EP3741190A1 - Ripple suppression circuit, controlling method and driving equipment - Google Patents

Ripple suppression circuit, controlling method and driving equipment

Info

Publication number
EP3741190A1
EP3741190A1 EP18907985.8A EP18907985A EP3741190A1 EP 3741190 A1 EP3741190 A1 EP 3741190A1 EP 18907985 A EP18907985 A EP 18907985A EP 3741190 A1 EP3741190 A1 EP 3741190A1
Authority
EP
European Patent Office
Prior art keywords
output port
ripple suppression
input port
port
suppression circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18907985.8A
Other languages
German (de)
French (fr)
Other versions
EP3741190A4 (en
Inventor
Zhiwen Chen
Juyuan CHEN
Qiuxiang MAO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tridonic GmbH and Co KG
Original Assignee
Tridonic GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tridonic GmbH and Co KG filed Critical Tridonic GmbH and Co KG
Publication of EP3741190A1 publication Critical patent/EP3741190A1/en
Publication of EP3741190A4 publication Critical patent/EP3741190A4/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/36Circuits for reducing or suppressing harmonics, ripples or electromagnetic interferences [EMI]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/59Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits for reducing or suppressing flicker or glow effects
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • Embodiments of the present disclosure generally relate to the field of lighting, and more particularly, to a ripple suppression circuit, a controlling method and a driving equipment.
  • the lighting device is LED (Light Emitting Diode) for example.
  • the lighting device is driven by a driver, which outputs direct current to the lighting device.
  • output current has high ripple coefficient, e.g. ⁇ 30%or even higher. High ripple coefficient may make the lighting device to flicker.
  • a ripple suppression circuit may connect with output port of the driver, to suppress ripples in the output current. Therefore, flicker can be eliminated by using the ripple suppression circuit.
  • embodiments of the present disclosure provide a ripple suppression circuit, a controlling method and a driving equipment.
  • a protection circuit is used to form path for discharging, when output port of the ripple suppression circuit is shorted. Therefore, the transistor in the ripple suppression circuit will be protected, and the transistor with lower voltage rating and lower avalanche energy can be used.
  • a ripple suppression circuit includes:
  • a first input port and a second input port configured to receive an input signal
  • a first output port and a second output port configured to output an output signal
  • the second input port connects with the second output port
  • At least one capacitor configured to connect between the first input port and the second input port
  • a main transistor configured to connect between the first input port and the first output port, and suppress ripples in the input signal
  • a protection circuit configured to connect between the first input port and the first output port, the protection circuit connects the first input port with the first output port when there is a short circuit between the first output port and the second output port.
  • the protection circuit includes a transient voltage suppressor (TVS) , which reversely connects between the first input port and the first output port.
  • TVS transient voltage suppressor
  • the protection circuit includes at least two diodes, which forwardly connects in series between the first input port and the first output port.
  • the ripple suppression circuit is integrated in a driving circuit, which provides the input signal to the ripple suppression circuit; or the ripple suppression circuit is placed in a separated device from the driving circuit.
  • the device has a first housing in which the ripple suppression circuit is placed.
  • the first housing includes: a base part, on which the ripple suppression circuit mounted; a first cover part, configured to cover the at least one capacitor, the main transistor and the protection circuit; and a second cover part, configured to cover the first input port, the second input port, the first output port and the second output port.
  • the device is placed within or externally a second housing in which the driving circuit is placed.
  • a controlling method of a ripple suppression circuit includes:
  • the main transistor connects between the first input port and the first output port;
  • a driving equipment includes a driving circuit and the ripple suppression circuit according to the first aspect of the disclosure, the input signal is provided by the driving circuit.
  • the disclosure also relates to a driving equipment, includes a driving circuit, and the ripple suppression circuit according to the first aspect of the disclosure, the ripple suppression circuit is placed in a first housing, the first housing includes a base part, on which the ripple suppression circuit mounted; a first cover part, configured to cover the at least one capacitor, the main transistor and the protection circuit; and a second cover part, configured to cover the first input port, the second input port, the first output port and the second output port.
  • a protection circuit is used to provide the ripple suppression circuit with a path for discharging when output port of the ripple suppression circuit is shorted, so that the transistor in the ripple suppression circuit will be protected.
  • Fig. 1 is a diagram of a ripple suppression circuit in accordance with an embodiment of the present disclosure
  • Fig. 2 is a diagram of a ripple suppression circuit in accordance with another embodiment of the present disclosure.
  • Fig. 3 shows the first housing in accordance with the embodiment of the present disclosure
  • Fig. 4 (A) and (B) show photographs of the tube in accordance with the embodiment of the present disclosure
  • Fig. 5 shows a flowchart of a controlling method 500 of the ripple suppression circuit in accordance with the embodiment of the present disclosure.
  • the terms “first” and “second” refer to different elements.
  • the singular forms “a” and “an” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
