly flat contact surface and at least one rounded contact section adjoining it.
  • the contact section or sections can form the two ends of the sealing element. Due to the width of the contact surface, it is possible to design several lines of action between the sealing element and the contour of the rotary piston, in particular to also allow the contact point or line of contact of the sealing element to move on the contact surface with the sealing body in order to reduce wear. The wandering of the line of action along the contact surface results from the different gradients in the contour of the transport wings. Secure contact can also be achieved with changing curvatures via the rounded contact sections at the front or rear end of the sealing element.
  • the line of action advantageously has a larger radius on the entry side than on the exit side.
  • the point or line of contact thus travels outward on the seal member as the seal member retracts and then back towards the center of the seal member.
  • the point or line of contact travels inward on the seal member or toward the pivot point of the swing arm as the seal member extends and then back toward the center of the seal member.
  • the shape of the sealing element and its assignment to the contour of the rotary piston can be designed so that at a minimum rotary piston radius and a maximum rotary piston radius The contact point or line of contact of the sealing element is approximately in the middle.
  • the sealing element can have a flat contact surface and at least one rounded contact section adjoining it, at least one of the rounded contact sections extending over an arc of a circle with a central angle greater than or equal to 90°, so that a wiping surface adjoins it.
  • the angle between the wiper surface and the contact surface is therefore less than or equal to 90°.
  • the angle between the straight line through the pivot point of the swivel arm and the point of contact or the line of contact of the sealing element and a flat contact surface of the sealing element when in the position in the maximum rotary piston radius is between 5° and 25°, preferably between 10 ° and 20°, particularly preferably between 12° and 18°, in order to have only one point of contact in the cross section or one line of contact and thus a single sealing line when the sealing element contacts the contour of the transport vane or the rotary piston. Otherwise, pinching or leakage would occur if there was double line contact rather than single line contact.
  • the contours of the rotary piston and the sealing element can be coordinated in such a way that at the point of contact between the rotary piston and the sealing element, the angle between the perpendicular to the surface of the rotary piston and the tangent to the direction of movement of the sealing element is between 0° and 70°, with special designs between 0° and 50° when retracting and between 0° and a maximum of 45° when extending, whereby the sealing body is moved with less friction losses when it is pushed out and easy sliding is made possible for retracting.
  • retracting large angles indicate rapid retraction; when extending, the smallest possible value should be aimed for in order to reduce friction.
  • the lines of action of the sealing element which is defined as a radius around the pivot point of the blocking vane through the point of contact between the rotary piston and the sealing element, on the extension side is different from the line of action on the retraction side, it is possible to provide a comparatively large sealing element with a comparatively large width, since due to the different radii of the lines of action the friction point or the sealing line between the sealing element and the surface of the rotary piston on the sealing element must hike.
  • the radius of the line of action is preferably smaller on the exit side than on the entry side. The possibility of increasing the width reduces wear, since the total available sealing surface, which is subjected to abrasive stress, is increased.
  • figure 1 shows a schematic sectional view of a rotary piston pump 1 with a housing 10 which has an inlet 11 on the top and an inlet 11 oriented essentially perpendicularly to the inlet 11 in the figure 1 having outlet 12 arranged on the right side.
  • a rotary piston 20 is mounted within the housing 10 such that it can rotate about an axis of rotation 21 .
  • the particularly viscous medium in particular magma in sugar production, is conveyed from the inlet 11 to the outlet 12 via the rotary piston 20 , which has two transport vanes 22 on opposite sides.
  • the direction of rotation of the rotary piston 20 is counterclockwise, as indicated by the arrow.
  • the rotary piston 20 with the two transport wings 22 runs partially on a cylindrical housing wall and, together with a sealing element 30, which runs on the outer contour of the rotary piston 20 during its rotation, and a sealing body 42 of a barrier vane 40 separates the inlet side from the outlet side.
  • the sealing element 30 is mounted or formed on the sealing body 42 of the blocking wing 40 , which in turn is mounted in a bearing 41 via a swivel arm 43 .
  • the locking vane 40 is mounted within the housing 10 on the outlet side so that it can pivot about a pivot axis and, depending on the position of the rotary piston 20, moves in the direction of the rotary axis 21 of the rotary piston or away from the rotary axis 21 in the direction of a maximum rotary piston radius.
  • the sealing element 30 rests on the contour of the rotary piston 20 at a contact point 24 in the sectional view, and along a contact line 24 in the three-dimensional configuration. In the position shown according to figure 1 the sealing element 30 rests against the maximum rotary piston radius and is thus pivoted at most in the clockwise direction about the bearing point 41 or the pivot axis through the bearing point 41 . If the rotary piston 20 is rotated counterclockwise to transport the medium to be pumped, the sealing element slides on the surface of the rotary piston 20 in the direction of the pivot axis 21 and thus moves from a maximum rotary piston radius in the direction of a minimum rotary piston radius along an entry side 221.
  • the sealing element 30 slides along the contour of the rotary piston and moves clockwise again in the direction of the illustrated position according to FIG figure 1 pressed outwards, if necessary against a spring force which presses the sealing element 30 together with the sealing body 42 of the blocking vane 40 in the direction of the rotary piston 20.
  • the sealing element 30 thus executes an outward movement or an extension movement when the sealing element 30 slides along the extension side 222 .
  • the swivel arm 43 can be loaded in the area of the bearing point 41 or the pivot axis by the bearing point 41 with a corresponding spring force, which causes a bias against a clockwise movement.
  • the sealing body 42 and in particular the sealing surface of the locking wing 40 extends over the entire depth of the housing, so that an effective separation of the inlet side and the outlet side is always effected via the rotary piston 20 together with the sealing element 30 and the sealing body 42 .
  • FIG figure 2 shows an individual representation of the rotary piston and sealing device according to FIG figure 1 in a mirror image.
  • the direction of rotation of the rotary piston 20 is indicated by the arrow.
  • the rotary piston 20 has two transport wings 22 which are point-symmetrical to the center point which is defined by the point of rotation 21 or by the axis of rotation 21 .
  • the sealing element 30 has slid along the outer contour of the first transport wing 22 on the entry side 21, whereby due to the contour of the rotary piston 20 and the contour of the sealing element 30 a linear contact between the sealing element 30 and the rotary piston 20 was always realized.
  • the contact point 24 in drawing 2 or contact line 24 migrates along the surface of the sealing element 30 as the rotary piston 20 rotates.
  • the radius R F of the distance of the contact point 24 from the bearing point 41 or the contact line 24 from the axis of rotation of the pivot arm 43 through the bearing point 41 changes during the movement of the rotary piston 20.
  • the orientation of the surface of the sealing element 30 to the contour of the rotary piston 20 is selected in such a way that the angle ⁇ between the perpendicular S on the surface of the rotary piston and the tangent T to the direction of movement of the sealing element 30 on the extension side 222 is between 0° and a maximum of 45° and that when retracting the angle ⁇ between the perpendicular S and the tangent T is between 0° and 70° for special designs and otherwise between 0° and a maximum of 50°.
  • the oval or elliptical cross section 430 of the swivel arm 43 is also indicated. Due to the streamlined, drop-shaped or oval design of the pivot arm 43, a minimum flow resistance against the mass flow of the pumped medium can be provided in the outlet area with a high degree of rigidity in relation to the forces and moments applied by pumping. Since the swivel arm 43 and the entire sealing arrangement is arranged on the outlet side, the differential pressure between the outlet side and the inlet side are used to increase the contact pressure of the sealing element 30 on the contour of the rotary piston 20.
  • the distance between the contact line 24 and the pivot axis 41 of the pivot arm 43 changes depending on the angle of rotation and the position of the sealing element 30 on the contour of the rotary piston 20.
  • the maximum effective line radius Rwmax is reached when the rounded contact section 32 rests with its furthest point on the surface of the rotary piston.
  • the minimum effective line radius R Wmin is reached when the end remote from the rounded contact section 32 comes into contact with the rotary piston surface.
  • FIG 3 shows a rotary piston 20 which is rotatably mounted about the pivot axis 21 in a schematic sectional view.
  • the rotary piston 20 has a retraction side 221 and an extension side 222 .
  • the two-wing rotary piston 20 has a contour that is point-symmetrical to the center 21, which forms the pivot point.
  • the maximum rotary piston radius R Pmax results from the maximum distance from the axis of rotation 21 to the outer contour of the rotary piston 20. To the right and left of the line connecting the two maximum rotary piston radii R Pmax it can be seen that the contour of the transport vane 22 on the extension side 222 is further away from of the connecting line lies as the contour of the transport wing 22 on the entry side 221.
  • FIG 4 the geometric relationships and the contour of the rotary piston 20 are shown in more detail.
  • the contour of the rotary piston 20 shown is point-symmetrical to the center point 21 of the minimum rotary piston radius R Pmin . From the maximum rotary lobe radius R Pmax , the contour runs steeply on the entry side 221 in the direction of the minimum rotary lobe radius R Pmin .
  • the contour curve has a turning point in the curvature on the retraction side, approximately at half the maximum rotor radius.
  • the contour then merges into the minimum rotary lobe radius R Pmin , follows it and then merges into the extension side 222 on which the contour executes a curve without turning point up to the maximum rotary lobe radius R Pmax .
  • the retraction side 221 in this exemplary embodiment extends over an angle of rotation of approximately 40° when the position shown is the starting position.
  • the contour follows the minimum rotary piston radius R Pmin over an angular range of approximately 20°, in order then to form the extension side 222 for a rotational angle range of approximately 120°.
  • FIG 5 shows an individual representation of a sealing element 30 which can be arranged on the sealing body 42 in an exchangeable manner.
  • the sealing element 30 has a flat contact surface 31 and an adjoining rounded, distal contact section 32 which is oriented away from the bearing point 41 .
  • the sealing element 30 also has a proximal, rounded contact section 33 oriented towards the bearing point 41, which also matches the contour of the Rotary piston 20 can come into contact.
  • the rounded contact section 32 essentially slides off the contour of the rotary piston 20 during the retraction movement, while the contact line 24 or the contact point 24 between the sealing element 30 and the rotary piston 20 runs on the flat contact surface 31 after the minimum rotary piston radius has been reached and in Direction of the rounded contact portion 32 opposite end 33 of the sealing element 30, which is rounded, migrates.
  • the line of contact 24 or the point of contact 24 thus migrates along the sealing element 30 over the angle of rotation of the rotary piston. It has proven particularly advantageous to run the small radius 33 over an angle greater than 90° before the surface 34 connects. As a result, the surface 34 acts like a scraper for the medium to be conveyed from the rotary piston.
  • the sequence of the points of contact over half a revolution of a rotary piston with two transport vanes and thus a clarification of the line of action between the extreme values R Wmax and R Wmin is shown in figure 6 shown.
  • the line of action for the extension on the extension side 222 initially provides that the swivel arm 43 is moved outwards away from the axis of rotation 21 in the direction of the maximum rotary piston radius. This is in by the ascending right section of the chart figure 6 shown. If the maximum rotary lobe radius is reached, the line of action moves to the left-hand diagram area, which is illustrated by the arrow on the upper section of the diagram that extends diagonally to the left.
  • the contact point or the contact line on the entry side 221 migrates downwards on an enlarged effective line radius, i.e. in the direction of the axis of rotation 21.
  • the contact line or the contact point migrates again to a smaller radius, which is half the lower one and right area of the diagram.
  • FIG 7 is shown in a basic representation of how the contact point 24 or the contact line 24 between the sealing element 30 and the contour of the rotary piston 20 migrates between a maximum effective line radius R Wmax and a minimum effective line radius R Wmin .
  • the sealing strip at an angle ⁇ between the straight line through the pivot point of the swivel arm 43 and the contact point of the sealing element 30 and the flat contact surface 31 in the position in the maximum rotary piston radius between 5° and 25°, in particular between 12° and 18°.
  • a quasi-linear movement of the sealing element is achieved by the comparatively large radius with a pivotable mounting of the sealing body on a pivot arm, which is 1.5 to twice the radius of the rotary piston.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Reciprocating Pumps (AREA)
  • Details Of Reciprocating Pumps (AREA)

