EP3752207A1 - Procédé de préparation d'un lysat plaquettaire irradié - Google Patents

Procédé de préparation d'un lysat plaquettaire irradié

Info

Publication number
EP3752207A1
EP3752207A1 EP19705334.1A EP19705334A EP3752207A1 EP 3752207 A1 EP3752207 A1 EP 3752207A1 EP 19705334 A EP19705334 A EP 19705334A EP 3752207 A1 EP3752207 A1 EP 3752207A1
Authority
EP
European Patent Office
Prior art keywords
platelet lysate
radiation
factor
irradiation
uvc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19705334.1A
Other languages
German (de)
English (en)
Inventor
Bruno Delorme
Sabrina VIAU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maco Pharma SAS
Original Assignee
Maco Pharma SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maco Pharma SAS filed Critical Maco Pharma SAS
Publication of EP3752207A1 publication Critical patent/EP3752207A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0018Culture media for cell or tissue culture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/10Inactivation or decontamination of a medicinal preparation prior to administration to an animal or a person
    • A61K41/17Inactivation or decontamination of a medicinal preparation prior to administration to an animal or a person by ultraviolet [UV] or infrared [IR] light, X-rays or gamma rays
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0644Platelets; Megakaryocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/6437Coagulation factor VIIa (3.4.21.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/644Coagulation factor IXa (3.4.21.22)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/6443Coagulation factor XIa (3.4.21.27)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/022Filtration
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2529/00Culture process characterised by the use of electromagnetic stimulation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2529/00Culture process characterised by the use of electromagnetic stimulation
    • C12N2529/10Stimulation by light