  • the term “based on” is to be read as “based at least in part on. ”
  • the term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ”
  • the term “another embodiment” is to be read as “at least one other embodiment. ”
  • Other definitions, explicit and implicit, may be included below.
  • a ripple suppression circuit is provided in a first embodiment.
  • Fig. 1 is a diagram of a ripple suppression circuit in accordance with an embodiment of the present disclosure.
  • a ripple suppression circuit 10 includes a first input port X1-a, a second input port X1-b, a first output port X2-a, a second output port X2-b, at least one capacitor C01, C02, a main transistor Q01, and a protection circuit 11.
  • the first input port X1-a and the second input port X1-b are configured to receive an input signal.
  • the input signal may be direct current/voltage which has ripples.
  • the input signal may be provided by a driving circuit.
  • the ripple suppression circuit may connect to the secondary side of the driving circuit.
  • the first output port X2-a and the second output port X2-b are configured to output an output signal.
  • the second input port X1-b connects with the second output port X2-b, thus the second input port X1-b and the second output port X2-b may have the same voltage, for example, voltage of ground.
  • the at least one capacitor C01 and C02 are configured to connect between the first input port X1-a and the second input port X1-b.
  • two capacitors C01 and C02 are taken as an example, the embodiment will not be limited thereto, number of capacitor will be one, or more than two.
  • the main transistor Q01 is configured to connect between the first input port X1-a and the first output port X2-a.
  • the main transistor Q01 is used to suppress ripples in the input signal.
  • the main transistor Q01 is a bipolar transistor, for example an NPN bipolar transistor. Emitter of the bipolar transistor connects to the first output port X2-a, collector of the bipolar transistor connects to the first input port X1-a, base of the bipolar transistor connects to a connecting node TP2 via a resistor R01.
  • the connecting node TP2 is between a first diode D01 and a capacitor C03 that connects in series between the first input port X1-a and the second input port X1-b.
  • the main transistor Q01 can be of other type, for example a MOS FET (Metal-Oxide-Semiconductor Field-Effect Transistor) .
  • the protection circuit 11 is configured to connect between the first input port X1-a and the first output port X2-a.
  • the protection circuit connects the first input port X1-a with the first output port X2-a when there is a short circuit between the first output port X1-a and the second output port X2-a.
  • a protection circuit connects the first input port X1-a with the first output port X2-a when output port of the ripple suppression circuit is shorted, therefore, the protection circuit can form path for discharging, the main transistor in the ripple suppression circuit will be protected, and the main transistor with lower voltage rating and lower avalanche energy can be used.
  • the protection circuit 11 may include a transient voltage suppressor (TVS) D61, which reversely connects between the first input port X1-a and the first output port X2-a.
  • TVS transient voltage suppressor
  • the protection circuit 11 may include a transient voltage suppressor (TVS) D61, which reversely connects between the first input port X1-a and the first output port X2-a.
  • TVS D61 transient voltage suppressor
  • the TVS D61 may be SMC (surface mounting) packaging or axial, radial type.
  • the threshold of the TVS D61 may be 5V, the transient pulse power of the TVS D61 is 1500W.
  • the values for threshold and the transient pulse power are not limited thereto, they may depend on design.
  • Fig. 2 is a diagram of a ripple suppression circuit in accordance with another embodiment of the present disclosure.
  • a ripple suppression circuit 10a includes a first input port X1-a, a second input port X1-b, a first output port X2-a, a second output port X2-b, at least one capacitor C01, C02, a main transistor Q01, and a protection circuit 11a.
  • the protection circuit 11a in Fig. 2 is different from the protection circuit 11 in Fig. 1. Descriptions for the same element with the same labels in Fig. 1 and Fig. 2 are omitted.
  • the protection circuit 11a includes at least two diodes, which forwardly connects in series between the first input port X1-a and the first output port X2-a.
  • the at least two diodes may be diodes D03, D04 and D05.
  • output port of the ripple suppression circuit for example the first input port X1-a and the second input port X1-b are shorted, charges stored in the at least one capacitor C01 and C02 will discharge.
  • the at least two diodes D03, D04 and D05 will conduct to form path for discharging. Therefore, discharging will not be performed through the main transistor Q01, the main transistor Q01 is protected and safe.
  • diodes D03, D04 and D05 are cheap ones. Therefore, cost of the protection circuit 11a is getting lower.
  • the driving circuit may be formed by a flyback converter or resonant halfbridge converter or LLC converter including a transformer.
  • the transformer instead of the transformer there might from an inductor a part of a switched converter e.g. a buck converter or boost converter which forms the driving circuit.
  • the clocking of the driving circuit and especially the transformer by at least one controllable switch which is clocked at high frequency may depend on a controlling signal inputted to a control input of the driving circuit. For instance the frequency and /or the duty cycle of the controllable switch of the driving circuit may be adjusted in dependency on the controlling signal inputted to an input of the driving circuit.
  • the driving circuit may generate a driving current or driving voltage for the lighting device.
  • the driving circuit may output the driving current or driving voltage for the lighting device at the first input port X1-a and the second input port X1-b in order to output the input signal to the ripple suppression circuit 10 (or 10a) .
