EP3738319B1 - Drahtloses überwachen und profilieren von reaktorbedingungen mit arrays von sensor-freigegebenen rfid-tags, die an bekannte reaktorhöhe gelegt werden - Google Patents

Drahtloses überwachen und profilieren von reaktorbedingungen mit arrays von sensor-freigegebenen rfid-tags, die an bekannte reaktorhöhe gelegt werden Download PDF

Info

Publication number
EP3738319B1
EP3738319B1 EP19702160.3A EP19702160A EP3738319B1 EP 3738319 B1 EP3738319 B1 EP 3738319B1 EP 19702160 A EP19702160 A EP 19702160A EP 3738319 B1 EP3738319 B1 EP 3738319B1
Authority
EP
European Patent Office
Prior art keywords
rfid
sensor
enabled
reaction zone
recited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19702160.3A
Other languages
English (en)
French (fr)
Other versions
EP3738319A1 (de
EP3738319C0 (de
Inventor
Kaspar Joseph VOGT
David Winn Fuchs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of EP3738319A1 publication Critical patent/EP3738319A1/de
Application granted granted Critical
Publication of EP3738319C0 publication Critical patent/EP3738319C0/de
Publication of EP3738319B1 publication Critical patent/EP3738319B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/025Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical shaped bed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10316Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves using at least one antenna particularly designed for interrogating the wireless record carriers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10366Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the interrogation device being adapted for miscellaneous applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00026Controlling or regulating the heat exchange system
    • B01J2208/00035Controlling or regulating the heat exchange system involving measured parameters
    • B01J2208/00044Temperature measurement
    • B01J2208/00061Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00539Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00548Flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00584Controlling the density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00592Controlling the pH
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00628Controlling the composition of the reactive mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00734Controlling static charge
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/40Arrangements in telecontrol or telemetry systems using a wireless architecture
    • H04Q2209/47Arrangements in telecontrol or telemetry systems using a wireless architecture using RFID associated with sensors