Description

Die Erfindung betrifft eine Drehkolbenpumpe mit einem Gehäuse, das einen Einlass und einen Auslass für das zu verpumpende Medium aufweist, zumindest einem Drehkolben, der antreibbar und drehbar in dem Gehäuse gelagert ist und der zumindest zwei mit einer Kontur versehene Transportflügel aufweist, die das zu fördernde Medium von dem Einlass zu dem Auslass transportieren, und einem Dichtelement pro Drehkolben, das an einem insbesondere schwenkbar gelagerten Dichtkörper befestigt ist und auf der Kontur des Drehkolbens während der Drehung des zumindest einen Drehkolbens abläuft und eine Ausfahrbewegung von einem minimalen Durchmesser des zumindest einen Drehkolbens zu einem maximalen Durchmesser des zumindest einen Drehkolbens und eine Einfahrbewegung von dem maximalen Durchmesser des zumindest einen Drehkolbens zu dem minimalen Durchmesser des zumindest einen Drehkolbens ausführt. Eine solche Drehkolbenpumpe ist insbesondere zum Verpumpen von hochviskosen Medien, beispielsweise Magma bei der Zuckerherstellung geeignet und vorgesehen. Magma ist eine Mischung aus Kristallzucker und Sirup und entsteht im Kochprozess als Zwischenprodukt während der Zuckerproduktion. Eine solche Drehkolbenpumpe ist jedoch, obwohl sie für das Verpumpen von Kristallsuspensionen besonders geeignet ist, nicht auf das Verpumpen von Magma beschränkt.The invention relates to a rotary lobe pump with a housing which has an inlet and an outlet for the medium to be pumped, at least one rotary lobe which is drivably and rotatably mounted in the housing and which has at least two transport vanes provided with a contour which convey the medium to be pumped Transport medium from the inlet to the outlet, and one sealing element per rotary piston, which is fastened to a sealing body that is in particular pivotably mounted and runs on the contour of the rotary piston during the rotation of the at least one rotary piston and an extension movement from a minimum diameter of the at least one rotary piston a maximum diameter of the at least one rotary lobe and a retraction movement from the maximum diameter of the at least one rotary lobe to the minimum diameter of the at least one rotary lobe. Such a rotary piston pump is particularly suitable and intended for pumping highly viscous media, such as magma in sugar production. Magma is a mixture of granulated sugar and syrup and is created during the cooking process as an intermediate product during sugar production. However, such a rotary piston pump, although it is particularly suitable for pumping crystal suspensions, is not limited to pumping magma.

Aus der DE 67 53 460 U1 ist eine Drehkolbenpumpe mit einem klappsymmetrischen Drehkolben bekannt, auf dessen Außenkontur ein Dichtelement abläuft. Der Drehkolben weist eine im Wesentlichen elliptische Kontur auf. Das Dichtelement ist an einem Schwenkhebel befestigt.From the DE 67 53 460 U1 a rotary piston pump with a folding symmetrical rotary piston is known, on the outer contour of which a sealing element runs. The rotary piston has an essentially elliptical contour. The sealing element is attached to a pivoting lever.

Aus der DE 78 11 068 U1 ist eine Drehkolbenpumpe mit einem Gehäuse, einem unten liegenden Einlass innerhalb des Gehäuses und einem oberhalb dazu angeordneten Auslass vorgesehen. Zwischen Einlass und Auslass ist ein federbelasteter Schieber angeordnet, über den ein Dichtelement gegen den Drehkolben gedrückt wird. Der Drehkolben ist als abgerundete, hinsichtlich der kurzen Achse und der Längsachse klappsymmetrische Raute ausgebildet.From the DE 78 11 068 U1 discloses a rotary lobe pump having a housing, an inlet located below within the housing and an outlet located above it. Between the inlet and outlet is a spring-loaded Arranged slide, over which a sealing element is pressed against the rotary piston. The rotary piston is designed as a rounded rhombus that is folding-symmetrical with respect to the short axis and the longitudinal axis.

Die DE-N 7251 betrifft eine Drehkolbenpumpe zum Fördern dickflüssiger Stoffe, bei der ein zwangsläufig gesteuerter Widerlagerschieber der Umrissform des Drehkolbens folgt. Die Zwangssteuerung wird über Steuernocken erreicht, die eine der Kontur des Transportkolbens folgende Bewegung eines zylindrischen Dichtungsteils bewirken. Der Drehkolben weist eine S-förmig geschwungene Querschnittsform auf.DE-N 7251 relates to a rotary lobe pump for conveying viscous substances, in which a positively controlled abutment slide follows the outline of the rotary lobe. The positive control is achieved via control cams, which cause a movement of a cylindrical sealing part following the contour of the transport piston. The rotary piston has a cross-sectional shape curved in an S-shape.

Nachteilig an solchen Drehkolbenpumpen sind ein vergleichsweise geringes Pumpvolumen pro Umdrehung sowie ein hoher Verschleiß an dem Drehkolben und dem Dichtelement bei nicht zwangsgeführten Dichtelementen. Die Kolbenkontur führt dabei zu einem Wegdrücken des Dichtelementes von dem Kolben und somit zu Undichtigkeiten und Förderverlusten. Um dieses zu verhindern, muss ein erhöhter Anpressdruck aufgebracht werden, der zu einem erhöhten Energiebedarf und einem erhöhten Verschleiß führt.Disadvantages of such rotary piston pumps are a comparatively small pump volume per revolution and high wear on the rotary piston and the sealing element when the sealing elements are not positively guided. The piston contour leads to the sealing element being pushed away from the piston and thus to leaks and delivery losses. In order to prevent this, an increased contact pressure must be applied, which leads to an increased energy requirement and increased wear.

Die DE 125 174 C beschreibt eine Pumpe mit rotierenden Kolben, der zwei Transportflügel aufweist. Ein Dichtelement als schwingende Wand gleitet auf der Außenseite des Drehkolbens entlang. Der Verfahrweg entlang der Druckseite, auf der das Dichtelement die Ausfahrbewegung durchführt, ist länger als der Verfahrweg auf der Saugseite, entlang derer die Einfahrbewegung durchgeführt wird. Die NL 25 897 C beschreibt eine hierzu ähnliche Drehkolbenpumpe, bei der die Transportflügel des Drehkolben auf der Druckseite und der Saugseite unterschiedliche Konturen aufweisen, wobei die durch das Dichtelement auf der Druckseite ausgeführte Ausfahrbewegung länger ist als die auf der gegenüberliegenden Saugseite ausgeführte Einfahrbewegung.The DE 125 174 C describes a rotary piston pump having two vanes. A sealing element as a vibrating wall slides along the outside of the rotary piston. The travel along the pressure side, on which the sealing element performs the extension movement, is longer than the travel on the suction side, along which the retraction movement is performed. The NL 25 897 C describes a rotary lobe pump that is similar to this, in which the transport vanes of the rotary lobe have different contours on the pressure side and the suction side, with the extension movement performed by the sealing element on the pressure side being longer than the retraction movement performed on the opposite suction side.

Die FR 626 596 A betrifft eine Drehkolbenpumpe mit einem auf der Außenseite des Drehkolbens entlanggleitenden Dichtelement, wobei der Drehkolben eine auf der Ein- und Ausfahrseite verschiedene Kontur aufweist.The FR 626 596 A relates to a rotary lobe pump with a sealing element sliding along the outside of the rotary lobe, the rotary lobe having a different contour on the retraction and extension sides.

Auch die DE 960 411 C beschreibt eine Pumpe mit rotierenden Kolben, der zwei Transportflügel aufweist und bei der ein Dichtelement als schwingende Wand auf der Außenseite des Drehkolbens entlang rollt. Bei dieser Drehkolbenpumpe ist der Verfahrweg entlang der Druckseite, auf der das Dichtelement die Ausfahrbewegung durchführt, jedoch kürzer als der Verfahrweg auf der Saugseite, entlang derer die Einfahrbewegung durchgeführt wird.Also the DE 960 411 C describes a rotary piston pump which has two transport vanes and in which a sealing element as a vibrating wall rolls along the outside of the rotary piston. With this rotary lobe pump, the travel path is along the pressure side on which the sealing element makes the extension movement carried out, but shorter than the travel on the suction side, along which the retraction movement is carried out.

Aufgabe der vorliegenden Erfindung ist es, eine Drehkolbenpumpe bereitzustellen, die ein vergrößertes Pumpvolumen pro Umdrehung aufweist, so dass bei einem gleichen Pumpvolumen die Drehkolbenpumpe kleiner und preiswerter gebaut werden kann.The object of the present invention is to provide a rotary lobe pump which has an increased pumping volume per revolution, so that the rotary lobe pump can be built smaller and cheaper with the same pumping volume.

Diese Aufgabe wird durch eine Drehkolbenpumpe mit den Merkmalen des Hauptanspruches gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind in den Unteransprüchen, der Beschreibung sowie den Figuren offenbart.This problem is solved by a rotary piston pump with the features of the main claim. Advantageous refinements and developments of the invention are disclosed in the dependent claims, the description and the figures.

