EP3747079A1 - Systeme de regulation thermique d'au moins un dispositif de stockage electrique d'un vehicule automobile - Google Patents

Systeme de regulation thermique d'au moins un dispositif de stockage electrique d'un vehicule automobile

Info

Publication number
EP3747079A1
EP3747079A1 EP19707423.0A EP19707423A EP3747079A1 EP 3747079 A1 EP3747079 A1 EP 3747079A1 EP 19707423 A EP19707423 A EP 19707423A EP 3747079 A1 EP3747079 A1 EP 3747079A1
Authority
EP
European Patent Office
Prior art keywords
ΐqq
fluid
heat exchanger
electrical
closed circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19707423.0A
Other languages
German (de)
English (en)
Inventor
Mohamed Yahia
Stefan Karl
Roland AKIKI
Jin-ming LIU
Bertrand Nicolas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Systemes Thermiques SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques SAS filed Critical Valeo Systemes Thermiques SAS
Publication of EP3747079A1 publication Critical patent/EP3747079A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/323Cooling devices using compression characterised by comprising auxiliary or multiple systems, e.g. plurality of evaporators, or by involving auxiliary cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the field of the present invention is that of heat treatment systems for a vehicle, in particular for a motor vehicle, and more particularly, the present invention relates to thermal treatment systems for thermal regulation of an electrical storage device for motor vehicles. electric or hybrid.
  • electrical storage generally comprising several electrical modules. Electrical modules, that is to say a plurality of electric cells connected together, are thus arranged under the chassis of these vehicles. These electrical modules can not function well outside a certain temperature range. In particular, to optimize the operation and the life of the latter, it should be maintained at a temperature below 45 ° C, for example.
  • refrigerant circuit also used to heat or cool different areas or different components of the vehicle, to cool the electrical storage device.
  • the refrigerant circuit thus extracts the energy capable of cooling the electrical storage device during its use in rolling phases.
  • the refrigerant circuit may be sufficient to cool the electrical modules of the electrical storage device during a conventional charging phase of the vehicle, namely a charging phase performed by connecting the vehicle for several hours to domestic electrical network.
  • This charging technique makes it possible to maintain the temperature of the electrical storage device below a certain threshold, which makes it possible to reduce the dimensions of the cooling system of the electrical storage device.
  • a new charging technique has appeared recently. It consists of charging the electrical storage device with high voltage and amperage, so as to charge the electrical storage device in a maximum of a few tens of minutes. This rapid charge involves a heating of the electrical storage device which imposes a greater dimensioning of the heat exchanger / (s) for (s) thermal regulation of the electrical storage device.
  • This need for cooling of the electrical storage device is very important during rapid charging phases, this need decreases during rolling phases or so-called "conventional" load.
  • the use of an oversized heat exchanger is then unnecessarily energy consuming or generator of weight and / or bulk.
  • the need for cooling of the storage device is low and at the same time the need for cooling of the passenger compartment of the vehicle is important, it may be difficult to control the cooling power of the storage device electric and cooling power of the passenger compartment.
  • the present invention is in this context and proposes a solution for modulating the cooling of each electrical module of the electrical storage device according to its needs while respecting a temperature difference imposed by the temperature of an air flow. pulsed in the cockpit. It is therefore a question of modulating a cooling power under a fixed temperature difference.
  • An object of the present invention thus relates to a thermal control system of at least one electrical storage device of a motor vehicle, the electrical storage device comprising a plurality of electrical modules, the thermal regulation system comprising at least two heat exchangers heat exchanger capable of being traversed by a fluid, each electrical module of the electrical storage device being thermally coupled to one of the heat exchangers.
  • the control system comprises a plurality of control devices, each control device being associated with an electrical module, and a plurality of supply members, each supply member being configured to regulate the power supply. in fluid of a heat exchanger.
  • the heat exchangers are able to be traversed by a coolant or a heat transfer fluid, the latter may advantageously be a heat transfer liquid.
  • a coolant or a heat transfer fluid the latter may advantageously be a heat transfer liquid.
  • regulation of the supply it is understood that it is for example possible to modify the flow rate of the fluid that supplies these heat exchangers or the temperature of this fluid. In other words, by regulating the supply of a heat exchanger, its cooling capacity is changed, this modification being of course reversible.
  • the control system comprises at least one central control unit to which the control devices are connected.
  • Connected means that a cable provides an electrical connection between each control device and the central control unit.
  • each control device is at least able to transmit and receive information with the central control unit, through these cables.
  • each heat exchanger is thermally coupled to a single electrical module.
  • each control device is configured to determine an instantaneous temperature of the electrical module with which it is associated, and to determine a need for cooling of the electrical module concerned from this instantaneous temperature and a threshold temperature. predetermined. Depending on the need for cooling determined, the flow rate and / or the temperature of the fluid flowing in the heat exchanger which is thermally coupled to the electrical module concerned may be modified.
  • the threshold temperature may be pre-recorded information in the central control unit, the latter being then configured to send this information to the control devices, for example by means of the cables arranged between the central control unit and each of these piloting devices.
  • the threshold temperature may correspond to a maximum temperature supported by the electrical modules of the electrical storage device, that is to say a temperature beyond which these electrical modules may be damaged.
  • the present invention allows an individual and continuous control and regulation of the temperature of the electrical modules of the electrical storage device, which advantageously allows each electrical module to be maintained at its required temperature, or to cool all the modules , especially in running situation or during charging phases of the electrical storage device.
  • each power supply member is under the control of one of the control devices, this power supply member and this control device being associated with one and the same electrical module.
  • each supply member is then configured to regulate the supply of fluid to the heat exchanger which is thermally coupled to the electrical module associated with this supply member.
  • At least one of the control devices associated with the electrical modules is configured to drive the power supply member directly. electrical module with which is associated the steering device concerned.
  • At least one of the driving devices associated with the electrical modules is configured to send an instruction to the central control unit, this central control unit being configured to drive the power supply member of the central control unit. electrical module with which is associated the steering device concerned.
  • control devices can be in communication with each other via the connections with the central unit, or through direct connections between the control devices.
  • the feed members of the heat exchangers may be valves.
  • These valves can be all-or-nothing valves, that is to say valves capable of taking two positions: one in which they allow the circulation of the fluid and one in which they prohibit it.
  • these valves may be proportional valves, that is to say valves in which a fluid passage section is variable, thus allowing a finer regulation of the fluid flow.
  • the control system comprises an expansion member configured to regulate the temperature of the fluid flowing through the heat exchangers.
  • this expansion member may be common to all of the heat exchangers, that is to say that this expansion member participates in the regulation of the temperature of the fluid flowing through all the heat exchangers.
  • the detent member is controlled by the central control unit.
  • the central control unit is configured to vary the temperature of the fluid that passes through the expansion member by changing a passage section of the fluid within the expansion member.
  • the regulation system comprises a closed circuit in which the fluid circulates, this fluid being a refrigerant, a closed circuit on which at least one compression device and a first heat exchanger are arranged, the closed circuit comprising a primary branch carrying an expansion means and a second heat exchanger intended for the heat treatment of an air flow sent to a passenger compartment of the vehicle, and a plurality of secondary branches arranged in parallel with each other; others, each of these secondary branches carrying at least one of the heat exchangers and one of the supply members, this plurality of secondary branches comprising a common portion on which is arranged the trigger member, the closed circuit comprising in in addition to a collector at which primary brandy and secondary branches are connected.
  • the present invention thus advantageously makes it possible to maintain an acceptable temperature in the passenger compartment of the vehicle, while ensuring sufficient cooling of the electrical storage device, and in particular during the rolling phases or during charging phases of the electrical storage device.
  • the expansion member is common to all of the heat exchangers in that the refrigerant fluid that exits the common expansion member is able to supply all of the heat exchangers. heat.
  • the regulation system comprises a first closed circuit in which a refrigerant circulates and on which at least one compression device and a first heat exchanger are arranged, the first closed circuit comprising a branch primary carrying a means of expansion and a second heat exchanger for the heat treatment of an air flow sent to a passenger compartment of the vehicle, the first closed circuit comprising a secondary branch carrying the relaxation member and d a third heat exchanger intended for the heat treatment of the fluid, this fluid being a heat transfer fluid, this third heat exchanger being arranged on a second closed circuit in which the coolant circulates, this second closed circuit comprising a first carrying branch, at least, third heat exchanger and a pump configured to allow the circulation of the coolant in this second closed circuit, this second closed circuit comprising a plurality of second branches in communication with the first branch and arranged in parallel with each other, each of these second branches carrying at least one of the heat exchangers; thermally coupled heat to the electrical modules and one of the power organs of these heat exchangers; thermally coupled heat to the electrical modules