  • the ripple suppression circuit 10 (or 10a) can be integrated with a driving circuit (not shown) , which provides the input signal to the ripple suppression circuit 10 (or 10a) . Therefore, the ripple suppression circuit 10 (or 10a) and the driving circuit may be placed on one printed circuit board.
  • the ripple suppression circuit 10 may be placed in a separated device from the driving circuit.
  • the separated device can mechanically and electrically connect with the driving circuit, so as to suppress ripples in the output signal of the driving circuit.
  • the ripple suppression circuit 10 (or 10a) is not used or replacement is needed, the separated device can be disassembled from the driving circuit. Therefore, it is easy to use the ripple suppression circuit with different driving circuits, and replacement can be available.
  • the device may include the ripple suppression circuit 10 (or 10a) and a first housing in which the ripple suppression circuit 10 (or 10a) is placed.
  • Fig. 3 shows the first housing in accordance with the embodiment of the present disclosure.
  • the first housing 30 includes a base part 31, a first cover part 32 and a second cover part 33.
  • the ripple suppression circuit 10 (or 10a) can be mounted on the base part 31.
  • the first cover part 32 may be configured to cover the at least one capacitor (C01 and C02) , the main transistor Q01 and the protection circuit 10 (or 10a) .
  • the second cover part 33 may be configured to cover the first input port X1-a, the second input port X1-b, the first output port X2-a and the second output port X2-b.
  • Fig. 3 is an example of the first housing, the embodiment is not limited thereto.
  • the first housing may has other form with different form factors for different application, so that the device can be compatible to work with different driving circuits.
  • the first housing may has a form of tube, the ripple suppression circuit 10 (or 10a) is placed in the tube.
  • Fig. 4 (A) and (B) shows photographs of the tube in accordance with the embodiment. Circles on Fig. 4 (A) and (B) denote the tubes where the ripple suppression circuit 10 (or 10a) is placed in.
  • the driving circuit may be placed in a second housing, thus the second housing and the driving circuit forms a driver.
  • Descriptions about the second housing can be referred to related art, such as CN201444716U.
  • the device with the first housing may be placed within the second housing.
  • the first housing may has different form factors for different application, so that the device can be placed in the second housing.
  • the device with the first housing may be placed externally the second housing.
  • a protection circuit connects the first input port X1-a with the first output port X2-a when output port of the ripple suppression circuit is shorted, therefore, the protection circuit can form path for discharging, the main transistor in the ripple suppression circuit will be protected, and the main transistor with lower voltage rating and lower avalanche energy can be used.
  • the ripple suppression circuit may be placed in a separated device as accessory of the driving circuit.
  • the separated device can mechanically and electrically connect with the driving circuit, so as to suppress ripples in the output signal of the driving circuit.
  • the separated device can be disassembled from the driving circuit, when replacement is needed or the ripple suppression circuit is not used. Therefore, it is easy to use the ripple suppression circuit with different driving circuits, and replacement can be available.
  • the first housing may has different form factors for different application, so that the device can be placed in the driver.
  • the first housing may include a strain relief, e.g. for the wiring of the lighting device, in addition to the ripple suppression circuit.
  • a controlling method of a ripple suppression circuit is provided in an embodiment.
  • the same contents as those in the first aspect of embodiments are omitted.
  • Fig. 5 shows a flowchart of a controlling method 500 of the ripple suppression circuit.
  • the method 500 includes:
  • Block 501 receiving an input signal via a first input port and a second input port
  • Block 502 outputting an output signal via a first output port and a second output port, the second input port connects with the second output port, and at least one capacitor connects between the first input port and the second input port;
  • Block 503 suppressing ripples of the input signal by a main transistor, the main transistor connects between the first input port and the first output port;
  • Block 504 connecting the first input port with the first output port by a protection circuit, when there is a short circuit between the first output port and the second output port.
  • the protection circuit may include a TVS D61 or at least two diodes, which forwardly connects in series between the first input port and the first output port.
  • a protection circuit connects the first input port X1-a with the first output port X2-a when output port of the ripple suppression circuit is shorted, therefore, the protection circuit can form path for discharging, the main transistor in the ripple suppression circuit will be protected, and the main transistor with lower voltage rating and lower avalanche energy can be used.
  • the driving equipment includes a driving circuit and the ripple suppression circuit according to the first aspect of embodiments.
  • the ripple suppression circuit receives the input signal provided by the driving circuit, and outputs signal with low ripple coefficient.
  • the signal with low ripple coefficient may be provided to a lighting device, so that flicker of the lighting device can be reduced.
  • the ripple suppression circuit may be integrated in the driving circuit, or, the ripple suppression circuit may be placed in a separated device from the driving circuit.
  • the ripple suppression circuit may be placed in a first housing to form the separated device.
  • the driving circuit may be placed in a second housing to form a driver.
  • the first housing may be placed within or externally the second housing.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Conversion In General (AREA)