Die Drehkolbenpumpe mit einem Gehäuse, das einen Einlass und einen Auslass für das zu verpumpende Medium aufweist, mit zumindest einem Drehkolben, der antreibbar und drehbar in dem Gehäuse gelagert ist und der zumindest zwei mit einer Kontur versehene Transportflügel aufweist, die das zu fördernde Medium von dem Einlass zu dem Auslass transportieren, und mit einem Dichtelement pro Drehkolben, das an einem Dichtkörper gelagert oder ausgebildet ist und auf der Kontur des Drehkolbens während der Drehung des Drehkolbens abläuft und eine Ausfahrbewegung von einem minimalen Durchmesser des Drehkolbens zu einem maximalen Durchmesser des Drehkolbens und eine Einfahrbewegung von dem maximalen Durchmesser des Drehkolbens zu dem minimalen Durchmesser des Drehkolbens auf unterschiedlichen Seiten des Transportflügels ausführt, sieht vor, dass die Strecke, die das Dichtelement auf der Einfahrseite des Transportflügels während der Einfahrbewegung ausführt, kürzer oder kleiner als die Strecke auf der Ausfahrseite während der Ausfahrbewegung ist. Die Ausfahrbewegung beginnt dann, wenn das Dichtelement von einem minimalen Durchmesser des Drehkolbens sich von der Drehachse des Drehkolbens wegbewegt, die Einfahrbewegung beginnt, wenn sich das Dichtelement von dem maximalen Drehkolbenradius während der Drehung des Drehkolbens in Richtung auf den minimalen Durchmesser des Drehkolbens bewegt. Das Ende der Einfahrbewegung ist erreicht, wenn der Berührpunkt oder die Berührlinie zwischen der Kontur des Drehkolbens und dem Dichtelement den minimalen Durchmesser des Drehkolbens erreicht hat, die Ausfahrbewegung endet, wenn der maximale Drehkolbenradius von dem Berührpunkt oder der Berührlinie erreicht wurde. Es besteht die Möglichkeit, dass die Kontur des Drehkolbens so ausgestaltet ist, dass über einen gewissen Winkelbereich der Durchmesser konstant bleibt, insbesondere den minimalen Durchmesser und/oder maximalen Durchmesser des Drehkolbens einnimmt, so dass der Gesamtwinkel, über den eine Einfahrbewegung und eine Ausfahrbewegung ausgeführt wird, kleiner als 180° beträgt, wenn der Drehkolben als Drehkolben mit zwei Transportflügeln ausgeführt ist. Die Einfahrgeschwindigkeit des Dichtelementes ebenso wie die Ausfahrgeschwindigkeit wird bei einer gleichbleibenden Drehzahl durch die Kontur des jeweiligen Transportflügels des Drehkolbens bestimmt. Wird es dem Dichtelement ermöglicht, sehr schnell in Richtung auf einen minimalen Drehkolbenradius oder in Richtung auf die Drehachse des Drehkolbens sich zu verlagern, liegt eine hohe Einfahrgeschwindigkeit vor, was durch einen steilen Abfall der Kontur über den Drehwinkel erreicht wird. Umgekehrt wird das Dichtelement langsam nach radial außen auf der Kontur des Drehkolbens verlagert, wenn über einen Drehwinkel nur eine geringe Steigung anliegt. Insbesondere bei dem Verpumpen hochviskoser, zähflüssiger Medien ist es problematisch, das Sperrelement, das an einem Dichtkörper gelagert oder ausgebildet ist, innerhalb des Mediums nach außen zu drücken, also von dem minimalen Durchmesser des Drehkolbens zum maximalen Durchmesser des Drehkolbens. Auch bei der Einfahrbewegung müssen das Dichtelement und der Dichtkörper durch das hochviskose Medium bewegt werden. Diese Bewegungen müssen in der Regel gegen den Widerstand des im zu transportierenden Medium gelagerten Dichtkörpers aufgebracht werden. Der Transportflügel selbst, auf dem der Dichtkörper mit dem Dichtelement entlanggleitet, kann nicht beliebig dünn ausgeführt werden, da einerseits Festigkeitsbedingungen erfüllt sein müssen und andererseits Beschleunigungsgrenzen eingehalten werden müssen, beispielsweise um ein Abheben des Dichtelementes von der Oberfläche des Drehkolbens zu vermeiden. Es hat sich als vorteilhaft herausgestellt, das Dichtelement vergleichsweise langsam eine Ausfahrbewegung vornehmen zu lassen. Im Bereich des maximalen Drehkolbenradius ist in der Regel eine Abrundung ausgebildet, um eine abrupte Bewegungsumkehr des auf dem rotierenden Drehkolben ablaufenden Dichtelementes zu vermeiden. Insbesondere ist vorgesehen, dass der Transportflügel auf der Einfahrseite schmaler und steiler ausgebildet ist als auf der Ausfahrseite. Durch das in dem Verhältnis zu der Ausfahrseite verringerte Volumen des Transportflügels auf der Einfahrseite wird das Kammervolumen, das durch das Gehäuse und die Transportflügelkontur gebildet wird, im Vergleich zu einer klappsymmetrischen Kontur beiderseits der Verbindungslinie des jeweils maximalen Drehkolbenradius durch die Drehachse vergrö-ßert und gleichzeitig vermieden, dass zu hohe Belastungen auf das Material durch zu hohe Beschleunigungen bei der Ausfahrbewegung auftreten. Bevorzugt findet die geringere Ausfahrgeschwindigkeit im Vergleich zur Einfahrgeschwindigkeit an einer Ausführung des Drehkolbens mit zwei Transportflügeln über einen Drehwinkel von zumindest größer 90° bis zu einem Drehwinkel bis 160°, insbesondere in einem Bereich von 110° bis 130° statt, wodurch ein schnelles Einfahren des Dichtelementes und dadurch eine Vergrößerung der Pumpkammer erreicht werden kann.The rotary lobe pump with a housing, which has an inlet and an outlet for the medium to be pumped, with at least one rotary lobe, which is drivably and rotatably mounted in the housing and which has at least two transport vanes provided with a contour, which transport the medium to be pumped from transport the inlet to the outlet, and with a sealing element per rotary lobe, which is mounted or formed on a sealing body and runs on the contour of the rotary lobe during the rotation of the rotary lobe and an extension movement from a minimum diameter of the rotary lobe to a maximum diameter of the rotary lobe and performs a retraction movement from the maximum diameter of the rotary piston to the minimum diameter of the rotary piston on different sides of the transport wing, provides that the distance that the sealing element executes on the retraction side of the transport wing during the retraction movement is shorter or smaller than the distance on the extension side during the extension movement. The extension movement begins when the sealing element moves away from a minimum diameter of the rotary lobe from the axis of rotation of the rotary lobe, the retraction movement begins when the sealing element moves from the maximum diameter of the rotary lobe during rotation of the rotary lobe towards the minimum diameter of the rotary lobe. The end of the retraction movement is reached when the contact point or the contact line between the contour of the rotary piston and the sealing element has reached the minimum diameter of the rotary piston, the extension movement ends when the maximum rotary piston radius of the contact point or the contact line has been reached. There is the possibility that the contour of the rotary piston is designed so that over a certain angular range of Diameter remains constant, in particular occupies the minimum diameter and/or maximum diameter of the rotary lobe, so that the total angle over which an inward movement and an outward movement is carried out is less than 180° if the rotary lobe is designed as a rotary lobe with two transport vanes. The retraction speed of the sealing element as well as the extension speed is determined by the contour of the respective transport vane of the rotary piston at a constant speed. If it is possible for the sealing element to move very quickly in the direction of a minimum rotary piston radius or in the direction of the axis of rotation of the rotary piston, there is a high run-in speed, which is achieved by a steep drop in the contour over the angle of rotation. Conversely, the sealing element is slowly shifted radially outwards on the contour of the rotary piston if there is only a slight incline over a rotation angle. In particular when pumping highly viscous, viscous media, it is problematic to press the blocking element, which is mounted or formed on a sealing body, within the medium to the outside, ie from the minimum diameter of the rotary piston to the maximum diameter of the rotary piston. The sealing element and the sealing body must also be moved through the highly viscous medium during the retraction movement. As a rule, these movements have to be applied against the resistance of the sealing body that is placed in the medium to be transported. The transport wing itself, on which the sealing body with the sealing element slides along, cannot be made as thin as you like, since on the one hand strength conditions must be met and on the other hand acceleration limits must be observed, for example to prevent the sealing element from lifting off the surface of the rotary piston. It has proven to be advantageous to allow the sealing element to move out comparatively slowly. In the area of the maximum rotary lobe radius, a rounding is generally formed in order to avoid an abrupt reversal of movement of the sealing element running on the rotating rotary lobe. In particular, it is provided that the transport wing is narrower and steeper on the entry side than on the exit side. The chamber volume formed by the housing and the contour of the transport wing is formed by the reduced volume of the transport wing on the retract side in relation to the exit side is increased in comparison to a folding-symmetrical contour on both sides of the connecting line of the respective maximum rotary piston radius through the axis of rotation and at the same time avoiding excessive loads on the material due to excessive acceleration during the extension movement. Preferably, the lower extension speed compared to the retraction speed takes place on an embodiment of the rotary piston with two transport vanes over an angle of rotation of at least greater than 90° up to an angle of rotation of up to 160°, in particular in a range of 110° to 130°, which means that the Sealing element and thereby an increase in the pump chamber can be achieved.

Die Kontur auf der Ausfahrseite des Drehkolbens weist eine Krümmung ohne Wendepunkte in der Steigung der Kontur auf, während die Kontur auf der Einfahrseite bevorzugt zumindest einen Wendepunkt aufweist, wodurch definiert ist, dass auf der Einfahrseite eine maximale Verringerung des Volumens des Transportflügels erfolgt und nach einer Phase mit einer sehr hohen Einfahrgeschwindigkeit, also einer sehr steilen Kontur des Transportflügels an der Einfahrseite, diese abgeflacht wird, um einen sanften Übergang bis zum Erreichen des minimalen Durchmessers des Drehkolbens bereitzustellen.The contour on the extension side of the rotary piston has a curvature without turning points in the gradient of the contour, while the contour on the entry side preferably has at least one turning point, which defines that on the entry side there is a maximum reduction in the volume of the transport leaf and after a Phase with a very high entry speed, i.e. a very steep contour of the transport wing on the entry side, this is flattened to provide a smooth transition until the minimum diameter of the rotary piston is reached.

Eine Variante der Erfindung sieht vor, dass der minimale Drehkolbenradius auf der Einfahrseite von dem Dichtelement bei einem Drehwinkel zwischen 30° und 90°, gemessen von dem maximalen Drehkolbenradius erreicht wird. Dadurch wird sichergestellt, dass der minimale Drehkolbenradius sehr schnell erreicht wird. Auf der Ausfahrseite kann die Ausfahrbewegung zwischen 90° und 150° vor Erreichen des maximalen Drehkolbenradius beginnen, wobei die Kontur auf der Ausfahrseite bevorzugt eine Krümmung ohne Wendepunkt oder Unstetigkeitsstellen aufweist, um eine gleichmäßige, vergleichsweise langsame Ausfahrbewegung des Dichtelementes und damit des Dichtkörpers zu erreichen. Durch die im Vergleich zur Einfahrseite massivere und mit mehr Material versehene Ausfahrseite bleibt es weiterhin möglich, die hohen Kräfte und Momente aufzubringen, die zum Transport des zähflüssigen Produktes durch die Pumpe aufgebracht werden müssen.A variant of the invention provides that the minimum rotary lobe radius on the entry side of the sealing element is reached at a rotary angle between 30° and 90°, measured from the maximum rotary lobe radius. This ensures that the minimum rotary lobe radius is reached very quickly. On the extension side, the extension movement can begin between 90° and 150° before the maximum rotary piston radius is reached, with the contour on the extension side preferably having a curvature without a turning point or points of discontinuity in order to achieve a uniform, comparatively slow extension movement of the sealing element and thus of the sealing body. Due to the fact that the discharge side is more solid than the entry side and has more material, it is still possible to apply the high forces and moments that have to be applied to transport the viscous product through the pump.

Der maximale Drehkolbenradius kann von dem Dichtelement nach Verlassen des minimalen Drehkolbenradius auf der Ausfahrseite bei einem Drehwinkel zwischen 90° und 150° erreicht werden, so dass bei einer korrespondierenden Ausgestaltung auf der Einfahrseite bei einem vergleichsweisen frühen Erreichen der Kontur am minimalen Drehkolbenradius das Volumen des Transportflügels auf der Einfahrseite geringer als auf der Ausfahrseite ausgebildet sein muss.The maximum rotary lobe radius can be reached by the sealing element after leaving the minimum rotary lobe radius on the extension side at a rotary angle of between 90° and 150°, so that in a corresponding configuration on the retraction side the volume of the transport vane is reduced when the contour at the minimum rotary lobe radius is reached comparatively early on the entry side must be less than on the exit side.