Definitions

  • This invention relates to a system and method for wirelessly monitoring and three-dimensional profiling of conditions within a process vessel such as a reactor.
  • Reactor vessels containing catalyst are common to refineries and chemical plants. In operating these reactors, it is desirable to measure or monitor the process conditions inside the vessel because this information can help in controlling the reaction conditions within the reactor vessel.
  • Current methods for measuring the conditions inside a reactor vessel require having a physical connection, such as an electrical or pneumatic connection, to the sensor that transmits sensor-measured information for external display.
  • One example of such measurement means is the use of thermocouples to measure temperature.
  • a thermowell is necessary. The thermowell is installed through the vessel wall, and it extends to a location at which temperature is measured within the vessel.
  • RFID radio frequency identification
  • US 7,397,370 An example of a sensor-enabled RFID tag used to measure environmental conditions is described in US 7,397,370 .
  • This patent presents a system that provides for monitoring an environment using a plurality of radio frequency identification (“RFID”) assemblies.
  • the system may include an RFID tag, having an associated unique identification (“ID”) code, configured with a sensor for sensing information regarding the environment, and an antenna for wirelessly transmitting the sensed information to a processing system.
  • the transmitted information received by the processing system includes the sensed environmental information along with the associated identification code and is processed to provide for monitoring an environment and changes in the monitored environment.
  • RFID radio frequency identification
  • RFID radio frequency identification
  • An RFID sensor tag is used to measure a variable condition, such as location, temperature, pressure, and humidity.
  • the RFID sensor tag transmits a signal that includes associated tag identification data with the variable data representing the measured condition.
  • the response signal includes both variable data and non-variable data so that the measured conditions can be associated with the tag identification data.
  • the RFID reader device may also receive a plurality of response signals each from one of a plurality of RFID tags. In this case, at least one of the plurality of response signals can include variable data representing a measured condition at the respective one of the plurality of RFID tags and tag identification data of the respective one of the plurality of RFID tags.
  • Patent Publication US 2007/0215709 discloses an RFID-based sensor that includes RFID circuitry combined with a sensor.
  • the sensor element is configured to change conductivity state based on its exposure to a physical condition of the ambient surroundings to which the sensor is exposed. These physical conditions may include the presence or absence of gas, light, sound, temperature, pressure, moisture, and/or other conditions of the environment.
  • the RFID-based sensor transmits for receipt by the RFID interrogator an identification (ID) code and other information associated with present or prior exposure of the RFID-based sensor to one or more physical conditions.
  • ID identification
  • the RFID-based sensor may also be powered by the RF energy delivered by the RFID interrogator.
  • US Patent 9,317,795 discloses an RFID sensing system that includes an array of sensing elements disposed on a surface. Each sensing element includes an RFID microchip, an antenna operatively coupled to the microchip, and a pressure-sensitive material disposed on the antenna. An RFID reader system provides an interrogation signal to each sensing element that transmits a signal back to the RFID reader via the coupled antenna when the pressure-sensitive material of a sensing element of the mat is compressed.
  • the reactor vessel of the system defines a reaction zone, which includes a catalyst bed having a height of catalyst particles, within which is an array of sensor-enabled RFID tags placed at a known height within the catalyst bed.
  • transceivers that include a first RFID transceiver antenna and a second RFID transceiver antenna.
  • the first RFID transceiver antenna is wirelessly linked to each sensor-enabled RFID tag of the array and is capable of transmitting a first interrogation signal and receiving a first RFID transponder signal that is transmitted responsive to the first interrogation signal.
  • the second RFID transceiver antenna is wirelessly linked to each sensor-enabled RFID tag of the array and is capable of transmitting a second interrogation signal and receiving a second RFID transponder signal that is transmitted responsive to the second interrogation signal.
  • Each sensor-enabled RFID tag of the array is encoded with a unique non-variable identification code and is capable of sensing a reactor condition within the reaction zone, receiving interrogation signals from the transceivers, and, responsive to the interrogation signals, transmitting the RFID transponder signals.
  • the RFID transponder signals include information representative of the unique non-variable identification codes and of one or more reactor conditions associated with each of the sensor-enabled RFID tags.
  • the system provides for determining reactor conditions at the known heights within the catalyst bed and profiling of process conditions within the reaction zone.
  • This reactor vessel defines a reaction zone, which includes a catalyst bed having a height of catalyst particles, within which is an array of sensor-enabled RFID tags placed at known heights within the catalyst bed.
  • the method includes transmitting interrogation signals by at least two RFID transceiver antennas.
  • the interrogation signals are received by each sensor-enabled RFID tag of the array.
  • each sensor-enabled RFID tag transmits its associated RFID transponder signal that includes information representing a unique non-variable identification code and a surrounding condition that is associated with the sensor-enabled RFID tag.
  • the RFID transceiver antennas receive the associated RFID transponder signals that are processed to provide a profile of the process conditions within the reaction zone.
  • Embodiments of the invention include both a system and method for wirelessly monitoring conditions within a reactor vessel and for providing profiles of conditions at locations within the reactor zone defined by the reactor vessel.
  • Measured conditions within the reactor vessel can include process or environmental conditions, such as, the pressures or temperatures at various locations within a reactor vessel.
  • the measured conditions may further include other parameters such as vapor and liquid percentages, flow rates, pH, and chemical compositions of fluids contained within or passing through the reactor vessel.
  • the invention provides for remotely measuring conditions within a reactor using arrays of sensor-enabled RFID tags placed at known heights within the catalyst bed of a reactor.
  • the sensor-enabled RFID tags wirelessly transmit measured information regarding sensed conditions within the reactor by radio wave transmission in response to interrogation signals transmitted by the several transceivers of the system.