Abstract

A ripple suppression circuit, a controlling method and a driving equipment. The ripple suppression circuit includes: a first input port and a second input port, configured to receive an input signal; a first output port and a second output port, configured to output an output signal, the second input port connects with the second output port; at least one capacitor, configured to connect between the first input port and the second input port; a main transistor, configured to connect between the first input port and the first output port, and suppress ripples in the input signal; and a protection circuit, configured to connect between the first input port and the first output port, the protection circuit connects the first input port with the first output port when there is a short circuit between the first output port and the second output port. Therefore, the main transistor can be protected.

Description

    RIPPLE SUPPRESSION CIRCUIT, CONTROLLING METHOD AND DRIVING EQUIPMENT Technical Field
  • Embodiments of the present disclosure generally relate to the field of lighting, and more particularly, to a ripple suppression circuit, a controlling method and a driving equipment.
  • Background
  • This section introduces aspects that may facilitate better understanding of the present disclosure. Accordingly, the statements of this section are to be read in this light and are not to be understood as admissions about what is in the prior art or what is not in the prior art.
  • In the field of lighting technology, it is often needed to configure a driving current, which is used to drive a lighting device. The lighting device is LED (Light Emitting Diode) for example.
  • The lighting device is driven by a driver, which outputs direct current to the lighting device. For most of low cost drivers, output current has high ripple coefficient, e.g. ±30%or even higher. High ripple coefficient may make the lighting device to flicker.
  • A ripple suppression circuit may connect with output port of the driver, to suppress ripples in the output current. Therefore, flicker can be eliminated by using the ripple suppression circuit.
  • Summary
  • Inventor of this disclosure found the following limitation in related art: when output port of the ripple suppression circuit is shorted, energy stored in secondary side of  the driver will rush through transistor of the ripple suppression circuit, and the transistor will be destroyed as a result. Therefore, transistor with higher voltage rating and higher avalanche energy is used to survive.
  • In general, embodiments of the present disclosure provide a ripple suppression circuit, a controlling method and a driving equipment. In the embodiments, a protection circuit is used to form path for discharging, when output port of the ripple suppression circuit is shorted. Therefore, the transistor in the ripple suppression circuit will be protected, and the transistor with lower voltage rating and lower avalanche energy can be used.
  • In a first aspect, there is provided a ripple suppression circuit, includes:
  • a first input port and a second input port, configured to receive an input signal;
  • a first output port and a second output port, configured to output an output signal, the second input port connects with the second output port;
  • at least one capacitor, configured to connect between the first input port and the second input port;
  • a main transistor, configured to connect between the first input port and the first output port, and suppress ripples in the input signal; and
  • a protection circuit, configured to connect between the first input port and the first output port, the protection circuit connects the first input port with the first output port when there is a short circuit between the first output port and the second output port.
  • In an embodiment, the protection circuit includes a transient voltage suppressor (TVS) , which reversely connects between the first input port and the first output port.
  • In an embodiment, the protection circuit includes at least two diodes, which forwardly connects in series between the first input port and the first output port.
  • In an embodiment, the ripple suppression circuit is integrated in a driving circuit, which provides the input signal to the ripple suppression circuit; or the ripple suppression circuit is placed in a separated device from the driving circuit.
  • In an embodiment, the device has a first housing in which the ripple suppression circuit is placed.
  • In an embodiment, the first housing includes: a base part, on which the ripple suppression circuit mounted; a first cover part, configured to cover the at least one capacitor, the main transistor and the protection circuit; and a second cover part, configured to cover the first input port, the second input port, the first output port and the second output port.
  • In an embodiment, the device is placed within or externally a second housing in which the driving circuit is placed.
  • In a second aspect, there is provided a controlling method of a ripple suppression circuit, includes:
  • receiving an input signal via a first input port and a second input port;
  • outputting an output signal via a first output port and a second output port, wherein, the second input port connects with the second output port, and at least one capacitor connects between the first input port and the second input port;
  • suppressing ripples of the input signal by a main transistor, the main transistor connects between the first input port and the first output port; and
  • connecting the first input port with the first output port by a protection circuit, when there is a short circuit between the first output port and the second output port.
  • In a third aspect, there is provided a driving equipment, includes a driving circuit and the ripple suppression circuit according to the first aspect of the disclosure, the input signal is provided by the driving circuit.
  • The disclosure also relates to a driving equipment, includes a driving circuit, and the ripple suppression circuit according to the first aspect of the disclosure, the ripple suppression circuit is placed in a first housing, the first housing includes a base part, on which the ripple suppression circuit mounted; a first cover part, configured to cover the at least one capacitor, the main transistor and the protection circuit; and a second cover part,  configured to cover the first input port, the second input port, the first output port and the second output port.
  • According to various embodiments of the present disclosure, a protection circuit is used to provide the ripple suppression circuit with a path for discharging when output port of the ripple suppression circuit is shorted, so that the transistor in the ripple suppression circuit will be protected.
  • Brief Description of the Drawings
  • The above and other aspects, features, and benefits of various embodiments of the disclosure will become more fully apparent, by way of example, from the following detailed description with reference to the accompanying drawings, in which like reference numerals or letters are used to designate like or equivalent elements. The drawings are illustrated for facilitating better understanding of the embodiments of the disclosure and not necessarily drawn to scale, in which:
  • Fig. 1 is a diagram of a ripple suppression circuit in accordance with an embodiment of the present disclosure;
  • Fig. 2 is a diagram of a ripple suppression circuit in accordance with another embodiment of the present disclosure;