Besonders bevorzugt weist der Drehkolben zwei Transportflügel auf, deren Konturen punktsymmetrisch zu der Drehachse des Drehkolbens ausgebildet sind. Durch die zweiflügelige Ausgestaltung wird ein großes Kammervolumen bereitgestellt.The rotary piston particularly preferably has two transport wings, the contours of which are point-symmetrical to the axis of rotation of the rotary piston. A large chamber volume is provided by the two-wing design.

In einer Weiterbildung der Erfindung ist vorgesehen, dass der Dichtkörper an einem Schwenkarm schwenkbar innerhalb des Gehäuses gelagert ist. Damit ist es möglich, eine robuste Lagerung bei einer vergleichsweise kompakten Bauweise ohne komplexe Feder- und/oder Lagermechanismen zu erreichen. Grundsätzlich ist es auch möglich, das Dichtelement an einem linear gelagerten, federbelasteten Dichtkörper anzuordnen. Über die Position der Lagerstelle der schwenkbaren Lagerung in dem Gehäuse ist es möglich, den innerhalb des Pumpengehäuses vorliegenden Druck, insbesondere die Druckdifferenz zwischen dem Einlass und dem Auslass, auszunutzen, indem eine Kraft auf das Dichtelement ausgeübt wird, die bei höherer Druckdifferenz das Dichtelement stärker an die Kolbenkontur presst und damit die Verluste reduziert und die Betriebssicherheit erhöht. Ebenfalls ist die Breite des Dichtelementes ein Faktor, der zusammen mit der Druckdifferenz den Anpressdruck auf die Kontur des Transportflügels beeinflusst.In a development of the invention, it is provided that the sealing body is pivotably mounted on a swivel arm inside the housing. This makes it possible to achieve robust mounting with a comparatively compact design without complex spring and/or bearing mechanisms. In principle, it is also possible to arrange the sealing element on a linearly mounted, spring-loaded sealing body. The position of the bearing point of the pivotable bearing in the housing makes it possible to utilize the pressure present within the pump housing, in particular the pressure difference between the inlet and the outlet, by exerting a force on the sealing element which, with a higher pressure difference, presses the sealing element more strongly pressed against the piston contour, thus reducing losses and increasing operational reliability. The width of the sealing element is also a factor that, together with the pressure difference, influences the contact pressure on the contour of the transport wing.

Der Abstand zwischen dem Lagerpunkt des schwenkbar gelagerten Schwenkarmes und dem Berührpunkt des Dichtelementes an dem Transportflügel ist bevorzugt groß im Vergleich zu dem Drehkolbenradius. Eine angenähert lineare Bewegung des Dichtelementes in Ausfahrrichtung oder Einfahrrichtung ist anzustreben. Dies wird dadurch erreicht, dass der Schwenkarm möglichst lang gewählt ist. Bevorzugt beträgt der Abstand zwischen dem Lagerpunkt des Schwenkarmes und dem Berührpunkt des Dichtelementes mit dem Transportflügel das 1 ,5-fache bis 2-fache des Radius des Drehkolbens. Die Länge des Schwenkarmes steht dabei in Konkurrenz zu möglichst kompakten Gehäuseabmessungen. Je länger der Schwenkarm ausgebildet ist und in dem Gehäuse gelagert werden muss, desto größer muss das Gehäuse ausgebildet sein. Daher hat sich ein Radius von 1,5 bis 2-mal des Radius des Drehkolbens, vorzugsweise 1,65 bis 1,85-fache des Radius als ein guter Kompromiss herausgestellt, um eine möglichst lineare Ein- und Ausfahrbewegung des Dichtelementes zu realisieren.The distance between the bearing point of the pivoted pivot arm and the point of contact of the sealing element on the transport vane is preferably large compared to the rotary piston radius. An approximately linear movement of the sealing element in the extension or retraction direction is desirable. This is achieved in that the swivel arm is chosen to be as long as possible. The distance between the bearing point of the swivel arm and the contact point of the sealing element with the transport vane is preferably 1.5 to 2 times the radius of the rotary piston. The length of the swivel arm is in competition with the most compact possible housing dimensions. The longer the Swivel arm is formed and must be stored in the housing, the larger the housing must be designed. A radius of 1.5 to 2 times the radius of the rotary piston, preferably 1.65 to 1.85 times the radius, has therefore proven to be a good compromise in order to achieve the most linear possible retraction and extension movement of the sealing element.

Bevorzugt ist der Schwenkarm auslassseitig in dem Gehäuse gelagert, um das Pumpvolumen pro Umdrehung nicht zu verringern und das Dichtelement über den Differenzdruck zwischen Einlass und Auslass an den Transportflügel zu pressen. Zur Verringerung des Strömungswiderstandes ist der Schwenkarm abgerundet oder weist einen ovalen Querschnitt auf, um eine strömungsoptimierte Anordnung des Schwenkarmes innerhalb des verpumpten Mediums zu gewährleisten.The swivel arm is preferably mounted in the housing on the outlet side so as not to reduce the pump volume per revolution and to press the sealing element against the transport vane via the differential pressure between the inlet and outlet. To reduce the flow resistance, the swivel arm is rounded or has an oval cross-section in order to ensure a flow-optimized arrangement of the swivel arm within the pumped medium.

Das Dichtelement weist in einer Weiterbildung der Erfindung eine breite, ggf. ebene Kontaktfläche und zumindest einen sich daran anschließenden, gerundeten Kontaktabschnitt auf. Der Kontaktabschnitt oder die Kontaktabschnitte können die beiden Enden des Dichtelementes ausbilden. Durch die Breite der Kontaktfläche ist es möglich, mehrere Wirklinien zwischen dem Dichtelement und der Kontur des Drehkolbens auszugestalten, insbesondere auch den Berührpunkt oder die Berührlinie des Dichtelementes auf der Kontaktfläche mit dem Dichtkörper wandern zu lassen, um den Verschleiß zu verringern. Das Wandern der Wirklinie entlang der Kontaktfläche ergibt sich durch die unterschiedlichen Steigungen in der Kontur der Transportflügel. Über die gerundeten Kontaktabschnitte an dem vorderen oder hinteren Ende des Dichtelementes kann eine sichere Anlage auch bei sich ändernden Krümmungen erreicht werden. Die Wirklinie hat vorteilhafterweise auf der Einfahrseite einen größeren Radius als auf der Ausfahrseite. Der Berührpunkt oder die Berührlinie wandert damit auf dem Dichtelement nach außen, wenn das Dichtelement einfährt, und dann zurück zur Mitte des Dichtelementes. Der Berührpunkt oder die Berührlinie wandert auf dem Dichtelement nach innen oder in Richtung auf den Drehpunkt des Schwenkarmes, wenn das Dichtelement ausfährt und dann zurück zur Mitte des Dichtelementes. Die Form des Dichtelementes und dessen Zuordnung zu der Kontur des Drehkolbens kann so ausgebildet sein, dass bei einem minimalen Drehkolbenradius und einem maximalen Drehkolbenradius der Berührpunkt oder die Berührlinie des Dichtelementes ungefähr in dessen Mitte liegt.In a further development of the invention, the sealing element has a wide, possibly flat contact surface and at least one rounded contact section adjoining it. The contact section or sections can form the two ends of the sealing element. Due to the width of the contact surface, it is possible to design several lines of action between the sealing element and the contour of the rotary piston, in particular to also allow the contact point or line of contact of the sealing element to move on the contact surface with the sealing body in order to reduce wear. The wandering of the line of action along the contact surface results from the different gradients in the contour of the transport wings. Secure contact can also be achieved with changing curvatures via the rounded contact sections at the front or rear end of the sealing element. The line of action advantageously has a larger radius on the entry side than on the exit side. The point or line of contact thus travels outward on the seal member as the seal member retracts and then back towards the center of the seal member. The point or line of contact travels inward on the seal member or toward the pivot point of the swing arm as the seal member extends and then back toward the center of the seal member. The shape of the sealing element and its assignment to the contour of the rotary piston can be designed so that at a minimum rotary piston radius and a maximum rotary piston radius The contact point or line of contact of the sealing element is approximately in the middle.

Das Dichtelement kann eine ebene Kontaktfläche und zumindest einen sich daran anschließenden gerundeten Kontaktabschnitt aufweisen, wobei sich zumindest einer der gerundeten Kontaktabschnitte über einen Kreisbogen mit einem Mittelpunktswinkel größer oder gleich 90° erstreckt, so dass sich daran eine Abstreiffläche anschließt. Der Winkel zwischen der Abstreiffläche und der Kontaktfläche ist somit kleiner oder gleich 90°.The sealing element can have a flat contact surface and at least one rounded contact section adjoining it, at least one of the rounded contact sections extending over an arc of a circle with a central angle greater than or equal to 90°, so that a wiping surface adjoins it. The angle between the wiper surface and the contact surface is therefore less than or equal to 90°.

In einer Weiterbildung der Erfindung ist es vorgesehen, dass der Winkel zwischen der Geraden durch den Drehpunkt des Schwenkarmes und dem Berührpunkt oder der Berührlinie des Dichtelementes und einer ebenen Kontaktfläche des Dichtelementes bei Stellung in dem maximalen Drehkolbenradius zwischen 5° und 25°, bevorzugt zwischen 10° und 20°, besonders bevorzugt zwischen 12° und 18° beträgt, um nur einen Berührpunkt im Querschnitt oder eine Berührlinie und damit eine einzige Dichtlinie bei dem Kontakt des Dichtelementes mit der Kontur des Transportflügels oder des Drehkolbens zu haben. Anderenfalls würden Quetschungen oder Undichtigkeiten auftreten, wenn keine einfache Linienberührung, sondern eine Doppellinienberührung vorliegen würde.In a further development of the invention, it is provided that the angle between the straight line through the pivot point of the swivel arm and the point of contact or the line of contact of the sealing element and a flat contact surface of the sealing element when in the position in the maximum rotary piston radius is between 5° and 25°, preferably between 10 ° and 20°, particularly preferably between 12° and 18°, in order to have only one point of contact in the cross section or one line of contact and thus a single sealing line when the sealing element contacts the contour of the transport vane or the rotary piston. Otherwise, pinching or leakage would occur if there was double line contact rather than single line contact.

Die Konturen des Drehkolbens und des Dichtelementes können so aufeinander abgestimmt sein, dass in dem Berührpunkt von dem Drehkolben und dem Dichtelement der Winkel zwischen der Senkrechten auf die Drehkolbenoberfläche und der Tangente an die Bewegungsrichtung des Dichtelementes zwischen 0° und 70°, bei besonderen Bauformen zwischen 0° und 50°, beim Einfahren und zwischen 0° und maximal 45° beim Ausfahren beträgt, wodurch beim Herausdrücken der Dichtkörper mit weniger Reibungsverlusten bewegt wird und für das Einfahren ein leichtes Hingleiten ermöglicht wird. Beim Einfahren deuten große Winkel auf ein schnelles Einfahren hin, beim Ausfahren ist ein möglichst kleiner Wert anzustreben, um die Reibung zu reduzieren.The contours of the rotary piston and the sealing element can be coordinated in such a way that at the point of contact between the rotary piston and the sealing element, the angle between the perpendicular to the surface of the rotary piston and the tangent to the direction of movement of the sealing element is between 0° and 70°, with special designs between 0° and 50° when retracting and between 0° and a maximum of 45° when extending, whereby the sealing body is moved with less friction losses when it is pushed out and easy sliding is made possible for retracting. When retracting, large angles indicate rapid retraction; when extending, the smallest possible value should be aimed for in order to reduce friction.