  • this second closed circuit is arranged in parallel with the first closed circuit.
  • the present invention also makes it possible to limit the temperature differences between the different electrical modules that constitute the storage device. electric. For example, this difference can be kept below 2 ° C to 5 ° C.
  • the present invention thus makes it possible to ensure homogeneous aging of these electrical modules and thus to improve the longevity of the electrical storage device.
  • the third heat exchanger is traversed both by the refrigerant circulating in the first closed circuit and by the coolant circulating in the second closed circuit.
  • This third heat exchanger is thus a refrigerant / heat transfer fluid exchanger, that is to say a unit in which calories are exchanged between the coolant and the heat transfer fluid.
  • the expansion member is common to all of the heat exchangers in that it makes it possible to thermally regulate the refrigerant circulating in the first closed circuit and thus, indirectly, this expansion member. allows the thermal fluid to be thermally regulated for supplying the heat exchangers thermally coupled to the electrical modules.
  • each control device is configured to control a voltage and / or an intensity of a current flowing from or to the electrical module with which it is associated. It is understood that this control is thus achieved, by each control device, in charge phases of the electric modules, just as in the discharge phase of these electrical modules, that is to say when these electrical modules provide electricity. to the electric motor of the vehicle on which is integrated the control system according to the invention.
  • FIGS. 1 and 2 schematically illustrate a system for thermal regulation of an electrical storage device at standstill, according to two arrangements of a first embodiment of the present invention
  • FIGS. 3 and 4 are diagrammatic representations of the thermal regulation system illustrated in FIG. 1, according to two examples of operation;
  • FIGS. 5 and 6 schematically illustrate the thermal regulation system of the off-state electrical storage device, according to two arrangements of a second embodiment of the present invention.
  • upstream, downstream, input and output of a component refer to the flow direction of a fluid flowing in a closed circuit of the thermal control system described here.
  • the fluid is symbolized by an arrow on a pipe that illustrates the meaning of circulation of the latter in the considered pipe.
  • the thicker lines illustrate portions of the circuit in which the fluid is under pressure HP and the thinner lines illustrate portions of the circuit in which the fluid is under low BP pressure.
  • the solid lines represent portions of the closed circuit in which the fluid circulates and the dotted lines represent portions of the closed circuit in which the fluid does not circulate.
  • FIGS 1 to 6 illustrate, schematically, a system 100 for thermal regulation of an electrical storage device 300 of a motor vehicle.
  • this thermal control system 100 is also intended for the thermal regulation of a passenger compartment of this vehicle.
  • the electrical storage device 300 which is mentioned here is intended to supply an electric motor that provides all or part of the movement of the vehicle.
  • the thermal control system 100 comprises a closed circuit 110 in which a refrigerant circulates.
  • This closed circuit 110 comprises, in order in a direction S 1 of circulation of the refrigerant fluid, a compression device 120 and a first heat exchanger 130.
  • the compression device 120 may take the form of an electric compressor, that is, a compressor that includes a compression mechanism, an electric motor, and an electrical control and conversion unit.
  • a rotation mechanism specific to the compression device 120 is rotated by the electric motor whose rotation speed is controlled by a control device which is external to it.
  • the speed of rotation of the compression device 120 can be adapted as a function of the flow rate of refrigerant required.
  • the closed circuit 110 Downstream of this first heat exchanger 130, the closed circuit 110 is divided into a primary branch 140 and a plurality of secondary branches 150, this plurality of secondary branches 150 comprising a common portion 250 before dividing.
  • These secondary branches 150 are arranged in parallel with each other, in view of the refrigerant fluid. In order to facilitate the reading of the figures, only two of these secondary branches 150 are referenced in FIGS. 1 and 2, but the description below applies mutatis mutandis to all the secondary branches 150 that equip the thermal regulation system 100. according to the invention.
  • the primary arm 140 comprises an expansion means 141 and a second heat exchanger 142, the latter being for example for cooling a flow of air into the passenger compartment of the vehicle.
  • the second exchanger thermal 142 is disposed downstream of the expansion means 141, and just after it.
  • the common portion 250 to all the secondary branches 150 carries an expansion member 151 downstream of which this common portion 250 is divided into the plurality of secondary branches 150, each of these secondary branches 150 being a carrier of a heat exchanger 152.
  • "Relaxing member 151”, or “expansion means 141” means a member capable of varying a thermal power in the branch considered of the closed circuit 110 by modulating a passage section of the refrigerant fluid within it. They may take the form of a thermostatic expansion valve, an electronic expansion valve, a tube orifice or the like.
  • the heat exchangers 152 are arranged in parallel with each other and that the expansion member 151 is common to all of these heat exchangers 152, being arranged in series of these heat exchangers.
  • the refrigerant flowing out of this expansion member 151 can supply each of the secondary branches 150, simultaneously, and therefore each of the heat exchangers 152 carried by these secondary branches 150.
  • Each secondary branch 150 also carries a valve 153, each of these valves 153 thus being associated with the heat exchanger 152 carried by the secondary branch 150 concerned.
  • each of these valves 153 is referenced but the description below applies mutatis mutandis to all the valves 153 which equip the thermal control system 100 according to the invention.
  • these secondary branches 150 are intended for the cooling of the electrical storage device 300 of the vehicle, and more particularly, each of the heat exchangers 152 that they carry is intended for the cooling of one electrical modules 310 which constitute the electrical storage device 300.
  • each electrical module 310 is thermally coupled to one of these heat exchangers 152.
  • each electrical module 310 can be arranged in contact with one of the heat exchangers 152.
  • the primary branch 140 and the secondary branches 150 meet at a manifold 160 to which they are connected and which is also connected the compression device 120.
  • the refrigerant fluid enters the compression device 120 in gaseous form.
  • This compression device 120 is then configured to compress this gas, that is to say to increase the pressure of the latter.
  • the refrigerant therefore emerges from this compression device 120 in gaseous form, HP pressure and high temperature.
  • This gas under pressure then joins the first heat exchanger 130 in which it is cooled by an exchange of heat with a flow of air passing through the first heat exchanger 130, the air flow being outside the passenger compartment of the vehicle that receives the thermal control system 100 according to the invention.
  • the refrigerant is then in liquid form, always at high HP pressure.
  • the first heat exchanger 130 is comparable to a condenser.
  • the refrigerant then enters the expansion means 141 in which it undergoes a relaxation, that is to say a decrease in its pressure.
  • the refrigerant fluid is thus in two-phase form, that is to say that it comprises a liquid phase and a gaseous phase, and low pressure BP.
  • It then joins the second heat exchanger 142 in which it evaporates by heat exchange with a flow of air passing through the second heat exchanger 142.
  • This second heat exchanger 142 is therefore, according to the illustrated example, comparable to an evaporator .
  • the flow of air thus cooled is then sent to the cabin of the vehicle to cool the latter while the refrigerant fluid from the second heat exchanger 142 in gaseous form and joins the compression device 120 to implement a new thermodynamic cycle .
  • the refrigerant fluid joins the expansion member 151 common to at least two secondary branches 150, and preferably to all the secondary branches 150.
  • This trigger member 151 operates on the same principle as the means of trigger 141 arranged on the primary branch 140.
  • the coolant exits this expansion member 151 in biphasic form, at low pressure LP, and can then supply each of the heat exchangers 152 carried by the different secondary branches 150.
  • the valves 153 may be valves "all or nothing", that is to say valves that can take only two positions: one in which they allow the passage of refrigerant and one in which they prohibit the passage of this refrigerant.
  • the valves 153 may be “proportional” valves, that is to say valves whose passage section through which the refrigerant circulates within them is variable. It is therefore understood that depending on the choice of the valves 153, the regulation of the supply of the heat exchangers 152 associated with these valves 153 will be more or less fine.
  • each of these valves 153 is arranged between the expansion member 151 common to the secondary branches 150 and the heat exchanger 152 with which it is associated.
  • each valve 153 is disposed upstream of the heat exchanger 152 with which it is associated, with respect to the direction Si of circulation of the refrigerant.
  • the heat exchangers 152 arranged on the secondary branches 150 are intended for cooling the electrical modules 310 constituting the electrical storage device 300.
  • the refrigerant fluid enters these heat exchangers 152 in two-phase form, after having passed through the expansion member 151.
  • a heat exchange then takes place between the refrigerant circulating in each of the heat exchangers 152 and the electrical modules 310 of the electrical storage device 300 disposed in contact with these heat exchangers 152. It is understood that that this heat exchange is related to the temperature difference between the refrigerant circulating in the heat exchangers 152 and the temperature of the electrical storage device 300, and more specifically of each of the electrical modules 310 constituting this electrical storage device 300.
  • the partitioning of the supply of these heat exchangers 152 allows a thermal regulation of each electrical module 310, resulting in a fine thermal regulation of the electrical storage device 300. It is indeed understood that depending on the cooling requirement of these electrical modules 310, it will be possible to choose to supply refrigerant fluid to all of these heat exchangers 152, when the need for cooling is important, for example when the electrical storage device 300 is in the fast charging phase, or to feed only a few of these heat exchangers 152 when the need for cooling of the electrical storage device 300 is less important, for example during the rolling phases or so-called "conventional" load.