  • Fig. 3 shows the first housing in accordance with the embodiment of the present disclosure;
  • Fig. 4 (A) and (B) show photographs of the tube in accordance with the embodiment of the present disclosure;
  • Fig. 5 shows a flowchart of a controlling method 500 of the ripple suppression circuit in accordance with the embodiment of the present disclosure.
  • Detailed Description
  • The present disclosure will now be discussed with reference to several example  embodiments. It should be understood that these embodiments are discussed only for the purpose of enabling those skilled persons in the art to better understand and thus implement the present disclosure, rather than suggesting any limitations on the scope of the present disclosure.
  • As used herein, the terms “first” and “second” refer to different elements. The singular forms “a” and “an” are intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises, ” “comprising, ” “has, ” “having, ” “includes” and/or “including” as used herein, specify the presence of stated features, elements, and/or components and the like, but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof. The term “based on” is to be read as “based at least in part on. ” The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ” The term “another embodiment” is to be read as “at least one other embodiment. ” Other definitions, explicit and implicit, may be included below.
  • First aspect of embodiments
  • A ripple suppression circuit is provided in a first embodiment.
  • Fig. 1 is a diagram of a ripple suppression circuit in accordance with an embodiment of the present disclosure. As shown in Fig. 1, a ripple suppression circuit 10 includes a first input port X1-a, a second input port X1-b, a first output port X2-a, a second output port X2-b, at least one capacitor C01, C02, a main transistor Q01, and a protection circuit 11.
  • In the embodiment, the first input port X1-a and the second input port X1-b are configured to receive an input signal. The input signal may be direct current/voltage which has ripples. The input signal may be provided by a driving circuit. The ripple suppression circuit may connect to the secondary side of the driving circuit.
  • The first output port X2-a and the second output port X2-b are configured to output an output signal. The second input port X1-b connects with the second output port X2-b, thus the second input port X1-b and the second output port X2-b may have the same  voltage, for example, voltage of ground.
  • In the embodiment, the at least one capacitor C01 and C02 are configured to connect between the first input port X1-a and the second input port X1-b. In FIG. 1, two capacitors C01 and C02 are taken as an example, the embodiment will not be limited thereto, number of capacitor will be one, or more than two.
  • In the embodiment, the main transistor Q01 is configured to connect between the first input port X1-a and the first output port X2-a. The main transistor Q01 is used to suppress ripples in the input signal.
  • As shown in FIG. 1, the main transistor Q01 is a bipolar transistor, for example an NPN bipolar transistor. Emitter of the bipolar transistor connects to the first output port X2-a, collector of the bipolar transistor connects to the first input port X1-a, base of the bipolar transistor connects to a connecting node TP2 via a resistor R01. The connecting node TP2 is between a first diode D01 and a capacitor C03 that connects in series between the first input port X1-a and the second input port X1-b. The embodiment will not be limited thereto; the main transistor Q01 can be of other type, for example a MOS FET (Metal-Oxide-Semiconductor Field-Effect Transistor) .
  • In the embodiment, the protection circuit 11 is configured to connect between the first input port X1-a and the first output port X2-a. The protection circuit connects the first input port X1-a with the first output port X2-a when there is a short circuit between the first output port X1-a and the second output port X2-a.
  • According to the embodiments, a protection circuit connects the first input port X1-a with the first output port X2-a when output port of the ripple suppression circuit is shorted, therefore, the protection circuit can form path for discharging, the main transistor in the ripple suppression circuit will be protected, and the main transistor with lower voltage rating and lower avalanche energy can be used.
  • In the embodiment, the protection circuit 11 may include a transient voltage suppressor (TVS) D61, which reversely connects between the first input port X1-a and the first output port X2-a. When output port of the ripple suppression circuit is shorted, for  example the first input port X1-a and the second input port X1-b are shorted, charges stored in the at least one capacitor C01 and C02 will discharge. Once voltage built on the TVS D61 reaches a threshold, TVS D61 will conduct to form path for discharging. Therefore, discharging will not be performed through the main transistor Q01, the main transistor Q01 is protected and safe.
  • In an embodiment, the TVS D61 may be SMC (surface mounting) packaging or axial, radial type. The threshold of the TVS D61 may be 5V, the transient pulse power of the TVS D61 is 1500W. However, the values for threshold and the transient pulse power are not limited thereto, they may depend on design.
  • Fig. 2 is a diagram of a ripple suppression circuit in accordance with another embodiment of the present disclosure. As shown in Fig. 2, a ripple suppression circuit 10a includes a first input port X1-a, a second input port X1-b, a first output port X2-a, a second output port X2-b, at least one capacitor C01, C02, a main transistor Q01, and a protection circuit 11a.
  • The protection circuit 11a in Fig. 2 is different from the protection circuit 11 in Fig. 1. Descriptions for the same element with the same labels in Fig. 1 and Fig. 2 are omitted.
  • In the embodiment, as shown in Fig. 2, the protection circuit 11a includes at least two diodes, which forwardly connects in series between the first input port X1-a and the first output port X2-a.
  • As shown in Fig. 2, the at least two diodes may be diodes D03, D04 and D05. When output port of the ripple suppression circuit is shorted, for example the first input port X1-a and the second input port X1-b are shorted, charges stored in the at least one capacitor C01 and C02 will discharge. Once voltage built on the at least two diodes reaches a threshold, the at least two diodes D03, D04 and D05 will conduct to form path for discharging. Therefore, discharging will not be performed through the main transistor Q01, the main transistor Q01 is protected and safe.
  • According to embodiment shown in Fig. 2, diodes D03, D04 and D05 are cheap  ones. Therefore, cost of the protection circuit 11a is getting lower.
  • In the embodiment, as shown in Fig. 1 and Fig. 2, other components, such as resisters R02 and R03, capacitors C03, may be included in the ripple suppression circuit 10 (or 10a) . Descriptions for these components may be referred to the related art.
  • The driving circuit may be formed by a flyback converter or resonant halfbridge converter or LLC converter including a transformer. Instead of the transformer there might from an inductor a part of a switched converter e.g. a buck converter or boost converter which forms the driving circuit. The clocking of the driving circuit and especially the transformer by at least one controllable switch which is clocked at high frequency may depend on a controlling signal inputted to a control input of the driving circuit. For instance the frequency and /or the duty cycle of the controllable switch of the driving circuit may be adjusted in dependency on the controlling signal inputted to an input of the driving circuit.