Wenn die Wirklinien des Dichtelementes, die als Radius um den Drehpunkt des Sperrflügels durch den Berührpunkt von Drehkolben und Dichtelement definiert ist, auf der Ausfahrseite verschieden zu der Wirklinie auf der Einfahrseite ist, wird es ermöglicht, ein vergleichsweise großes Dichtelement mit einer vergleichsweise großen Breite bereitzustellen, da aufgrund der unterschiedlichen Radien der Wirklinien der Reibungspunkt oder die Dichtlinie zwischen dem Dichtelement und der Oberfläche des Drehkolbens auf dem Dichtelement wandern muss. Bevorzugt ist der Radius der Wirklinie auf der Ausfahrseite geringer als auf der Einfahrseite. Durch die Möglichkeit der Breitenvergrößerung reduziert sich der Verschleiß, da die insgesamt zur Verfügung stehende Dichtfläche, die abrasiv beansprucht wird, vergrößert wird.If the lines of action of the sealing element, which is defined as a radius around the pivot point of the blocking vane through the point of contact between the rotary piston and the sealing element, on the extension side is different from the line of action on the retraction side, it is possible to provide a comparatively large sealing element with a comparatively large width, since due to the different radii of the lines of action the friction point or the sealing line between the sealing element and the surface of the rotary piston on the sealing element must hike. The radius of the line of action is preferably smaller on the exit side than on the entry side. The possibility of increasing the width reduces wear, since the total available sealing surface, which is subjected to abrasive stress, is increased.

Durch den vergleichsweise langen Schwenkarm ist es möglich, einen möglichst linearen Verschwenkweg des Dichtelementes während der Ausfahrbewegung und der Einfahrbewegung durchzuführen. Durch die Verkürzung der Strecke von dem maximalen Drehkolbenradius zu dem minimalen Drehkolbenradius und die nicht klappsymmetrische Ausgestaltung der Drehkolbenkontur zu einer Verbindungslinie zweier maximaler, einander gegenüberliegenden Drehkolbenradien durch die Drehachse wird der Weg minimiert, den das Dichtelement auf dem Drehkolben zurücklegen muss. Ebenfalls muss das Dichtelement einen geringeren Weg in dem zu pumpenden Medium zurücklegen. Durch eine im Vergleich zur Einfahrbewegung verlangsamte Ausfahrbewegung werden die Geschwindigkeiten und Beschleunigungen des Dichtkörpers und des Schwenkarmes in dem Medium auf der Druckseite so klein wie möglich gehalten, was eine weitere Energieeinsparung beim Betrieb der Drehkolbenpumpe bewirkt. Eine Energieeinsparung wird insbesondere dann beim Ausfahren erreicht, wenn der Winkel in dem Berührpunkt des Dichtelementes so gewählt wird, dass das Dichtelement möglichst senkrecht herausgedrückt wird, so dass möglichst geringe Reibungsverluste entstehen.Due to the comparatively long pivoting arm, it is possible to carry out a pivoting path of the sealing element that is as linear as possible during the extension movement and the retraction movement. The shortening of the distance from the maximum rotary lobe radius to the minimum rotary lobe radius and the non-folding-symmetrical design of the rotary lobe contour to a line connecting two maximum, opposite rotary lobe radii through the axis of rotation minimizes the path that the sealing element has to cover on the rotary lobe. The sealing element also has to cover a shorter distance in the medium to be pumped. Due to an extension movement that is slower than the retraction movement, the speeds and accelerations of the sealing body and the swivel arm in the medium on the pressure side are kept as small as possible, which results in further energy savings when operating the rotary lobe pump. An energy saving is achieved in particular when extending if the angle at the point of contact of the sealing element is selected in such a way that the sealing element is pressed out as vertically as possible, so that the lowest possible friction losses occur.

Nachfolgend werden Ausführungsbeispiele für die Erfindung anhand der beigefügten Figuren näher erläutert. Es zeigen:

Figur 1 -
eine Schnittdarstellung einer Pumpe in Gesamtansicht;
Figur 2 -
eine Detaildarstellung eines Drehkolbens mit Dichtelement ohne Gehäuse;
Figur 3 -
eine Schnittdarstellung durch eine Kolbenkontur;
Figur 4 -
eine Kolbenkontur gemäß Figur 3 mit Bereichsangaben;
Figur 5 -
eine Teildarstellung eines Dichtelementes;
Figur 6 -
eine exemplarische Darstellung der Abfolge der Berührpunkte über eine halbe Umdrehung eines Drehkolbens mit zwei Transportflügeln und eine Verdeutlichung der Wirklinien; und
Figur 7 -
eine Prinzipskizze einer Wechselwirkung von Dichtelement und Drehkolben.
Exemplary embodiments of the invention are explained in more detail below with reference to the accompanying figures. Show it:
Figure 1 -
a sectional view of a pump in general view;
Figure 2 -
a detailed view of a rotary piston with a sealing element without a housing;
Figure 3 -
a sectional view through a piston contour;
Figure 4 -
according to a piston contour figure 3 with area information;
Figure 5 -
a partial representation of a sealing element;
Figure 6 -
an exemplary representation of the sequence of the contact points over half a revolution of a rotary piston with two transport vanes and a clarification of the lines of action; and
Figure 7 -
a basic sketch of an interaction of sealing element and rotary piston.

Figur 1 zeigt in einer schematischen Schnittdarstellung eine Drehkolbenpumpe 1 mit einem Gehäuse 10, das einen obenseitigen Einlass 11 und einen im Wesentlichen senkrecht zum Einlass 11 orientierten, in der Figur 1 auf der rechten Seite angeordneten Auslass 12 aufweist. Innerhalb des Gehäuses 10 ist ein Drehkolben 20 drehbar um eine Drehachse 21 gelagert. Über den Drehkolben 20, der zwei Transportflügel 22 aufeinander gegenüberliegenden Seiten aufweist, wird das insbesondere zähflüssige Medium, insbesondere Magma bei der Zuckerherstellung, von dem Einlass 11 zu dem Auslass 12 gefördert. Die Drehrichtung des Drehkolbens 20 ist dabei entgegen dem Uhrzeigersinn, wie durch den Pfeil angedeutet. Der Drehkolben 20 mit den beiden Transportflügeln 22 läuft teilweise an einer zylindrischen Gehäusewand ab und bildet zusammen mit einem Dichtelement 30, das auf der Außenkontur des Drehkolbens 20 während dessen Rotation abläuft, und einem Dichtkörper 42 eines Sperrflügels 40 die Trennung zwischen der Einlassseite und der Auslassseite aus. figure 1 shows a schematic sectional view of a rotary piston pump 1 with a housing 10 which has an inlet 11 on the top and an inlet 11 oriented essentially perpendicularly to the inlet 11 in the figure 1 having outlet 12 arranged on the right side. A rotary piston 20 is mounted within the housing 10 such that it can rotate about an axis of rotation 21 . The particularly viscous medium, in particular magma in sugar production, is conveyed from the inlet 11 to the outlet 12 via the rotary piston 20 , which has two transport vanes 22 on opposite sides. The direction of rotation of the rotary piston 20 is counterclockwise, as indicated by the arrow. The rotary piston 20 with the two transport wings 22 runs partially on a cylindrical housing wall and, together with a sealing element 30, which runs on the outer contour of the rotary piston 20 during its rotation, and a sealing body 42 of a barrier vane 40 separates the inlet side from the outlet side.

Das Dichtelement 30 ist an dem Dichtkörper 42 des Sperrflügels 40 gelagert oder ausgebildet, der wiederrum über einen Schwenkarm 43 in einer Lagerung 41 gelagert ist. Der Sperrflügel 40 ist innerhalb des Gehäuses 10 auf der Auslassseite um eine Schwenkachse verschwenkbar gelagert und bewegt sich in Abhängigkeit von der Stellung des Drehkolbens 20 in Richtung auf die Drehachse 21 des Drehkolbens oder von der Drehachse 21 weg in Richtung auf einen maximalen Drehkolbenradius.The sealing element 30 is mounted or formed on the sealing body 42 of the blocking wing 40 , which in turn is mounted in a bearing 41 via a swivel arm 43 . The locking vane 40 is mounted within the housing 10 on the outlet side so that it can pivot about a pivot axis and, depending on the position of the rotary piston 20, moves in the direction of the rotary axis 21 of the rotary piston or away from the rotary axis 21 in the direction of a maximum rotary piston radius.

Das Dichtelement 30 liegt in der Schnittdarstellung an einem Berührpunkt 24, in der dreidimensionalen Ausgestaltung entlang einer Berührlinie 24 an der Kontur des Drehkolbens 20 an. In der dargestellten Stellung gemäß Figur 1 liegt das Dichtelement 30 an dem maximalen Drehkolbenradius an und ist somit maximal in Uhrzeigerrichtung um den Lagerpunkt 41 oder die Schwenkachse durch den Lagerpunkt 41 verschwenkt. Wird der Drehkolben 20 zum Transport des zu verpumpenden Mediums entgegen dem Uhrzeigersinn verdreht, gleitet das Dichtelement auf der Oberfläche des Drehkolbens 20 in Richtung auf die Schwenkachse 21 und fährt somit von einem maximalen Drehkolbenradius in Richtung auf einen minimalen Drehkolbenradius entlang einer Einfahrseite 221. Nach Erreichen eines minimalen Drehkolbenradius gleitet das Dichtelement 30 auf der Kontur des Drehkolbens entlang und wird im Uhrzeigersinn wieder in Richtung der dargestellten Stellung gemäß Figur 1 nach außen gedrückt, gegebenenfalls gegen eine Federkraft, die das Dichtelement 30 zusammen mit dem Dichtkörper 42 des Sperrflügels 40 in Richtung auf den Drehkolben 20 drückt. Das Dichtelement 30 führt somit eine Bewegung nach außen oder eine Ausfahrbewegung aus, wenn das Dichtelement 30 auf der Ausfahrseite 222 entlanggleitet.The sealing element 30 rests on the contour of the rotary piston 20 at a contact point 24 in the sectional view, and along a contact line 24 in the three-dimensional configuration. In the position shown according to figure 1 the sealing element 30 rests against the maximum rotary piston radius and is thus pivoted at most in the clockwise direction about the bearing point 41 or the pivot axis through the bearing point 41 . If the rotary piston 20 is rotated counterclockwise to transport the medium to be pumped, the sealing element slides on the surface of the rotary piston 20 in the direction of the pivot axis 21 and thus moves from a maximum rotary piston radius in the direction of a minimum rotary piston radius along an entry side 221. After reaching With a minimum rotary piston radius, the sealing element 30 slides along the contour of the rotary piston and moves clockwise again in the direction of the illustrated position according to FIG figure 1 pressed outwards, if necessary against a spring force which presses the sealing element 30 together with the sealing body 42 of the blocking vane 40 in the direction of the rotary piston 20. The sealing element 30 thus executes an outward movement or an extension movement when the sealing element 30 slides along the extension side 222 .