  • the thermal control system 100 further comprises a plurality of control devices 210 electrically connected to a central control unit 200.
  • This electrical connection can for example be made by cables
  • each of these control devices 210 is associated with one of the electrical modules 310 of the electrical storage device 300.
  • Each control device 210 is thus firstly configured to regulate the intensity and voltage of the an electric current flowing in the electrical module 310 with which it is associated and on the other hand to at least control an instantaneous temperature of the electrical module 310 with which it is associated.
  • instantaneous temperature is meant here a temperature of this electrical module 310 measured at a given instant.
  • the control device 210 can either compare this instantaneous temperature with a threshold temperature that the electrical module 310 concerned must not exceed, or send an information corresponding to this instantaneous temperature to the unit. central control 200 so that it can perform the comparison of this instantaneous temperature to the threshold temperature.
  • the transmission of this information can be carried out by means of the cables 220 which connect each control device 210 to the central control unit 200.
  • the central control unit 200, or each control device 210 are then configured to determine a cooling requirement of the electrical module 310 concerned. When the cooling requirement is determined directly by each control device 210, the latter can be configured to transmit accordingly information corresponding to this cooling requirement to the central control unit 200.
  • this threshold temperature may be a maximum temperature supported by each electrical module 310, that is to say a temperature beyond which these electrical modules 310 may be damaged.
  • the central control unit 200 may decide to reduce the temperature of the refrigerant fluid upstream of the heat exchanger 152 to which is thermally coupled the electrical module 310 concerned and / or d increase the flow rate of this coolant in this heat exchanger 152.
  • the central control unit 200 sends an instruction, for example by means of an electric cable 230, to the expansion member 151 in order to modify the passage section of the cooling fluid. within this one.
  • valve 153 In order to increase the flow rate of refrigerant which feeds the heat exchanger 152 concerned, an instruction is sent to the valve 153 associated with this heat exchanger 152.
  • the opening or the modulation of the passage section refrigerant fluid within the valve 153 is controlled by the control device 210 associated with the electrical module 310 concerned.
  • each control device 210 is electrically connected to the valve 153 which it controls, for example by means of cables 240.
  • the opening or the modulation of the coolant passage section within the valve 153 is controlled by the central control unit 200 which is then electrically connected to each of these valves 153, for example by means of cables 241.
  • the central control unit 200 is able to control each valve 153 independently of the others. Conversely, when the cooling requirement of the electrical module 3'0 decreases, the central control unit 200 may decide to increase the temperature of the refrigerant upstream of the heat exchanger 152 to which the module is thermally coupled. 3'0 and / or decrease the flow rate of this refrigerant in this heat exchanger 152. It is understood that when the need for cooling of the electrical module is zero, the refrigerant supply of the heat exchanger 152 concerned can be cut, for example by closing the corresponding valve 153, that is to say by closing the passage section of the refrigerant within this valve 153 ⁇
  • the flow rate and / or the temperature of the refrigerant is adjustable according to the cooling requirement of each electrical module.
  • FIG. 3 illustrates for example a situation in which the vehicle equipped with the thermal regulation system 100 according to the invention is in the rolling phase.
  • only the two heat exchangers 152 thermally coupled to these two electrical modules 3'0 are fed.
  • FIG. 4 illustrates, for its part, an example of operation in which the electrical storage device 300 is in fast charge state. It will be understood that it is during these rapid charging phases that the cooling requirement of each electrical module 3 '0 is the largest.
  • FIG. 4 illustrates an example of operation of the thermal control system 100 in which all the valves 153 are open, thus supplying all the heat exchangers 152.
  • the system 100 also allows the occupants of the vehicle equipped with this system 100 to maintain an acceptable temperature in the passenger compartment throughout the rapid charging phase, thanks to the heat treatment performed by the second heat exchanger 142.
  • Figures 5 and 6 each illustrate a second embodiment of the thermal control system 100 according to the present invention according to, respectively, the first arrangement and the second arrangement.
  • the thermal control system 100 comprises a first closed circuit 410 and a second closed circuit 420 arranged at least partly in parallel with each other.
  • the first closed circuit 4'0 is similar to the closed circuit 110 described above with reference to the first embodiment.
  • this first closed circuit 410 is traversed by a refrigerant fluid and comprises, in the order in a flow direction Si 'of this refrigerant fluid, a compression device 120', and a first heat exchanger 130 '. Downstream of this first heat exchanger 130 ', the first closed circuit 410 is divided into a primary branch 140' and a secondary branch 150 '.
  • the primary branch 140 ' carries an expansion means 141' and a second heat exchanger 142 'intended for the heat treatment of an air flow sent towards the passenger compartment of the vehicle.
  • the secondary branch 150 ' is carrying an expansion member 151' and a third heat exchanger 400.
  • this third heat exchanger 400 comprises a first portion 4 "in which the coolant circulates and a second portion 421 in which a heat-transfer fluid circulates, as illustrated, this coolant circulates in the second closed circuit 420.
  • This second closed circuit 420 comprises a first branch 422 on which are arranged the third heat exchanger 400 and a pump 423. configured to ensure the circulation of the coolant in this second closed circuit 420 in a direction S 2.
  • the first branch 421 is divided into a plurality of second branches 424, each of these second branches 424 being a carrier.
  • the first closed circuit 410 includes a portion in which the coolant is under pressure HP. On this portion of the first closed circuit 410, the operating principle is the same as that described above, with reference to the first embodiment of the present invention. It is the same for the primary brandy 140 'of this first closed circuit 410.
  • the third heat exchanger 400 carried by the secondary branch 150 ' is thus fed by the refrigerant which exits the expansion member 151' in two-phase form, as previously described.
  • a heat exchange then takes place within this third heat exchanger 400 between the refrigerant circulating in its first portion 411 and the coolant flowing in its second portion 421.
  • this heat transfer fluid is then sent, thanks to the pump 423 to the heat exchangers 152 'for the thermal regulation of the electrical modules 310. It is therefore understood that the refrigerant flowing in the first portion 4 "of the third heat exchanger 400 changes state and goes into phase gaseous by capturing the calories transported by the heat transfer fluid circulating in the second portion 421 of the third heat exchanger 400.
  • the heat transfer fluid is thus discharged from these calories and is then directed, through the pump 423 to the heat exchangers 152 'in which can then take place a transfer of calories between the electrical module 310 thermally coupled to the heat exchanger 152 'in question and this heat transfer fluid.
  • each electrical module 310 is associated with a control device 210 'configured on the one hand to regulate the voltage and the intensity of the current flowing in the electrical module 310 with which it is associated and, on the other hand, to measure, regularly, the instantaneous temperature of this electrical module 310. As described above, this instantaneous temperature is then compared, directly by the control device 210 ', or by the central control unit 200 to which are electrically connected, by for example by wires 220 ', all the control devices 210', at a threshold temperature that the electrical module 310 must not exceed, this comparison resulting in the determination of a cooling need of the electrical module 310 concerned. As previously, this threshold temperature may be a maximum temperature supported by each electrical module 310, that is to say a temperature beyond which these electrical modules 310 may be damaged.
  • the opening or the modulation of the passage section within the valve 153' is controlled by the control device 210 'associated with the electrical module 310 concerned.
  • each control device 210 ' is electrically connected, for example by means of cables 240', to the valve 153 'associated with the heat exchanger 152' concerned.
  • the opening or the modulation of the passage section within the valve 153 ' is controlled by the central control unit 200 which is then electrically connected to each of these valves 153. for example by means of cables 241 '. It will be understood that, according to this second arrangement, the central control unit 200 is able to control each valve 153 'independently of the others.
  • the flow rate and / or the temperature of the refrigerant is adjustable according to the cooling requirement of each electrical module.
  • the determination of the instantaneous temperature of each electrical module 310 is carried out at regular intervals and close in time.
  • the present invention allows a precise and real-time thermal regulation of each electrical module 310.
  • this makes it possible to avoid too low a cooling which could result in an impairment of the capacities of the electrical storage device 300 constituted by these electrical modules. 310 and also to avoid excessive cooling that would cause unnecessary energy consumption, which is also not desirable for the user of the vehicle in which is integrated this electrical storage device.
  • the present invention thus proposes a thermal regulation system of an electrical storage device allowing a fine modulation of its heat treatment according to the real needs of the vehicle at a given moment, in particular during the fast charge phase and in taxiing phase. , for example.
  • a regulation makes it possible to achieve efficient cooling of the electrical storage device, at any time, while optimizing the energy consumption of this thermal regulation system.
  • the present invention can not be limited to the means and configurations described and illustrated herein and it also extends to any equivalent means or configuration and any combination of technically operating means such means.
  • the number and arrangement of valves and heat exchangers can be modified without harming the invention to the extent that they fulfill the functionality described in this document.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