Definitions

  • the invention relates to a method of preparing an irradiated platelet lysate and an irradiated platelet lysate obtained by such a method and a method of culturing cells using such an irradiated platelet lysate.
  • the invention applies to the field of blood platelet derivatives, and in particular to the field of cell culture for culturing cells for therapeutic use, more particularly mesenchymal stem cells.
  • RPMI Roswell Park Memorial Institute
  • MEM Modified Eagle Medium
  • DMEM Dulbecco Modified Eagle Medium
  • basic media consisting mainly of mineral salts, glucose, acids, are conventionally used. amino, vitamins and nitrogen bases.
  • These basal media are usually supplemented extemporaneously with antibiotics to prevent bacterial contamination, L-glutamine - an unstable amino acid - and between 1.5 and 10% fetal calf serum as a nutritional supplement.
  • TGF-beta1 Transforming Growth Factor-betal
  • EGF epidermal growth factor
  • platelet derived growth factor AB platelet derived growth factor AB
  • platelet-derived growth factor BB platelet-derived growth factor-AB
  • growth factor 1 Insulin-Like Growth Factor-1
  • IGF-1 Insulin-Like Growth Factor-1
  • VEGF Vascular Endothelial Growth Factor
  • FGF-2 Fibroblast Growth Factor 2
  • bFGF basic fibroblast growth factor
  • keratinocytes have been cultured in the presence of platelet lysate: keratinocytes, renal epithelial cells, leukemia or solid tumor cell lines, as well as human primary cells such as adipocytes, amniotic fluid stem cells, bone marrow stromal cells, chondrocytes, corneal cells, endothelial cells, keratinocytes, mesenchymal stem cells, monocytes and osteoblasts (Pons, Miriam, et al., Fluman platelet lysate as validated replacement for animal serum to assess chemosensitivity. "ALTEX-Alternatives to animal experimentation (2016).
  • Platelet lysate is typically prepared from a platelet suspension in plasma or a plasma mixture and platelet additive solution, which is subjected to one or more freeze / thaw cycles to release the growth factors contained in the platelet lysate. platelets by cell lysis.
  • a disadvantage of such a platelet lysate is that it contains fibrinogen, from plasma, in an amount ranging from about 0.5 to 3 mg / ml, so that the addition of an anticoagulant to the basal medium is necessary to avoid coagulation of the basal medium (Burnouf T, Strunk D, Koh MB, et al .: Human platelet lysate: replacing bovine feast serum as a gold standard for human cell propagation? Biomaterials 2016; 76: 371-387) .
  • heparin The most used anticoagulant is heparin. But commercially available heparins are generally of porcine origin, so that the culture medium, although devoid of fetal calf serum, still includes a xenogeneic product. In addition, at certain concentrations, heparin has a negative effect on cell proliferation (Viau, Sabrina, et al.) Pathogen reduction through additive-free short-wave UV light irradiation retains the optimal efficacy of human platelet lysate for expansion of human bone marrow mesenchymal stem cells. "PloS one 12.8 (2017): e0181406).
  • a first method is described in WO 2013/003356, which consists in adding calcium chloride to the platelet lysate, inducing the conversion of fibrinogen to fibrin and the formation of a clot. The clot is then removed by centrifugation to obtain a lysate comprising less than 0.05 mg / ml of fibrinogen. This method, however, causes a loss of growth factors that would be trapped in the clot.
  • An indirect method is to remove plasma that contains fibrinogen from the starting platelet suspension, for example by performing several platelet wash cycles prior to preparing the platelet lysate.
  • This strategy is for example described in document WO 2008/034803 and in document US 2012/0156306.
  • the elimination of plasma results in the elimination of other plasma proteins such as albumin, necessary for cell proliferation.
  • Laner-Plamberger et al. propose an original method of adding the non-defibrinogenic platelet lysate to the base medium to form a gel of fibrin, then destroy and remove this gel by vigorous stirring and centrifugation.
  • the platelet lysate supplemented basal medium thus obtained is free of fibrinogen, but still contains the other plasma proteins (J Transi Med (2015) 13: 354).
  • this method is complex to implement in the context of a standardized industrial production and controlled quality of platelet lysates.
  • the platelet lysate is irradiated with ionizing radiation to be sterilized.
  • the irradiated platelet lysate may comprise less than 0.4 mg / ml of fibrinogen.
  • a platelet lysate was prepared from platelet concentrates comprising platelets suspended in 30% plasma and 70% of a preservation solution, and then irradiated at a dose of 35 or 45 kGy. When the platelet lysate is added in an amount of 8% in the basal medium, the basal medium does not coagulate.
  • a platelet lysate prepared from platelet concentrates comprising platelets suspended in 30% plasma, comprising between 20 and 30 g / l of total proteins, and irradiated at about 35 kGy according to the method described in document WO 2016/193591 coagulates at 15% and above in a MEM base medium lacking heparin.
  • the Applicant has considered increasing the irradiation dose used up to 75 kGy to obtain a sterile and non-coagulable platelet lysate, even at high concentration in the basal medium. But at a very high dose of irradiation with gamma radiation, the plasma proteins of interest for cell growth are degraded.
  • WO 2013/042095 and the article by S. Castiglia disclose platelet lysate obtained from buffy coat platelet concentrates that have been virally inactivated by UVA-type ultraviolet radiation in the presence of psoralen, a chemical intercalating agent for DNA. This viral inactivation technique, however, has the disadvantage of having to use a chemical agent which must then be removed from the treated product.
  • platelet lysate free of pathogens is described in the article by S. Viau (Viau, Sabrina, et al., Pathogen reduction through additive-free short wave UV light irradiation retains the optimal efficacy of human platelet lysate for the expansion of human bone marrow mesenchymal stem cells. "PloS one 12.8 (2017): e0181406).
  • platelet lysate is obtained from platelet concentrates that have been virally inactivated by UVC radiation in the absence of a chemical agent.
  • the invention provides a method for preparing a platelet lysate with a reduced power of coagulation in the presence of calcium, while retaining the plasma proteins necessary in particular for cell proliferation.
  • the invention provides a process for preparing an irradiated platelet lysate comprising the following steps:
  • a platelet lysate in order to obtain a starting platelet lysate, said starting platelet lysate comprising, on the one hand, platelet factors including growth factors and, on the other hand, plasma proteins including coagulation factors and proteins other than coagulation factors,
  • the double irradiation of said starting platelet lysate with UVC radiation of wavelength between 200 and 280 nm and with ionizing radiation having a wavelength of less than or equal to 100 nm, in order to obtain a platelet lysate irradiated by UVC radiation and ionizing radiation, said dual radiation by UVC radiation and ionizing radiation being arranged to retain at least 75% of the total protein concentration of said starting platelet lysate while reducing by at least 40% the concentration of at least one of said coagulation factors including fibrinogen, factor II, factor VII, factor IX, factor X and factor XI of the starting platelet lysate.
  • the invention relates to the irradiated platelet lysate obtained by the process according to the first aspect of the invention.
  • the invention provides a method for culturing cells, particularly animal cells and more particularly mesenchymal stem cells, comprising contacting said cells with a nutrient composition comprising a base medium and an irradiated platelet lysate. according to the second aspect of the invention.
  • Figures 1 to 6 show, respectively, the factor concentrations of IGF-1, TGF-beta1, bFGF, PDGF-AB, EGF and VEGF in three batches of UVC irradiated platelet lysate, as a function of irradiation dose. .
  • Figures 7 to 11 represent, respectively, the concentrations of factor II, factor VII, factor IX, factor X and factor XI coagulation factors, expressed as a percentage relative to normal human normal plasma, in three lots of irradiated platelet lysate. by UVC radiation, depending on the irradiation dose.
  • Figure 12 illustrates the amplification factors in the 7 th day of culture mesenchymal stem cells cultured in the presence of UVC radiation irradiated platelet lysate according to the radiation dose.
  • FIGS. 13 to 16 show, respectively, the growth factor concentrations bFGF, PDGF-AB, PDGF-BB and TGF-beta1, a non-irradiated platelet lysate (LP), a platelet lysate irradiated with UVC radiation at a dose of 1 J / cm 2 and then irradiated by gamma radiation at a dose of 35 kGy (LP-UVC-G35) and a platelet lysate irradiated by UVC radiation at a dose of 1 J / cm 2 and then irradiated with gamma radiation at a dose of 55 kGy (LP-UVC-G55).
  • LP non-irradiated platelet lysate
  • UVC radiation at a dose of 1 J / cm 2 and then irradiated by gamma radiation at a dose of 35 kGy
  • LP-UVC-G55 a platelet lysate irradi
  • Figures 17 and 18 show, respectively, the total protein concentrations and vitamin B12 concentrations, a non-irradiated platelet lysate (LP), a platelet lysate irradiated by UVC radiation at a dose of 1 J / cm 2 then irradiated with gamma radiation at a dose of 35 kGy (LP-UVC-G35) and a platelet lysate irradiated by UVC radiation at a dose of 1 J / cm 2 and then irradiated with gamma radiation at a dose of 55 kGy (LP -UVC-G55).
  • LP non-irradiated platelet lysate
  • UVC radiation a platelet lysate irradiated by UVC radiation at a dose of 1 J / cm 2 then irradiated with gamma radiation at a dose of 35 kGy
  • LP-UVC-G55 a platelet lysate irradiated by
  • Figure 19 shows the amplification factors in the 7 th day of culture mesenchymal stem cells cultured in the presence of a non-irradiated platelet lysate (PL), a platelet lysate irradiated by UVC radiation at a dose of 1 J / cm 2 then irradiated with gamma radiation at a dose of 35 kGy (LP-UVC-G35) and a platelet lysate irradiated by UVC radiation at a dose of 1 J / cm 2 and then irradiated with gamma radiation at a dose of 55 kGy (LP-UVC-G55).
  • PL platelet lysate
  • the invention relates to a method for preparing an irradiated platelet lysate for the purpose of obtaining a platelet lysate having a reduced coagulation power.
  • Platelet lysate refers to the product of platelet lysis, that is to say the product obtained after disintegration of the platelet cell membrane which leads to the release of the molecules (growth factors, cytokines) normally contained in the platelet lysate. inside the pads.
  • the lysis of the platelets is for example carried out by one or more freezing / thawing cycles, by the use of ultrasound or by a solvent / detergent treatment.
  • the method according to the invention firstly comprises the step of providing a platelet lysate to obtain a platelet lysate starting, said starting platelet lysate comprising on the one hand platelet factors including growth factors and plasma proteins including coagulation factors and proteins other than coagulation factors.
  • Platelet lysate is produced from platelets suspended in a liquid comprising plasma.
  • a platelet suspension is, for example, a platelet concentrate or a mixture of platelet concentrates, a buffy coat, or a buffy coat, a platelet-rich plasma, or a platelet-rich plasma mixture. More particularly, the platelet suspension is a platelet concentrate obtained from apheresis or prepared from a blood donation or a mixture of platelet concentrates from apheresis or prepared from blood donations.
  • the mixture comprises between 4 and 50 platelet concentrates, in particular between 5 and 30 platelet concentrates.
  • the preparation of a platelet lysate from a mixture of several platelet concentrates, in particular more than four platelet concentrates, is advantageous because it makes it possible to standardize the platelet lysate, that is to say to homogenize the concentration of its platelets.
  • different components including growth factor concentration (Viau S, Eap S, et al., A standardized and accurate clinical grade human platelet lysate for the effective expansion of human bone marrow mesenchymal stem cells.) May 2017, Volume 19, Issue 5 Supplement, Page S195).
  • growth factor concentrations of a platelet lysate are dependent on the original platelet donor.
  • Platelet concentrates are either fresh, that is, qualified to be transfused to a patient, or expired, that is, stored for 5 days or more after preparation and can no longer be transfused to a patient. .
  • Such platelet concentrates include platelets suspended in a plasma-containing liquid medium.
  • the liquid medium comprises only plasma.
  • the liquid medium further comprises a platelet preservation solution, such as SSP + solution (Maco Pharma) or Intersol® (Fresenius Kabi).
  • the liquid medium comprises from 20% to 100%, in particular 30% of plasma and from 0% to 80%, in particular 70% of platelet preservation solution.
  • Lysis of a platelet suspension comprising platelets in plasma provides a starting platelet lysate comprising on the one hand platelet factors normally contained within the platelets and on the other hand plasma components.
  • Plasma consists of 90% water, salts such as sodium, chlorine and calcium, lipids such as triglycerides and cholesterol, hormones, vitamins such as vitamin B12 and vitamin D and proteins such as albumin, immunoglobulins, coagulation factors including fibrinogen, antithrombin III involved in the coagulation chain, globulins, interleukins and interferons.
  • the starting platelet lysate to which the method of the invention is applied comprises in particular on the one hand platelet factors including growth factors and on the other hand plasma proteins including coagulation factors and proteins other than the factors coagulation.
  • TGF-beta1 TGF-beta1
  • EGF EGF
  • PDGF-AB IGF-1
  • VEGF VEGF
  • bFGF vascular endothelial growth factor
  • Other growth factors found in the platelet lysate include connective tissue growth factor (CTGF) and stromal cell-derived factor 1 -alpha (SDF-1alpha, Stromal Cell- Derived Factor-1 alpha). These growth factors are said to be endogenous.
  • CGF connective tissue growth factor
  • SDF-1alpha stromal cell-derived factor 1 -alpha
  • SDF-1alpha Stromal Cell- Derived Factor-1 alpha
  • Endogenous substance is any substance produced by the platelets or included in the initial platelet suspension used to prepare the platelet lysate, as opposed to an exogenous substance introduced into the platelet lysate or initial platelet suspension.
  • a platelet lysate produced by freeze / thaw lysis of a platelet suspension comprises the following growth factor concentrations: TABLE 1
  • the starting platelet lysate further includes plasma proteins including coagulation factors and proteins other than coagulation factors.
  • Coagulation factors include fibrinogen, factor II, factor VII, factor IX, factor X and factor XI.
  • Other coagulation factors are factor V and factor VIII.
  • Other plasma proteins other than coagulation factors include albumin and antithrombin III, a protein involved in the coagulation chain.
  • the amount of total protein from the starting platelet lysate therefore depends on the percentage of plasma in the initial platelet suspension prior to platelet lysis.
  • a starting platelet lysate produced from the freeze / thaw lysis of platelet concentrates comprising platelets suspended in 100% plasma comprises in particular the following components: Table 2:
  • a starting platelet lysate produced from the freeze / thaw lysis of platelet concentrates comprising platelets suspended in 30% plasma and 70% of a platelet preservation solution comprises in particular the following components:
  • the step of providing a platelet lysate is understood as providing a platelet lysate. That is, the method of the invention is carried out on a platelet lysate previously produced by lysing platelets of a platelet suspension.
  • the method according to the invention comprises the double irradiation of said starting platelet lysate by UVC radiation of wavelength between 200 and 280 nm and by ionizing radiation having a wavelength less than or equal to 100 nm on the other hand, in order to obtain a platelet lysate irradiated by UVC radiation and by ionizing radiation, said dual radiation by UVC radiation and by gamma radiation being arranged to conserve at least 75% the total protein concentration of said starting platelet lysate while reducing by at least 40% the concentration of at least one of said coagulation factors including fibrinogen, factor II, factor VII, factor IX, factor X and factor XI platelet lysate starting.
  • the double irradiation step is understood as a first irradiation followed by a second irradiation.
  • the first irradiation is irradiation with UVC radiation and the second irradiation is irradiation with ionizing radiation.
  • the first irradiation is irradiation with ionizing radiation and the second irradiation is irradiation with UVC radiation.
  • the first and second irradiations are successive, that is to say carried out one after the other.
  • the step of irradiating said platelet lysate with UVC radiation of wavelength between 200 and 280 nm in order to obtain a platelet lysate irradiated by UVC radiation is especially designed to retain at least 75% of the total protein concentration of the starting platelet lysate while reducing by at least 20% the concentration of at least one of said coagulation factors including fibrinogen, factor II, factor VII, factor IX , factor X and factor XI of the starting platelet lysate.
  • UVC radiation refers to non-ionizing electromagnetic radiation, that is, radiation incapable of causing the ionization of atoms or molecules.
  • the UVC radiation has a wavelength of between 200 and 280 nm, in particular 254 nm.
  • the UVC-irradiated platelet lysate can be used as a base supplement for cell culture.
  • the albumin which represents more than 50% of the proteins in the plasma and which is a particularly important nutrient in the cell culture, is kept at least 80% relative to the starting platelet lysate.
  • At least 80%, and more particularly at least 90% of the total protein concentration in the UVC-irradiated platelet lysate is retained relative to the starting platelet lysate.
  • the UVC irradiated platelet lysate comprises a total protein concentration of from 20 to 80 mg / ml, depending on the plasma concentration of the initial platelet suspension.
  • a platelet lysate produced from freeze / thaw lysis of platelet concentrates comprising platelets suspended in 100% plasma and then irradiated with UVC radiation comprises a total protein concentration ranging from about 55 mg / ml to about 80 mg. / ml.
  • a platelet lysate produced from the freeze / thaw lysis of platelet concentrates comprising platelets suspended in 30% plasma and then irradiated with UVC radiation comprises a total protein concentration ranging from about 18 mg / ml to about 30 mg / ml.
  • the concentration of one of said coagulation factors including fibrinogen, factor II, factor VII, factor IX, factor X and factor XI, the coagulation power of the coagulation factor. Platelet lysate irradiated by UVC radiation is reduced.
  • a base medium comprising calcium for example about 0.2 g / l of calcium chloride will not coagulate in the presence of platelet lysate irradiated with UVC radiation or coagulate from a concentration platelet lysate irradiated by UVC radiation in the basal medium higher than that of a platelet lysate starting from which the basal medium coagulates.
  • the alphaMEM basal medium coagulates in the presence of 5% or more of the starting platelet lysate, whereas this medium coagulates from 10% or more of platelet lysate irradiated by UVC radiation.
  • the UVC-irradiated platelet lysate is added in a range of from 2 to 25%, in particular in the range of 5 to 15%, and even more particularly in the range of 8 to 10% in a medium of based.