  • a processing system is used to process the signals transmitted by the sensor-enabled RFID tags.
  • the processing system includes means, such as a computer with associated program code, for processing the information contained in the signals transmitted by the sensor-enabled RFID tags of the arrays to provide profiles of the conditions within the reactor vessel.
  • the system does this with transceivers and the plurality of sensor-enabled RFID tags with each sensor-enabled RFID tag of the array providing means for measuring or sensing one or more environmental conditions existing at locations and heights within the reaction zone and catalyst bed of a reactor vessel.
  • each sensor-enabled RFID tag of an array is a device that includes a sensor configured with or operatively connected to a passive RFID tag.
  • the sensor provides means for sensing an environmental or process condition or parameter within the reactor vessel and means for providing a signal input, which contains information representative of the particularly measured condition or parameter, to the connected RFID tag.
  • Passive RFID tags taught in the art include an integrated circuit coupled with a transponder antenna for receiving an interrogation signal from an RFID reader antenna (transceiver) and for transmitting a transponder signal in response to receiving the interrogation signal.
  • each sensor Since the sensor-enabled RFID tags are passive, each transmits an RFID transponder signal in response to receiving the interrogation signals transmitted by the RFID reader antennas of the system. As noted above, each sensor is integrated with an RFID tag and is capable of sensing one or more conditions within the reaction zone.
  • the sensor component of the sensor-enabled RFID tags is selected from a group of any suitable sensor known to those skilled in the art.
  • Examples of the environmental conditions or parameters sensed or measured by the sensors include pressure, temperature, chemical composition, vapor and liquid composition, density, flow rate, pH, vibration, radiation, magnetic flux, light intensity, and sound intensity.
  • Preferred sensor elements include those selected from the group consisting of temperature sensors, pressure sensors, chemical sensors, humidity sensors, pH sensors, flow sensors, liquid/vapor sensors and any combination thereof.
  • Each integrated sensor and RFID tag i.e., the sensor-enabled RFID tag, provides means for sensing a reactor condition, receiving an interrogation signal, and, responsive to the interrogation signal, transmitting an RFID transponder signal containing information that is representative of the measured reactor condition.
  • the patent publications US 2013/0057390 ; US 9,563,833 ; US 9,412,061 ; US 9,035,766 ; and WO 03/098175 present examples of sensor-enabled RFID tags.
  • a necessary feature of the invention is for each of the sensor-enabled RFID tags of the array to be encoded with a unique, non-variable identification code. This is important, because in response to receiving the transceiver signals from each of the RFID transceivers, each sensor-enabled RFID tag transmits transponder signals containing unique tag identification data along with the variable data measured or sensed by the associated sensor.
  • the transmission of the information representative of the unique non-variable tag identification code with the variable information representative of a reactor environmental condition measured or sensed by the RFID sensor provides for associating the transmitted variable information with a particular sensor.
  • One or more arrays of sensor-enabled RFID tags are placed at known heights within the catalyst bed of the reaction zone.
  • An array of sensor-enabled RFID tags comprises multiple sensor-enabled RFID tags placed in a planar arrangement.
  • the multiple of sensor-enabled RFID tags may be placed individually at the known catalyst bed height or they may be incorporated as a part of an array system that is placed at known heights within the catalyst bed.
  • An example of such an array system includes multiple sensor-enabled RFID tags, such as two or more, that are affixed to or embodied within a material or fabric that is capable of being laid out in a plane at a known height within the catalyst bed.
  • numerous sensor-enabled RFID tags are placed in planes at known locations within the catalyst bed.
  • the sensor-enabled RFID tags are placed individually or as apart of an array system of sensor-enabled RFID tags.
  • Two or more transceivers are placed within or external to the reaction zone at locations so that they are wirelessly connected with the sensor-enabled RFID tags of the arrays.
  • the transceivers are placed at known locations and distances from each other so that their interrogation signals can be used in combination with the transponder signals from the sensor-enabled RFID tags to obtain information concerning the distances and angular directions of the sensor-enabled RFID tags from the transceivers.
  • the information relating to distances and angular directions should be such that a suitable triangulation method may be applied to determine the point locations of each sensor-enabled RFID tag in the three-dimensional space of the reaction zone.
  • the unique, non-variable identification code associated with each of the sensor-enabled RFID tags allows for identification of each sensor-enabled RFID tag with its point location in three-dimensional space that is determined by the application of the above-referenced triangulation method. Also, the use of the unique, non-variable identification code provides for connecting or associating each sensor-enabled RFID tag of an array with the reactor conditions sensed by it.
  • each sensor-enabled RFID tag is capable of receiving an interrogation signal from each of the two or more transceivers, and, responsive to the interrogation signals, transmitting RFID transponder signals that include information representative of both the unique non-variable identification code and the measured reactor condition associated with the sensor-enabled RFID tag. This allows for associating a measured environmental condition with a point location at each of the known heights within the catalyst bed of the reactor.
  • the reactor vessel of the invention may be any suitable vessel made with any suitable material known to those skilled in the art.
  • the reactor vessel generally defines a volume that contains catalyst and into which is introduced reactants or feedstocks.
  • the reactor vessel defines a reaction zone within which is a catalyst bed comprising catalyst particles.
  • the reaction zone may also include multiple beds of catalyst, including what are known as stacked beds.
  • the reaction zone may be filled by any suitable arrangement of catalyst or catalyst beds, including being completely filled with catalyst particles or support particles, or both.
  • the reactor vessel may further be equipped with an inlet that provides fluid communication into the reaction zone and means for introducing a feed stream, such as hydrocarbons, into the reaction zone.
  • the reactor vessel may also be equipped with an outlet that provides fluid communication from the reaction zone and means for removing an effluent stream, such as reaction products, from the reaction zone.
  • any type of feed stream or fluid may be introduced into or contained within the reaction zone of the reactor vessel, including water, hydrocarbons, and other chemicals.