L'invention concerne un système (100) de régulation thermique d'au moins un dispositif de stockage électrique (300) d'un véhicule automobile, le dispositif de stockage électrique (300) comprenant une pluralité de modules électriques (310), le système (100) de régulation thermique comprenant au moins deux échangeurs de chaleur (152, 152') aptes à être parcourus par un fluide, chaque module électrique (310) du dispositif de stockage électrique (300) étant thermiquement couplé à l'un des échangeurs de chaleur (152, 152'), le système (100) de régulation comprenant une pluralité de dispositifs de pilotage (210, 210'), chaque dispositif de pilotage (210, 210') étant associé à un module électrique (310), le système (100) de régulation comprenant une pluralité d'organes d'alimentation (153, 153'), chaque organe d'alimentation (153, 153') étant configuré pour réguler l'alimentation en fluide d'un échangeur de chaleur (152, 152').

Description

SYSTEME DE REGULATION THERMIQUE D’AU MOINS UN DISPOSITIF DE STOCKAGE ELECTRIQUE D’UN VEHICULE
AUTOMOBILE
Le domaine de la présente invention est celui des systèmes de traitement thermique pour véhicule, notamment pour véhicule automobile, et plus particulièrement, la présente invention se rapporte aux systèmes de traitement thermique permettant une régulation thermique d’un dispositif de stockage électrique destiné aux véhicules automobiles électriques ou hybrides.
Le réchauffement climatique ainsi que le tarissement des sources d’énergies fossiles poussent aujourd’hui les constructeurs automobiles à investir dans le développement de véhicules moins polluants et moins consommateurs de carburants traditionnels. Ainsi, ces dernières années ont vu émerger de nouveaux véhicules fonctionnant, au moins partiellement, grâce à l’énergie électrique.
Ces véhicules, qu’ils soient totalement électriques ou bien hybrides, c’est-à-dire combinant l’utilisation d’un moteur thermique et d’un moteur électrique, nécessitent donc un approvisionnement en énergie électrique conséquent et sont équipés de dispositifs de stockage électrique, comportant généralement plusieurs modules électriques. Des modules électriques, c’est- à-dire une pluralité de cellules électriques connectées entre elles, sont ainsi agencés sous le châssis de ces véhicules. Ces modules électriques supportent mal de fonctionner en dehors d’une plage de températures déterminées. Notamment, afin d’optimiser le fonctionnement et la durée de vie de ces derniers, il convient de les maintenir à une température inférieure à 45°C, par exemple.
Il est connu d’utiliser un circuit de fluide réfrigérant, par ailleurs utilisé pour chauffer ou refroidir différentes zones ou différents composants du véhicule, pour refroidir le dispositif de stockage électrique. Le circuit de fluide réfrigérant extrait ainsi l’énergie capable de refroidir le dispositif de stockage électrique pendant son utilisation en phases de roulage.
A titre d’exemple, le circuit de fluide réfrigérant peut être suffisant pour refroidir les modules électriques du dispositif de stockage électrique lors d’une phase de charge classique du véhicule, à savoir une phase de charge réalisée en raccordant le véhicule pendant plusieurs heures au réseau électrique domestique. Cette technique de charge permet de maintenir la température du dispositif de stockage électrique en dessous d’un certain seuil, ce qui permet de réduire les dimensions du système de refroidissement du dispositif de stockage électrique.
Une nouvelle technique de charge a fait son apparition récemment. Elle consiste à charger le dispositif de stockage électrique sous une tension et un ampérage élevés, de manière à charger le dispositif de stockage électrique en un temps maximum de quelques dizaines de minutes. Cette charge rapide implique un échauffement du dispositif de stockage électrique qui impose un dimensionnement plus important du/des écliangeur(s) de chaleur destiné(s) à la régulation thermique du dispositif de stockage électrique. Toutefois, si le besoin en refroidissement du dispositif de stockage électrique est très important lors des ph ases de charge rapide, ce besoin diminue lors de phases de roulage ou de charge dite « classique ». L’utilisation d’un échangeur de chaleur surdimensionné est alors inutilement consommateur d’énergie ou générateur de poids et/ou d’encombrement. De plus, si le besoin de refroidissement du dispositif de stockage est faible et que dans le même temps le besoin de refroidissement de l’habitacle du véhicule est important, il peut s’avérer difficile de contrôler la puissance de refroidissement de ce dispositif de stockage électrique et la puissance de refroidissement de l’habitacle.
La présente invention s’inscrit dans ce contexte et propose une solution permettant de moduler le refroidissement de chaque module électrique du dispositif de stockage électrique en fonction de ses besoins tout en respectant un écart de température imposé par la température d’un flux d’air pulsé dans l’habitacle. Il s’agit donc de moduler une puissance de refroidissement sous un écart de température fixe.
Un objet de la présente invention concerne ainsi un système de régulation thermique d’au moins un dispositif de stockage électrique d’un véhicule automobile, le dispositif de stockage électrique comprenant une pluralité de modules électriques, le système de régulation thermique comprenant au moins deux échangeurs de chaleur aptes à être parcourus par un fluide, chaque module électrique du dispositif de stockage électrique étant thermiquement couplé à l’un des échangeurs de chaleur. Selon l’invention, le système de régulation comprend une pluralité de dispositifs de pilotage, chaque dispositif de pilotage étant associé à un module électrique, et une pluralité d’organes d’alimentation, chaque organe d’alimentation étant configuré pour réguler l’alimentation en fluide d’un échangeur de chaleur.
Selon l’invention, les échangeurs de chaleur sont aptes à être parcourus par un fluide réfrigérant ou par un fluide caloporteur, ce dernier pouvant avantageusement être un liquide caloporteur. On entend par « alimentation en fluide de l’échangeur de chaleur », le fait d’autoriser ou non ce fluide, qu’il s’agisse d’un fluide réfrigérant ou d’un fluide caloporteur, à circuler dans l’échangeur de chaleur concerné. Lorsque l’on parle de « régulation de l’alimentation », on entend qu’il est par exemple possible de modifier le débit du fluide qui alimente ces échangeurs de chaleur ou bien la température de ce fluide. En d’autres termes, en régulant l’alimentation d’un échangeur de chaleur, on modifie sa capacité de refroidissement, cette modification étant bien entendu réversible.
Selon une caractéristique de l’invention, le système de régulation comprend au moins une unité de commande centrale à laquelle sont connectés les dispositifs de pilotage. On entend ici par « connectés » le fait qu’un câble assure une liaison électrique entre chaque dispositif de pilotage et l’unité de commande centrale. Ainsi, chaque dispositif de pilotage est au moins apte à transmettre et à recevoir des informations avec l’unité de commande centrale, par l’intermédiaire de ces câbles.
Avantageusement, chaque échangeur de chaleur est thermiquement couplé à un unique module électrique.
Selon une caractéristique de la présente invention, chaque dispositif de pilotage est configuré pour déterminer une température instantanée du module électrique auquel il est associé, et pour déterminer un besoin en refroidissement du module électrique concerné à partir de cette température instantanée et d’une température seuil prédéterminée. En fonction du besoin en refroidissement déterminé, le débit et/ou la température du fluide circulant dans l’échangeur de chaleur auquel est thermiquement couplé le module électrique concerné pourront être modifiés.
Par exemple, la température seuil peut être une information préenregistrée dans l’unité de commande centrale, cette dernière étant alors configurée pour envoyer cette information aux dispositifs de pilotage, par exemple par l’intermédiaire des câbles agencés entre l’unité de commande centrale et chacun de ces dispositifs de pilotage. Par exemple encore, la température seuil peut correspondre à une température maximale supportée par les modules électriques du dispositif de stockage électrique, c’est-à-dire une température au-delà de laquelle ces modules électriques risquent d’être endommagés.
On comprend donc que la présente invention permet un contrôle et une régulation individuels et continus de la température des modules électriques du dispositif de stockage électrique, ce qui permet avantageusement de maintenir chaque module électrique à sa température requise, ou de refroidir l’ensemble des modules, notamment en situation de roulage ou pendant les ph ases de charge du dispositif de stockage électrique.
Selon une caractéristique de la présente invention, chaque organe d’alimentation est sous la dépendance de l’un des dispositifs de pilotage, cet organe d’alimentation et ce dispositif de pilotage étant associés à un même module électrique. Autrement dit, chaque organe d’alimentation est alors configuré pour réguler l’alimentation en fluide de l’échangeur de chaleur auquel est thermiquement couplé le module électrique associé à cet organe d’alimentation. Ainsi, la présente invention permet avantageusement une régulation thermique indépendante de chacun des modules électriques du dispositif de stockage électrique.
Selon un premier agencement de la présente invention, au moins un des dispositifs de pilotage associés aux modules électriques est configuré pour piloter directement l’organe d’alimentation du module électrique auquel est associé le dispositif de pilotage concerné.
Selon un deuxième agencement de la présente invention, au moins un des dispositifs de pilotage associés aux modules électriques est configuré pour envoyer une instruction à l’unité de commande centrale, cette unité de commande centrale étant configurée pour piloter l’organe d’alimentation du module électrique auquel est associé le dispositif de pilotage concerné.
Avantageusement, les dispositifs de pilotage peuvent être en communication les uns avec les autres par l’intermédiaire des connexions avec l’unité centrale, ou par l’intermédiaire de connexions directes entre les dispositifs de pilotage.
Par exemple, les organes d’alimentation des échangeurs de chaleur peuvent être des vannes. Ces vannes peuvent être des vannes tout ou rien, c’est-à-dire des vannes capables de prendre deux positions : une dans laquelle elles autorisent la circulation du fluide et une dans laquelle elles l’interdisent. Alternativement, ces vannes peuvent être des vannes proportionnelles, c’est-à-dire des vannes au sein desquelles une section de passage du fluide est variable, autorisant ainsi une régulation plus fine du débit de fluide.
Selon une caractéristique de la présente invention, le système de régulation comprend un organe de détente configuré pour réguler la température du fluide qui parcourt les échangeurs de chaleur. Avantageusement, cet organe de détente peut être commun à l’ensemble des échangeurs de chaleur, c’est-à-dire que cet organe de détente participe à la régulation de la température du fluide qui parcourt l’ensemble des échangeurs de chaleur.