  • UVC radiation-irradiated platelet lysate Since the UVC radiation-irradiated platelet lysate has a reduced coagulation power, its use as a base supplement for cell culture is possible, in certain concentrations, without the use of an anticoagulant such as heparin.
  • irradiation with UVC radiation is arranged to reduce by at least 20% the concentration of each of the coagulation factors including fibrinogen, factor II, factor VII, factor IX, factor X and factor XI platelet lysate starting.
  • platelet lysate produced from the freeze / thaw lysis of platelet concentrates comprising platelets suspended in 30% plasma and then irradiated with UVC radiation comprises the following plasma constituents.
  • the starting platelet lysate comprises in particular the endogenous growth factors TGF-beta1, EGF, PDGF-AB, IGF-1, VEGF and bFGF.
  • the irradiation with UVC radiation is in particular designed to retain at least 80% the concentration of one of the growth factors including IGF-1, PDGF-AB, EGF and VEGF of the starting platelet lysate, in particular to be able to use the platelet lysate irradiated as a complement to basal medium.
  • irradiation with UVC radiation is designed to retain at least 80% of the concentration of each of the growth factors including IGF-1, PDGF-AB, EGF and VEGF, in particular to be able to use the irradiated platelet lysate as a complement of basic medium.
  • a platelet lysate produced from the freeze / thaw lysis of platelet concentrates comprising platelets suspended in 30% plasma and then irradiated with UVC radiation comprises the following growth factors. Table 5:
  • the irradiation with UVC radiation is in particular designed to retain at least 75%, particularly at least 80%, of the amplification factor of the mesenchymal stem cells cultured for 7 days in a base medium supplemented with starting platelet lysate.
  • irradiation with UVC radiation is carried out at a dose of between 0.01 to 2 J / cm 2 , particularly between 0.5 J / cm 2 and 1.5 J / cm 2 , and more particularly at 1 J / cm 2 .
  • a UVC radiation dose of less than 0.01 J / cm 2 is not sufficient to degrade the coagulation factors present in the starting platelet lysate.
  • a dose of UVC radiation greater than 2 J / cm 2 damages the growth factors resulting in a significant loss of cell proliferation.
  • the starting platelet lysate is irradiated with UVC radiation in the liquid state.
  • the starting platelet lysate in the liquid state is packaged in a UVC permeable container, such as a UVC permeable irradiation bag.
  • a UVC permeable irradiation bag is in particular made of a material that does not have a maximum adsorption in the range from 200 to 280 nm.
  • the irradiation bag is in particular made of ethylene vinyl acetate or polytetrafluoroethylene.
  • the irradiation bag containing the starting platelet lysate is then placed in a UVC illumination apparatus. The bag is orbitally agitated during irradiation with UVC radiation, so as to homogeneously irradiate the entire platelet lysate.
  • the UVC radiation irradiation of the starting platelet lysate is performed under flow condition.
  • the method comprises, prior to irradiation with UVC radiation, a step of filtering said starting platelet lysate through a porosity filter of 0.65 ⁇ m or less, particularly 0.45 ⁇ m or less.
  • This filtration step makes it possible to eliminate any cell debris originating from the platelet lysis step and which could hinder the irradiation of the platelet lysate.
  • the method comprises, subsequent to irradiation with UVC radiation, a sterilizing filtration step of said platelet lysate irradiated by UVC radiation through a filter of porosity 0.45 ⁇ m or less, particularly 0.22. pm or less.
  • This filtration step through a sterilizing filter makes it possible to retain the bacteria having a size greater than 0.22 ⁇ m and, combined with irradiation with UVC radiation, makes it possible to obtain a platelet lysate having a reduced risk of bacterial and viral contamination. .
  • the method according to the invention comprises a step of irradiating the platelet lysate with ionizing radiation having a wavelength of less than or equal to 100 nm, which is particularly inferior. at 10 nm.
  • Ionizing radiation having a wavelength of less than or equal to 100 nm comprises X-UV rays having a wavelength ranging from 10 nm to 100 nm, the X-rays having a wavelength ranging from 10 pm to 10 nm. nm and gamma rays having a wavelength of less than 10 ⁇ m.
  • the method prior to the ionizing radiation irradiation step, the method comprises a step of freezing said platelet lysate to irradiate the platelet lysate by ionizing radiation in the frozen state.
  • the freezing of the platelet lysate is carried out at a temperature between -10 ° C and -196 ° C, especially about -20 ° C or about -80 ° C.
  • the platelet lysate is irradiated with ionizing radiation in a lyophilized state.
  • the platelet lysate is packaged in a container resistant to freezing and in particular in a freeze resistant bag.
  • the freeze resistant material is especially ethylene vinyl acetate, polyethylene or a fluoropolymer such as fluorinated ethylene-propylene.
  • the irradiation with ionizing radiation is carried out after irradiation with UVC radiation, that is to say that the irradiation with ionizing radiation is performed on the platelet lysate irradiated by UVC radiation.
  • the irradiation with ionizing radiation is carried out after radiation by UVC radiation and subsequent to the sterilizing filtration of the platelet lysate irradiated by UVC radiation, that is to say on the platelet lysate irradiated by UVC radiation and then sterile filtered.
  • the irradiation step by ionizing radiation is carried out on the platelet lysate in its final packaging, in particular in a storage bag.
  • the storage bag is for example made of a material resistant to freezing and radiation by ionizing radiation such as ethylene vinyl acetate.
  • irradiation with ionizing radiation is performed prior to irradiation with UVC radiation on the starting platelet lysate.
  • the ionizing radiation is gamma radiation having a wavelength of less than or equal to 10 ⁇ m.
  • Gamma radiation is an electromagnetic radiation composed of high energy photons of the order of 1.6 MeV. It is for example emitted by a source of cobalt 60.
  • the irradiation with ionizing radiation is arranged so as to keep at least 80% of the concentration of at least one of the endogenous growth factors selected from the group consisting of TGF-beta1 in the ionized radiation-irradiated lysate. , EGF, PDGF-AB, IGF-1 and VEGF of platelet lysate prior to irradiation with ionizing radiation.
  • the gamma radiation irradiation is arranged so as to preserve in the ionized radiation-irradiated lysate at least 80%, particularly at least 90%, and even more particularly 95% of the concentration of each of the growth factors.
  • irradiation with ionizing radiation is gamma irradiation carried out at an absorbed dose in the range of from 20 kGy to 75 kGy, especially from 35 kGy to 55 kGy.
  • the absorbed dose is the amount of energy imparted to the material per unit mass.
  • the irradiation is carried out for a time in the range from 600 seconds to 1800 seconds, preferably from 900 seconds to 1200 seconds, and more preferably for 1075 seconds, with a source having an activity of 1 Mci (3, 7x1019 Bq).
  • the platelet lysate undergoes a double irradiation by UVC radiation and by ionizing radiation, that is to say a first radiation by UVC radiation followed by a second irradiation by ionizing radiation, or a first irradiation with ionizing radiation followed by a second irradiation with UVC radiation.
  • irradiation with ionizing radiation and irradiation with UVC radiation are arranged together to conserve at least 75% of the total protein concentration of the starting platelet lysate.
  • the doubly irradiated platelet lysate retains its interest for use in cell culture or other application for which the proteins are of interest.
  • ionizing radiation irradiation and UVC irradiation are arranged together to reduce by at least 40% the concentration of at least one of the coagulation factors including factor II, factor VII, factor IX, factor X and factor XI of the starting platelet lysate.
  • ionizing radiation irradiation and UVC irradiation are arranged together to reduce by at least 40% the concentration of each of the coagulation factors including factor II, factor VII, factor IX and factor XI platelet lysate starting.
  • a platelet lysate produced from the freeze / thaw lysis of platelet concentrates comprising platelets suspended in 30% plasma, irradiated with UVC radiation and then irradiated with ionizing radiation comprises the following components.
  • the coagulation power of the doubly irradiated platelet lysate is greatly reduced, so that it can be added at high concentration, i.e. at least 20% to a calcium-containing basal medium without coagulation. in the absence of anticoagulant such as heparin.
  • irradiation with UVC radiation is carried out at a dose of between 0.01 to 2 J / cm 2 , particularly between 0.5 J / cm 2 and 1.5 J / cm 2 , and more particularly at 1 J / cm 2
  • irradiation with ionizing radiation is gamma irradiation performed at an absorbed dose in the range of 20 kGy to 60 kGy, particularly 35 kGy to 45 kGy. Since some growth factors are not impacted at the same level by irradiation with UVC radiation and irradiation with ionizing radiation, it is possible to modulate the amount of growth factors in a platelet lysate by modulating the respective parameters of each. both irradiations.
  • the method of the invention also makes it possible to obtain a highly viral and / or bacterial-proof product. .
  • the invention relates to an irradiated platelet lysate obtained by the process according to the first aspect of the invention.
  • the platelet lysate prepared according to the method of preparation of the invention has a particular profile of growth factors and proteins.
  • irradiation with UVC radiation impacts certain growth factors that are not or less impacted by irradiation with ionizing radiation.
  • growth factors include, in particular, EGF, TGF-beta1 and PDGF-BB factors.
  • the UVC irradiated platelet lysate comprises an endogenous EGF growth factor concentration of less than 2800 ⁇ g / ml, and / or an endogenous TGF-beta 1 growth factor concentration of less than 70 000 ⁇ g / ml, especially lower. 40,000 ng / ml, and / or an endogenous growth factor PDGF-BB concentration of less than 12,000 ⁇ g / ml.
  • vitamin B12 impacted by UVC radiation but not by ionizing radiation.
  • the UVC-irradiated platelet lysate comprises a vitamin B12 concentration reduced by 10 to 30% relative to the lysate. platelet count.
  • the concentration of vitamin B12 is in the range of 125 to 140 ⁇ g / ml.
  • Some growth factors or proteins are not or are little impacted by irradiation with UVC radiation and irradiation with ionizing radiation.
  • the UVC irradiated platelet lysate and ionizing radiation include a PDGF-AB growth factor concentration in the range of 16,000 to 45,000 ⁇ g / ml.
  • Some growth factors or proteins are not affected by irradiation with UVC radiation, but are by irradiation with ionizing radiation.
  • antithrombin III a protein involved in the coagulation chain, is only weakly impacted by UVC irradiation, but is more strongly impacted by ionizing radiation.
  • Some growth factors are impacted by both UVC irradiation and ionizing radiation irradiation.
  • the UVC irradiated platelet lysate comprises an endogenous bFGF growth factor concentration of less than 140 ⁇ g / ml.
  • the endogenous bFGF growth factor concentration is less than 90 ⁇ g / ml.
  • the platelet lysate irradiated by UVC radiation and ionizing radiation further comprises a fibrinogen concentration of less than 0.4 mg / ml.
  • the UV irradiated and irradiated ionizing platelet lysate comprises a total protein concentration of between 14 and 80 mg / ml, depending on the initial amount of plasma.
  • the total protein concentration in a platelet lysate produced from the freeze / thaw lysis of platelet concentrates comprising platelets suspended in 100% plasma, irradiated with UVC radiation and with ionizing radiation comprises a total protein concentration ranging from about 55 mg / ml to about 80 mg / ml.
  • the total protein concentration in a platelet lysate produced from the freeze / thaw lysis of platelet concentrates comprising platelets suspended in 30% plasma, irradiated with UVC radiation and with ionizing radiation comprises a total protein concentration ranging from about 18 mg / ml to about 30 mg / ml.
  • the invention relates to a method for culturing cells, particularly animal cells, and more particularly mesenchymal stem cells, comprising contacting said cells with a nutrient composition comprising a base medium and a lysate platelet irradiated according to the second aspect of the invention.
  • the method applies for example to the culture of human or non-human animal cells, such as keratinocytes, epithelial cells, leukemic or solid tumor cell lines, adipocytes, amniotic fluid stem cells, stromal cells. bone marrow, chondrocytes, corneal cells, endothelial cells, mesenchymal stem cells, monocytes, osteoblasts and natural killer cells.
  • mesenchymal stem cells are human mesenchymal stem cells derived from bone marrow or umbilical cord blood.
  • the nutritional composition comprises from 2% to 25%, in particular from 5% to 15%, and even more particularly from 8% to 10% of irradiated platelet lysate according to the invention.
  • the irradiated platelet lysate is added extemporaneously in a preliminary manner to said base medium so as to form said nutritive composition.
  • the irradiated platelet lysate has a reduced coagulation power, it is not necessary to add to the nutritional composition a heparin-type anticoagulant to prevent its coagulation and maintain it in a liquid state.
  • the nutritional composition is in liquid form and free of anticoagulant.
  • a lot of platelet lysate is prepared as described below.
  • Platelet concentrates comprising 70% Intersol® Preservative and 30% Plasma were prepared from a mixture of five buffy coats and stored in storage pouches.
  • the storage bags were frozen at -80 ° C for about 24 hours before being thawed at 4 ° C for about 24 hours.
  • the thawed storage bags are then centrifuged at a rate of 5000 g for 10 minutes so as to separate the supernatant comprising the platelet lysate from the sediment comprising cell debris.
  • the supernatant of each of the storage pockets is transferred to a mixing bag so as to obtain a mixture of platelet lysates (LP).
  • LP platelet lysates
  • the mixture of platelet lysates is transferred, per volume of 500 ml, into irradiation pockets. Air and all bubbles are removed from the irradiation pockets.
  • the irradiation bags are then irradiated with a UVC illumination device (Macotronic UV, Maco Pharma, France), at different doses (0-3.2 J / cm 2 ).
  • the irradiation pockets are agitated at a speed of 1 10 rpm.
  • the contents of the irradiation pockets are re-mixed in a transfer bag.
  • FIGS. 2,3, 5 and 6 show that the concentration of TGF-beta1, bFGF, EGF and VEGF decreases as the dose of UVC increases, starting from 0.8 J / cm 2 .
  • Losses of EGF and VEGF are less important compared to losses of bFGF and TGF-beta1. 23% and 24% loss respectively for bFGF and TGF-beta1 at 0.8 J / cm 2 , and up to 50% and 44% respectively at 1.6 J / cm 2 .
  • Biochemical assays performed on the same 3 lots, were conducted to characterize platelet lysates irradiated at different UVC doses.
  • the results of the plasma factor assays in the platelet lysate after UVC irradiation show that the UVCs have an effect on the factors II, VII, IX, X, and XI.
  • the concentration of these plasma factors decreases as a function of the UVC dose delivered during the irradiation.
  • MSCs Mesenchymal stem cells
  • Figure 12 shows that both experiments generate the same proliferation pattern of CSMs in contact with the UVC irradiated platelet lysate.
  • LP platelet lysate
  • the mixture of platelet lysates is filtered through a 0.45 ⁇ m porosity filter before being irradiated with UVC radiation.
  • the filtered platelet lysate mixture is transferred, per 500 ml volume, into irradiation pockets. Air and all bubbles are removed from the irradiation pockets.
  • the irradiation bags are then irradiated with a UVC illumination apparatus (Macotronic UV, Maco Pharma), at a dose of 1 J / cm 2 .
  • the irradiation pockets are agitated at a speed of 1 10 rpm.
  • the contents of the irradiation pockets are re-mixed in a transfer bag and the mixture of UVC irradiated platelet lysates is filtered through a 0.2 ⁇ m porosity sterilizing filter to form a batch of platelet lysate irradiated with UVC (LP-UVC).
  • UVC UVC
  • UVC-irradiated platelet lysate mixture is then redistributed into 50 ml bags of ethylene vinyl acetate.
  • the 50 ml bags are frozen at -80 ° C and then irradiated with gamma radiation at an absorbed dose of 35 kGy or 55 kGy (LP-UVC-G35 and LP-UVC-G55). The same batch is used for irradiation at 35 kGy or 55 kGy.
  • the concentration of bFGF is impacted by the dual radiation by UVC radiation and by gamma radiation.
  • LP-UVC-G35 loses 50% of its bFGF concentration and LP-UVC-G55 loses 61% of its concentration in bFGF.
  • the concentration of PDGF-AB is slightly impacted by the double radiation by UVC radiation and by gamma radiation: the LP-UVC-G35 loses 13% of its concentration of PDGF-AB, the LP-UVC-G55 loses 24% of its PDGF-AB concentration ( Figure 14).
  • the concentration of PDGF-BB is more strongly impacted by the double irradiation by UVC radiation and by gamma radiation than the concentration of PDGF-AB: the LP-UVC G35 kGy loses 34% of its concentration of PDGF-BB LP-UVC-G55 loses 39% of its PDGF-BB concentration.
  • the effect of the dose of gamma irradiation on the loss of PDGF-BB is not clearly demonstrated.
  • the concentration of TGF-beta1 is impacted by the double radiation by UVC radiation and by gamma radiation, with no effect of the gamma radiation dose: the LP-UVC-G35 loses 31% of its concentration of TGF-beta1 LP-UVC-G55 loses 34% of its concentration of TGF-beta1.
  • the protein assay is performed using a BCA kit (UP40840 / C05KL03).
  • Biochemical analyzes were performed on the following 12 elements:
  • the assay was performed at different platelet lysate concentrations in alphaMEM basal medium without heparin: 2.5%, 5%, 8%, 10%, 15%, and 20%.
  • the basal medium already has a gelled effect, and at 8% platelet lysate, the basal medium is gelled up to 50%.
  • Basal medium containing LP-UVC begins to gel only at 10% LP-UVC concentrations, and at 15% LP-G35 concentrations.
  • basal media containing LP-UVC-G35 and LP-UVC-G55 remain ungelled.
  • the doubly irradiated platelet lysate-containing basal medium does not gel, regardless of the percentage of this doubly irradiated platelet lysate used (up to 20% high doses), even without the addition of heparin.
  • double irradiation significantly degrades the coagulation power of a platelet lysate.
  • the cells used are human primary mesenchymal stem (MSC) stem cells derived from bone marrow from two different donors (M065 and M068). The experiment was performed blind by two experimenters.
  • MSC human primary mesenchymal stem
  • the basic medium used is the alphaMEM medium.
  • the platelet lysates are those of Table 8, at 8% in the basal medium.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Procédé de préparation d'un lysat plaquettaire irradié comprenant les étapes suivantes : - la fourniture d'un lysat plaquettaire de départ comprenant d'une part des facteurs plaquettaires incluant des facteurs de croissance et d'autre part des protéines plasmatiques incluant des facteurs de coagulation et des protéines autres que les facteurs de coagulation, - la double irradiation dudit lysat plaquettaire de départ, par un rayonnement UVC et par un rayonnement ionisant, ladite double irradiation par rayonnement UVC et par rayonnement ionisant étant agencée pour conserver au moins 75% de la concentration en protéines totales dudit lysat plaquettaire de départ tout en réduisant d'au moins 40% la concentration en au moins un desdits facteurs de coagulation incluant le fibrinogène, le facteur II, le facteur VII, le facteur IX, le facteur X et le facteur XI du lysat plaquettaire de départ.