  • hydrocarbons include naphtha, kerosene, diesel, gas oil, and heavy oil such as resid.
  • the reaction zone contains one or more beds of catalyst particles along with any of the aforementioned fluids that preferably include any of the listed hydrocarbons.
  • the catalyst particles in the reaction zone may be of any size and shape typically used in industry, including extrudates of any shape (e.g., cylinders, dilobes, trilobes, and quadralobes), spheres, balls, irregular aggregates, pills and powders.
  • the catalyst particle sizes can be in the range of from 0.1 mm to 200 mm, but, more typically, the size of the catalyst particles is in the range of from 0.5 mm to 100 mm, or from 1 mm to 20 mm, and they may have any composition.
  • Common catalyst compositions include an inorganic oxide component, such as, silica, alumina, silica-alumina, and titania.
  • the catalyst composition further can comprise a catalytic metal component, such as any of the transition metals, including chromium, molybdenum, tungsten, rhenium, iron, cobalt, nickel, palladium, platinum, gold, silver, and copper.
  • the concentration of the metal components of the catalyst particles may be upwardly to 60 wt.%, based on metal, regardless of its actual state, and, typically, the metal concentration is in the range of from 0.1 to 30 wt.%, based on metal, regardless of its actual state.
  • Each array of sensor-enabled RFID tags is placed at known height locations within the catalyst bed of the reaction zone so that each of the array of sensor-enabled RFID tags is surrounded by catalyst particles.
  • the geometric dimensions of depth and width define the catalyst bed.
  • a typical depth of the catalyst bed is in the range of from 0.5 to 20 meters
  • a typical effective width of the catalyst bed is in the range of from 0.5 to 20 meters.
  • each of the sensor-enabled RFID tags can be surrounded by a layer or envelop of catalyst particles having a thickness upwardly to 20 meters requiring the interrogation and transponder signals to pass through a bed thickness of catalyst particles of from about 0.5 to about 20 meters.
  • a preferred embodiment of the invention comprises at least two RFID transceiver antennas each of which is wirelessly linked to each sensor-enabled RFID tag of an array.
  • the transceivers are placed at known locations and distances relative to each other.
  • the information regarding placement of the transceivers and the height locations of the arrays of sensor-enabled RFID tag are used in application of the triangulation methods mentioned above.
  • the distance and angular direction information relating to the placement of each sensor-enabled RFID tag of an array obtained by their interrogation using the transceivers is used as well in the application of the triangulation methodology to determine the specific locations of each sensor-enabled RFID tag of an array.
  • a first RFID transceiver antenna is placed at a known location that is remote to the sensor-enabled RFID tags within the catalyst bed of the reaction zone; provided, that, the first RFID transceiver antenna is wirelessly linked to or coupled with each of the sensor-enabled RFID tags of the array.
  • the first RFID transceiver antenna is configured to allow for transmission of a first interrogator signal to each of the sensor-enabled RFID tags of the arrays and for receiving responsive first RFID transponder signals from each of the sensor-enabled RFID tags of the arrays.
  • the preferred embodiment of the inventive system further includes a second RFID transceiver antenna that is placed at a known location remote to the sensor-enabled RFID tags within the catalyst bed of the reaction zone; provided, that, the second RFID transceiver antenna is wirelessly linked to or coupled with each of the sensor-enabled RFID tags of the arrays.
  • the second RFID transceiver antenna is configured to allow for transmission of a second interrogator signal to each of the sensor-enabled RFID tags of the arrays and for receiving responsive second RFID transponder signals from each of the sensor-enabled RFID tags of the arrays.
  • the first RFID transceiver antenna, second RFID transceiver antenna and third RFID transceiver antenna are placed at know locations and distances relative to each other and to the sensor-enabled tags of the plurality so that triangulation can be applied to identify the point locations of each of the sensor-enabled tags in three-dimensional space of the reaction zone of the reactor.
  • the RFID transceiver antennas are positioned within the reaction zone, since this eliminates the need for the interrogator signals and the transponder signals to pass through the wall of the reactor vessel.
  • another embodiment of the inventive system is to position or place the RFID transceiver antennas external to the reactor vessel.
  • the RFID transceiver antennas are operatively connected to one or more readers that provide an interrogation signals to the RFID transceiver reader antennas and provide for receiving the RFID transponder signals transmitted by each of the sensor-enabled RFID tags of the plurality.
  • Computer means provides for processing the information carried by each of the RFID transponder signals and for displaying or otherwise providing an output relating three-dimensional profile information about conditions throughout the reaction zone.
  • FIG. 1 is a schematic representation of an embodiment of inventive system 10 for wirelessly monitoring and profiling process conditions within reactor vessel 12.
  • Reactor vessel 12 defines a reaction zone 14.
  • Reaction zone 14 contains catalyst bed 16 filled with and comprising catalyst particles 18.
  • Reactor vessel 12 is equipped with inlet nozzle 22 that is operatively connected to conduit 24.
  • Inlet nozzle 22 provides means for fluid communication through conduit 24 and means for introducing a feed into reaction zone 14.
  • Reactor vessel 12 is also equipped with outlet nozzle 26 operatively connected to conduit 28 and providing means for fluid communication through conduit 28 and means for removing an effluent from reaction zone 14.
  • FIG. 1 shows one embodiment of the inventive system 10 that includes first RFID transceiver antenna 32 and second RFID transceiver antenna 34 positioned within reaction zone 14.
  • the RFID transceiver antennas are placed in three-dimensional space of reaction zone 14 at known locations and distances relative to each other.
  • FIG. 1 shows that each of the RFID transceiver antennas is positioned within reaction zone 14, one or more RFID transceiver antennas may, alternatively, be placed at locations external to reactor vessel 12. It is important, however, to position the RFID transceiver antennas so that they are wirelessly linked to or coupled with each sensor-enabled RFID tag 40 of array 42 of sensor-enabled RFID tags 40.
  • Array 42 is placed at a known height or level 44 within catalyst bed 16.
  • Catalyst bed 16 can be characterized by its height 46 and width or diameter 48. Height 46 of catalyst bed 16 can be measured as the length between bottom 50 and surface 52 of catalyst bed 16.
  • FIG. 1 For illustration purposes a single array 42 of sensor-enabled RFID tags 40 is depicted in FIG. 1 . However, the invention contemplates embodiments that include more than one array 42 of sensor-enabled RFID tags 40 that is placed at various known heights 44 within catalyst bed 16.