Selon l’invention, l’organe de détente est piloté par l’unité de commande centrale. Autrement dit, selon cette caractéristique, l’unité de commande centrale est configurée pour faire varier la température du fluide qui passe par cet organe de détente en modifiant une section de passage de ce fluide au sein de l’organe de détente.
Selon un premier exemple de réalisation de la présente invention, le système de régulation comprend un circuit fermé dans lequel circule le fluide, ce fluide étant un fluide réfrigérant, circuit fermé sur lequel sont agencés au moins un dispositif de compression et un premier échangeur thermique, le circuit fermé comprenant une branche primaire porteuse d’un moyen de détente et d’un deuxième échangeur thermique destiné au traitement thermique d’un flux d’air envoyé vers un habitacle du véhicule, et une pluralité de branches secondaires agencées en parallèle les unes des autres, chacune de ces branches secondaires étant porteuse au moins de l’un des échangeurs de chaleur et de l’un des organes d’alimentation, cette pluralité de branches secondaires comprenant une portion commune sur laquelle est agencé l’organe de détente, le circuit fermé comprenant en outre un collecteur au niveau duquel sont raccordées la brandie primaire et les branches secondaires.
Plusieurs échangeurs de chaleur destinés au refroidissement des modules thermiques du dispositif de stockage électrique étant alimentés successivement par paquet pour un temps limité, les fluctuations de débit du fluide réfrigérant dans le dispositif de compression sont réduites. Il en résulte que le deuxième échangeur thermique destiné au traitement thermique du flux d’air envoyé dans l’habitacle du véhicule fonctionne à une température stable.
La présente invention permet ainsi avantageusement de maintenir une température acceptable dans l’habitacle du véhicule, tout en assurant un refroidissement suffisant du dispositif de stockage électrique, et notamment pendant les phases de roulage ou pendant les ph ases de charge du dispositif de stockage électrique.
Ainsi, selon ce premier exemple de réalisation, l’organe de détente est commun à l’ensemble des échangeurs de chaleur en ce sens que le fluide réfrigérant qui sort de l’organe de détente commun est apte à alimenter l’ensemble des échangeurs de chaleur.
Selon un deuxième exemple de réalisation de l’invention, le système de régulation comprend un premier circuit fermé dans lequel circule un fluide réfrigérant et sur lequel sont agencés au moins un dispositif de compression et un premier échangeur thermique, le premier circuit fermé comprenant une branche primaire porteuse d’un moyen de détente et d’un deuxième échangeur thermique destiné au traitement thermique d’un flux d’air envoyé vers un habitacle du véhicule, le premier circuit fermé comprenant une branche secondaire porteuse de l’organe de détente et d’un troisième échangeur thermique destiné au traitement thermique du fluide, ce fluide étant un fluide caloporteur, ce troisième échangeur thermique étant agencé sur un deuxième circuit fermé dans lequel circule le fluide caloporteur, ce deuxième circuit fermé comprenant une première branche porteuse, au moins, du troisième échangeur thermique et d’une pompe configurée pour permettre la circulation du fluide caloporteur dans ce deuxième circuit fermé, ce deuxième circuit fermé comprenant une pluralité de deuxièmes branches en communication avec la première branche et agencées en parallèle les unes des autres, chacune de ces deuxièmes branches portant au moins l’un des échangeurs de chaleur thermiquement couplés aux modules électriques et l’un des organes d’alimentation de ces échangeurs de chaleur.
On notera que ce deuxième circuit fermé est agencé en parallèle du premier circuit fermé.
On comprend que la présente invention permet également de limiter les différences de températures entre les différents modules électriques qui constituent le dispositif de stockage électrique. Par exemple, cet écart peut être maintenu en dessous de 2°C à 5°C. Avantageusement la présente invention permet ainsi d’assurer un vieillissement homogène de ces modules électriques et donc d’améliorer la longévité du dispositif de stockage électrique.
On comprend que le troisième échangeur thermique est parcouru à la fois par le fluide réfrigérant circulant dans le premier circuit fermé et par le fluide caloporteur circulant dans le deuxième circuit fermé. Ce troisième échangeur thermique est ainsi un échangeur fluide réfrigérant/fluide caloporteur, c’est-à-dire une unité dans laquelle des calories sont échangées entre le fluide réfrigérant et le fluide caloporteur. Selon ce deuxième exemple de réalisation, l’organe de détente est commun à l’ensemble des échangeurs de chaleur en ce sens qu’il permet de réguler thermiquement le fluide réfrigérant circulant dans le premier circuit fermé et donc, indirectement, cet organe de détente permet de réguler thermiquement le fluide caloporteur destiné à alimenter les échangeurs de chaleur thermiquement couplés aux modules électriques.
Selon l’invention, chaque dispositif de pilotage est configuré pour contrôler une tension et/ou une intensité d’un courant qui circule depuis ou vers le module électrique auquel il est associé. On comprend que ce contrôle est ainsi réalisé, par chaque dispositif de pilotage, en ph ases de charges des modules électriques, tout comme en phase de décharge de ces modules électriques, c’est-à-dire lorsque ces modules électriques fournissent l’électricité au moteur électrique du véhicule sur lequel est intégré le système de régulation selon l’invention.
D’autres détails, caractéristiques et avantages ressortiront plus clairement à la lecture de la description détaillée donnée ci-après à titre indicatif en relation avec les différents exemples de réalisation illustrés sur les figures suivantes :
-les figures 1 et 2 illustrent de façon schématique un système de régulation thermique d’un dispositif de stockage électrique à l’arrêt, selon deux agencements d’un premier exemple de réalisation de la présente invention ;
-les figures 3 et 4 sont des représentations schématiques du système de régulation thermique illustré sur la figure 1, selon deux exemples de fonctionnement ;
-les figures 5 et 6 illustrent de façon schématique le système de régulation thermique du dispositif de stockage électrique à l’arrêt, selon deux agencements d’un deuxième exemple de réalisation de la présente invention.
Dans la description qui va suivre, les termes amont, aval, entrée et sortie d’un composant, se réfèrent au sens de circulation d’un fluide circulant dans un circuit fermé du système de régulation thermique décrit ici. Le fluide est symbolisé par une flèche sur une conduite qui illustre le sens de circulation de ce dernier dans la conduite considérée. Sur les figures 1 à 6, les traits plus épais illustrent des portions du circuit dans lesquelles le fluide est sous fiaute pression HP et les traits plus fins illustrent des portions du circuit dans lesquelles le fluide est sous basse pression BP. Sur les figures 3 et 4, les traits pleins représentent des portions du circuit fermé dans lesquelles le fluide circule et les traits pointillés représentent des portions du circuit fermé dans lesquelles le fluide ne circule pas.
Les figures 1 à 6 illustrent, de façon schématique, un système 100 de régulation thermique d’un dispositif de stockage électrique 300 d’un véhicule automobile. Avantageusement, selon les exemples illustrés ici, ce système 100 de régulation thermique est également destiné à la régulation thermique d’un habitacle de ce véhicule. Il est entendu que le dispositif de stockage électrique 300 dont il est fait mention ici est destiné à l’alimentation d’un moteur électrique qui assure tout ou partie du déplacement du véhicule.
Les figures 1 et 2 illustrent respectivement un premier agencement et un deuxième agencement d’un premier exemple de réalisation de la présente invention. Selon ce premier exemple de réalisation, le système 100 de régulation thermique comprend un circuit fermé 110 dans lequel circule un fluide réfrigérant. Ce circuit fermé 110 comprend, dans l’ordre selon un sens Si de circulation du fluide réfrigérant, un dispositif de compression 120 et un premier échangeur thermique 130. Par exemple, le dispositif de compression 120 peut prendre la forme d’un compresseur électrique, c’est-à-dire un compresseur qui comprend un mécanisme de compression, un moteur électrique et une unité de contrôle et de conversion électrique. Un mécanisme de rotation propre au dispositif de compression 120 est mis en rotation par le moteur électrique dont la vitesse de rotation est contrôlée par un dispositif de contrôle qui lui est externe. Ainsi la vitesse de rotation du dispositif de compression 120 peut être adaptée en fonction du débit de fluide réfrigérant nécessaire.
En aval de ce premier échangeur thermique 130, le circuit fermé 110 se divise en une branche primaire 140 et en une pluralité de branches secondaires 150, cette pluralité de branches secondaires 150 comprenant une portion commune 250 avant de se diviser. Ces branches secondaires 150 sont agencées en parallèle les unes des autres, vue du fluide réfrigérant. Afin de faciliter la lecture des figures, seules deux de ces branches secondaires 150 sont référencées sur les figures 1 et 2, mais la description ci-dessous s’applique mutatis-mutandis à toutes les branches secondaires 150 qui équipent le système 100 de régulation thermique selon l’invention.
Tel que représenté sur les figures 1 et 2, la branche primaire 140 comprend un moyen de détente 141 et un deuxième échangeur thermique 142, ce dernier étant par exemple destiné au refroidissement d’un flux d’air envoyé dans l’habitacle du véhicule. Le deuxième échangeur thermique 142 est disposé en aval du moyen de détente 141, et juste après celui-ci.
Comme on peut le voir sur ces figures 1 et 2, la portion commune 250 à toutes les branches secondaires 150 porte un organe de détente 151 en aval duquel cette portion commune 250 se divise en la pluralité de branches secondaires 150, chacune de ces branches secondaires 150 étant porteuse d’un échangeur de chaleur 152. On entend par « organe de détente 151 », ou par « moyen de détente 141 », un organe capable de faire varier une puissance thermique dans la branche considérée du circuit fermé 110 en modulant une section de passage du fluide réfrigérant en son sein. Ils peuvent prendre indifféremment la forme d’un détendeur thermostatique, d’un détendeur électronique, d’un orifice-tube ou analogue.
On comprend de part cet agencement que les échangeurs de chaleur 152 sont disposés en parallèle les uns des autres et que l’organe de détente 151 est commun à l’ensemble de ces échangeurs de chaleur 152, en étant disposé en série de ces échangeurs de chaleur 152. En d’autres termes, le fluide réfrigérant qui sort de cet organe de détente 151 peut alimenter chacune des branches secondaires 150, simultanément, et donc chacun des échangeurs de chaleur 152 portés par ces branches secondaires 150.