Der Schwenkarm 43 kann im Bereich des Lagerpunktes 41 oder Schwenkachse durch den Lagerpunkt 41 mit einer entsprechenden Federkraft belastet werden, die eine Vorspannung gegen eine Bewegung im Uhrzeigersinn bewirkt. Der Dichtkörper 42 und insbesondere die Dichtfläche des Sperrflügels 40 erstreckt sich über die gesamte Tiefe des Gehäuses, so dass über den Drehkolben 20 zusammen mit dem Dichtelement 30 und dem Dichtkörper 42 stets eine wirksame Trennung von der Einlassseite und der Auslassseite bewirkt wird.The swivel arm 43 can be loaded in the area of the bearing point 41 or the pivot axis by the bearing point 41 with a corresponding spring force, which causes a bias against a clockwise movement. The sealing body 42 and in particular the sealing surface of the locking wing 40 extends over the entire depth of the housing, so that an effective separation of the inlet side and the outlet side is always effected via the rotary piston 20 together with the sealing element 30 and the sealing body 42 .

Figur 2 zeigt eine Einzeldarstellung von Drehkolben und Abdichteinrichtung gemäß Figur 1 in einer spiegelverkehrten Darstellung. Die Drehrichtung des Drehkolbens 20 ist durch den Pfeil angedeutet. Der Drehkolben 20 weist neben der Drehachse 21 zwei Transportflügel 22 auf, die punktsymmetrisch zu dem Mittelpunkt, der durch den Drehpunkt 21 oder durch die Drehachse 21 definiert wird, ausgebildet ist. Das Dichtelement 30 ist auf der Einfahrseite 21 auf der Außenkontur des ersten Transportflügels 22 entlanggeglitten, wobei aufgrund der Kontur des Drehkolbens 20 sowie der Kontur des Dichtelementes 30 stets eine Linienberührung zwischen dem Dichtelement 30 und dem Drehkolben 20 realisiert wurde. Der Berührpunkt 24 in der Zeichnung 2 oder Berührlinie 24 wandert im Verlauf der Drehung des Drehkolbens 20 auf der Oberfläche des Dichtelementes 30 entlang. Somit ändert sich der Radius RF des Abstandes des Berührpunktes 24 von dem Lagerpunkt 41 oder der Berührlinie 24 von der Drehachse des Schwenkarmes 43 durch den Lagerpunkt 41 während der Bewegung des Drehkolbens 20. Um Reibungsverluste zu minimieren, ist die Orientierung der Oberfläche des Dichtelementes 30 zu der Kontur des Drehkolbens 20 so gewählt, dass der Winkel β zwischen der Senkrechten S auf der Drehkolbenoberfläche und der Tangente T an die Bewegungsrichtung des Dichtelementes 30 auf der Ausfahrseite 222 zwischen 0° Grad bis maximal 45° liegt und dass beim Einfahren der Winkel β zwischen der Senkrechten S und der Tangente T bei besonderen Bauformen zwischen 0° und 70° und ansonsten zwischen 0° und maximal 50° beträgt. figure 2 shows an individual representation of the rotary piston and sealing device according to FIG figure 1 in a mirror image. The direction of rotation of the rotary piston 20 is indicated by the arrow. In addition to the axis of rotation 21 , the rotary piston 20 has two transport wings 22 which are point-symmetrical to the center point which is defined by the point of rotation 21 or by the axis of rotation 21 . The sealing element 30 has slid along the outer contour of the first transport wing 22 on the entry side 21, whereby due to the contour of the rotary piston 20 and the contour of the sealing element 30 a linear contact between the sealing element 30 and the rotary piston 20 was always realized. The contact point 24 in drawing 2 or contact line 24 migrates along the surface of the sealing element 30 as the rotary piston 20 rotates. Thus, the radius R F of the distance of the contact point 24 from the bearing point 41 or the contact line 24 from the axis of rotation of the pivot arm 43 through the bearing point 41 changes during the movement of the rotary piston 20. In order to minimize friction losses, the orientation of the surface of the sealing element 30 to the contour of the rotary piston 20 is selected in such a way that the angle β between the perpendicular S on the surface of the rotary piston and the tangent T to the direction of movement of the sealing element 30 on the extension side 222 is between 0° and a maximum of 45° and that when retracting the angle β between the perpendicular S and the tangent T is between 0° and 70° for special designs and otherwise between 0° and a maximum of 50°.

In der Figur 2 ist ebenfalls der ovale oder elliptische Querschnitt 430 des Schwenkarmes 43 angedeutet. Durch die strömungsgünstige, tropfenförmige oder ovale Ausgestaltung des Schwenkarmes 43 kann bei einer hohen Steifigkeit gegenüber den aufgebrachten Kräften und Momenten durch das Verpumpen ein minimaler Strömungswiederstand gegen den Massenstrom des verpumpten Mediums im Auslassbereich bereitgestellt werden. Da der Schwenkarm 43 sowie die gesamte Dichtanordnung auslassseitig angeordnet ist, kann der Differenzdruck zwischen der Auslassseite und der Einlassseite dazu genutzt werden, die Anpresskraft des Dichtelementes 30 auf die Kontur des Drehkolbens 20 zu vergrößern.In the figure 2 the oval or elliptical cross section 430 of the swivel arm 43 is also indicated. Due to the streamlined, drop-shaped or oval design of the pivot arm 43, a minimum flow resistance against the mass flow of the pumped medium can be provided in the outlet area with a high degree of rigidity in relation to the forces and moments applied by pumping. Since the swivel arm 43 and the entire sealing arrangement is arranged on the outlet side, the differential pressure between the outlet side and the inlet side are used to increase the contact pressure of the sealing element 30 on the contour of the rotary piston 20.

Der Abstand der Berührlinie 24 von der Schwenkachse 41 des Schwenkarmes 43 verändert sich je nach Drehwinkel und Stellung des Dichtelementes 30 auf der Kontur des Drehkolbens 20. Der maximale Wirklinienradius Rwmax wird erreicht, wenn der gerundete Kontaktabschnitt 32 mit seinem entferntesten Punkt an der Drehkolbenoberfläche anliegt, der minimale Wirklinienradius RWmin wird erreicht, wenn das dem gerundeten Kontaktabschnitt 32 abgewendete Ende in Berührung mit der Drehkolbenoberfläche kommt.The distance between the contact line 24 and the pivot axis 41 of the pivot arm 43 changes depending on the angle of rotation and the position of the sealing element 30 on the contour of the rotary piston 20. The maximum effective line radius Rwmax is reached when the rounded contact section 32 rests with its furthest point on the surface of the rotary piston. the minimum effective line radius R Wmin is reached when the end remote from the rounded contact section 32 comes into contact with the rotary piston surface.

Figur 3 zeigt in einer schematischen Schnittdarstellung einen Drehkolben 20, der um die Schwenkachse 21 drehbar gelagert ist. Der Drehkolben 20 weist eine Einfahrseite 221 und eine Ausfahrseite 222 auf. Der zweiflüglige Drehkolben 20 weist eine Kontur auf, die punktsymmetrisch zu dem Mittelpunkt 21 ist, der den Drehpunkt ausbildet. Der maximale Drehkolbenradius RPmax ergibt sich aus dem maximalen Abstand von der Drehachse 21 zur äußeren Kontur des Drehkolbens 20. Rechts und links der Verbindungslinie der beiden maximalen Drehkolbenradien RPmax ist zu erkennen, dass die Kontur des Transportflügels 22 auf der Ausfahrseite 222 weiter beabstandet zu der Verbindungslinie liegt als die Kontur des Transportflügels 22 auf der Einfahrseite 221. In dem der Ausfahrseite 222 zugeordneten Bereich ist somit mehr Material angeordnet. Nach Erreichen des maximalen Drehkolbenradius RPmax fährt das Dichtelement 30 bei einer Weiterdrehung des Drehkolbens 20 sehr schnell in Richtung auf einen minimalen Drehkolbenradius, wohingegen eine Ausfahrbewegung auf der Ausfahrseite 222 wesentlich langsamer stattfindet. figure 3 shows a rotary piston 20 which is rotatably mounted about the pivot axis 21 in a schematic sectional view. The rotary piston 20 has a retraction side 221 and an extension side 222 . The two-wing rotary piston 20 has a contour that is point-symmetrical to the center 21, which forms the pivot point. The maximum rotary piston radius R Pmax results from the maximum distance from the axis of rotation 21 to the outer contour of the rotary piston 20. To the right and left of the line connecting the two maximum rotary piston radii R Pmax it can be seen that the contour of the transport vane 22 on the extension side 222 is further away from of the connecting line lies as the contour of the transport wing 22 on the entry side 221. In the area assigned to the exit side 222, more material is thus arranged. After the maximum rotary piston radius R Pmax has been reached, the sealing element 30 moves very quickly in the direction of a minimum rotary piston radius as the rotary piston 20 rotates further, whereas an extension movement on the extension side 222 takes place much more slowly.

In Figur 4 sind die geometrischen Beziehungen und die Kontur des Drehkolbens 20 detaillierter dargestellt. Die dargestellte Kontur des Drehkolbens 20 ist punktsymmetrisch zum Mittelpunkt 21 des Minimaldrehkolbenradius RPmin ausgebildet. Von dem maximalen Drehkolbenradius RPmax verläuft die Kontur auf der Einfahrseite 221 steil abfallend in Richtung auf den minimalen Drehkolbenradius RPmin.In figure 4 the geometric relationships and the contour of the rotary piston 20 are shown in more detail. The contour of the rotary piston 20 shown is point-symmetrical to the center point 21 of the minimum rotary piston radius R Pmin . From the maximum rotary lobe radius R Pmax , the contour runs steeply on the entry side 221 in the direction of the minimum rotary lobe radius R Pmin .

Die Konturkurve hat auf der Einfahrseite einen Wendepunkt in der Krümmung, ungefähr auf der Höhe des halben maximalen Drehkolbenradius. Die Kontur läuft dann in den minimalen Drehkolbenradius RPmin über, folgt dieser und geht dann in die Ausfahrseite 222 über, auf der die Kontur eine Krümmung ohne Wendepunkt bis zum maximalen Drehkolbenradius RPmax durchführt.The contour curve has a turning point in the curvature on the retraction side, approximately at half the maximum rotor radius. The contour then merges into the minimum rotary lobe radius R Pmin , follows it and then merges into the extension side 222 on which the contour executes a curve without turning point up to the maximum rotary lobe radius R Pmax .

Betrachtet man die Kontur des Drehkolbens über den Drehwinkel, erstreckt sich die Einfahrseite 221 in diesem Ausführungsbeispiel über einen Drehwinkel von ca. 40°, wenn die dargestellte Position die Ausgangsstellung ist. Über einen Winkelbereich von ca. 20° folgt die Kontur dem minimalen Drehkolbenradius RPmin, um dann für einen Drehwinkelbereich von ca. 120° die Ausfahrseite 222 zu bilden.If one considers the contour of the rotary piston over the angle of rotation, the retraction side 221 in this exemplary embodiment extends over an angle of rotation of approximately 40° when the position shown is the starting position. The contour follows the minimum rotary piston radius R Pmin over an angular range of approximately 20°, in order then to form the extension side 222 for a rotational angle range of approximately 120°.