  • first RFID reader antenna 32 is shown as located above surface 52 of catalyst bed 16, it is understood that first RFID reader antenna 32 may be placed anywhere within reaction zone 14, including within the boundary of and surrounded by catalyst particles of catalyst bed 16. This also applies for second RFID reader antenna 34, which is shown as located below catalyst bed 16. These RFID transceiver antennas may, as well, be placed anywhere within reaction zone 14, including within the boundary of and surrounded by catalyst particles of catalyst bed 16. As noted above, for each placement of a transceiver it should be wirelessly linked to each sensor-enabled RFID tag 40 of array 42.
  • FIG. 2 A plan view of cross section 2-2 is depicted in FIG. 2 .
  • the positions of each sensor-enabled RFID tag 40 are shown in FIG. 1 and FIG. 2 , which illustrate how array 42 may be placed or disposed at known heights 44 throughout the height 46 of catalyst bed 16.
  • first RFID reader antenna 32 transmits first interrogation signal 54 to each sensor-enabled RFID tag 40 of array 42. This is depicted in FIG. 1 by an RF wave arrow symbol 54 extending from first RFID reader antenna 32 to one of the sensor-enabled RFID tags 40 of array 42.
  • first interrogation signal 52 is a radio wave that is simultaneously transmitted to all the sensor-enabled RFID tags 40 of array 42 within catalyst bed 16.
  • Each sensor-enabled RFID tag 40 of array 42 receives first interrogation signal 54.
  • each sensor-enabled RFID tag 40 respectively transmits its first associated RFID transponder signal 56 that includes information representative of the unique non-variable identification code encoded in the specific sensor-enabled RFID tag 40 and information representative of a variable reactor condition sensed or measured by and associated with the sensor-enabled RFID tag 40.
  • the first associated RFID transponder signal 56 is received by first RFID transceiver antenna 32 and is processed by signal processing system 58.
  • FIG. 1 depicts the first associated RFID transponder signal 56 by an RF wave arrow symbol extending from a single sensor-enabled RFID tag 40 of array 42. It is understood that each of the sensor-enabled RFID tags 40 will transmit its own individual first associated RFID transponder signal 56 that carries a unique, non-variable identification code and variable sensor information representative of a variable reactor condition sensed or measured by and associated with the specific sensor-enabled RFID tag 40.
  • Second RFID transceiver antenna 34 is configured relative to the array42 of sensor-enabled RFID tags 40 in a similar way as is first RFID transceiver antenna 32.
  • second RFID reader antenna 34 transmits second interrogation signal 60 to each sensor-enabled RFID tag 40 of array 42. This is depicted by an RF wave arrow symbol extending from second RFID reader antenna 34 to one of the sensor-enabled RFID tags 40 of the array 42 of sensor-enabled RFID tags 40.
  • second interrogation signal 60 is a radio wave that is simultaneously transmitted to all the sensor-enabled RFID tags 40 of the plurality distributed throughout catalyst bed 16.
  • Each sensor-enabled RFID tag 40 of the plurality receives second interrogation signal 60.
  • each sensor-enabled RFID tag 40 respectively transmits its second associated RFID transponder signal 62 that includes information representative of the unique non-variable identification code encoded in the specific sensor-enabled RFID tag 40 and information representative of a variable reactor condition sensed or measured by and associated with the sensor-enabled RFID tag 40.
  • the second associated RFID transponder signal 62 is received by second RFID transceiver antenna 34 and is processed by signal processing system 58.
  • First RFID transceiver antenna 32 and second RFID transceiver antenna 34 are operatively connected to signal processing system 58 respectively by cables 66 and 68.
  • Signal processing system 58 provides means for providing interrogation signals to the RFID transceiver antennas and means for processing RFID transponder signals received by the RFID transceiver antennas.
  • Signal processing system 58 includes one or more readers 70 configured together with one or more computers 72 by cable 74, which provides means for communicating between readers 70 and computers 72.
  • Computers 72 provide means for processing first RFID transponder signals 56 and second RFID transponder signals 62, and third RFID transponder signals 54 received respectively by first RFID transceiver antenna 32 and second RFID transceiver antenna 34.
  • Computers 72 provide output information 76 relating to the measured environmental conditions throughout reaction zone 14 and three-dimensional profiles of the measured environmental conditions throughout reaction zone 14 for display or storage in memory or any other suitable format.
  • FIG. 2 presents a plan view of the cross-section A-A of reactor vessel 12 shown in FIG. 1 .
  • FIG. 2 illustrates how each array 42 of sensor-enabled RFID tags 40 might be placed at a known height 44 within reactor zone 14 of reactor vessel 12.
  • FIG. 3 presents an enlarged detail that includes a single, representative array 42 of sensor-enabled RFID tags 40 surrounded by environment 80 of catalyst particles 18.
  • FIG. 3 further shows a relationship with certain other elements of inventive system 10 that includes first RFID transceiver antenna 32, second RFID transceiver antenna 34 and signal processing system 58.
  • Each sensor-enabled RFID tag 40 comprises a passive RFID tag 82 that includes an integrated circuit 84.
  • Integrated circuit 84 provides for the storage of a non-variable identification code associated with and representing the specific sensor-enabled RFID tag 40.
  • Sensor-enabled RFID tag 40 further provides for the receipt of variable input information from sensor 86 that is representative of at least one condition of environment 80.
  • Sensor 86 is configured with passive RFID tag 82 and is operatively connected to passive RFID tag 82 by connection 88. Sensor 86 is capable of sensing or detecting a condition of environment 80 by use of element 90 or any other suitable sensing means capable of providing an analog or digital input to integrated circuit 84 that is representative of the environmental condition measured.
  • Integrated circuit 84 provides for the modulation of RFID transponder signals 56 and 62 responsive to a sensor input signal provided via connection 88 so that RFID transponder signals 56 and 62 include or carry information that is representative of the measured condition within environment 80.
  • Contained within environment 80 are catalyst particles 18.
  • Integrated circuit 84 is operatively connected to RFID tag antenna 92 providing means for transmitting RFID transponder signals 56 and 62 that carry, in addition to individual tag identification code information, variable input information from sensor 86 that is representative of at least one condition within environment 70 that surrounds or envelops the sensor-enabled RFID tags 40.
  • RFID transponder signals 56 and 62 are transmitted in response to RFID tag antenna 92 receiving interrogation signals 54 and 60 respectively from first RFID transceiver antenna 32 and second RFID transceiver antenna 34.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fluid Mechanics (AREA)
  • Computer Hardware Design (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Claims (21)