  • The driving circuit may generate a driving current or driving voltage for the lighting device. The driving circuit may output the driving current or driving voltage for the lighting device at the first input port X1-a and the second input port X1-b in order to output the input signal to the ripple suppression circuit 10 (or 10a) .
  • In one embodiment, the ripple suppression circuit 10 (or 10a) can be integrated with a driving circuit (not shown) , which provides the input signal to the ripple suppression circuit 10 (or 10a) . Therefore, the ripple suppression circuit 10 (or 10a) and the driving circuit may be placed on one printed circuit board.
  • In another embodiment, the ripple suppression circuit 10 (or 10a) may be placed in a separated device from the driving circuit. When the ripple suppression circuit 10 (or 10a) is used, the separated device can mechanically and electrically connect with the driving circuit, so as to suppress ripples in the output signal of the driving circuit. When the ripple suppression circuit 10 (or 10a) is not used or replacement is needed, the separated device can be disassembled from the driving circuit. Therefore, it is easy to use the ripple suppression circuit with different driving circuits, and replacement can be available.
  • In the embodiment, the device may include the ripple suppression circuit 10 (or 10a) and a first housing in which the ripple suppression circuit 10 (or 10a) is placed.
  • Fig. 3 shows the first housing in accordance with the embodiment of the present disclosure. As shown in Fig. 3, the first housing 30 includes a base part 31, a first cover part 32 and a second cover part 33.
  • In the embodiment, the ripple suppression circuit 10 (or 10a) can be mounted on the base part 31. The first cover part 32 may be configured to cover the at least one capacitor (C01 and C02) , the main transistor Q01 and the protection circuit 10 (or 10a) . The second cover part 33 may be configured to cover the first input port X1-a, the second input port X1-b, the first output port X2-a and the second output port X2-b.
  • Fig. 3 is an example of the first housing, the embodiment is not limited thereto. The first housing may has other form with different form factors for different application, so that the device can be compatible to work with different driving circuits.
  • For example, the first housing may has a form of tube, the ripple suppression circuit 10 (or 10a) is placed in the tube. Fig. 4 (A) and (B) shows photographs of the tube in accordance with the embodiment. Circles on Fig. 4 (A) and (B) denote the tubes where the ripple suppression circuit 10 (or 10a) is placed in.
  • In the embodiment, the driving circuit may be placed in a second housing, thus the second housing and the driving circuit forms a driver. Descriptions about the second housing can be referred to related art, such as CN201444716U.
  • In an embodiment, the device with the first housing may be placed within the second housing. The first housing may has different form factors for different application, so that the device can be placed in the second housing.
  • In another embodiment, the device with the first housing may be placed externally the second housing.
  • As can be seen from the above mentioned embodiments, a protection circuit connects the first input port X1-a with the first output port X2-a when output port of the ripple suppression circuit is shorted, therefore, the protection circuit can form path for discharging, the main transistor in the ripple suppression circuit will be protected, and the  main transistor with lower voltage rating and lower avalanche energy can be used.
  • In addition, the ripple suppression circuit may be placed in a separated device as accessory of the driving circuit. The separated device can mechanically and electrically connect with the driving circuit, so as to suppress ripples in the output signal of the driving circuit. The separated device can be disassembled from the driving circuit, when replacement is needed or the ripple suppression circuit is not used. Therefore, it is easy to use the ripple suppression circuit with different driving circuits, and replacement can be available.
  • In addition, the first housing may has different form factors for different application, so that the device can be placed in the driver.
  • The first housing may include a strain relief, e.g. for the wiring of the lighting device, in addition to the ripple suppression circuit.
  • Second aspect of embodiments
  • A controlling method of a ripple suppression circuit. The ripple suppression circuit of the first aspect of embodiments is provided in an embodiment. The same contents as those in the first aspect of embodiments are omitted.
  • Fig. 5 shows a flowchart of a controlling method 500 of the ripple suppression circuit.
  • As shown in Fig. 5, the method 500 includes:
  • Block 501: receiving an input signal via a first input port and a second input port;
  • Block 502: outputting an output signal via a first output port and a second output port, the second input port connects with the second output port, and at least one capacitor connects between the first input port and the second input port;
  • Block 503: suppressing ripples of the input signal by a main transistor, the main transistor connects between the first input port and the first output port;
  • Block 504: connecting the first input port with the first output port by a  protection circuit, when there is a short circuit between the first output port and the second output port.
  • In the embodiment, the protection circuit may include a TVS D61 or at least two diodes, which forwardly connects in series between the first input port and the first output port.
  • As can be seen from the above mentioned embodiments, a protection circuit connects the first input port X1-a with the first output port X2-a when output port of the ripple suppression circuit is shorted, therefore, the protection circuit can form path for discharging, the main transistor in the ripple suppression circuit will be protected, and the main transistor with lower voltage rating and lower avalanche energy can be used.
  • Third aspect of embodiments
  • A driving equipment is provided in an embodiment. The driving equipment includes a driving circuit and the ripple suppression circuit according to the first aspect of embodiments.
  • In the embodiment, the ripple suppression circuit receives the input signal provided by the driving circuit, and outputs signal with low ripple coefficient. The signal with low ripple coefficient may be provided to a lighting device, so that flicker of the lighting device can be reduced.
  • In the embodiment, the ripple suppression circuit may be integrated in the driving circuit, or, the ripple suppression circuit may be placed in a separated device from the driving circuit.
  • In the embodiment, the ripple suppression circuit may be placed in a first housing to form the separated device. The driving circuit may be placed in a second housing to form a driver. The first housing may be placed within or externally the second housing.
  • Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or  in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
  • Although the present disclosure has been described in language specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (10)