Chaque branche secondaire 150 porte également une vanne 153, chacune de ces vannes 153 étant ainsi associée à l’échangeur de chaleur 152 porté par la branche secondaire 150 concernée. Afin de faciliter la compréhension des figures, une seule de ces vannes 153 est référencée mais la description ci-dessous s’applique mutatis-mutandis à toutes les vannes 153 qui équipent le système 100 de régulation thermique selon l’invention.
Tel que cela sera plus amplement détaillé ci-dessous, ces branches secondaires 150 sont destinées au refroidissement du dispositif de stockage électrique 300 du véhicule, et plus particulièrement, chacun des échangeurs de chaleur 152 qu’elles portent est destiné au refroidissement de l’un des modules électriques 310 qui constituent le dispositif de stockage électrique 300. Ainsi, chaque module électrique 310 est thermiquement couplé à l’un de ces échangeurs de chaleur 152. Par exemple, chaque module électrique 310 peut être agencé au contact de l’un des échangeurs de chaleur 152.
La branche primaire 140 et les branches secondaires 150 se rejoignent au niveau d’un collecteur 160 auquel elles sont raccordées et auquel est également raccordé le dispositif de compression 120.
Ainsi, le fluide réfrigérant entre dans le dispositif de compression 120 sous forme gazeuse. Ce dispositif de compression 120 est alors configuré pour comprimer ce gaz, c’est-à-dire augmenter la pression de ce dernier. Le fluide réfrigérant ressort donc de ce dispositif de compression 120 sous forme gazeuse, à fiaute pression HP et à fiaute température. Ce gaz sous fiaute pression rejoint alors le premier échangeur thermique 130 dans lequel il est refroidit par un échange de calories avec un flux d’air traversant ce premier échangeur thermique 130, ce flux d’air étant extérieur à l’habitacle du véhicule qui reçoit le système 100 de régulation thermique selon l’invention.
En sortie de ce premier échangeur thermique 130, le fluide réfrigérant est alors sous forme liquide, toujours à haute pression HP. Autrement dit, selon l’exemple illustré ici, le premier échangeur thermique 130 est assimilable à un condenseur.
En suivant la branche primaire 140, le fluide réfrigérant arrive ensuite dans le moyen de détente 141 dans lequel il subit une détente, c’est-à-dire une diminution de sa pression. A la sortie de ce moyen de détente 141, le fluide réfrigérant est ainsi sous forme diphasique, c’est-à-dire qu’il comprend une phase liquide et une phase gazeuse, et à basse pression BP. Il rejoint alors le deuxième échangeur thermique 142 dans lequel il s’évapore par échange de calories avec un flux d’air qui traverse le deuxième échangeur thermique 142. Ce deuxième échangeur thermique 142 est donc, selon l’exemple illustré, assimilable à un évaporateur. Le flux d’air ainsi refroidit est ensuite envoyé vers l’habitacle du véhicule pour refroidir ce dernier tandis que le fluide réfrigérant ressort de ce deuxième échangeur thermique 142 sous forme gazeuse et rejoint le dispositif de compression 120 pour mettre en œuvre un nouveau cycle thermodynamique.
En suivant maintenant les branches secondaires 150, le fluide réfrigérant rejoint l’organe de détente 151 commun à au moins deux branches secondaires 150, et avantageusement à toutes les branches secondaires 150. Cet organe de détente 151 fonctionne sur le même principe que le moyen de détente 141 agencé sur la branche primaire 140. Ainsi, le fluide réfrigérant sort de cet organe de détente 151 sous forme diphasique, à basse pression BP, et peut alors alimenter chacun des échangeurs de chaleur 152 portés par les différentes branches secondaires 150.
Selon l’invention, les vannes 153 peuvent être des vannes dîtes « tout ou rien », c’est-à-dire des vannes ne pouvant prendre que deux positions : une dans laquelle elles autorisent le passage du fluide réfrigérant et une dans laquelle elles interdisent le passage de ce fluide réfrigérant. Alternativement, les vannes 153 peuvent être des vannes dîtes « proportionnelles », c’est-à-dire des vannes dont une section de passage par laquelle circule le fluide réfrigérant en leur sein est variable. On comprend donc qu’en fonction du choix des vannes 153, la régulation de l’alimentation des échangeurs de chaleur 152 associés à ces vannes 153 sera plus ou moins fine.
De plus, selon l’invention, il est également possible de modifier la température du fluide réfrigérant qui alimente les échangeurs de chaleur 152 en modifiant une section de passage de ce fluide réfrigérant au sein de l’organe de détente 151.
Selon les agencements illustrés ici, chacune de ces vannes 153 est agencée entre l’organe de détente 151 commun aux branches secondaires 150 et l’échangeur de chaleur 152 auquel elle est associée. Autrement dit, chaque vanne 153 est disposée en amont de l’échangeur de chaleur 152 auquel elle est associée, par rapport au sens Si de circulation du fluide réfrigérant.
Tel que précédemment mentionné, les échangeurs de chaleur 152 agencés sur les branches secondaires 150 sont destinés au refroidissement des modules électriques 310 constitutifs du dispositif de stockage électrique 300. Le fluide réfrigérant entre dans ces échangeurs de chaleur 152 sous forme diphasique, après être passé dans l’organe de détente 151. Un échange de chaleur a alors lieu entre le fluide réfrigérant qui circule dans chacun des échangeurs de chaleur 152 et les modules électriques 310 du dispositif de stockage électrique 300 disposés au contact de ces échangeurs de chaleur 152. On comprend que cet échange de chaleur est lié à la différence de température entre le fluide réfrigérant qui circule dans les échangeurs de chaleur 152 et la température du dispositif de stockage électrique 300, et plus précisément de chacun des modules électriques 310 constitutifs de ce dispositif de stockage électrique 300. Il en résulte que la régulation de la température du fluide réfrigérant qui circule dans les échangeurs de chaleur 152, ainsi que la régulation du débit de ce fluide réfrigérant ont un impact direct sur l’échange de chaleur qui s’effectue entre ces échangeurs de chaleur 152 et les modules électriques 310 avec lesquels ils sont en contact. En captant des calories émises par le dispositif de stockage électrique 300, le fluide réfrigérant change d’état et repasse en phase gazeuse avant de rejoindre à nouveau le dispositif de compression 120. Chaque échangeur de chaleur 152 est ainsi utilisé comme un évaporateur.
Avantageusement, le partitionnement de l’alimentation de ces échangeurs de chaleur 152 permet une régulation thermique de chaque module électrique 310, résultant en une régulation thermique fine du dispositif de stockage électrique 300. On comprend en effet qu’en fonction du besoin en refroidissement de ces modules électriques 310, on pourra choisir d’alimenter en fluide réfrigérant soit l’ensemble de ces échangeurs de chaleur 152, lorsque le besoin en refroidissement est important, par exemple lorsque le dispositif de stockage électrique 300 est en phase de charge rapide, soit de n’alimenter que quelques-uns de ces échangeurs de chaleur 152 lorsque le besoin en refroidissement du dispositif de stockage électrique 300 est moins important, par exemple lors des phases de roulage ou de charge dite « classique ».
Afin de permettre cette régulation thermique, le système 100 de régulation thermique comprend en outre une pluralité de dispositifs de pilotage 210 électriquement connectés à une unité de commande centrale 200. Cette connexion électrique peut par exemple être réalisée par des câbles
220. Tel que représenté, chacun de ces dispositifs de pilotage 210 est associé à l’un des modules électriques 310 du dispositif de stockage électrique 300. Chaque dispositif de pilotage 210 est ainsi d’une part configuré pour réguler l’intensité et la tension d’un courant électrique circulant dans le module électrique 310 auquel il est associé et d’autre part pour au moins contrôler une température instantanée du module électrique 310 auquel il est associé. Par « température instantanée », on entend ici une température de ce module électrique 310 mesurée à un instant donné.
Une fois la température instantanée du module électrique 310 déterminée, le dispositif de pilotage 210 peut soit comparer cette température instantanée à une température seuil que le module électrique 310 concerné ne doit pas dépasser, soit envoyer une information correspondant à cette température instantanée à l’unité de commande centrale 200 afin que celle-ci puisse effectuer la comparaison de cette température instantanée à la température seuil. Par exemple, la transmission de cette information peut être réalisée par l’intermédiaire des câbles 220 qui relient chaque dispositif de pilotage 210 à l’unité de commande centrale 200. En fonction, notamment, de l’écart mesuré entre ces températures, l’unité de commande centrale 200, ou chaque dispositif de pilotage 210, sont alors configurés pour déterminer un besoin en refroidissement du module électrique 310 concerné. Lorsque le besoin en refroidissement est déterminé directement par chaque dispositif de pilotage 210, ces derniers peuvent être configurés pour transmettre en conséquence une information correspondant à ce besoin en refroidissement à l’unité de commande centrale 200.
On comprend donc que plus la température instantanée d’un module électrique 310 se rapproche de la température seuil, plus le besoin en refroidissement de ce module électrique 310 est important. Par exemple, cette température seuil peut être une température maximale supportée par chaque module électrique 310, c’est-à-dire une température au-delà de laquelle ces modules électriques 310 risquent de s’endommager.
Ainsi, selon l’importance de ce besoin en refroidissement, l’unité de commande centrale 200 peut décider de réduire la température du fluide réfrigérant en amont de l’échangeur de chaleur 152 auquel est thermiquement couplé le module électrique 310 concerné et/ou d’augmenter le débit de ce fluide réfrigérant dans cet échangeur de chaleur 152.
Afin de réduire la température du fluide réfrigérant, l’unité de commande centrale 200 envoie une instruction, par exemple par l’intermédiaire d’un câble électrique 230, à l’organe de détente 151 afin de modifier la section de passage du fluide réfrigérant au sein de celui-ci.
Afin d’augmenter le débit de fluide réfrigérant qui alimente l’échangeur de chaleur 152 concerné, une instruction est envoyée à la vanne 153 associée à cet échangeur de chaleur 152. Selon le premier agencement illustré sur la figure 1, l’ouverture ou la modulation de la section de passage du fluide réfrigérant au sein de la vanne 153 est commandée par le dispositif de pilotage 210 associé au module électrique 310 concerné. On comprend que, selon ce premier agencement, chaque dispositif de pilotage 210 est électriquement connecté à la vanne 153 qu’il commande, par exemple par l’intermédiaire de câbles 240. Selon le deuxième agencement illustré sur la figure 2, l’ouverture ou la modulation de la section de passage du fluide réfrigérant au sein de la vanne 153 est commandée par l’unité de commande centrale 200 qui est alors électriquement connecté à chacune de ces vannes 153, par exemple par l’intermédiaire de câbles 241. On comprend que, selon ce deuxième agencement, l’unité de commande centrale 200 est apte à piloter chaque vanne 153 indépendamment des autres. A l’inverse, lorsque le besoin en refroidissement du module électrique 3'0 diminue, l’unité de commande centrale 200 peut décider d’augmenter la température du fluide réfrigérant en amont de l’échangeur de chaleur 152 auquel est thermiquement couplé le module électrique 3'0 et/ou de diminuer le débit de ce fluide réfrigérant dans cet échangeur de chaleur 152. On comprend que lorsque le besoin en refroidissement du module électrique est nul, l’alimentation en fluide réfrigérant de l’échangeur de chaleur 152 concerné peut être coupée, par exemple en fermant la vanne 153 correspondante, c’est-à-dire en fermant la section de passage du fluide réfrigérant au sein de cette vanne 153·