Description

Procédé de préparation d’un Ivsat plaquettaire irradié
L’invention concerne un procédé de préparation d’un lysat plaquettaire irradié ainsi qu'un lysat plaquettaire irradié obtenu par un tel procédé et un procédé de culture de cellules utilisant un tel lysat plaquettaire irradié.
L’invention s’applique au domaine des produits dérivés des plaquettes sanguines, et notamment au domaine de la culture cellulaire pour cultiver les cellules à usage thérapeutique, plus particulièrement les cellules souches mésenchymateuses.
Pour cultiver des cellules animales in vitro, on utilise classiquement des milieux de base de type RPMI (Roswell Park Memorial Institute), MEM (Modified Eagle Medium) ou DMEM (Dulbecco Modified Eagle Medium) comprenant essentiellement des sels minéraux, du glucose, des acides aminés, des vitamines et des bases azotées. Ces milieux de base sont généralement complémentés extemporanément avec des antibiotiques pour prévenir la contamination bactérienne, de la L-glutamine - un acide aminé instable -, et entre 1 ,5 et 10% de sérum de veau fœtal comme complément nutritif.
Pour utiliser des produits plus performants et pour éviter l’utilisation de produits xénogènes dans les cultures de cellules à usage thérapeutique, il a été proposé de remplacer le sérum de veau fœtal par du lysat plaquettaire humain. Ce dernier présente notamment l'avantage de comprendre une quantité importante de facteurs de croissance tels que par exemple le facteur de croissance transformant bêtal (TGF-beta1 , Transforming Growth Factor-betal ), le facteur de croissance épidermique (EGF, Epidermal Growth Factor), le facteur de croissance dérivé des plaquettes AB (PDGF-AB, Platelet-Derived Growth Factor- AB), le facteur de croissance dérivé des plaquettes BB (PDGF-AB, Platelet- Derived Growth Factor-BB), le facteur de croissance 1 ressemblant à l'insuline (IGF-1 , Insulin-like Growth Factor-1 ), le facteur de croissance de l'endothélium vasculaire (VEGF, Vascular Endothélial Growth Factor) et le facteur de croissance des fibroblastes 2 (FGF-2, Fibroblast Growth Factor 2), aussi appelé facteur de croissance des fibroblastes basique (bFGF, Basic Fibroblast Growth Factor).
Ainsi, les cellules animales humaines ou non humaines suivantes ont été cultivées en présence de lysat plaquettaire : les kératinocytes, les cellules épithéliales rénales, les lignées cellulaires leucémiques ou issues de tumeurs solides, de même que les cellules primaires humaines telles que les adipocytes, les cellules souches du fluide amniotique, les cellules stromales de moelle osseuse, les chondrocytes, les cellules cornéennes, les cellules endothéliales, les kératinocytes, les cellules souches mésenchymateuses, les monocytes et les ostéoblastes (Pons, Miriam, et al. "Fluman platelet lysate as validated replacement for animal sérum to assess chemosensitivity." ALTEX-Alternatives to animal expérimentation (2018).
Le lysat plaquettaire est typiquement préparé à partir d’une suspension de plaquettes dans du plasma ou dans un mélange plasma et solution additive pour plaquettes, à laquelle on fait subir un ou plusieurs cycles de congélation/décongélation afin de libérer les facteurs de croissance contenues dans les plaquettes par lyse cellulaire.
Un inconvénient d’un tel lysat plaquettaire est qu’il contient du fibrinogène, provenant du plasma, dans une quantité variant d’environ 0,5 à 3 mg/ml, de sorte que l’addition d’un anticoagulant au milieu de base est nécessaire pour éviter une coagulation du milieu de base (Burnouf T, Strunk D, Koh MB, et al. : Human platelet lysate: replacing fêtai bovine sérum as a gold standard for human cell propagation? Biomaterials 2016; 76:371-387).
L’anticoagulant le plus utilisé est l’héparine. Mais les héparines disponibles dans le commerce sont généralement d’origine porcine, de sorte que le milieu de culture, bien que dépourvu de sérum de veau fœtal, comprend encore un produit xénogène. En outre, à certaines concentrations, l’héparine a un effet négatif sur la prolifération cellulaire (Viau, Sabrina, et al. "Pathogen réduction through additive- free short-wave UV light irradiation retains the optimal efficacy of human platelet lysate for the expansion of human bone marrow mesenchymal stem cells." PloS one 12.8 (2017): e0181406).
Plusieurs stratégies ont été proposées pour éliminer le pouvoir de coagulation d’un lysat plaquettaire :
Une première méthode est décrite dans le document WO 2013/003356, qui consiste à ajouter au lysat plaquettaire du chlorure de calcium, induisant la conversion du fibrinogène en fibrine et la formation d’un caillot. Le caillot est ensuite éliminé par centrifugation pour obtenir un lysat comprenant moins de 0,05 mg/ml de fibrinogène. Cette méthode entraîne cependant une perte en facteurs de croissance qui seraient piégés dans le caillot.
Une méthode indirecte consiste à éliminer le plasma qui contient le fibrinogène de la suspension de plaquettes de départ, par exemple en effectuant plusieurs cycles de lavage des plaquettes avant de préparer le lysat plaquettaire. Cette stratégie est par exemple décrite dans le document WO 2008/034803 et dans le document US 2012/0156306. L’élimination du plasma entraîne cependant de fait l’élimination d’autres protéines plasmatiques telles que l’albumine, nécessaires à la prolifération cellulaire.
Dans le document WO 2017/162830, il est proposé d’éliminer le plasma des suspensions de plaquettes de départ puis de chauffer le lysat plaquettaire entre 55 et 65°C pendant 20 à 40 minutes, de sorte à obtenir une quantité de fibrinogène inférieure à 0,3 mg/ml. Cependant, ce procédé réduit également la quantité des autres protéines présentes dans le lysat plaquettaire d’au moins 70%, ce qui n’est pas souhaitable pour une utilisation en culture cellulaire.
Laner-Plamberger et al. proposent une méthode originale consistant à ajouter le lysat plaquettaire non défibrinogéné au milieu de base afin de former un gel de fibrine, puis de détruire et éliminer ce gel par agitation vigoureuse et centrifugation. Le milieu de base complémenté en lysat plaquettaire ainsi obtenu est dépourvu de fibrinogène, mais contient encore les autres protéines plasmatiques (J Transi Med (2015) 13:354). Cette méthode est cependant complexe à mettre en place dans le cadre d’une production industrielle standardisée et de qualité contrôlée de lysats plaquettaires.
Dans le document WO 2016/193591 , le lysat plaquettaire subit une irradiation par un rayonnement ionisant afin d’être stérilisé. Suivant la dose d’irradiation utilisée, le lysat plaquettaire irradié peut comprendre moins de 0,4 mg/ml de fibrinogène. Selon l’exemple décrit, un lysat plaquettaire a été préparé à partir de concentrés plaquettaires comprenant des plaquettes suspendues dans 30% de plasma et 70% d’une solution de conservation, puis irradié à une dose de 35 ou 45 kGy. Lorsque le lysat plaquettaire est ajouté dans une quantité de 8% dans le milieu de base, le milieu de base ne coagule pas.
Des essais supplémentaires d’irradiation par rayonnement gamma réalisés par le demandeur ont montré que le pouvoir de coagulation du lysat plaquettaire dépendait non seulement de la dose d’irradiation utilisée, mais aussi de la quantité de protéines dans le lysat plaquettaire et de la quantité de lysat plaquettaire ajouté au milieu de base.
Ainsi, un lysat plaquettaire préparé à partir de concentrés plaquettaires comprenant des plaquettes suspendues dans 30% plasma, comprenant entre 20 et 30 g/l de protéines totales, et irradié à environ 35 kGy selon la méthode décrite dans le document WO 2016/193591 , coagule à 15% et plus dans un milieu de base MEM dépourvue d’héparine. Un lysat plaquettaire préparé à partir de concentrés plaquettaires comprenant des plaquettes suspendues dans 100% plasma, comprenant entre 60 et 80 g/l de protéines totales, et irradié à 35 kGy selon la méthode décrite dans le document WO 2016/193591 , coagule dès 5% dans un milieu de base MEM dépourvue d’héparine. Pour réduire le pouvoir de coagulation d’un lysat plaquettaire, le demandeur a envisagé d’augmenter la dose d’irradiation utilisée jusqu’à 75 kGy pour obtenir un lysat plaquettaire stérilisé et non coagulable, même à forte concentration dans le milieu de base. Mais à très forte dose d’irradiation par rayonnement gamma, les protéines plasmatiques d’intérêt pour la croissance cellulaire sont dégradées.
Il reste donc un besoin d’obtenir un lysat plaquettaire avec un pouvoir réduit de coagulation en présence de calcium, même quand le lysat plaquettaire est ajouté à concentration élevée dans un milieu de base comprenant du calcium, tout en préservant les protéines plasmatiques.
En outre, le document WO 2013/042095 et l’article de S. Castiglia (Castiglia, Sara, et al. "Inactivated human platelet lysate with psoralen: a new perspective for mesenchymal stromal cell production in Good Manufacturing Practice conditions." Cytotherapy 16.6 (2014): 750-763) divulguent un lysat plaquettaire obtenu à partir de concentrés de plaquettes issus de buffy coat qui ont subi une inactivation virale par un rayonnement ultraviolet de type UVA en présence de psoralène, un agent chimique intercalant de l’ADN. Cette technique d'inactivation virale présente cependant l’inconvénient de devoir utiliser un agent chimique qui doit ensuite être éliminé du produit traité.
Une autre méthode d’obtention d’un lysat plaquettaire dépourvu de pathogènes est décrite dans l’article de S. Viau (Viau, Sabrina, et al. "Pathogen réduction through additive-free short-wave UV light irradiation retains the optimal efficacy of human platelet lysate for the expansion of human bone marrow mesenchymal stem cells." PloS one 12.8 (2017): e0181406). Dans cet article, un lysat plaquettaire est obtenu à partir de concentrés plaquettaires qui ont subi une inactivation virale par rayonnement UVC, en l’absence d’agent chimique.
Dans ces derniers documents, le lysat plaquettaire préparé à partir de concentrés plaquettaires ayant subi une inactivation virale reste coagulable. L’invention propose un procédé de préparation d’un lysat plaquettaire avec un pouvoir réduit de coagulation en présence de calcium, tout en conservant les protéines plasmatiques nécessaires notamment à la prolifération cellulaire.
Ainsi, selon un premier aspect, l'invention propose un procédé de préparation d’un lysat plaquettaire irradié comprenant les étapes suivantes :
- la fourniture d'un lysat plaquettaire afin d’obtenir un lysat plaquettaire de départ, ledit lysat plaquettaire de départ comprenant d’une part des facteurs plaquettaires incluant des facteurs de croissance et d’autre part des protéines plasmatiques incluant des facteurs de coagulation et des protéines autres que les facteurs de coagulation,
- la double irradiation dudit lysat plaquettaire de départ, par un rayonnement UVC de longueur d’onde comprise entre 200 et 280 nm et par un rayonnement ionisant ayant une longueur d’onde inférieure ou égale à 100 nm, afin d’obtenir un lysat plaquettaire irradié par rayonnement UVC et par rayonnement ionisant, ladite double irradiation par rayonnement UVC et par rayonnement ionisant étant agencée pour conserver au moins 75% de la concentration en protéines totales dudit lysat plaquettaire de départ tout en réduisant d’au moins 40% la concentration en au moins un desdits facteurs de coagulation incluant le fibrinogène, le facteur II, le facteur Vil, le facteur IX, le facteur X et le facteur XI du lysat plaquettaire de départ.
Selon un deuxième aspect, l’invention concerne le lysat plaquettaire irradié obtenu par le procédé selon le premier aspect de l’invention.
Selon un troisième aspect, l’invention propose un procédé pour la culture de cellules, particulièrement de cellules animales et plus particulièrement de cellules souches mésenchymateuses, comprenant la mise en contact desdites cellules avec une composition nutritive comprenant un milieu de base et un lysat plaquettaire irradié selon le deuxième aspect de l’invention.
D'autres objets et avantages apparaîtront au cours de la description qui suit. Les figures 1 à 6 représentent, respectivement, les concentrations en facteurs de IGF-1 , TGF-bêta1 , bFGF, PDGF-AB, EGF et VEGF dans trois lots de lysat plaquettaire irradié par rayonnement UVC, en fonction de la dose d’irradiation.
Les figure 7 à 1 1 représentent, respectivement, les concentrations en facteurs de coagulation facteur II, facteur VII, facteur IX, facteur X et facteur XI, exprimées en pourcentage par rapport à un plasma humain normal étalon, dans trois lots de lysat plaquettaire irradié par rayonnement UVC, en fonction de la dose d’irradiation.
La figure 12 représente les facteurs d'amplification au 7ème jour de culture de cellules souches mésenchymateuses cultivées en présence de lysat plaquettaire irradié par rayonnement UVC en fonction de la dose d’irradiation.
Les figures 13 à 16, montrent respectivement, les concentrations en facteur de croissance bFGF, PDGF-AB, PDGF-BB et TGF-bêta1 , d’un lysat plaquettaire non irradié (LP), d’un lysat plaquettaire irradié par rayonnement UVC à une dose de 1 J/cm2 puis irradié par rayonnement gamma à une dose de 35 kGy (LP-UVC-G35) et d’un lysat plaquettaire irradié par rayonnement UVC à une dose de 1 J/cm2 puis irradié par rayonnement gamma à une dose de 55 kGy (LP-UVC- G55).
Les figures 17 et 18 montrent, respectivement, les concentrations en protéines totales et les concentrations en vitamine B12, d’un lysat plaquettaire non irradié (LP), d’un lysat plaquettaire irradié par rayonnement UVC à une dose de 1 J/cm2 puis irradié par rayonnement gamma à une dose de 35 kGy (LP-UVC-G35) et d’un lysat plaquettaire irradié par rayonnement UVC à une dose de 1 J/cm2 puis irradié par rayonnement gamma à une dose de 55 kGy (LP-UVC-G55).
La figure 19 représente les facteurs d'amplification au 7ème jour de culture de cellules souches mésenchymateuses cultivées en présence d’un lysat plaquettaire non irradié (LP), d’un lysat plaquettaire irradié par rayonnement UVC à une dose de 1 J/cm2 puis irradié par rayonnement gamma à une dose de 35 kGy (LP-UVC-G35) et d’un lysat plaquettaire irradié par rayonnement UVC à une dose de 1 J/cm2 puis irradié par rayonnement gamma à une dose de 55 kGy (LP-UVC-G55).