  1. A ripple suppression circuit, comprising:
    a first input port and a second input port, configured to receive an input signal;
    a first output port and a second output port, configured to output an output signal, the second input port connects with the second output port;
    at least one capacitor, configured to connect between the first input port and the second input port;
    a main transistor, configured to connect between the first input port and the first output port, and suppress ripples in the input signal; and
    a protection circuit, configured to connect between the first input port and the first output port, the protection circuit connects the first input port with the first output port when there is a short circuit between the first output port and the second output port.
  2. The ripple suppression circuit according to claim 1, wherein,
    the protection circuit comprises a transient voltage suppressor (TVS) , which reversely connects between the first input port and the first output port.
  3. The ripple suppression circuit according to claim 1, wherein,
    the protection circuit comprises at least two diodes, which forwardly connects in series between the first input port and the first output port.
  4. The ripple suppression circuit according to claim 1, wherein,
    the ripple suppression circuit is integrated in a driving circuit, which provides the input signal to the ripple suppression circuit; or
    the ripple suppression circuit is placed in a separated device from the driving circuit.
  5. The ripple suppression circuit according to claim 4, wherein,
    the device has a first housing in which the ripple suppression circuit is placed.
  6. The ripple suppression circuit according to claim 5, wherein,
    the first housing comprises:
    a base part, on which the ripple suppression circuit mounted;
    a first cover part, configured to cover the at least one capacitor, the main transistor and the protection circuit; and
    a second cover part, configured to cover the first input port, the second input port, the first output port and the second output port.
  7. The ripple suppression circuit according to claim 5, wherein,
    the device is placed within or externally a second housing in which the driving circuit is placed.
  8. A driving equipment, comprises a driving circuit, and the ripple suppression circuit according to one of claims 1-7, wherein:
    the input signal is provided by the driving circuit.
  9. A driving equipment, comprises a driving circuit, and the ripple suppression circuit according to one of claims 1-3, the ripple suppression circuit is placed in a first housing,
    the first housing comprises:
    a base part, on which the ripple suppression circuit mounted;
    a first cover part, configured to cover the at least one capacitor, the main transistor and the protection circuit; and
    a second cover part, configured to cover the first input port, the second input port, the first output port and the second output port.
  10. A controlling method of a ripple suppression circuit, comprising:
    receiving an input signal via a first input port and a second input port;
    outputting an output signal via a first output port and a second output port, wherein, the second input port connects with the second output port, and at least one capacitor connects between the first input port and the second input port ;
    suppressing ripples of the input signal by a main transistor, the main transistor connects between the first input port and the first output port; and
    connecting the first input port with the first output port by a protection circuit, when there is a short circuit between the first output port and the second output port.
EP18907985.8A 2018-02-28 2018-02-28 Ripple suppression circuit, controlling method and driving equipment Pending EP3741190A4 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/077508 WO2019165589A1 (en) 2018-02-28 2018-02-28 Ripple suppression circuit, controlling method and driving equipment