Durch die nicht klappsymmetrische Ausgestaltung der Kolbenkontur zu der Verbindungslinie der beiden maximalen Drehkolbenradien RPmax werden unterschiedliche Einfahrgeschwindigkeiten und Ausfahrgeschwindigkeiten bei konstanter Drehzahl des Drehkolbens 20 realisiert. Aufgrund der geringen Steigung der Kontur auf der Ausfahrseite wird das Dichtelement 30 und damit auch der Dichtkörper 42 wesentlich langsamer nach außen gedrückt als sie nach innen einfahren können. Neben den Verbesserungen hinsichtlich des Energieverbrauches führt die Ausgestaltung des Drehkolbens 20 mit einem steileren Abfall auf der Einfahrseite 221 im Vergleich zu dem Steigungsverhalten auf der Ausfahrseite 220 zu einem vergrößerten Pumpkammervolumen, da Material des Drehkolbens und Volumen des Drehkolbens 20 auf der Einfahrseite reduziert wurde. Die vergleichsweise größere Materialmenge auf der Ausfahrseite stellt die ausreichende Stabilität des Drehkolbens 20 sicher. Somit kann eine Vergrößerung des Pumpvolumens pro Umdrehung des Drehkolbens 20 bei gleichbleibender Stabilität und einem verbesserten Pumpverhalten erreicht werden.Due to the non-folding-symmetrical configuration of the piston contour relative to the connecting line of the two maximum rotary piston radii R Pmax , different retraction speeds and extension speeds are realized at a constant rotational speed of the rotary piston 20 . Due to the slight incline of the contour on the extension side, the sealing element 30 and thus also the sealing body 42 are pressed outwards much more slowly than they can retract inwards. In addition to the improvements in energy consumption, the design of the rotary lobe 20 with a steeper drop on the retraction side 221 compared to the gradient behavior on the extension side 220 leads to an increased pumping chamber volume, since the material of the rotary lobe and volume of the rotary lobe 20 on the retraction side have been reduced. The comparatively larger amount of material on the extension side ensures sufficient stability of the rotary piston 20 . Thus, an increase in the pump volume per revolution of the rotary piston 20 can be achieved with the same stability and improved pump behavior.

Figur 5 zeigt eine Einzeldarstellung eines Dichtelementes 30, das auswechselbar an dem Dichtkörper 42 angeordnet werden kann. Das Dichtelement 30 weist eine ebene Kontaktfläche 31 und einen sich daran anschließenden gerundeten, distalen Kontaktabschnitt 32 auf, der entfernt zu dem Lagerpunkt 41 orientiert ist. Ebenfalls weist das Dichtelement 30 einen proximalen, zum Lagerpunkt 41 hin orientierten, gerundeten Kontaktabschnitt 33 auf, der ebenfalls mit der Kontur des Drehkolbens 20 in Kontakt treten kann. Wie in den Figuren 1 und 2 zu erkennen, gleitet der gerundete Kontaktabschnitt 32 im Wesentlichen während der Einfahrbewegung auf der Kontur des Drehkolbens 20 ab, während die Berührlinie 24 oder der Berührpunkt 24 zwischen dem Dichtelement 30 und dem Drehkolben 20 nach Erreichen des minimalen Drehkolbenradius auf der ebenen Kontaktfläche 31 verläuft und in Richtung auf das dem gerundeten Kontaktabschnitt 32 gegenüberliegende Ende 33 des Dichtelementes 30, das gerundet ausgebildet ist, wandert. Die Berührlinie 24 oder der Berührpunkt 24 wandert somit über den Drehwinkel des Drehkolbens auf dem Dichtelement 30 entlang. Als besonders vorteilhaft hat sich erwiesen, den kleinen Radius 33 über einen Winkel größer 90° auszuführen, bevor die Fläche 34 anschließt. Hierdurch wirkt die Fläche 34 wie ein Abstreifer für das zu fördernde Medium vom Drehkolben. figure 5 shows an individual representation of a sealing element 30 which can be arranged on the sealing body 42 in an exchangeable manner. The sealing element 30 has a flat contact surface 31 and an adjoining rounded, distal contact section 32 which is oriented away from the bearing point 41 . The sealing element 30 also has a proximal, rounded contact section 33 oriented towards the bearing point 41, which also matches the contour of the Rotary piston 20 can come into contact. As in the figures 1 and 2 As can be seen, the rounded contact section 32 essentially slides off the contour of the rotary piston 20 during the retraction movement, while the contact line 24 or the contact point 24 between the sealing element 30 and the rotary piston 20 runs on the flat contact surface 31 after the minimum rotary piston radius has been reached and in Direction of the rounded contact portion 32 opposite end 33 of the sealing element 30, which is rounded, migrates. The line of contact 24 or the point of contact 24 thus migrates along the sealing element 30 over the angle of rotation of the rotary piston. It has proven particularly advantageous to run the small radius 33 over an angle greater than 90° before the surface 34 connects. As a result, the surface 34 acts like a scraper for the medium to be conveyed from the rotary piston.

Die Abfolge der Berührpunkte über eine halbe Umdrehung eines Drehkolbens mit zwei Transportflügeln und damit eine Verdeutlichung der Wirklinie zwischen den Extremwerten RWmax und RWmin ist in der Figur 6 dargestellt. Die Wirklinie für das Ausfahren auf der Ausfahrseite 222 sieht zunächst vor, dass der Schwenkarm 43 von der Drehachse 21 weg nach außen in Richtung auf den maximalen Drehkolbenradius bewegt wird. Dies ist durch den aufsteigenden rechten Abschnitts des Diagramms in Figur 6 gezeigt. Ist der maximale Drehkolbenradius erreicht, wandert die Wirklinie in den linken Diagrammbereich, was durch den Pfeil an dem oberen, schräg nach links reichenden Abschnitt des Diagramms verdeutlicht wird. Anschließend wandert auf einem vergrößerten Wirklinienradius der Berührpunkt oder die Berührlinie auf der Einfahrseite 221 nach unten, also in Richtung auf die Drehachse 21. Wenn der minimale Drehkolbenradius erreicht ist, wandert die Berührlinie oder der Berührpunkt wieder auf einen kleineren Radius, was durch den halben unteren und rechten Bereich des Diagramms dargestellt ist.The sequence of the points of contact over half a revolution of a rotary piston with two transport vanes and thus a clarification of the line of action between the extreme values R Wmax and R Wmin is shown in figure 6 shown. The line of action for the extension on the extension side 222 initially provides that the swivel arm 43 is moved outwards away from the axis of rotation 21 in the direction of the maximum rotary piston radius. This is in by the ascending right section of the chart figure 6 shown. If the maximum rotary lobe radius is reached, the line of action moves to the left-hand diagram area, which is illustrated by the arrow on the upper section of the diagram that extends diagonally to the left. Subsequently, the contact point or the contact line on the entry side 221 migrates downwards on an enlarged effective line radius, i.e. in the direction of the axis of rotation 21. When the minimum rotary piston radius is reached, the contact line or the contact point migrates again to a smaller radius, which is half the lower one and right area of the diagram.

In der Figur 7 ist in einer prinzipiellen Darstellung gezeigt, wie der Berührpunkt 24 oder die Berührlinie 24 zwischen dem Dichtelement 30 und der Kontur des Drehkolbens 20 zwischen einem maximalen Wirklinienradius RWmax und einem minimalen Wirklinienradius RWmin wandert. Um sicherzustellen, dass keine Doppelberührung zwischen Dichtelement 30 und dem Drehkolben 20 vorliegt, ist die Dichtleiste in einem Winkel α zwischen der Geraden durch den Drehpunkt des Schwenkarmes 43 und dem Berührpunkt des Dichtelementes 30 und der ebenen Kontaktfläche 31 in der Stellung in dem maximalen Drehkolbenradius zwischen 5° und 25°, insbesondere zwischen 12° und 18° geneigt.In the figure 7 is shown in a basic representation of how the contact point 24 or the contact line 24 between the sealing element 30 and the contour of the rotary piston 20 migrates between a maximum effective line radius R Wmax and a minimum effective line radius R Wmin . To ensure that there is no double contact between the sealing element 30 and the rotary piston 20, the sealing strip at an angle α between the straight line through the pivot point of the swivel arm 43 and the contact point of the sealing element 30 and the flat contact surface 31 in the position in the maximum rotary piston radius between 5° and 25°, in particular between 12° and 18°.

Mit einer wie oben beschriebenen Drehkolbenpumpe ist es möglich, das Dichtelement auf einem möglichst kurzen Weg von einem maximalen Drehkolbenradius zu einem minimalen Drehkolbenradius zu bewegen, ohne dass ein Ablösen des Dichtelementes von der Drehkolbenoberfläche erfolgt. Durch die Einwölbung des Transportflügels auf der Einfahrseite ist es möglich, einerseits unterschiedliche Wirklinien beim Einfahren und beim Ausfahren des Dichtelementes und andererseits eine maximale Einfahrgeschwindigkeit des Dichtelementes und eine reduzierte Ausfahrgeschwindigkeit des Dichtelementes zu realisieren. Weiterhin wird durch die besondere Formgestaltung die Reibung zwischen dem Dichtelement und dem Kolben, insbesondere bei der Ausfahrbewegung durch die Begrenzung des Winkels zwischen der Senkrechten auf den Drehkolben und der Tangente an die Bewegungsrichtung des Dichtelementes, verringert.With a rotary lobe pump as described above, it is possible to move the sealing element over the shortest possible path from a maximum rotary lobe radius to a minimum rotary lobe radius without the sealing element becoming detached from the rotary lobe surface. Due to the arching of the transport wing on the entry side, it is possible on the one hand to realize different lines of action when the sealing element is inserted and extended and on the other hand a maximum retraction speed of the sealing element and a reduced extension speed of the sealing element. Furthermore, due to the special design, the friction between the sealing element and the piston, particularly during the extension movement, is reduced by limiting the angle between the perpendicular to the rotary piston and the tangent to the direction of movement of the sealing element.

Eine quasi-Linearbewegung des Dichtelementes wird durch den vergleichsweise großen Radius bei einer schwenkbaren Lagerung des Dichtkörpers an einem Schwenkarm erreicht, der 1,5 bis zweimal so groß wie der Radius des Drehkolbens ist.A quasi-linear movement of the sealing element is achieved by the comparatively large radius with a pivotable mounting of the sealing body on a pivot arm, which is 1.5 to twice the radius of the rotary piston.