Ainsi, selon l’un ou l’autre de ces agencements, le débit et/ou la température du fluide réfrigérant est modulable en fonction du besoin en refroidissement de chaque module électrique
310.
La figure 3 illustre par exemple une situation dans laquelle le véhicule équipé du système 100 de régulation thermique selon l’invention est en phase de roulage. Tel qu’illustré, seuls deux des modules électriques 3'0 du dispositif de stockage électrique 300 présentent, à l’instant illustré, un besoin en refroidissement, et ainsi seules deux vannes 153, respectivement associées à l’un de ces modules électrique 3'0, sont ouvertes. Avantageusement, seuls les deux échangeurs de chaleur 152 thermiquement couplés à ces deux modules électriques 3'0 sont donc alimentés.
La figure 4 illustre quant à elle un exemple de fonctionnement dans lequel le dispositif de stockage électrique 300 est en ph ase de charge rapide. On comprend que c’est lors de ces ph ases de charge rapide que le besoin en refroidissement de chaque module électrique 3'0 est le plus important. Ainsi, la figure 4 illustre un exemple de fonctionnement du système 100 de régulation thermique dans lequel toutes les vannes 153 sont ouvertes, alimentant ainsi tous les échangeurs de chaleur 152. Tel qu’illustré, le système 100 permet également aux occupants du véhicule équipé de ce système 100 de maintenir une température acceptable dans l’habitacle tout au long de la phase de charge rapide, grâce au traitement thermique réalisé par le deuxième échangeur thermique 142. Les figures 3 et 4 illustrent chacune le système 100 de régulation selon le premier agencement du premier exemple de réalisation mais il est entendu que les descriptions qui viennent d’être faites de ces figures seraient transposables à des figures qui illustreraient le système 100 selon le deuxième agencement du premier exemple de réalisation, c’est-à-dire l’agencement dans lequel les vannes 153 sont pilotées par l’unité de commande centrale 200.
Les figures 5 et 6 illustrent chacune un deuxième exemple de réalisation du système 100 de régulation thermique selon la présente invention selon, respectivement, le premier agencement et le deuxième agencement.
Selon ce deuxième exemple de réalisation, le système 100 de régulation thermique comprend un premier circuit fermé 410 et un deuxième circuit fermé 420 agencés au moins en partie en parallèle l’un de l’autre. Le premier circuit fermé 4'0 est similaire au circuit fermé 110 décrit précédemment en référence au premier exemple de réalisation. Ainsi ce premier circuit fermé 410 est parcouru par un fluide réfrigérant et comprend, dans l’ordre selon un sens Si’ de circulation de ce fluide réfrigérant, un dispositif de compression 120’, et un premier échangeur thermique 130’. En aval de ce premier échangeur thermique 130’, le premier circuit fermé 410 se divise en une branche primaire 140’ et en une branche secondaire 150’. Tel qu’illustré la branche primaire 140’ porte un moyen de détente 141’ et un deuxième échangeur thermique 142’ destiné au traitement thermique d’un flux d’air envoyé vers l’habitacle du véhicule.
La branche secondaire 150’ est quant à elle porteuse d’un organe de détente 151’ et d’un troisième échangeur thermique 400. Tel qu’illustré, ce troisième échangeur thermique 400 comprend une première portion 4" dans laquelle circule le fluide réfrigérant et une deuxième portion 421 dans laquelle circule un fluide caloporteur. Tel qu’illustré, ce fluide caloporteur circule dans le deuxième circuit fermé 420. Ce deuxième circuit fermé 420 comprend une première branche 422 sur laquelle sont agencés le troisième échangeur thermique 400 et une pompe 423 configurée pour assurer la circulation du fluide caloporteur dans ce deuxième circuit fermé 420 selon un sens S2. En aval du troisième échangeur thermique 400, la première branche 421 se divise en une pluralité de deuxièmes branches 424, chacune de ces deuxième branches 424 étant porteuse d’un échangeur de chaleur 152’ et d’une vanne 153’ qui lui est associée. Tel que précédemment, chacun de ces échangeurs de chaleur 152’ est thermiquement couplé, par exemple par contact, avec l’un des modules électriques 3'0 constitutifs du dispositif de stockage électrique 300 du véhicule comprenant le système 100 selon l’invention. Afin de faciliter la lecture des figures, seule l’une des deuxièmes branches 424 est référencée, mais la description qui va suivre s’applique mutatis mutandis à toutes les deuxièmes branches 424 du système 100 de régulation thermique selon l’invention. Il en va de même pour les vannes 153\ et les échangeurs de chaleur 152’. Tel qu’illustré, le premier circuit fermé 410 comprend une portion dans laquelle le fluide réfrigérant est sous fiaute pression HP. Sur cette portion du premier circuit fermé 410, le principe de fonctionnement est le même que celui décrit précédemment, en référence au premier exemple de réalisation de la présente invention. Il en va de même pour la brandie primaire 140’ de ce premier circuit fermé 410.
Le troisième échangeur thermique 400 porté par la branche secondaire 150’ est ainsi alimenté par le fluide réfrigérant qui sort de l’organe de détente 151’ sous forme diphasique, tel que précédemment décrit. Un échange de chaleur a alors lieu au sein de ce troisième échangeur thermique 400 entre le fluide réfrigérant circulant dans sa première portion 411 et le fluide caloporteur circulant dans sa deuxième portion 421. Tel que mentionné ci-dessus, ce fluide caloporteur est ensuite envoyé, grâce à la pompe 423 vers les échangeurs de chaleur 152’ destinés à la régulation thermique des modules électrique 310. On comprend donc que le fluide réfrigérant qui circule dans la première portion 4" du troisième échangeur thermique 400 change d’état et passe en phase gazeuse en captant les calories transportées par le fluide caloporteur circulant dans la deuxième portion 421 de ce troisième échangeur thermique 400. Le fluide caloporteur est ainsi déchargé de ces calories et est alors dirigé, grâce à la pompe 423 vers les échangeurs de chaleur 152’ dans lesquels peut alors avoir lieu un transfert de calories entre le module électrique 310 thermiquement couplé à l’échangeur de chaleur 152’ en question et ce fluide caloporteur.
Tel que précédemment, chaque module électrique 310 est associé à un dispositif de pilotage 210’ configuré d’une part pour réguler la tension et l’intensité du courant circulant dans le module électrique 310 auquel il est associé et d’autre part pour mesurer, régulièrement, la température instantanée de ce module électrique 310. Tel que décrit ci-dessus, cette température instantanée est alors comparée, directement par le dispositif de pilotage 210’, ou par l’unité de commande centrale 200 à laquelle sont électriquement connectés, par exemple par des fils 220’, l’ensemble des dispositifs de pilotage 210’, à une température seuil que le module électrique 310 ne doit pas dépasser, cette comparaison résultant en la détermination d’un besoin en refroidissement du module électrique 310 concerné. Tel que précédemment, cette température seuil peut être une température maximale supportée par chaque module électrique 310, c’est-à-dire une température au-delà de laquelle ces modules électriques 310 risquent de s’endommager.
En fonction de ce besoin en refroidissement, une décision est prise, soit de moduler la section de passage du fluide réfrigérant au sein de l’organe de détente 151’ afin de réduire la température de ce fluide réfrigérant, auquel cas l’unité de commande centrale 200 envoie une instruction correspondante, par exemple par voie filaire 230’, à cet organe de détente 151’, soit d’ouvrir la vanne 153’ associée au module électrique 310 concerné, soit de moduler la section de passage du fluide caloporteur au sein de cette vanne 153’· Selon le premier agencement illustré sur la figure 5, l’ouverture ou la modulation de la section de passage au sein de la vanne 153’ est commandée par le dispositif de pilotage 210’ associé au module électrique 310 concerné. Selon ce premier agencement, on comprend que chaque dispositif de pilotage 210’ est électriquement connecté, par exemple par l’intermédiaire de câbles 240’, à la vanne 153’ associée à l’échangeur de chaleur 152’ concerné.
Selon le deuxième agencement illustré sur la figure 6, l’ouverture ou la modulation de la section de passage au sein de la vanne 153’ est commandée par l’unité de commande centrale 200 qui est alors électriquement connectée à chacune de ces vannes 153. par exemple grâce à des câbles 241’. On comprend que, selon ce deuxième agencement, l’unité de commande centrale 200 est apte à piloter chaque vanne 153’ indépendamment des autres.
Ainsi, selon l’un ou l’autre de ces agencements, le débit et/ou la température du fluide réfrigérant est modulable en fonction du besoin en refroidissement de chaque module électrique
310. Selon l’un quelconque des exemples de réalisation décrit ici, la détermination de la température instantanée de chaque module électrique 310 est réalisée à intervalles réguliers et proches dans le temps. Ainsi, la présente invention permet une régulation thermique précise et en temps réel de chaque module électrique 310. Avantageusement, cela permet d’éviter un refroidissement trop faible qui pourrait résulter en une altération des capacités du dispositif de stockage électrique 300 constitué de ces modules électriques 310 et également d’éviter un refroidissement trop important qui entraînerait une consommation d’énergie inutile, ce qui n’est pas non plus souhaitable pour l’utilisateur du véhicule dans lequel est intégré ce dispositif de stockage électrique.
La présente invention propose ainsi un système de régulation thermique d’un dispositif de stockage électrique autorisant une modulation fine de son traitement thermique en fonction des besoins réels du véhicule à un instant donné, en particulier en phase de charge rapide et en ph ase de roulage, par exemple. Une telle régulation permet de réaliser un refroidissement efficace du dispositif de stockage électrique, à chaque instant, tout en optimisant la consommation énergétique de ce système de régulation thermique. La présente invention ne saurait toutefois se limiter aux moyens et configurations décrits et illustrés ici et elle s’étend également à tout moyen ou configuration équivalents et à toute combinaison de moyens techniquement opérante de tels moyens. En particulier, le nombre et la disposition des vannes et des échangeurs de chaleur peuvent être modifiés sans nuire à l’invention dans la mesure où ils remplissent les fonctionnalités décrites dans le présent document.
5