Publications (2)

Publication Number Publication Date
EP3741190A1 true EP3741190A1 (en) 2020-11-25
EP3741190A4 EP3741190A4 (en) 2021-09-01

Family

ID=67804757

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18907985.8A Pending EP3741190A4 (en) 2018-02-28 2018-02-28 Ripple suppression circuit, controlling method and driving equipment

Country Status (3)

Country Link
EP (1) EP3741190A4 (en)
CN (1) CN111742618A (en)
WO (1) WO2019165589A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021248266A1 (en) 2020-06-08 2021-12-16 Tridonic Gmbh & Co Kg Ripple suppression circuit, controlling method and driving equipment
CN114222398A (en) * 2021-12-31 2022-03-22 厦门普为光电科技有限公司 High-luminous-efficiency light-emitting diode lighting device driver and method for improving luminous efficiency of light-emitting diode lighting device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2184260Y (en) * 1994-03-08 1994-11-30 陕西省泾阳县长城电器厂 Cadmium nickel battery
JP3087618B2 (en) * 1995-07-27 2000-09-11 株式会社村田製作所 Switching power supply
JP3710763B2 (en) * 2002-05-17 2005-10-26 コーセル株式会社 Self-excited switching power supply
US8742674B2 (en) * 2006-01-20 2014-06-03 Point Somee Limited Liability Company Adaptive current regulation for solid state lighting
CN101383507A (en) * 2007-09-03 2009-03-11 和舰科技(苏州)有限公司 Electro-static discharging protection circuit
TWI355126B (en) * 2007-11-30 2011-12-21 Altek Corp Protect circuit of car power
DE202008003140U1 (en) 2008-03-05 2009-08-06 Tridonicatco Schweiz Ag Operating device for bulbs
CN101527450A (en) * 2009-04-10 2009-09-09 合肥金星机电科技发展有限公司 Protective device for video transmission
CN103066817A (en) * 2012-12-24 2013-04-24 成都芯源系统有限公司 Ripple suppression circuit, power supply system thereof and ripple suppression method
CN203618174U (en) * 2013-12-06 2014-05-28 英飞特电子(杭州)有限公司 Protective circuit for reducing current source ripple
US9271352B2 (en) 2014-06-12 2016-02-23 Power Integrations, Inc. Line ripple compensation for shimmerless LED driver
CN207022254U (en) * 2017-07-07 2018-02-16 深圳市朗动电子科技有限公司 A kind of automatic LED drive power for removing stroboscopic

Also Published As

Publication number Publication date
CN111742618A (en) 2020-10-02
WO2019165589A1 (en) 2019-09-06
EP3741190A4 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
US20210211060A1 (en) Switching control device, driving device, isolated dc-dc converter, ac-dc converter, power adapter, and electric appliance
US10033289B2 (en) Insulated synchronous rectification DC/DC converter including capacitor and auxiliary power supply
US9190835B2 (en) Power factor correction (PFC) power conversion apparatus and power conversion method thereof
EP3226395B1 (en) Pre-charging circuit, dc-dc converter and hybrid vehicle
US20090168463A1 (en) Dc to dc converter
US10757785B2 (en) Driver with open output protection
US20140098452A1 (en) Power supply apparatus relating to dc-dc voltage conversion and having short protection function
WO2019165589A1 (en) Ripple suppression circuit, controlling method and driving equipment
US20100026253A1 (en) Buck converter with surge protection
US10530244B2 (en) Switch circuit with active snubber circuit and DC-DC converter
US9479161B2 (en) Power circuit and electronic device utilizing the same
US9351360B2 (en) Drive circuit for illumination device and illumination device
US9722599B1 (en) Driver for the high side switch of the cascode switch
CN219513967U (en) Power supply circuit, power supply equipment and electric vehicle
EP3605811B1 (en) Switching control device
US10008922B2 (en) Switching power supply
US20170013693A1 (en) Lighting system including a protection circuit, and corresponding method for protecting light sources from electrostatic discharges
JP5129208B2 (en) Switching power supply
JP4950254B2 (en) Switching power supply
US20140313625A1 (en) Voltage protection circuit
US9614451B2 (en) Starting an isolated power supply with regulated control power and an internal load
WO2021248266A1 (en) Ripple suppression circuit, controlling method and driving equipment
KR101213172B1 (en) Power supplying apparatus for generating laser
KR101241359B1 (en) Power supplying apparatus for generating laser
US20230179084A1 (en) Controllers configured to detect demagnetization with external bipolar transistors and internal mos transistors and methods thereof

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200819

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20210803

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 45/36 20200101AFI20210728BHEP

Ipc: H05B 45/3725 20200101ALI20210728BHEP

Ipc: H05B 45/50 20200101ALI20210728BHEP

Ipc: H05B 47/10 20200101ALI20210728BHEP

Ipc: H05B 47/20 20200101ALI20210728BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20221024