L’invention concerne un procédé de préparation d’un lysat plaquettaire irradié en vue notamment d’obtenir un lysat plaquettaire ayant un pouvoir de coagulation réduit.
Par lysat plaquettaire, on désigne le produit de la lyse de plaquettes, c'est-à-dire le produit obtenu après désintégration de la membrane cellulaire des plaquettes qui conduit à la libération des molécules (facteurs de croissance, cytokines) normalement contenues à l'intérieur des plaquettes.
La lyse des plaquettes est par exemple réalisée par un ou plusieurs cycles de congélation/décongélation, par l’utilisation d'ultra-sons ou par un traitement au solvant/détergent.
Le procédé selon l’invention comprend d’abord l’étape consistant en la fourniture d'un lysat plaquettaire afin d’obtenir un lysat plaquettaire de départ, ledit lysat plaquettaire de départ comprenant d’une part des facteurs plaquettaires incluant des facteurs de croissance et d’autre part des protéines plasmatiques incluant des facteurs de coagulation et des protéines autres que les facteurs de coagulation.
Le lysat plaquettaire est produit à partir de plaquettes en suspension dans un liquide comprenant du plasma. Une telle suspension de plaquettes est par exemple un concentré de plaquettes ou un mélange de concentrés de plaquettes, une couche leucoplaquettaire, aussi appelée buffy coat, ou un mélange de couches leucoplaquettaires, un plasma riche en plaquettes ou un mélange de plasmas riche en plaquettes. Plus particulièrement, la suspension de plaquettes est un concentré plaquettaire issu d'aphérèse ou préparé à partir d'un don de sang ou un mélange de concentrés plaquettaires issus d'aphérèse ou préparés à partir de dons de sang.
Par exemple, le mélange comprend entre 4 et 50 concentrés plaquettaires, en particulier entre 5 et 30 concentrés plaquettaires.
La préparation d’un lysat plaquettaire à partir d’un mélange de plusieurs concentrés plaquettaires, notamment plus de quatre concentrés plaquettaires, est avantageuse car elle permet de standardiser le lysat plaquettaire, c’est-à-dire d’homogénéiser la concentration de ses différents composants, notamment la concentration en facteurs de croissance (Viau S, Eap S, et al. A standardized and characterized clinical grade human platelet lysate for efficient expansion of human bone marrow mesenchymal stem cells. Cytotherapy. May 2017, Volume 19, Issue 5, Supplément, Page S195).
En effet, les concentrations en facteurs de croissance d’un lysat plaquettaire sont dépendantes du donneur de plaquettes initiales.
Les concentrés plaquettaires sont soit frais, c'est-à-dire qualifiés pour être transfusés à un patient, soit périmés, c'est-à-dire stockés pendant 5 jours ou plus après sa préparation et ne pouvant plus être transfusés à un patient.
De tels concentrés plaquettaires comprennent des plaquettes en suspension dans un milieu liquide contenant du plasma.
Par exemple, le milieu liquide ne comprend que du plasma. Selon un autre exemple, le milieu liquide comprend en outre une solution de conservation des plaquettes, telle que la solution SSP+ (Maco Pharma) ou l'Intersol® (Fresenius Kabi). Dans un exemple particulier, le milieu liquide comprend de 20% à 100%, notamment 30% de plasma et de 0% à 80%, notamment 70% de solution de conservation des plaquettes.
La lyse d’une suspension de plaquettes comprenant des plaquettes dans du plasma fournit un lysat plaquettaire de départ comprenant d’une part des facteurs plaquettaires normalement contenus à l’intérieur des plaquettes et d’autre part des constituants du plasma.
Le plasma est constitué d'eau à 90%, de sels tels que le sodium, le chlore et le calcium, de lipides tels que les triglycérides et le cholestérol, d’hormones, de vitamines telles que la vitamine B12 et la vitamine D et de protéines telles que l'albumine, les immunoglobulines, les facteurs de coagulation dont le fibrinogène, l’antithrombine III impliquée dans la chaîne de coagulation, les globulines, les interleukines et les interférons.
Ainsi, le lysat plaquettaire de départ auquel est appliqué le procédé de l’invention comprend notamment d’une part des facteurs plaquettaires incluant des facteurs de croissance et d’autre part des protéines plasmatiques incluant des facteurs de coagulation et des protéines autres que les facteurs de coagulation.
Ces facteurs de croissance sont notamment le TGF-bêta1 , EGF, PDGF-AB, IGF-1 , VEGF et bFGF. D'autres facteurs de croissance se trouvant dans le lysat plaquettaire sont notamment le facteur de croissance du tissu conjonctif (CTGF, Connective Tissue Growth Factor) et le facteur dérivé des cellules stromales de type 1 -alpha (SDF-1 alpha, Stromal Cell-Derived Factor-1 alpha). Ces facteurs de croissance sont dits endogènes.
Par substance endogène, on désigne toute substance produite par les plaquettes ou comprise dans la suspension de plaquettes initiales utilisées pour préparer le lysat plaquettaire, par opposition à une substance exogène introduite dans le lysat plaquettaire ou dans la suspension de plaquettes initiales. Par exemple, un lysat plaquettaire produit par lyse par congélation/décongélation d’une suspension de plaquettes comprend les concentrations en facteurs de croissance suivantes : Tableau 1 :
Le lysat plaquettaire de départ comprend d’autre part des protéines plasmatiques incluant des facteurs de coagulation et des protéines autres que les facteurs de coagulation.
Les facteurs de coagulation sont notamment le fibrinogène, le facteur II, le facteur VII, le facteur IX, le facteur X et le facteur XI. D’autres facteurs de coagulation sont le facteur V et le facteur VIII. Les autres protéines du plasma autre que les facteurs de coagulation sont notamment l’albumine et l’antithrombine III, protéine impliquée dans la chaîne de coagulation.
La quantité de protéines totales du lysat plaquettaire de départ dépend donc du pourcentage de plasma dans la suspension de plaquettes initiale, avant lyse des plaquettes.
Par exemple, un lysat plaquettaire de départ produit à partir de la lyse par congélation/décongélation de concentrés plaquettaires comprenant des plaquettes suspendues dans 100% plasma comprend notamment les composants suivants : Tableau 2 :
Dans un autre exemple, un lysat plaquettaire de départ produit à partir de la lyse par congélation/décongélation de concentrés plaquettaires comprenant des plaquettes suspendues dans 30% plasma et 70% d’une solution de conservation des plaquettes comprend notamment les composants suivants :
Tableau 3 :
L’étape de fourniture d’un lysat plaquettaire s’entend comme la mise à disposition d’un lysat plaquettaire. C’est-à-dire que le procédé de l’invention est mis en œuvre sur un lysat plaquettaire préalablement produit par lyse des plaquettes d’une suspension de plaquettes.
Après l’étape de fourniture d’un lysat plaquettaire de départ, le procédé selon l’invention comprend la double irradiation dudit lysat plaquettaire de départ par un rayonnement UVC de longueur d’onde comprise entre 200 et 280 nm et par un rayonnement ionisant ayant une longueur d’onde inférieure ou égale à 100 nm d’autre part, afin d’obtenir un lysat plaquettaire irradié par rayonnement UVC et par rayonnement ionisant, ladite double irradiation par rayonnement UVC et par rayonnement gamma étant agencée pour conserver au moins 75% de la concentration en protéines totales dudit lysat plaquettaire de départ tout en réduisant d’au moins 40% la concentration en au moins un desdits facteurs de coagulation incluant le fibrinogène, le facteur II, le facteur Vil, le facteur IX, le facteur X et le facteur XI du lysat plaquettaire de départ.
L’étape de double irradiation s’entend comme une première irradiation suivie d’une deuxième irradiation. Notamment, la première irradiation est une irradiation par rayonnement UVC et la deuxième irradiation est une irradiation par rayonnement ionisant. En alternative, la première irradiation est une irradiation par rayonnement ionisant et la deuxième irradiation est une irradiation par rayonnement UVC. Les première et deuxième irradiations sont successives, c’est-à-dire réalisées l’une après l’autre.
L’étape consistant en l’irradiation dudit lysat plaquettaire par un rayonnement UVC de longueur d’onde comprise entre 200 et 280 nm afin d’obtenir un lysat plaquettaire irradié par rayonnement UVC est notamment agencée pour conserver au moins 75% de la concentration en protéines totales du lysat plaquettaire de départ tout en réduisant d’au moins 20% la concentration en au moins un desdits facteurs de coagulation incluant le fibrinogène, le facteur II, le facteur VII, le facteur IX, le facteur X et le facteur XI du lysat plaquettaire de départ.
Le rayonnement UVC désigne un rayonnement électromagnétique non ionisant, c’est-à-dire un rayonnement incapable de provoquer l'ionisation d'atomes ou de molécules. Le rayonnement UVC possède une longueur d’onde comprise entre 200 et 280 nm, en particulier 254 nm.
En conservant plus de 75% des protéines totales du lysat plaquettaire de départ, le lysat plaquettaire irradié par rayonnement UVC peut être utilisé comme complément pour milieu de base pour culture cellulaire. Notamment, l’albumine qui représente plus de 50% des protéines dans le plasma et qui est un nutriment particulièrement important dans la culture cellulaire, est conservée à au moins 80% par rapport au lysat plaquettaire de départ.
En particulier, au moins 80%, et plus particulièrement au moins 90% de la concentration en protéines totales dans le lysat plaquettaire irradié par rayonnement UVC est conservé par rapport au lysat plaquettaire de départ.
Le lysat plaquettaire irradié par rayonnement UVC comprend une concentration en protéines totales allant de 20 à 80 mg/ml, selon la concentration en plasma de la suspension de plaquettes initiales.
Par exemple, un lysat plaquettaire produit à partir de la lyse par congélation/décongélation de concentrés plaquettaires comprenant des plaquettes suspendues dans 100% plasma puis irradié par rayonnement UVC comprend une concentration en protéines totales allant d’environ 55 mg/ml à environ 80 mg/ml. Selon un autre exemple, un lysat plaquettaire produit à partir de la lyse par congélation/décongélation de concentrés plaquettaires comprenant des plaquettes suspendues dans 30% plasma puis irradié par rayonnement UVC comprend une concentration en protéines totales allant d’environ 18 mg/ml à environ 30 mg/ml.
De plus, en réduisant d’au moins 20% la concentration de l’un desdits facteurs de coagulation incluant le fibrinogène, le facteur II, le facteur VII, le facteur IX, le facteur X et le facteur XI, le pouvoir de coagulation du lysat plaquettaire irradié par rayonnement UVC est réduit.
C’est-à-dire qu’un milieu de base comprenant du calcium, par exemple environ 0,2 g/l de chlorure de calcium ne coagulera pas en présence de lysat plaquettaire irradié par rayonnement UVC ou coagulera à partir d’une concentration de lysat plaquettaire irradié par rayonnement UVC dans le milieu de base plus élevée que celle d’un lysat plaquettaire de départ à partir de laquelle le milieu de base coagule.
Par exemple, le milieu de base alphaMEM coagule en présence de 5% ou plus de lysat plaquettaire de départ, alors que ce milieu coagule à partir de 10% ou plus de lysat plaquettaire irradié par rayonnement UVC.
Notamment, le lysat plaquettaire irradié par rayonnement UVC est ajouté dans une plage allant de 2 à 25 %, en particulier dans la plage allant de 5 à 15%, et encore plus particulièrement dans la plage allant de 8 à 10% dans un milieu de base.
Le lysat plaquettaire irradié par rayonnement UVC ayant un pouvoir de coagulation réduit, son utilisation en tant que complément de milieu de base pour culture cellulaire est possible, dans certaines concentrations, sans utiliser d’anticoagulant tel que l’héparine. En particulier, l’irradiation par rayonnement UVC est agencée pour réduire d’au moins 20% la concentration de chacun des facteurs de coagulation incluant le fibrinogène, le facteur II, le facteur VII, le facteur IX, le facteur X et le facteur XI du lysat plaquettaire de départ.
Par exemple, un lysat plaquettaire produit à partir de la lyse par congélation/décongélation de concentrés plaquettaires comprenant des plaquettes suspendues dans 30% plasma puis irradié par rayonnement UVC comprend les constituants plasmatiques suivants.
Tableau 4 :
De plus, le lysat plaquettaire de départ comprend notamment les facteurs de croissance endogènes TGF-bêta1 , EGF, PDGF-AB, IGF-1 , VEGF et bFGF.
L’irradiation par rayonnement UVC est en particulier agencée pour conserver au moins 80% la concentration de l’un des facteurs de croissance incluant IGF-1 , PDGF-AB, EGF et VEGF du lysat plaquettaire de départ, afin notamment de pourvoir utiliser le lysat plaquettaire irradié comme complément de milieu de base.
En particulier, l’irradiation par rayonnement UVC est agencée pour conserver au moins 80% de la concentration de chacun des facteurs de croissance incluant IGF-1 , PDGF-AB, EGF et VEGF, afin notamment de pourvoir utiliser le lysat plaquettaire irradié comme complément de milieu de base.
Par exemple, un lysat plaquettaire produit à partir de la lyse par congélation/décongélation de concentrés plaquettaires comprenant des plaquettes suspendues dans 30% plasma puis irradié par rayonnement UVC comprend les facteurs de croissance suivants. Tableau 5 :
L’irradiation par rayonnement UVC est en particulier agencée pour conserver au moins 75%, particulièrement au moins 80%, du facteur d’amplification des cellules souches mésenchymateuses cultivées pendant 7 jours dans un milieu de base complémenté avec du lysat plaquettaire de départ.
Selon une réalisation particulière, l’irradiation par rayonnement UVC est réalisée à une dose comprise entre 0,01 à 2 J/cm2, particulièrement entre 0,5 J/cm2 et 1 ,5 J/cm2, et plus particulièrement à 1 J/cm2.