BezugszeichenlisteReference List

1 -1 -
Drehkolbenpumperotary lobe pump
10 -10 -
GehäuseHousing
11 -11 -
Einlassinlet
12 -12 -
Auslassoutlet
20 -20 -
Drehkolbenrotary piston
21 -21 -
Drehachse des DrehkolbensAxis of rotation of the rotary piston
22 -22 -
Transportflügeltransport wing
221 -221 -
Einfahrseiteentry side
222 -222 -
Ausfahrseiteexit side
24 -24 -
Berührpunkt/Berührlinietouch point/line of touch
30 -30 -
Dichtelementsealing element
31 -31 -
Kontaktflächecontact surface
32 -32 -
Kontaktabschnittcontact section
33 -33 -
Kontaktabschnittcontact section
34 -34 -
Abstreifflächewiper surface
35 -35 -
Dichtleistesealing strip
36 -36 -
Oberseitetop
37 -37 -
Gewindethread
38 -38 -
Unterseitebottom
39 -39 -
AbsatzUnit volume
40 -40 -
Dichtkörpersealing body
41 -41 -
Lagerpunktstorage point
42 -42 -
Sperrflügellocking wing
43 -43 -
Schwenkarmswivel arm
44 -44 -
Hohlraumcavity
45 -45 -
Bohrungdrilling
430 -430 -
Schwenkarmquerschnittswing arm cross section
BD -BD -
Breite des DichtelementsWidth of the sealing element
RPmin -RPmin -
minimaler Drehkolbenradiusminimum rotor radius
RPmax -RPmax -
maximaler Drehkolbenradiusmaximum rotor radius
RWmin -RWmin -
minimaler Wirklinienradiusminimum line of action radius
RWmax -RWmax -
maximaler Wirklinienradiusmaximum line of action radius
S -S -
Senkrechte auf die DrehkolbenflächePerpendicular to the rotary piston surface
T -T -
Tangente an die Bewegungsrichtung des DichtelementesTangent to the direction of movement of the sealing element
α -α -
Winkel zwischen Kontaktfläche und Verbindungslinie Lagerpunkt-BerührpunktAngle between the contact surface and the line connecting the bearing point to the point of contact
β -β -
Winkel zwischen S und TAngle between S and T

Claims (14)

  1. A lobe pump with
    a. a housing (10), having an inlet (11) and an outlet (12) for the medium to be pumped,
    b. at least one lobe (20), which is mounted in the housing (10) so as to be drivable and rotatable and which has at least two conveying vanes (22) provided with a contour, which lobe conveys the medium to be delivered from the inlet (11) to the outlet (12),
    c. and with one sealing element (30) per lobe (20), which is mounted on a sealing body (42) and runs over the contour of the lobe (20) during rotation of the lobe (20) and performs an outward travel movement from a minimum diameter of the lobe (20) to a maximum diameter of the lobe (20) and an inward travel movement from the maximum diameter of the lobe (20) to the minimum diameter of the lobe (20) on different sides of the conveying vanes (22), wherein the distance which the sealing element (30) covers on the inward travel side (221) of the conveying vane (22) during the inward travel movement is smaller than the distance on the outward travel side (222) during the outward travel movement, characterized in that the contour on the outward travel side (222) has a curvature without inflection point and the contour on the inward travel side (221) has at least one inflection point.
  2. The lobe pump as claimed in claim 1, characterized in that the minimum lobe radius on the inward travel side (221) is reached by the sealing element (30) at an angle of rotation of between 20° and 90° from the maximum lobe radius.
  3. The lobe pump as claimed in one of the preceding claims, characterized in that the maximum lobe radius is reached by the sealing element (30), once it has left the minimum lobe radius on the outward travel side (222), at an angle of rotation of between 90° and 160°.
  4. The lobe pump as claimed in one of the preceding claims, characterized in that the cross-sectional area of the conveying vane (22) is smaller on the inward travel side (221) than on the outward travel side (222).
  5. The lobe pump according to one of the preceding claims, characterized in that the lobe (20) has two conveying vanes (22), the contours of which are pointsymmetrical to the axis of rotation (21).
  6. The lobe pump as claimed in one of the preceding claims, characterized in that the sealing body (42) is mounted swivelably within the housing (10) on a locking vane (40) or embodied as a displaceable, spring-loaded slide.
  7. The lobe pump as claimed in claim 6, characterized in that the distance between the bearing point (41) of the locking vane (40) and the point of contact (24) of the sealing element (30) with the conveying vane (22) is between 1.5 times and 2 times as large as the lobe radius.
  8. The lobe pump as claimed in one of claims 6 or 7, characterized in that the locking vane (40) is mounted in the housing (10) on the outlet side and has a swivel arm (43) with a rounded or oval cross-section (430).
  9. The lobe pump as claimed in one of the preceding claims, characterized in that the sealing element (30) has a planar contact surface (31) and at least one adjacent rounded contact portion (32, 33).
  10. The lobe pump as claimed in claim 9, characterized in that the rounded contact portion (32, 33) extends over a circular arc with a central angle of greater than or equal to 90° and is adjoined by a scraping surface (34).
  11. The lobe pump as claimed in claim 9 or 10, characterized in that the angle (α) between the straight line through the bearing point (41) of the swivel arm (43) and the point of contact (24) of the sealing element (30) and the planar contact surface (31) amounts at the maximum lobe radius to between 5° and 25°, preferably between 10° and 20°, particularly preferably between 12° and 18°.
  12. The lobe pump as claimed in one of the preceding claims, characterized in that, at the point of contact (24) of lobe (20) and sealing element (30), the angle (β) between the perpendicular (S) to the lobe surface and the tangent (T) to the direction of movement of the sealing element (30) amounts to between 0° to 70° on inward travel and between 0° to 45° on outward travel.
  13. The lobe pump as claimed in one of the preceding claims, characterized in that the line of action of the sealing element (30), as the profile of the distance between the point of contact (24) of the sealing element (30) and the bearing point (41) thereof, is different on the outward travel side (222) from the line of action of the sealing element (30) on the inward travel side (221).
  14. The lobe pump as claimed in claim 13, characterized in that the line of action of the sealing element on the outward travel side (222) has a smaller radius than on the inward travel side (221).
EP19705493.5A 2018-02-15 2019-02-14 Lobe pump Active EP3752715B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018103460.1A DE102018103460B4 (en) 2018-02-15 2018-02-15 rotary lobe pump
PCT/EP2019/053640 WO2019158631A1 (en) 2018-02-15 2019-02-14 Lobe pump

Publications (2)

Publication Number Publication Date
EP3752715A1 EP3752715A1 (en) 2020-12-23
EP3752715B1 true EP3752715B1 (en) 2023-03-29

Family

ID=65440967

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19705493.5A Active EP3752715B1 (en) 2018-02-15 2019-02-14 Lobe pump

Country Status (7)

Country Link
US (1) US11927185B2 (en)
EP (1) EP3752715B1 (en)
CN (1) CN111742114B (en)
DE (1) DE102018103460B4 (en)
MX (1) MX2020005971A (en)
WO (1) WO2019158631A1 (en)
ZA (1) ZA202004574B (en)

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7251C (en) * SCHNEIDER und JAQUET in Strafsburg Detachable brake clutch
DE125174C (en) 1900-03-15 1901-11-13
US676687A (en) * 1900-03-09 1901-06-18 Abram S Piatt Rotary engine.
GB151338A (en) * 1919-06-19 1920-09-20 Richard Bracken Improvements relating to the manufacture of churns
FR626596A (en) * 1926-12-21 1927-09-14 Rotary suction and pressure pump
NL25897C (en) 1930-11-06 1931-11-17 N V Machinen Gebr Stork & Co
DE850721C (en) 1950-01-10 1952-09-29 Franz Dipl-Ing Nebel Rotary lobe pump, preferably for pumping concrete and dry bulk material
GB746338A (en) * 1953-05-29 1956-03-14 Franz Nebel Improvements in or relating to rotary piston pumps
DE960411C (en) 1953-05-30 1957-03-21 Franz Nebel Dipl Ing Rotary lobe pump for conveying viscous substances, in which a positively controlled abutment slide follows the contour of the rotary lobe
DE1709909U (en) 1954-09-22 1955-11-03 Braunschweigische Maschb Ansta SINGLE-AXIS ROTARY LISTON PUMP FOR PUMPING LIQUIDS.
AT189063B (en) 1954-11-20 1957-02-25 Franz Dipl Ing Nebel Working and power machine for gaseous or liquid media or conveying machine for liquid and dry media
DE1553140A1 (en) 1964-07-30 1970-02-05 Nebel Franz Dipl Ing Rotary lobe pump, also as a press
DE1553163A1 (en) * 1965-07-10 1970-04-23 Lederle Pumpen & Maschf Rotary lobe pump
DE6753460U (en) 1968-09-21 1969-04-30 Gutehoffnungshuette Sterkrade ROTARY LISTON PUMP
DE6927594U (en) 1969-07-12 1971-08-12 Braunschweigische Maschb Nstal ROTARY LISTON PUMP.
DE7811068U1 (en) 1978-04-13 1979-02-22 Wibau (Westdeutsche Industrie- Und Strassenbau-Maschinen-Gesellschaft Mbh), 6466 Gruendau ROTARY LISTON PUMP, IN PARTICULAR FOR THE PROMOTION OF CONCRETE OR DGL. BUILDING MATERIAL MIXTURES
CN2411360Y (en) * 1999-11-02 2000-12-20 韩梅 Coaxial multiple output end combined pump
US20050254968A1 (en) * 2004-05-14 2005-11-17 Patterson Albert W Impeller pump with reciprocating vane and non-circular rotor
GB0921968D0 (en) * 2009-12-17 2010-02-03 Epicam Ltd A rotary deviceand method of designingand makinga rotary device
GB201202255D0 (en) * 2012-02-09 2012-03-28 Quantex Patents Ltd Pumps
GB201218428D0 (en) * 2012-10-15 2012-11-28 Quantex Patents Ltd Pump assemblies
GB201504553D0 (en) * 2015-03-18 2015-05-06 Quantex Patents Ltd Pumps

Also Published As

Publication number Publication date
WO2019158631A1 (en) 2019-08-22
CN111742114B (en) 2022-06-24
MX2020005971A (en) 2020-12-07
EP3752715A1 (en) 2020-12-23
ZA202004574B (en) 2022-01-26
US20210363988A1 (en) 2021-11-25
CN111742114A (en) 2020-10-02
US11927185B2 (en) 2024-03-12
DE102018103460B4 (en) 2023-02-16
DE102018103460A1 (en) 2019-08-22

Similar Documents

Publication Publication Date Title
EP1766237B1 (en) Single-winged vacuum pump
DE4041248A1 (en) ROTARY PISTON PUMP WITH VARIABLE DISPLACEMENT
EP1424495A2 (en) Vane pump
DE2853916C2 (en) Diaphragm pump with a ring diaphragm
DE1553031C3 (en) Rotary lobe pump for pumping viscous substances
DE2838607A1 (en) ROTATING PISTON MACHINE
DE1779259A1 (en) Rotor for a machine for mixing rubber, plastic or the like.
EP3752715B1 (en) Lobe pump
EP0321779B1 (en) Hinged connection made from at least two extruded profiles
DE2452771A1 (en) Peristaltic pump with hose lying on a support face - works without pressure fluctuations and is suitable for pumping blood
DE10164813B4 (en) Rotary pump
DE102007031901B4 (en) Reciprocating positive displacement pump with filling level increasing inlet
DE102007031909A1 (en) Rotary pump e.g. lubricating oil pump, for motor vehicle, has muzzle region formed such that cell base near rotation axis ends in overlapping by rotary drive of transport wheel, while cell region is still in overlap with sealing surface
DE2249591B2 (en) Rotary piston pump with adjustable delivery rate
EP0469135B1 (en) Gear pump or motor
WO2007140758A1 (en) Vane pump
DE4322584C2 (en) Internal gear machine (pump or motor)
DE2230773A1 (en) DISPLACEMENT MACHINE
DE2643770A1 (en) HYDRAULIC MACHINE WITH AXIALLY ARRANGED PISTONS
DE2853915C2 (en) Rotary piston pump
DE1553239A1 (en) Rotary pump
DE2160162C2 (en) Rotary piston pump with annular duct - has disc-shaped swivel vanes rotated through annular displacement duct and sealing it between outlet and inlet
AT504396B1 (en) ROTATION PUMP FOR PROMOTING ABRASIVE CONVEYING MEDIA
DE10109769A1 (en) Internal gear pump without filler
EP3805521A1 (en) Vane pump

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200902

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221109

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019007333

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1556787

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230629

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230630

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230731

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230729

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019007333

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240216

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240222

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502019007333

Country of ref document: DE

Owner name: BMA BRAUNSCHWEIGISCHE MASCHINENBAUANSTALT GMBH, DE

Free format text: FORMER OWNER: BMA BRAUNSCHWEIGISCHE MASCHINENBAUANSTALT AG, 38122 BRAUNSCHWEIG, DE