  1. System zum Messen und Profilieren von Prozessbedingungen innerhalb eines Reaktorbehälters (12), wobei das System umfasst:
    den Reaktorbehälter, der eine Reaktionszone (14) definiert,
    wobei sich innerhalb der Reaktionszone ein Katalysatorbett (16) befindet, das Katalysatorteilchen umfasst, und das Katalysatorbett dadurch gekennzeichnet ist, dass es eine Höhe aufweist;
    ein Array (42) von sensoraktivierten RFID-Tags (40), wobei jedes sensoraktivierte RFID-Tag des Arrays in einer bekannten Höhe (44) innerhalb des Katalysatorbetts platziert ist;
    eine erste RFID-Leser-/Transceiver-Antenne, die drahtlos mit jedem der sensoraktivierten RFID-Tags des Arrays verbunden ist und die in der Lage ist, ein erstes Abfragesignal (52) zu senden und ein erstes RFID-Transponder-Signal (54) zu empfangen, das als Reaktion auf das erste Abfragesignal gesendet wird; und
    eine zweite RFID-Leser-/Transceiver-Antenne, die drahtlos mit jedem der sensoraktivierten RFID-Tags des Arrays verbunden ist und die in der Lage ist, ein zweites Abfragesignal (60) zu senden und ein zweites RFID-Transponder-Signal (62) zu empfangen, das als Reaktion auf das zweite Abfragesignal gesendet wird;
    wobei jedes sensoraktivierte RFID-Tag des Arrays mit einem eindeutigen, nicht variablen Identifikations-Code codiert ist, und
    wobei jedes sensoraktivierte RFID-Tag in der Lage ist, eine Reaktionsbedingung innerhalb der Reaktionszone zu erfassen, das erste Abfragesignal und das zweite Abfragesignal zu empfangen und als Reaktion auf das erste Abfragesignal das erste RFID-Transponder-Signal zu senden und als Reaktion auf das zweite Abfragesignal das zweite RFID-Transponder-Signal zu senden;
    wodurch die Bedingungen an bestimmten Stellen und die bekannten Höhen innerhalb der Reaktionszone bestimmt und profiliert werden können.
  2. System nach Anspruch 1, wobei die Katalysatorteilchen eine anorganische Oxidkomponente und eine Metallkomponente umfassen.
  3. System nach Anspruch 2, wobei jedes der sensoraktivierten RFID-Tags des Arrays ein RFID-Tag umfasst, das mit einem Sensormittel wirkverbunden ist, um eine Umgebungs- oder Prozessbedingung zu erfassen und ein Eingangssignal an das RFID-Tag bereitzustellen, das für die Umgebungs- oder Prozessbedingung repräsentativ ist.
  4. System nach Anspruch 3, wobei eine oder mehrere der RFID-Transceiver-Antennen innerhalb der Reaktionszone des Reaktorbehälters positioniert sind.
  5. System nach Anspruch 4, wobei der Reaktorbehälter Einlassmittel, die eine Fluidverbindung zum Einführen eines Zulaufstroms in die Reaktionszone bereitstellen, und Auslassmittel einschließt, die eine Fluidverbindung zum Entfernen eines Ablaufstroms aus der Reaktionszone bereitstellen.
  6. System nach Anspruch 5, wobei die Reaktorbedingung ausgewählt ist aus der Gruppe von Umgebungsbedingungen bestehend aus Druck, Temperatur, chemischer Zusammensetzung, Dampf- und Flüssigkeitszusammensetzung, Dichte, Durchflussmenge, pH-Wert, Vibration, Strahlung, Magnetfluss, Lichtintensität und Schallintensität.
  7. System nach Anspruch 6, wobei jede der RFID-Transceiver-Antennen mit einem Signalverarbeitungssystem wirkverbunden ist, das Mittel zum Bereitstellen der Abfragesignale an die RFID-Transceiver-Antennen und zum Empfangen der RFID-Transponder-Signale bereitstellt, die von jedem der sensoraktivierten RFID-Tags des Arrays gesendet werden.
  8. System nach Anspruch 7, wobei der Reaktorbehälter Einlassmittel, die eine Fluidverbindung zum Einführen eines Zulaufstroms in die Reaktionszone bereitstellen, und Auslassmittel umfasst, die eine Fluidverbindung zum Entfernen eines Ablaufstroms aus der Reaktionszone bereitstellen.
  9. System nach Anspruch 8, wobei die Reaktorbedingung ausgewählt ist aus der Gruppe der Umgebungsbedingungen bestehend aus Druck, Temperatur, chemischer Zusammensetzung, Dampf- und Flüssigkeitszusammensetzung, Dichte, Durchflussmenge, pH-Wert, Vibration, Strahlung, Magnetfluss, Lichtintensität und Schallintensität.
  10. System nach Anspruch 9, wobei jede der RFID-Transceiver-Antennen mit einem Signalverarbeitungssystem wirkverbunden ist, das Mittel zum Bereitstellen der Abfragesignale an die RFID-Transceiver-Antennen und zum Empfangen der RFID-Transponder-Signale bereitstellt, die von jedem der sensoraktivierten RFID-Tags des Arrays gesendet werden.
  11. Verfahren zum drahtlosen Überwachen und Profilieren von Prozessbedingungen innerhalb eines Reaktorbehälters, wobei das Verfahren umfasst:
    Bereitstellen des Reaktorbehälters, der eine Reaktionszone definiert, wobei sich innerhalb der Reaktionszone ein Katalysatorbett befindet, das Katalysatorteilchen umfasst und dadurch gekennzeichnet ist, dass es eine Höhe aufweist, und ein Array von sensoraktivierten RFID-Tags in bekannten Höhen innerhalb des Katalysatorbetts platziert ist;