Une dose de rayonnement UVC inférieure à 0,01 J/cm2 n’est pas suffisante pour dégrader les facteurs de coagulation présents dans le lysat plaquettaire de départ. Une dose de rayonnement UVC supérieure à 2 J/cm2 endommage les facteurs de croissance entraînant une perte importante en prolifération cellulaire.
En particulier, le lysat plaquettaire de départ est irradié par rayonnement UVC à l’état liquide.
Par exemple, le lysat plaquettaire de départ à l’état liquide est conditionné dans un récipient perméable aux UVC, telle qu’une poche d’irradiation perméable aux UVC. Une poche d’irradiation perméable aux UVC est notamment réalisée dans un matériau n’ayant pas un maximum d’adsorption dans la plage allant de 200 à 280 nm. La poche d’irradiation est en particulier réalisée en éthylène acétate de vinyle ou en polytétrafluoroéthylène. La poche d’irradiation contenant le lysat plaquettaire de départ est ensuite disposée dans un appareil d’illumination aux UVC. La poche est agitée de façon orbitale pendant l’irradiation par rayonnement UVC, de sorte à irradier de façon homogène la totalité du lysat plaquettaire.
En alternative, l’irradiation par rayonnement UVC du lysat plaquettaire de départ est réalisée sous condition de flux.
Selon une réalisation particulière, le procédé comprend, préalablement à l’irradiation par rayonnement UVC, une étape de filtration dudit lysat plaquettaire de départ au travers d'un filtre de porosité 0,65 pm ou moins, particulièrement 0,45 pm ou moins.
Cette étape de filtration permet d’éliminer les éventuels débris cellulaires provenant de l’étape de lyse des plaquettes et qui pourraient entraver l’irradiation du lysat plaquettaire.
Selon une autre réalisation particulière, le procédé comprend, postérieurement à l’irradiation par rayonnement UVC, une étape de filtration stérilisante dudit lysat plaquettaire irradié par rayonnement UVC au travers d'un filtre de porosité 0,45 pm ou moins, particulièrement 0,22 pm ou moins.
Cette étape de filtration au travers un filtre stérilisant permet de retenir les bactéries ayant une taille supérieure à 0,22 pm et, combinée à l’irradiation par rayonnement UVC, permet d’obtenir un lysat plaquettaire ayant un risque réduit en contamination bactérienne et virale.
Afin de réduire encore plus le pouvoir de coagulation lysat plaquettaire irradié par rayonnement UVC, le procédé selon l’invention comprend une étape d'irradiation du lysat plaquettaire par un rayonnement ionisant ayant une longueur d’onde inférieure ou égale à 100 nm, particulièrement inférieure à 10 nm. Un rayonnement ionisant ayant une longueur d’onde inférieure ou égale à 100 nm comprend les rayons X-UV ayant une longueur d’onde allant de 10 nm à 100 nm, les rayons X ayant une longueur d’onde allant de 10 pm à 10 nm et les rayons gamma ayant une longueur d’onde inférieur à 10 pm.
Un procédé d’irradiation d’un lysat plaquettaire par rayonnement ionisant est notamment décrit dans la demande de brevet WO 2016/193591 .
Dans un tel procédé, préalablement à l’étape d’irradiation par rayonnement ionisant, le procédé comprend une étape de congélation dudit lysat plaquettaire afin d’irradier par rayonnement ionisant le lysat plaquettaire à l’état congelé.
En particulier, la congélation du lysat plaquettaire est réalisée à une température comprise entre -10°C et -196°C, notamment d'environ -20°C ou d’environ -80°C.
En alternative, le lysat plaquettaire est irradié par rayonnement ionisant dans un état lyophilisé.
Pour l’irradiation par rayonnement ionisant dans un état congelé, le lysat plaquettaire est conditionné dans un récipient résistant à la congélation et notamment dans une poche résistante à la congélation. Le matériau résistant à la congélation est notamment de l'éthylène acétate de vinyle, le polyéthylène ou un fluoropolymère tel que l’éthylène-propylène fluoré.
Selon une réalisation particulière avantageuse, l’irradiation par rayonnement ionisant est réalisée postérieurement à l’irradiation par rayonnement UVC, c’est-à-dire que l’irradiation par rayonnement ionisant est réalisée sur le lysat plaquettaire irradié par rayonnement UVC.
Encore plus avantageusement, l’irradiation par rayonnement ionisant est réalisée postérieurement à l’irradiation par rayonnement UVC et postérieurement à la filtration stérilisante du lysat plaquettaire irradié par rayonnement UVC, c’est-à-dire sur le lysat plaquettaire irradié par rayonnement UVC puis filtré stérilement.
Dans ce cas, l'étape d'irradiation par rayonnement ionisant est réalisée sur le lysat plaquettaire dans son conditionnement final, notamment dans une poche de stockage. La poche de stockage est par exemple réalisée en un matériau résistant à la congélation et à l'irradiation par rayonnement ionisant tel que l'éthylène acétate de vinyle.
En alternative, l’irradiation par rayonnement ionisant est réalisée préalablement à l’irradiation par rayonnement UVC sur le lysat plaquettaire de départ.
Selon un mode de réalisation, le rayonnement ionisant est un rayonnement gamma ayant une longueur d’onde inférieure ou égale à 10 pm.
Le rayonnement gamma est un rayonnement électromagnétique composé de photons de haute énergie, de l'ordre de 1 ,6 MeV. Il est par exemple émis par une source de cobalt 60.
L'irradiation par rayonnement ionisant est agencée de sorte à conserver, dans le lysat plaquettaire irradié par rayonnement ionisant, au moins 80% de la concentration de l'un au moins des facteurs de croissance endogènes choisi dans le groupe constitué par le TGF-beta1 , l'EGF, le PDGF-AB, l'IGF-1 et le VEGF du lysat plaquettaire avant irradiation par rayonnement ionisant.
En particulier, l'irradiation par rayonnement gamma est agencée de sorte à conserver dans le lysat plaquettaire irradié par rayonnement ionisant, au moins 80%, particulièrement au moins 90%, et encore plus particulièrement 95% de la concentration de chacun des facteurs de croissance TGF-beta1 , EGF, PDGF-AB, IGF-1 et le VEGF, du lysat plaquettaire avant irradiation par rayonnement ionisant. Par exemple, l’irradiation par rayonnement ionisant est une irradiation par rayonnement gamma réalisée à une dose absorbée comprise dans la plage allant de 20 kGy à 75 kGy, notamment de 35 kGy à 55 kGy.
La dose absorbée est la quantité d'énergie communiquée à la matière par unité de masse.
Par exemple, l’irradiation est effectuée pendant une durée comprise dans la plage allant de 600 secondes à 1800 secondes, préférentiellement de 900 secondes à 1200 secondes, et plus préférentiellement pendant 1075 secondes, avec une source présentant une activité de 1 Mci (3,7x1019 Bq).
Selon le procédé de l’invention, le lysat plaquettaire subit une double irradiation par rayonnement UVC et par rayonnement ionisant, c’est-à-dire une première irradiation par rayonnement UVC suivie d’une deuxième irradiation par rayonnement ionisant, ou bien une première irradiation par rayonnement ionisant suivie d’une deuxième irradiation par rayonnement UVC.
De façon avantageuse, l’irradiation par rayonnement ionisant et l’irradiation par rayonnement UVC sont agencées ensemble pour conserver au moins 75% de la concentration en protéines totales du lysat plaquettaire de départ.
Ainsi, le lysat plaquettaire doublement irradié conserve son intérêt pour une utilisation en culture cellulaire ou autre application pour laquelle les protéines ont un intérêt.
La conservation de la plupart des protéines d’intérêt, dans leur totalité ou en grande partie, ainsi que la conservation des facteurs biochimiques (facteurs également important pour la croissance cellulaire) d’un tel lysat doublement irradié permet de compenser la perte partielle en certains facteurs de croissance induite par chacune des deux irradiations par rayonnement UVC et rayonnement ionisant. En outre, l’irradiation par rayonnement ionisant et l’irradiation par rayonnement UVC sont agencées ensemble de sorte à réduire d’au moins 40% la concentration de l’un au moins des facteurs de coagulation incluant le facteur II, le facteur Vil, le facteur IX, le facteur X et facteur XI du lysat plaquettaire de départ.
En particulier, l’irradiation par rayonnement ionisant et l’irradiation par rayonnement UVC sont agencées ensemble de sorte à réduire d’au moins 40% la concentration de chacun des facteurs de coagulation incluant le facteur II, facteur Vil, facteur IX et facteur XI du lysat plaquettaire de départ.
Par exemple, un lysat plaquettaire produit à partir de la lyse par congélation/décongélation de concentrés plaquettaires comprenant des plaquettes suspendues dans 30% plasma, irradié par rayonnement UVC puis irradié par rayonnement ionisant comprend les composants suivants.
Tableau 6 :
Ainsi, le pouvoir de coagulation du lysat plaquettaire doublement irradié est fortement réduit, de sorte qu’il peut être ajouté à concentration élevée, c’est- à-dire jusqu’au moins 20% à un milieu de base contenant du calcium sans coaguler, en l’absence d’anticoagulant tel que l’héparine.
Par exemple, l’irradiation par rayonnement UVC est réalisée à une dose comprise entre 0,01 à 2 J/cm2, particulièrement entre 0,5 J/cm2 et 1 ,5 J/cm2, et plus particulièrement à 1 J/cm2, et l’irradiation par rayonnement ionisant est une irradiation par rayonnement gamma réalisée à une dose absorbée comprise dans la plage allant de 20 kGy à 60 kGy, particulièrement de 35 kGy à 45 kGy. Comme certains facteurs de croissance ne sont pas impactés au même niveau par l’irradiation par rayonnement UVC et par l’irradiation par rayonnement ionisant, il est possible de moduler la quantité des facteurs de croissance dans un lysat plaquettaire en modulant les paramètres respectifs de chacune des deux irradiations.
De plus, l’irradiation par rayonnement UVC et l’irradiation par rayonnement gamma ayant un effet antibactérien et antiviral, le procédé de l’invention permet en outre d’obtenir un produit hautement sécurisé d’un point de vue viral et/ou bactérien.
Selon un autre aspect, l'invention concerne un lysat plaquettaire irradié obtenu par le procédé selon le premier aspect de l'invention.
Le lysat plaquettaire préparé selon le procédé de préparation de l'invention présente un profil de facteurs de croissance et de protéines particulier.
En particulier, l’irradiation par rayonnement UVC impacte certains facteurs de croissance non ou moins impactés par une irradiation par rayonnement ionisant. Ces facteurs de croissance comprennent notamment les facteurs EGF, TGF-bêta1 et PDGF-BB.
Par exemple, le lysat plaquettaire irradié par rayonnement UVC comprend une concentration en facteur de croissance endogène EGF inférieure à 2 800 pg/ml, et/ou une concentration en facteur de croissance endogène TGF-bêta1 inférieure à 70 000 pg/ml, notamment inférieure 40 000 ng/ml, et/ou une concentration en facteur de croissance endogène PDGF-BB inférieure à 12 000 pg/ml.
Il en va de même de la vitamine B12 impactée par le rayonnement UVC mais pas par le rayonnement ionisant.
Par exemple, le lysat plaquettaire irradié par rayonnement UVC comprend une concentration en vitamine B12 réduite de 10 à 30% par rapport au lysat plaquettaire de départ. En particulier, la concentration en vitamine B12 est comprise dans la plage allant de 125 à 140 pg/ml.
Certains facteurs de croissance ou protéines ne sont pas ou sont peu impactés par l’irradiation par rayonnement UVC et par l’irradiation par rayonnement ionisant.
Ainsi, le lysat plaquettaire irradié par rayonnement UVC et rayonnement ionisant comprend une concentration en facteur de croissance PDGF-AB comprise dans la plage allant de 16 000 à 45 000 pg/ml.
Certains facteurs de croissance ou protéines ne sont pas impactés par l’irradiation par rayonnement UVC, mais le sont par l’irradiation par rayonnement ionisant.
Par exemple, l’antithrombine III, protéine impliquée dans la chaîne de coagulation n’est que faiblement impactée par l’irradiation par rayonnement UVC, mais est plus fortement impactée par le rayonnement ionisant.
Certains facteurs de croissance sont impactés à la fois par l’irradiation par rayonnement UVC et par l’irradiation par rayonnement ionisant.
Ainsi, le lysat plaquettaire irradié par rayonnement UVC comprend une concentration en facteur de croissance bFGF endogène inférieure à 140 pg/ml.
Lorsque le lysat plaquettaire est en plus irradié par rayonnement ionisant, la concentration en facteur de croissance bFGF endogène est inférieure à 90 pg/ml.
Le lysat plaquettaire irradié par rayonnement UVC et par rayonnement ionisant comprend en outre une concentration en fibrinogène inférieure à 0,4 mg/ml.
La double irradiation par rayonnement UVC et rayonnement ionisant n’a pas d’impact notable sur la concentration en protéines totales du lysat plaquettaire. Ainsi, le lysat plaquettaire irradié par rayonnement UVC et irradié par rayonnement ionisant comprend une concentration en protéines totales comprise entre 14 et 80 mg/ml, selon la quantité initiale de plasma.
Plus particulièrement, la concentration en protéines totales dans un lysat plaquettaire produit à partir de la lyse par congélation/décongélation de concentrés plaquettaires comprenant des plaquettes suspendues dans 100% plasma, irradié par rayonnement UVC et par rayonnement ionisant comprend une concentration en protéines totales allant d’environ 55 mg/ml à environ 80 mg/ml.
La concentration en protéines totales dans un lysat plaquettaire produit à partir de la lyse par congélation/décongélation de concentrés plaquettaires comprenant des plaquettes suspendues dans 30% plasma, irradié par rayonnement UVC et par rayonnement ionisant comprend une concentration en protéines totales allant d’environ 18 mg/ml à environ 30 mg/ml.
Selon un troisième aspect, l'invention concerne un procédé pour la culture de cellules, particulièrement de cellules animales, et plus particulièrement encore de cellules souches mésenchymateuses, comprenant la mise en contact desdites cellules avec une composition nutritive comprenant un milieu de base et un lysat plaquettaire irradié selon le deuxième aspect de l’invention.