Claims

REVENDICATIONS
Système (ΐqq) de régulation thermique d’au moins un dispositif de stockage électrique (300) d’un véhicule automobile, le dispositif de stockage électrique (300) comprenant une pluralité de modules électriques (310), le système (ΐqq) de régulation thermique comprenant au moins deux échangeurs de chaleur (l 52, 152’) aptes à être parcourus par un fluide, chaque module électrique (310) du dispositif de stockage électrique (300) étant thermiquement couplé à l’un des échangeurs de chaleur (l 52, 152’), le système (ΐqq) de régulation comprenant une pluralité de dispositifs de pilotage (210, 210’), chaque dispositif de pilotage (210, 210’) étant associé à un module électrique (310), le système (ΐqq) de régulation comprenant une pluralité d’organes d’alimentation (l53, 153’) . chaque organe d’alimentation (153, 153 ) étant configuré pour réguler l’alimentation en fluide d’un échangeur de chaleur (152, 152’).
2. Système (ΐqq) de régulation selon la revendication précédente, comprenant au moins une unité de commande centrale (200) à laquelle sont connectés les dispositifs de pilotage (210, 210’).
3. Système (ΐqq) de régulation selon l’une quelconque des revendications précédentes, dans lequel chaque organe d’alimentation (l53, 153’) est configuré pour réguler l’alimentation en fluide d’un seul échangeur de chaleur (l52, 152’).
4. Système (ΐqq) de régulation selon l’une quelconque des revendications précédentes, dans lequel chaque dispositif de pilotage (210, 210’) est configuré pour déterminer une température instantanée du module électrique (3'q) auquel il est associé, et pour déterminer un besoin en refroidissement du module électrique (310) concerné à partir de cette température instantanée et d’une température seuil prédéterminée.
5. Système (ΐqq) de régulation selon l’une quelconque des revendications précédentes, dans lequel chaque organe d’alimentation (l53, 153’) est sous la dépendance de l’un des dispositifs de pilotage (210, 210’), cet organe d’alimentation (l53. 153’) et ce dispositif de pilotage (210, 210’) étant associés à un même module électrique (310).
6. Système (ΐqq) de régulation thermique selon la revendication précédente, dans lequel au moins un des dispositifs de pilotage (210, 210’) associés aux modules électriques (3'0) est configuré pour piloter directement l’organe d’alimentation (l53, 153’) du module électrique (31q) auquel est associé le dispositif de pilotage concerné (210, 210’).
7. Système (ΐqq) de régulation thermique selon la revendication 5, dans lequel au moins un des dispositifs de pilotage (210, 210’) associés aux modules électriques (3'q) est configuré pour envoyer une instruction à l’unité de commande centrale (200), cette unité de commande centrale (200) étant configurée pour piloter l’organe d’alimentation (l53, 153’) du module électrique (3'q) auquel est associé le dispositif de pilotage concerné (210, 210’).
8. Système (ΐqq) de régulation selon l’une quelconque des revendications précédentes, dans lequel le fluide est un fluide réfrigérant, le système (ΐqq) de régulation comprenant un organe de détente (151, 15l ) configuré pour opérer une détente du fluide réfrigérant qui parcourt les échangeurs de chaleur (152, 152’).
9. Système (ΐqq) de régulation selon la revendication précédente, dans lequel l’organe de détente (151, 15l ) est piloté par l’unité de commande centrale (200).
10. Système (ΐqq) de régulation selon l’une des revendications 8 ou 9, comprenant un circuit fermé (il q) dans lequel circule le fluide, ce fluide étant un fluide réfrigérant, circuit fermé (lio) sur lequel sont agencés au moins un dispositif de compression (l20) et un premier échangeur thermique (130), le circuit fermé (lio) comprenant une branche primaire (l40) porteuse d’un moyen de détente (141) et d’un deuxième échangeur thermique (l42) destiné au traitement thermique d’un flux d’air envoyé vers un habitacle du véhicule, et une pluralité de branches secondaires (l50) agencées en parallèle les unes des autres, chacune de ces branches secondaires (l50) étant porteuse au moins de l’un des échangeurs de chaleur (152) et de l’un des organes d’alimentation (l53), cette pluralité de branches secondaires (l50) comprenant une portion commune (250) sur laquelle est agencé l’organe de détente (l5l), le circuit fermé (lio) comprenant en outre un collecteur (ΐ6q) au niveau duquel sont raccordées la branche primaire (l40) et les branches secondaires (l50).
11. Système (ΐqq) de régulation selon l’une des revendications 8 ou 9, comprenant un premier circuit fermé (4'0) dans lequel circule un fluide réfrigérant et sur lequel sont agencés au moins un dispositif de compression (l20’) et un premier échangeur thermique (l30’), le premier circuit fermé (4'0) comprenant une branche primaire (l40’) porteuse d’un moyen de détente (141’) et d’un deuxième échangeur thermique (l42’) destiné au traitement thermique d’un flux d’air envoyé vers un habitacle du véhicule, le premier circuit fermé (410) comprenant une branche secondaire (l50’) porteuse de l’organe de détente (151’) et d’un troisième échangeur thermique (400) destiné au traitement thermique du fluide, ce fluide étant un fluide caloporteur, ce troisième échangeur thermique (400) étant agencé au moins en partie sur un deuxième circuit fermé (420) dans lequel circule le fluide caloporteur, ce deuxième circuit fermé (420) comprenant une première branche (422) porteuse au moins du troisième échangeur thermique (400) et d’une pompe (423) configurée pour permettre la circulation du fluide caloporteur dans ce deuxième circuit fermé (420), ce deuxième circuit fermé (420) comprenant une pluralité de deuxièmes branches (424) en communication avec la première branche (422) et agencées en parallèle les unes des autres, chacune de ces deuxièmes branches (424) portant au moins l’un des échangeurs de chaleur (152’) thermiquement couplés aux modules électriques (3'q) et l’un des organes d’alimentation (l53 ) de ces échangeurs de chaleur (152’).
12. Système (ΐqq) de régulation selon l’une quelconque des revendications précédentes, dans lequel chaque dispositif de pilotage (210, 210’) est configuré pour contrôler une tension et/ou une intensité d’un courant qui circule vers ou depuis le module électrique (3'q) auquel il est associé.
EP19707423.0A 2018-01-31 2019-01-29 Systeme de regulation thermique d'au moins un dispositif de stockage electrique d'un vehicule automobile Pending EP3747079A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1850793A FR3077378B1 (fr) 2018-01-31 2018-01-31 Systeme de regulation thermique d'au moins un dispositif de stockage electrique d'un vehicule automobile
PCT/FR2019/050187 WO2019150031A1 (fr) 2018-01-31 2019-01-29 Systeme de regulation thermique d'au moins un dispositif de stockage electrique d'un vehicule automobile

Publications (1)

Publication Number Publication Date
EP3747079A1 true EP3747079A1 (fr) 2020-12-09

Family

ID=61764009

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19707423.0A Pending EP3747079A1 (fr) 2018-01-31 2019-01-29 Systeme de regulation thermique d'au moins un dispositif de stockage electrique d'un vehicule automobile

Country Status (3)

Country Link
EP (1) EP3747079A1 (fr)
FR (1) FR3077378B1 (fr)
WO (1) WO2019150031A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE544868C2 (en) * 2020-02-27 2022-12-13 Abtery Ab A cooling arrangement for an electrical storage device
FR3129777B1 (fr) * 2021-11-29 2023-10-27 Valeo Systemes Thermiques Dispositif de gestion thermique pour systeme de batterie pour vehicule automobile
CN117774598A (zh) * 2022-09-29 2024-03-29 比亚迪股份有限公司 控制方法及车辆
EP4360924A1 (fr) * 2022-10-31 2024-05-01 FERRARI S.p.A. Véhicule avec un dispositif de climatisation pour refroidir des appareils électriques dans le véhicule

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009043316A1 (de) * 2009-09-28 2011-03-31 Valeo Klimasysteme Gmbh Verfahren zur Steuerung der Innenraumtemperatur eines elektrisch betriebenen Fahrzeugs und Klimaanlagensystem
DE102010030548A1 (de) * 2010-06-25 2011-12-29 Sb Limotive Company Ltd. Verfahren zur Überwachung eines Ladevorgangs einer Batterie
DE102010042127B4 (de) * 2010-10-07 2020-09-17 Audi Ag Kältemittelkreislauf einer Klimaanlage eines Kraftfahrzeuges
JP5644648B2 (ja) * 2011-04-18 2014-12-24 株式会社デンソー 電池温度調整装置
DE102014206770A1 (de) * 2014-04-08 2015-10-08 MAHLE Behr GmbH & Co. KG Batteriekühleinrichtung und zugehöriges Betriebsverfahren

Also Published As

Publication number Publication date
FR3077378B1 (fr) 2020-05-22
WO2019150031A1 (fr) 2019-08-08
FR3077378A1 (fr) 2019-08-02

Similar Documents

Publication Publication Date Title
EP3747079A1 (fr) Systeme de regulation thermique d'au moins un dispositif de stockage electrique d'un vehicule automobile
EP3451485A1 (fr) Dispositif de connexion électrique pour véhicule automobile refroidi par un circuit de fluide réfrigérant
EP3559426B1 (fr) Procédé de pilotage d'un système de refroidissement pour un véhicule hybride comportant un circuit de transfert de liquide de refroidissement
EP2655120B1 (fr) Procede et systeme de regulation de la temperature d'une batterie d'alimentation d'un vehicule a traction electrique et vehicule equipe d'un tel systeme
EP2632748A1 (fr) Dispositif de conditionnement thermique d'une chaîne de traction et d'un habitacle de véhicule
EP0960756A1 (fr) Dispositif de climatisation de véhicule utilisant un fluide réfrigérant à l'état supercritique
FR2946288A1 (fr) Dispositif et procede de gestion thermique multifonction d'un vehicule electrique
EP3899225A1 (fr) Dispositif de gestion thermique d'un circuit de fluide caloporteur d'un véhicule hybride
FR2731952A1 (fr) Circuit de fluide de climatisation pour vehicule permettant un chauffage a puissance reglable
EP3732417B1 (fr) Systeme de traitement thermique pour vehicule electrique ou hybride
FR3076605A1 (fr) Systeme de traitement thermique pour vehicule electrique ou hybride
WO2019186077A1 (fr) Système de conditionnement thermique d'un dispositif de stockage électrique équipant un véhicule
EP1362168A1 (fr) Dispositif, systeme et procede de refroidissement d'un fluide caloporteur
WO2019150034A1 (fr) Circuit de fluide réfrigérant pour véhicule
FR3077235A1 (fr) Procede de traitement thermique d'un habitacle et d'un dispositif de stockage electrique d'un vehicule automobile
FR3070556B1 (fr) Dispositif de connexion electrique pour vehicule refroidi par un circuit de fluide caloporteur
WO2021156034A1 (fr) Dispositif de recuperation et de regulation d'energie thermique d'un vehicule electrique a generateur electrochimique avec un systeme hvac
CH717116A2 (fr) Dispositif de récupération et de régulation d'énergie thermique d'un véhicule électrique à générateur électrochimique avec un système HVAC.
FR3097472A1 (fr) Procédé de contrôle d’un circuit de conditionnement thermique d’un véhicule automobile
FR3081784A1 (fr) Systeme de regulation thermique destine a un vehicule electrique ou hybride
WO2019186057A1 (fr) Circuit de gestion thermique d'un dispositif de stockage electrique d'un vehicule automobile et procede de pilotage associe
EP3747080B1 (fr) Procédé de refroidissement d'un dispositif de stockage électrique équipant un véhicule
EP3732418A1 (fr) Echangeur de chaleur pour vehicule, mû au moins en partie par un moteur electrique
FR2819344A1 (fr) Vehicule comportant une batterie d'accumulateurs refroidie par un dispositif de climatisation
FR2815401A1 (fr) Dispositif, systeme et procede de refroidissement d'un fluide caloporteur

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200729

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528