    wobei jedes der sensoraktivierten RFID-Tags des Arrays mit einem eindeutigen, nicht variablen Identifikationscode codiert ist und ferner dazu konfiguriert ist, eine Umgebungsbedingung innerhalb des Katalysatorbetts zu messen, die dem sensoraktivierten RFID-Tag zugeordnet ist, und als Reaktion auf ein Abfragesignal ein Antwortsignal zu senden, das Informationen einschließt, die für den eindeutigen, nicht variablen Identifikations-Code und die Umgebungsbedingung repräsentativ sind, die diesem zugeordnet ist;
    Senden, durch eine erste RFID-Leser-/Transceiver-Antenne, eines ersten Abfragesignals (52), das von jedem der sensoraktivierten RFID-Tags empfangen wird; wobei, als Reaktion auf das Empfangen des ersten Abfragesignals, jedes der sensoraktivierten RFID-Tags sein erstes zugeordnetes RFID-Transponder-Signal (54) sendet, das von der ersten RFID-Leserantenne empfangen wird und Informationen einschließt, die seinen eindeutigen, nicht variablen Identifikations-Code und die Umgebungsbedingung darstellen, die dem sensoraktivierten RFID-Tag zugeordnet ist;
    Empfangen der ersten zugeordneten RFID-Transponder-Signale durch die erste RFID-Leser-/Transceiver-Antenne;
    Senden, durch eine zweite RFID-Leser-/Transceiver-Antenne, eines zweiten Abfragesignals (60), das von jedem der sensoraktivierten RFID-Tags empfangen wird; wobei, als Reaktion auf das Empfangen des zweiten Abfragesignals, jedes der sensoraktivierten RFID-Tags sein zweites zugeordnetes RFID-Transponder-Signal (62) sendet, das von der zweiten RFID-Leserantenne empfangen wird und Informationen einschließt, die seinen eindeutigen, nicht variablen Identifikations-Code und die Umgebungsbedingung darstellen, die dem sensoraktivierten RFID-Tag zugeordnet ist;
    Empfangen der zweiten zugeordneten RFID-Transponder-Signale durch die zweite RFID-Leser-/Transceiver-Antenne; und
    Verarbeiten der ersten zugeordneten RFID-Transponder-Signale und der zweiten zugeordneten RFID-Transponder-Signale;
    wodurch Bedingungen in der gesamten Reaktionszone bestimmbar und profilierbar sind.
  12. Verfahren nach Anspruch 11, wobei die Katalysatorteilchen eine anorganische Oxidkomponente und eine Metallkomponente umfassen.
  13. Verfahren nach Anspruch 12, wobei jedes der sensoraktivierten RFID-Tags des Arrays ein RFID-Tag umfasst, das mit einem Sensormittel wirkverbunden ist, um eine Umgebungs- oder Prozessbedingung zu erfassen und ein Eingangssignal an das RFID-Tag bereitzustellen, das für die Umgebungs- oder Prozessbedingung repräsentativ ist.
  14. Verfahren nach Anspruch 13, wobei eine oder mehrere der RFID-Transceiver-Antennen innerhalb der Reaktionszone des Reaktorbehälters positioniert sind.
  15. Verfahren nach Anspruch 14, wobei der Reaktorbehälter Einlassmittel, die eine Fluidverbindung zum Einführen eines Zulaufstroms in die Reaktionszone bereitstellen, und Auslassmittel einschließt, die eine Fluidverbindung zum Entfernen eines Ablaufstroms aus der Reaktionszone bereitstellen.
  16. Verfahren nach Anspruch 15, wobei die Reaktorbedingung ausgewählt ist aus der Gruppe von Umgebungsbedingungen bestehend aus Druck, Temperatur, chemischer Zusammensetzung, Dampf- und Flüssigkeitszusammensetzung, Dichte, Durchflussmenge, pH-Wert, Vibration, Strahlung, Magnetfluss, Lichtintensität und Schallintensität.
  17. Verfahren nach Anspruch 16, wobei jede der RFID-Transceiver-Antennen mit einem Signalverarbeitungssystem wirkverbunden ist, das Mittel zum Bereitstellen der Abfragesignale an die RFID-Transceiver-Antennen und zum Empfangen der RFID-Transponder-Signale bereitstellt, die von jedem der sensoraktivierten RFID-Tags des Arrays gesendet werden.
  18. Verfahren nach Anspruch 13, wobei eine oder mehrere der RFID-Transceiver-Antennen außerhalb der Reaktionszone des Reaktorbehälters positioniert sind.
  19. Verfahren nach Anspruch 18, wobei der Reaktorbehälter Einlassmittel, die eine Fluidverbindung zum Einführen eines Zulaufstroms in die Reaktionszone bereitstellen, und Auslassmittel einschließt, die eine Fluidverbindung zum Entfernen eines Ablaufstroms aus der Reaktionszone bereitstellen.
  20. Verfahren nach Anspruch 19, wobei die Reaktorbedingung ausgewählt ist aus der Gruppe von Umgebungsbedingungen bestehend aus Druck, Temperatur, chemischer Zusammensetzung, Dampf- und Flüssigkeitszusammensetzung, Dichte, Durchflussmenge, pH-Wert, Vibration, Strahlung, Magnetfluss, Lichtintensität und Schallintensität.
  21. Verfahren nach Anspruch 20, wobei jede der RFID-Transceiver-Antennen mit einem Signalverarbeitungssystem wirkverbunden ist, das Mittel zum Bereitstellen des Abfragesignals an die RFID-Transceiver-Antennen und zum Empfangen der RFID-Transponder-Signale bereitstellt, die von jedem der sensoraktivierten RFID-Tags des Arrays gesendet werden.
EP19702160.3A 2018-01-11 2019-01-09 Drahtloses überwachen und profilieren von reaktorbedingungen mit arrays von sensor-freigegebenen rfid-tags, die an bekannte reaktorhöhe gelegt werden Active EP3738319B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862616185P 2018-01-11 2018-01-11
PCT/US2019/012876 WO2019139968A1 (en) 2018-01-11 2019-01-09 Wireless monitoring and profiling of reactor conditions using arrays of sensor-enabled rfid tags placed at known reactor heights