Le procédé s’applique par exemple à la culture de cellules animales humaines ou non humaines, telles que les kératinocytes, les cellules épithéliales, les lignées cellulaires leucémiques ou issues de tumeurs solides, les adipocytes, les cellules souches du fluide amniotique, les cellules stromales de moelle osseuse, les chondrocytes, les cellules cornéennes, les cellules endothéliales, les cellules souches mésenchymateuses, les monocytes, les ostéoblastes et les cellules tueuses naturelles. Les cellules souches mésenchymateuses sont par exemple des cellules souches mésenchymateuses humaines issues de la moelle osseuse ou du sang de cordon ombilical.
Selon une réalisation particulière, la composition nutritive comprend de 2 % à 25%, en particulier de 5% à 15%, et encore plus particulièrement de 8 à 10% de lysat plaquettaire irradié selon l'invention.
Notamment, le lysat plaquettaire irradié est ajouté extemporanément de façon préliminaire audit milieu de base de sorte à former ladite composition nutritive.
Comme le lysat plaquettaire irradié présente un pouvoir de coagulation réduit, il n'est pas nécessaire d'ajouter à la composition nutritive un anticoagulant de type héparine pour éviter sa coagulation et la maintenir dans un état liquide.
Ainsi, selon un mode de réalisation du procédé pour la culture de cellules, particulièrement de cellules animales, la composition nutritive est sous forme liquide et exempte d'anticoagulant.
Exemple 1 : Lysat plaquettaire irradié par rayonnement UVC
1 .1 Préparation d'un lysat plaquettaire
Un lot de lysat plaquettaire est préparé comme décrit ci-dessous.
Des concentrés plaquettaires (20 concentrés plaquettaires) comprenant 70% de solution de conservation Intersol® et 30% de plasma ont été préparés à partir d'un mélange de cinq buffy coat et conservés dans des poches de stockage.
Les poches de stockage ont été congelées à -80°C pendant une durée d'environ 24 heures avant d'être décongelées à 4°C pendant environ 24 heures. Les poches de stockage décongelées sont ensuite centrifugées à une vitesse de 5000 g pendant 10 minutes de sorte à séparer le surnageant comprenant le lysat plaquettaire du sédiment comprenant les débris cellulaires.
Le surnageant de chacune des poches de stockage est transféré dans une poche de mélange de sorte à obtenir un mélange de lysats plaquettaires (LP).
1.2. Irradiation aux UVC
Le mélange de lysats plaquettaires est transféré, par volume de 500 ml, dans des poches d’irradiation. L’air et toutes les bulles sont éliminés des poches d’irradiation.
Les poches d’irradiation sont ensuite irradiées à l’aide d’un appareil d’illumination aux UVC (Macotronic UV, Maco Pharma, France), à différentes doses (0-3,2 J/cm2). Les poches d’irradiation sont agitées à une vitesse de 1 10 trs/min.
Après irradiation par rayonnement UVC, les contenus des poches d’irradiation sont re-mélangés dans une poche de transfert.
1 .3. Dosages de cytokines
Les tests suivants, réalisés sur 3 lots (LP0,LP1 ,LP2), ont été menés afin de caractériser les lysats plaquettaires irradiés aux différentes doses UVC :
- Dosages à l’aide de kits ELISA de l'IGF-1 (réf. DG100/lot 341313) et du TGF- Bêtal (réf. DB100B/lot 340010),
- Dosages à l’aide de kits ELISA du bFGF (réf. DFB50/lot P104841 ), du PDGF- AB (réf. DHD00C/lot P101565), de l'EGF (réf. DEG00/1 ot 339998), et du VEGF (réf. DVE00/lot P100719)
Les résultats, illustrés sur la figure 1 , montrent que la concentration en IGF-1 dans le lysat plaquettaire n'est pas impactée par l’irradiation aux UVC. La moyenne des 3 lots permet de conclure que la concentration en PDGF-AB est peu ou pas impactée par l'irradiation aux UVC (figure 4).
En revanche, les figures 2,3, 5 et 6 montrent que la concentration en TGF-bêta1 , bFGF, EGF et VEGF, diminue à mesure que la dose d'UVC augmente et ce, à partir de 0,8 J/cm2.
Les pertes en EGF et VEGF sont moins importantes comparées aux pertes en bFGF et TGF-bêta1 . On observe 23% et 24% de perte respectivement pour le bFGF et le TGF-bêta1 à 0,8 J/cm2, et jusqu'à 50% et 44% respectivement à 1 ,6 J/cm2.
1 .4. Dosages de facteurs plasmatiques
Des dosages biochimiques, réalisés sur les 3 mêmes lots, ont été menés afin de caractériser les lysats plaquettaires irradiés aux différentes doses UVC.
Les résultats des dosages des facteurs plasmatiques dans le lysat plaquettaire après irradiation aux UVC, illustrés sur les figures 7 à 1 1 , montrent que les UVC ont un effet sur les facteurs II, Vil, IX, X, et XI. Comme pour le TGF-bêta1 , la concentration de ces facteurs plasmatiques diminue en fonction de la dose UVC délivrée lors de l’irradiation.
1 .5. Impact de l’irradiation par rayonnement UVC sur l'efficacité du LP (prolifération de CSMs)
Des tests de prolifération, réalisés sur 3 lots, ont été menés afin de caractériser les lysats plaquettaires irradiés aux différentes doses (figure 12).
Les cellules souches mésenchymateuses (CSMs) ont été ensemencées en plaques de 6 puits (triplicats pour chaque condition) à 2 500 cellules/cm2. Tous les lysats plaquettaires ont été utilisés à 8% dans un milieu alphaMEM. L'expérience a été effectuée deux fois.
La figure 12 montre que les deux expériences génèrent le même profil de prolifération des CSMs au contact du lysat plaquettaire irradié par rayonnement UVC.
D'une part, on peut noter que les contrôles de lysat plaquettaire non irradié sont bien similaires. De plus, on observe un plateau de 0 J/cm2 à 1 ,2 J/cm2 où la prolifération des CSMs ne semble pas être impactée. Entre 1 ,2 J/cm2 et 1 ,6 J/cm2 la prolifération des CSMs commence à diminuer visiblement.
Ces expériences ont permis de déterminer qu’une irradiation par rayonnement UVC à une dose d’environ 1 J/cm2 permettait de maintenir une concentration en facteurs de croissance suffisante pour assurer une bonne prolifération cellulaire, tout en réduisant visiblement la concentration en facteurs de coagulation.
Exemple 2 : Production industrielle de lysat plaquettaire irradié par rayonnement UVC et par rayonnement gamma
2.1 Préparation du lysat plaquettaire
Plusieurs lots de lysat plaquettaire (LP) ont été produits comme décrit dans l’exemple 1 .1 ci-dessus, à partir de concentrés plaquettaires comprenant des plaquettes suspendues dans 30% plasma et 70% d’une solution additive.
2.2 Irradiation par rayonnement UVC
Le mélange de lysats plaquettaires est filtré au travers un filtre de porosité 0,45 pm avant d’être irradié par rayonnement UVC. Le mélange de lysats plaquettaires filtré est transféré, par volume de 500 ml, dans des poches d’irradiation. L’air et toutes les bulles sont éliminés des poches d’irradiation.
Les poches d’irradiation sont ensuite irradiées à l’aide d’un appareil d’illumination aux UVC (Macotronic UV, Maco Pharma), à une dose de 1 J/cm2. Les poches d’irradiation sont agitées à une vitesse de 1 10 trs/min.
Après irradiation par rayonnement UVC, les contenus des poches d’irradiation sont re-mélangés dans une poche de transfert et le mélange de lysats plaquettaires irradié par rayonnement UVC est filtré au travers un filtre stérilisant de porosité 0,2 pm pour former un lot de lysat plaquettaire irradié aux UVC (LP-UVC).
2.2 Irradiation par rayonnement gamma
Le mélange de lysats plaquettaires irradié aux UVC est ensuite redistribué dans des poches de 50 ml en éthylène acétate de vinyle.
Les poches de 50 ml sont congelées à -80°C puis irradiées par rayonnement gamma à une dose absorbée de 35 kGy ou 55 kGy (LP-UVC-G35 et LP-UVC-G55). Le même lot est utilisé pour l’irradiation à 35 kGy ou à 55 kGy.
2.3 Dosage des cytokines
Dans des échantillons de LP, LP-UVC-G35 et LP-UVC-G55, on dose, à l’aide de kits Elisa commerciaux, la quantité de bFGF (ref.SFB50/ lot P1 16487), PDGF- AB (ref.SHDOOC/ lot P122623), PDGF-BB (ref.SBBOO/ lot P1 16857) et TGF- bêtal (ref.SBI 00B/ lot P1 19433).
Sur la figure 13, la concentration en bFGF est impactée par la double irradiation par rayonnement UVC et par rayonnement gamma. Le LP-UVC-G35 perd 50% de sa concentration en bFGF et le LP-UVC-G55 perd 61 % de sa concentration en bFGF. On observe un effet de la dose de l’irradiation gamma sur la perte de bFGF : plus la dose d’irradiation par rayonnement gamma appliquée est forte, plus la perte en bFGF augmente.
Sur la figure 14, la concentration en PDGF-AB est légèrement impactée par la double irradiation par rayonnement UVC et par rayonnement gamma : le LP-UVC-G35 perd 13% de sa concentration en PDGF-AB, le LP-UVC-G55 perd 24% de sa concentration en PDGF-AB (figure 14).
Sur la figure 15, la concentration en PDGF-BB est plus fortement impactée par la double irradiation par rayonnement UVC et par rayonnement gamma que la concentration en PDGF-AB : le LP-UVC G35 kGy perd 34% de sa concentration en PDGF-BB, le LP-UVC-G55 perd 39% de sa concentration en PDGF-BB. L’effet de la dose de l’irradiation par rayonnement gamma sur la perte de PDGF- BB n’est pas clairement démontré.
Sur la figure 16, la concentration en TGF-bêta1 est impactée par la double irradiation par rayonnement UVC et par rayonnement gamma, sans effet de la dose de rayonnement gamma : le LP-UVC-G35 perd 31 % de sa concentration en TGF-bêta1 , le LP-UVC-G55 perd 34% de sa concentration en TGF-bêta1.
D’après ces résultats, seule la concentration en PDGF-AB est faiblement impactée par la double irradiation par rayonnement UVC et par rayonnement gamma. En revanche la concentration en bFGF diminue d’environ 50% pour les doses étudiées.
2.4 Dosage des protéines
Le dosage de protéines est réalisé grâce à un kit BCA (UP40840/C05KL03).
Aucun effet notable de a double irradiation par rayonnement UVC et par rayonnement gamma n’est observé sur la concentration en protéines (figure 17). 2.5. Dosages biochimiques et facteurs de coagulation
Des analyses biochimiques ont été réalisés sur les 12 éléments suivants :
Parmi les 12 éléments dosés, seule la vitamine B12 est impactée par la double irradiation par rayonnement UVC et par rayonnement gamma. L’effet de la dose de l’irradiation par rayonnement gamma sur la perte de vitamine B12 n’est pas montré (figure 18). Selon le tableau 7 ci-dessous, les concentrations en facteurs de coagulation (Fil, FVII, FIX, FX, FXI) et en antithrombine III (ATM I), protéine impliquée dans la coagulation, sont impactées par la double irradiation par rayonnement UVC et par rayonnement gamma. On observe un effet de la dose de l’irradiation par rayonnement gamma sur la perte en facteurs de coagulation : plus la dose d’irradiation gamma appliquée est forte, plus la perte en facteurs de coagulation augmente.
Tableau 7 : Pourcentages de différence en concentration de protéines par rapport au LP de départ
2.6. Test de gélification
Le test a été réalisé à différentes concentrations de lysat plaquettaire dans le milieu de base alphaMEM sans héparine: 2,5%, 5%, 8%, 10%, 15%, et 20%.
Tableau 8 :
- : pas de gélification
+ : effet gélifié mais quasi liquide
++ : gélifié à 50%
+++ : gélifié à 100%
Pour le lysat plaquettaire non irradié (LP), à faible pourcentage de lysat plaquettaire (2,5%), il n’y a pas d’effet gélifié. Les résultats montrent que plus le pourcentage de lysat plaquettaire présent dans le milieu de base augmente, plus la gélification du milieu de base est importante.
A 5% de LP, le milieu de base a déjà un effet gélifié, et à 8% de lysat plaquettaire, le milieu de base est gélifié jusqu’à 50%.
Le milieu de base contenant du LP-UVC ne commence à gélifier qu’à des concentrations de LP-UVC de 10%, et qu’à des concentrations de LP-G35 de 15%.
Aux pourcentages les plus élevés (15% et 20%), seuls les milieux de base contenant du LP-UVC-G35 et LP-UVC-G55 restent non gélifiés.
En conclusion, le milieu de base contenant du lysat plaquettaire doublement irradié ne gélifie pas, et ce quel que soit le pourcentage de ce lysat plaquettaire doublement irradié utilisé (jusqu’à des doses fortes de 20%), même sans ajout d’héparine. Ainsi, la double irradiation dégrade de façon conséquente le pouvoir de coagulation d’un lysat plaquettaire. 2.7. Tests de prolifération
Les cellules utilisées sont des cellules souches mésenchymateuses (CSM) humaines primaires dérivées de moelle osseuse provenant de deux donneurs différents (M065 et M068). L’expérience a été réalisée en aveugle par deux expérimentatrices.
Le premier jour, on ensemence des plaques 6 puits à 2500 cellules/cm2 en triplicata. Les CSMs humaines sont à P3.
Le milieu de base utilisé est le milieu alphaMEM. Les lysats plaquettaires sont ceux du tableau 8, à 8% dans le milieu de base.
On change le milieu tous les 3 jours. Après 7 jours de culture cellulaire, les cellules sont comptées au ViCell.
On n’observe qu’un faible impact de la double irradiation par rayonnement UVC et par rayonnement gamma sur l’efficacité du lysat plaquettaire : perte de 4% de la prolifération cellulaire causée par le rayonnement UVC et gamma à 35 kGy (figure 19).
En revanche, à 55 kGy, l’irradiation par rayonnement gamma a un impact plus marqué sur l’efficacité du lysat plaquettaire. Ainsi, l’effet cumulé de l’irradiation aux UVC et de l’irradiation gamma à 55 kGy engendre une perte de 18% de la prolifération cellulaire par rapport au contrôle LP. Toutefois, on peut noter que le LP doublement irradié à 55 kGy reste plus efficace que les conditions 10% SVF+bFGF à 1 ng/ml (résultats non montrés).
L’absence d’impact sur la prolifération cellulaire de la double irradiation du lysat plaquettaire par rayonnement UVC et gamma à 35 kGy pourrait être expliquée par le fait que, d’une part, les cytokines d’intérêt et, d’autre part, les différents facteurs biochimiques importants pour la croissance cellulaire (vitamines, ...), ne sont pas ou faiblement impactés. La relative perte de certains de ces facteurs (toujours présents même si pour certains en plus faible quantité) pourrait expliquer l’absence d’effet sur la prolifération cellulaire. De plus, à une irradiation par rayonnement gamma de 55 kGy, l’ensemble des cytokines étant plus impactées qu’à 35 kGy, ceci ne permettrait plus une prolifération optimale des cellules, ce qui pourrait expliquer l’effet négatif de la double irradiation par rayonnement UVC et gamma à 55 kGy sur la prolifération cellulaire (-18%).

Claims

REVENDICATIONS
1. Procédé de préparation d’un lysat plaquettaire irradié comprenant les étapes suivantes :
- la fourniture d'un lysat plaquettaire afin d’obtenir un lysat plaquettaire de départ, ledit lysat plaquettaire de départ comprenant d’une part des facteurs plaquettaires incluant des facteurs de croissance et d’autre part des protéines plasmatiques incluant des facteurs de coagulation et des protéines autres que les facteurs de coagulation,
- la double irradiation dudit lysat plaquettaire de départ par un rayonnement UVC de longueur d’onde comprise entre 200 et 280 nm et par un rayonnement ionisant ayant une longueur d’onde inférieure ou égale à 100 nm d’autre part, afin d’obtenir un lysat plaquettaire irradié par rayonnement UVC et par rayonnement ionisant, ladite double irradiation par rayonnement UVC et par rayonnement ionisant étant agencée pour conserver au moins 75% de la concentration en protéines totales dudit lysat plaquettaire de départ tout en réduisant d’au moins 40% la concentration en au moins un desdits facteurs de coagulation incluant le fibrinogène, le facteur II, le facteur VII, le facteur IX, le facteur X et le facteur XI du lysat plaquettaire de départ.
2. Procédé selon la revendication 1 , caractérisé en ce que la double irradiation par rayonnement ionisant et par rayonnement UVC est agencée pour réduire d’au moins 40% la concentration de chacun des facteurs de coagulation incluant le facteur II, le facteur VII, le facteur IX, le facteur X et facteur XI du lysat plaquettaire de départ.
3. Procédé selon l’une des revendications 1 ou 2, caractérisé en ce que l’irradiation par rayonnement UVC est agencée pour conserver au moins 75% de la concentration en protéines totales dudit lysat plaquettaire de départ, tout en réduisant d’au moins 20% la concentration de l’un au moins, notamment chacun, des facteurs de coagulation incluant le fibrinogène, le facteur II, le facteur IX, le facteur X et le facteur XI du lysat plaquettaire de départ.
4. Procédé selon l’une quelconque des revendications 1 à 3, caractérisé en ce que le lysat plaquettaire de départ comprend au moins les facteurs de croissance endogènes TGF-bêta1 , EGF, PDGF-AB, IGF-1 , VEGF et bFGF, et en ce que l’irradiation par rayonnement UVC est agencée pour conserver au moins 80% de la concentration de l’un au moins des facteurs de croissance incluant IGF-1 , PDGF-AB, EGF et VEGF, et notamment au moins 80% de chacun des facteurs de croissance incluant IGF-1 , PDGF-AB, EGF et VEGF dans le lysat plaquettaire de départ.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l’irradiation par rayonnement UVC est réalisée à une dose comprise entre 0,01 à 2 J/cm2, particulièrement entre 0,5 J/cm2 et 1 ,5 J/cm2, et plus particulièrement à 1 J/cm2.
6. Procédé selon l’une quelconque des revendications 1 à 5, caractérisé en ce que le lysat plaquettaire de départ est irradié par rayonnement UVC à l’état liquide.
7. Procédé selon l’une quelconque des revendications 1 à 6, caractérisé en ce qu'il comprend, préalablement à l’irradiation par rayonnement UVC, une étape de filtration dudit lysat plaquettaire de départ au travers d'un filtre de porosité 0,65 pm ou moins, particulièrement 0,45 pm ou moins.
8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce qu'il comprend, postérieurement à l’irradiation par rayonnement UVC, une étape de filtration stérilisante dudit lysat plaquettaire irradié par rayonnement UVC au travers d'un filtre de porosité 0,45 pm ou moins, particulièrement 0,22 pm ou moins.
9. Procédé selon l’une quelconque des revendications 1 à 8, caractérisé en ce qu’il comprend, préalablement à l’étape d’irradiation par rayonnement ionisant, une étape de congélation dudit lysat plaquettaire afin d’irradier par rayonnement ionisant le lysat plaquettaire à l’état congelé.
10. Procédé selon l’une quelconque des revendications 1 à 9, caractérisé en ce que l’irradiation par rayonnement ionisant est réalisée postérieurement à l’irradiation par rayonnement UVC.
1 1. Procédé selon l’une quelconque des revendications 1 à 10, caractérisé en ce que le rayonnement ionisant est un rayonnement gamma ayant une longueur d’onde inférieure ou égale à 10 pm.
12. Procédé selon l'une quelconque des revendications 1 à 1 1 , caractérisé en ce que l’irradiation par rayonnement ionisant est réalisée à une dose absorbée comprise dans la plage allant de 20 kGy à 75kGy, notamment de 35 kGy à 55 kGy.
13. Lysat plaquettaire irradié obtenu par le procédé selon l'une quelconque des revendications 1 à 12, caractérisé en ce qu’il comprend une concentration en protéines totales comprise entre 18 et 80 mg/ml, une concentration en fibrinogène inférieure à 0,4 mg/ml, et une concentration en facteur de croissance bFGF endogène inférieure à 90 pg/ml.
14. Lysat plaquettaire irradié selon la revendication 13, caractérisé en ce qu’il comprend une concentration en facteur de croissance endogène TGF-bêta1 inférieure à 70 000 pg/ml, une concentration en facteur de croissance endogène EGF inférieure à 2 800 pg/ml, et une concentration en facteur de croissance endogène PDGF-BB inférieure à 12 000 pg/ml.
15. Lysat plaquettaire selon l’une des revendications 13 ou 14, caractérisé en ce qu’il comprend une concentration en vitamine B12 comprise entre 120 et 140 pg/ml.
16. Procédé pour la culture de cellules animales, notamment de cellules souches mésenchymateuses, comprenant la mise en contact desdites cellules avec une composition nutritive comprenant un milieu de base et un lysat plaquettaire irradié selon l'une quelconque des revendications 13 à 15.
17. Procédé selon la revendication 16, caractérisé en ce que la composition nutritive est sous forme liquide et exempte d'anticoagulant.
EP19705334.1A 2018-02-15 2019-02-12 Procédé de préparation d'un lysat plaquettaire irradié Pending EP3752207A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1851307A FR3077823B1 (fr) 2018-02-15 2018-02-15 Procede de preparation d'un lysat plaquettaire irradie
PCT/EP2019/053472 WO2019158540A1 (fr) 2018-02-15 2019-02-12 Procédé de préparation d'un lysat plaquettaire irradié

Publications (1)

Publication Number Publication Date
EP3752207A1 true EP3752207A1 (fr) 2020-12-23

Family

ID=62683308

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19705334.1A Pending EP3752207A1 (fr) 2018-02-15 2019-02-12 Procédé de préparation d'un lysat plaquettaire irradié

Country Status (4)

Country Link
US (1) US20210032590A1 (fr)
EP (1) EP3752207A1 (fr)
FR (1) FR3077823B1 (fr)
WO (1) WO2019158540A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI744300B (zh) * 2016-03-23 2021-11-01 里爾中央醫學中心 改良性熱處理的血小板顆粒裂解液在製備用於治療神經系統疾病的組合物的用途

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090305401A1 (en) 2006-09-18 2009-12-10 Dirk Strunk Plasma-free platelet lysate for use as a supplement in cell cultures and for the preparation of cell therapeutics
EP2334785B2 (fr) * 2008-09-16 2019-08-14 Mayo Foundation For Medical Education And Research Compositions à contenu plaquettaire
IL210162A0 (en) 2010-12-21 2011-03-31 Omrix Biopharmaceuticals Viral inactivated platelet extract, use and preparation thereof
AU2012275562B2 (en) 2011-06-27 2016-10-20 Children's Healthcare Of Atlanta, Inc. Compositions, uses, and preparation of platelet lysates
ITRM20110500A1 (it) * 2011-09-23 2013-03-24 Futura Stem Cells Sa Lisato piastrinico, usi di esso e metodo per la sua preparazione
EP2733200A1 (fr) * 2012-11-15 2014-05-21 Biorigen International SA Suppléments de culture cellulaire
FR3036707B1 (fr) * 2015-05-29 2019-05-17 Maco Pharma Procede de sterilisation d'un lysat plaquettaire
TWI744300B (zh) 2016-03-23 2021-11-01 里爾中央醫學中心 改良性熱處理的血小板顆粒裂解液在製備用於治療神經系統疾病的組合物的用途

Also Published As

Publication number Publication date
FR3077823A1 (fr) 2019-08-16
FR3077823B1 (fr) 2022-01-14
WO2019158540A1 (fr) 2019-08-22
US20210032590A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
EP3303567B1 (fr) Procédé de stérilisation d'un lysat plaquettaire
JP7210465B2 (ja) 成長因子含有血小板放出物を調製する方法
EP0643582B1 (fr) Procede d'obtention d'un surnageant de thrombocytes actives
Li et al. Inhibition of osteoclastogenesis by stem cell-derived extracellular matrix through modulation of intracellular reactive oxygen species
EP0910622B1 (fr) Milieu pour la conservation de materiel biologique
WO2018097225A1 (fr) Liquide de conservation de cellules vivantes ou de composition contenant des cellules vivantes
JP2024026645A (ja) 病原体減少血小板組成物および関連方法
WO2018097228A1 (fr) Liquide de conservation de cellules vivantes ou de composition contenant des cellules vivantes
EP3752207A1 (fr) Procédé de préparation d'un lysat plaquettaire irradié
You et al. MSC-EVs alleviate osteoarthritis by regulating microenvironmental cells in the articular cavity and maintaining cartilage matrix homeostasis
EP3752206A1 (fr) Procédé de préparation d'un lysat plaquettaire irradié
BE1027216A1 (fr) Formulations lyophilisées améliorées comprenant de l'acide hyaluronique et des protéines plasmatiques, et leurs utilisations
RU2795884C2 (ru) Способ получения релизата тромбоцитов, содержащего факторы роста
KR102671387B1 (ko) 혈소판 용해질을 멸균시키기 위한 방법
WO2009044059A2 (fr) Préparations implantables contenant de la globine, procédé pour leur fabrication et utilisations
CA2495909A1 (fr) Degats causes aux acides nucleiques au moyen de riboflavine et de lumiere
Andreu Réduction de pathogènes des concentrés de plaquettes: techniques existantes et en développement
Vorwald Engineering the Therapeutic Potential of Co-Culture Spheroids by Regulating Cell-Cell Contacts and Endogenous Growth Factor Production
WO2018097227A1 (fr) Liquide de conservation de cellules vivantes ou de composition contenant des cellules vivantes

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200915

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)