Publications (3)

Publication Number Publication Date
EP3738319A1 EP3738319A1 (de) 2020-11-18
EP3738319C0 EP3738319C0 (de) 2023-06-07
EP3738319B1 true EP3738319B1 (de) 2023-06-07

Family

ID=65237189

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19702160.3A Active EP3738319B1 (de) 2018-01-11 2019-01-09 Drahtloses überwachen und profilieren von reaktorbedingungen mit arrays von sensor-freigegebenen rfid-tags, die an bekannte reaktorhöhe gelegt werden

Country Status (11)

Country Link
US (1) US11252486B2 (de)
EP (1) EP3738319B1 (de)
JP (1) JP7381472B2 (de)
KR (1) KR102693909B1 (de)
CN (1) CN111543064B (de)
AU (1) AU2019206471B2 (de)
BR (1) BR112020014214A2 (de)
CA (1) CA3088946A1 (de)
PL (1) PL3738319T3 (de)
TW (1) TWI799491B (de)
WO (1) WO2019139968A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL304030A (en) * 2021-01-05 2023-08-01 Ezmems Ltd Modular sensor configurations and its applications
CN215114722U (zh) * 2021-03-26 2021-12-10 鸿富锦精密电子(郑州)有限公司 井内水位预警装置及系统
CN113551613A (zh) * 2021-06-24 2021-10-26 储信(北京)科技发展有限公司 一种区域内指定物品最优摆放位置的方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE445389B (sv) * 1982-06-28 1986-06-16 Geotronics Ab Forfarande och anordning for att erhalla metdata fran en kemisk process
CA2387106A1 (en) 2002-05-21 2003-11-21 Information Mediary Corporation Method for measuring temperature using a remote, passive, calibrated rf/rfid tag including a method for calibration
JP2004348496A (ja) 2003-05-23 2004-12-09 Hitachi Ltd 通信システム
US20080114228A1 (en) * 2004-08-31 2008-05-15 Mccluskey Joseph Method Of Manufacturing An Auto-Calibrating Sensor
EP1867388A4 (de) * 2004-12-28 2008-12-03 China Petroleum & Chemical Katalysator und kohlenwasserstofföl-crackverfahren
US7397370B2 (en) 2005-03-01 2008-07-08 Hewlett-Packard Development Company, L.P. Monitoring an environment using a RFID assembly
JP4750448B2 (ja) 2005-04-04 2011-08-17 三井化学株式会社 化学処理装置における固体触媒の寿命の判断方法
US8585684B2 (en) 2005-11-09 2013-11-19 The Invention Science Fund I, Llc Reaction device controlled by magnetic control signal
US20070215709A1 (en) 2006-03-15 2007-09-20 3M Innovative Properties Company Rfid sensor
US7659823B1 (en) 2007-03-20 2010-02-09 At&T Intellectual Property Ii, L.P. Tracking variable conditions using radio frequency identification
US7612325B1 (en) * 2007-08-22 2009-11-03 Watkins Jr Kenneth S Electrical sensor for monitoring degradation of products from environmental stressors
US7846397B2 (en) * 2007-10-09 2010-12-07 Honeywell International Inc. Wireless temperature sensor for obtaining temperature profiles in a mixing vessel
JP4644871B2 (ja) 2007-11-05 2011-03-09 独立行政法人 日本原子力研究開発機構 気密容器内の物理量測定装置および測定方法
US7919326B2 (en) * 2008-03-14 2011-04-05 International Business Machines Corporation Tracking a status of a catalyst-driven process using RFIDs
CN101866432A (zh) * 2008-12-31 2010-10-20 正品科技(北京)有限公司 用于物品标记的生产设备及方法
US9402544B2 (en) * 2009-02-03 2016-08-02 Abbott Diabetes Care Inc. Analyte sensor and apparatus for insertion of the sensor
WO2011150009A1 (en) 2010-05-26 2011-12-01 Sri International Radio frequency identification tags for use in extreme environments
US9035766B2 (en) 2010-07-07 2015-05-19 Honeywell International Inc. System and method of determining gas detector information and status via RFID tags
US9412061B2 (en) 2010-08-13 2016-08-09 Avery Dennison Corporation Sensing radio frequency identification device with reactive strap attachment
DE102011003438B4 (de) 2011-02-01 2014-05-22 Siemens Aktiengesellschaft Einrichtung und Verfahren zur Ermittlung von Messwerten in einem strömenden Medium
US9317795B2 (en) * 2011-11-02 2016-04-19 Avery Dennison Corporation Array of RFID tags with sensing capability
US20130284812A1 (en) * 2012-04-25 2013-10-31 Ronald Steven Cok Electronic storage system with environmentally-alterable conductor
NO20121197A1 (no) * 2012-10-16 2014-04-17 Sinvent As Tracerpartikkel for overvåking av prosesser i minst en fluidfase, samt fremgangsmåter og anvendelser av denne
US9746434B2 (en) 2013-03-28 2017-08-29 Exxonmobil Research And Engineering Company Method and system for determining flow distribution through a component
MX365788B (es) 2013-10-30 2019-06-14 Massachusetts Inst Technology Deteccion quimica y fisica con un lector y etiquetas de identificacion de radiofrecuencia (rfid).
JP2017502273A (ja) * 2013-12-11 2017-01-19 アレヴァ ゲゼルシャフト ミット ベシュレンクテル ハフツングAreva GmbH 原子力発電所用伝送システムおよびこれに関する方法
US9824252B1 (en) * 2016-05-13 2017-11-21 Xerox Corporation Chemical sensors based on chipless radio frequency identification (RFID) architectures
AU2019206456B2 (en) 2018-01-11 2021-10-07 Shell Internationale Research Maatschappij B.V. Wireless monitoring and profiling of reactor conditions using plurality of sensor-enabled RFID tags and multiple transceivers
JP7495347B2 (ja) 2018-01-11 2024-06-04 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー 既知の場所を有する複数のセンサー対応rfidタグを使用する反応器条件の無線による監視およびプロファイリング
CN111512638A (zh) 2018-01-11 2020-08-07 国际壳牌研究有限公司 使用具有无源传感器功能的rfid标签的无线反应器监测系统

Also Published As

Publication number Publication date
EP3738319A1 (de) 2020-11-18
JP2021510347A (ja) 2021-04-22
US20200404400A1 (en) 2020-12-24
KR102693909B1 (ko) 2024-08-13
TWI799491B (zh) 2023-04-21
CA3088946A1 (en) 2019-07-18
CN111543064B (zh) 2022-09-06
CN111543064A (zh) 2020-08-14
JP7381472B2 (ja) 2023-11-15
PL3738319T3 (pl) 2023-08-14
EP3738319C0 (de) 2023-06-07
BR112020014214A2 (pt) 2020-12-01
WO2019139968A1 (en) 2019-07-18
KR20200108423A (ko) 2020-09-18
TW201937398A (zh) 2019-09-16
US11252486B2 (en) 2022-02-15
RU2020124744A (ru) 2022-02-15
AU2019206471A1 (en) 2020-07-16
AU2019206471B2 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
AU2019206456B2 (en) Wireless monitoring and profiling of reactor conditions using plurality of sensor-enabled RFID tags and multiple transceivers
AU2019206477B2 (en) Wireless monitoring and profiling of reactor conditions using plurality of sensor-enabled RFID tags having known locations
EP3738319B1 (de) Drahtloses überwachen und profilieren von reaktorbedingungen mit arrays von sensor-freigegebenen rfid-tags, die an bekannte reaktorhöhe gelegt werden
RU2777970C2 (ru) Беспроводной мониторинг и составление профилей параметров реактора с помощью массивов оснащенных датчиком меток rfid, размещенных на известных уровнях высоты реактора
RU2795107C2 (ru) Беспроводной мониторинг и составление профилей параметров реактора с помощью множества оснащенных датчиком меток rfid и множественных приемопередатчиков
RU2797720C2 (ru) Беспроводной мониторинг и составление профилей параметров реактора с помощью совокупности оснащенных датчиком меток rfid, имеющих известные местоположения

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200710

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230126

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1578264

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230615

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019030022

Country of ref document: DE

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20230607

U01 Request for unitary effect filed

Effective date: 20230626

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230630

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

U20 Renewal fee paid [unitary effect]

Year of fee payment: 6

Effective date: 20231219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019030022

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240308

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231215

Year of fee payment: 6

Ref country code: NO

Payment date: 20240108

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL