EP3737581A1 - Verfahren und managementsystem zum steuern und überwachen von mehreren batteriezellen eines batteriepacks sowie batteriepack - Google Patents

Verfahren und managementsystem zum steuern und überwachen von mehreren batteriezellen eines batteriepacks sowie batteriepack

Info

Publication number
EP3737581A1
EP3737581A1 EP18830883.7A EP18830883A EP3737581A1 EP 3737581 A1 EP3737581 A1 EP 3737581A1 EP 18830883 A EP18830883 A EP 18830883A EP 3737581 A1 EP3737581 A1 EP 3737581A1
Authority
EP
European Patent Office
Prior art keywords
state variables
battery
virtual
cell
battery cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP18830883.7A
Other languages
English (en)
French (fr)
Inventor
Hendrik Behrendt
Mykola Raievskyi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3737581A1 publication Critical patent/EP3737581A1/de
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to a method for controlling and monitoring a plurality of battery cells of a battery pack by detecting state variables of the battery cells and calculating a limit value of a charging current for charging the battery cells of the battery pack from the state variables.
  • the invention also relates to a management system for controlling and monitoring a plurality of battery cells of a battery pack.
  • the invention further relates to a battery pack comprising a management system according to the invention and a plurality of battery cells.
  • Lithium-ion battery cells have high energy densities, thermal stability and extremely low self-discharge. Lithium-ion battery cells have high energy densities, thermal stability and extremely low self-discharge. Lithium-ion battery cells have high energy densities, thermal stability and extremely low self-discharge. Lithium-ion battery cells have high energy densities, thermal stability and extremely low self-discharge. Lithium-ion battery cells have high
  • a battery cell has an anode connected to a negative terminal and a cathode connected to a positive terminal.
  • Several such battery cells are electrically connected in particular in series with each other and connected to battery modules or battery packs.
  • Several such battery modules or battery packs are interconnected to form the battery system of the electric vehicle.
  • a battery pack includes a Baterie management system, which monitors the operation of the Bateriezellen and controls such that the Bateriezellen safely and sustainably operated in terms of their life.
  • the Baterie management system determines a current operating state for each Baterie cell of a Bateriepack.
  • the operating state can be determined by various parameters, for example
  • Electric vehicle which comprises a plurality of energy storage devices.
  • a plurality of state information detection devices are provided which detect state information, in particular a current, a total voltage, a cell voltage and a temperature.
  • state information in particular a current, a total voltage, a cell voltage and a temperature.
  • a Bateriesystem for an electric vehicle which comprises several Bateriezellen.
  • detection units which detect data, such as a current and a total voltage. Further data, such as a state of charge, are calculated. Based on this data, the worst Baterie cell is identified. Disclosure of the invention
  • Battery cells proposed a battery pack.
  • the battery pack is provided in particular for use in an electric vehicle. These may include a purely electrically powered vehicle, a hybrid vehicle and a plug-in hybrid vehicle.
  • the battery pack can also be used in consumer electronics products, such as
  • the battery cells of the battery pack are preferably electrically connected to one another in series.
  • Detection unit of each battery cell ever recorded a record of state variables and transmitted to a selection unit.
  • each battery cell can be assigned a separate detection unit. It can also be one
  • Detection unit may be provided, which records data sets of state variables of multiple battery cells. From the data set of state variables, a state of the battery cell can be determined.
  • State variables The selected state variables of the virtual data set can thus be extracted from the data sets of state variables of different types
  • a simulation unit creates a model of a virtual cell from the selected state variables of the virtual data record.
  • the virtual cell thus simulates a battery cell with the previously created virtual
  • State variables a state of the virtual cell can be determined.
  • a limit value of a charging current for charging the battery cells of the battery pack from the selected one of a data processing unit Calculated state variables of the virtual data set of the virtual cell.
  • the calculated limit value of the charging current is then transmitted, for example, to a central control unit of the electric vehicle.
  • the central control unit can thus limit the charging current according to this limit when charging the battery cells of the battery pack.
  • each of the battery cells may only be charged with a permissible charging current, which causes no damage to the battery cell.
  • the respective permissible charging current is dependent on the state of the battery cell. The worse the state of the battery cell, the smaller the permissible charging current. The better the state of the battery cell, the greater the permissible charging current.
  • the limit value of the charging current for charging the battery cells of the battery pack is calculated according to the invention only once from the selected state variables of the virtual cell. A separate calculation of allowable
  • Charging currents for several or even all battery cells of the battery pack is not required. If the battery cells of the battery pack are electrically connected in series with one another, the same charging current always flows through all the battery cells.
  • Data sets of state variables select those state variables which represent a worst-possible state of the virtual cell.
  • the state of the virtual cell is thus no better than the state of any battery cell of the battery pack. This ensures that the limit value of the charging current calculated in this way is not greater than the permissible limit
  • Central control unit can take into account the predicted stored in the Bateriezellen electrical energy, for example, in the determination of a range of the electric vehicle.
  • the electrical energy which can be stored in one of the battery cells is dependent on the state of the battery cell. The worse the condition of
  • Bateriezelle is, the smaller is the storable in the Bateriezelle electrical energy. The better the state of the Bateriezelle is, the larger the storable in the Bateriezelle electrical energy.
  • Data sets of state variables select those state variables which represent a worst-possible state of the virtual cell.
  • the state of the virtual cell is thus no better than the state of any battery cell of the battery pack. This ensures that the predicted electrical energy that can be stored in the battery cells is no greater than a real electrical energy that can be stored in the battery cells.
  • a power prediction unit additionally predicts an electrical power which can be maximally removed from the battery cells of the battery pack from the selected state variables of the virtual data set of the virtual cell.
  • the maximum predicted electrical power is then the Baterieellen
  • the central control unit may, for example, take into account the predicted electrical power that can be removed from the battery cells in order to limit a discharge current of the battery pack.
  • Data sets of state variables select those state variables which represent a worst-possible state of the virtual cell.
  • the state of the virtual cell is thus no better than the state of any one
  • Battery cell of the battery pack This ensures that the thus predicted electrical power which can be taken from the battery cells is not greater than a real electrical power which can be taken from the battery cells.
  • each data set of state variables of a battery cell comprises at least one voltage of the battery cell, a temperature of the battery cell, an overpotential at an anode of the battery cell, an overpotential at a cathode of the battery cell, a charge state at the anode of the battery cell and a charge state at the cathode of the battery cell , From the said
  • the state of the battery cell can be determined with sufficient accuracy.
  • the virtual data set of state variables of the virtual cell comprises at least one voltage of the battery cell, a temperature of
  • a management system for controlling and monitoring multiple battery cells of a battery pack is also proposed.
  • a management system comprises a selection unit for selecting individual state variables from a plurality of data sets of state variables, which are transmitted to the selection unit.
  • the selected state variables form a virtual data record of
  • a detection unit of each battery cell of the battery pack preferably captures a data set of state variables and transmits them acquired data sets of state variables to the selection unit of the
  • the management system according to the invention also comprises a
  • Simulation unit for creating a model of a virtual cell from the selected state variables of the virtual data record.
  • the virtual cell simulates a battery cell with the formed virtual record of
  • the management system according to the invention further comprises a
  • a data processing unit for calculating a limit value of a charging current for charging the battery cells of the battery pack from the selected ones
  • the calculated limit value of the charging current can be transmitted to a central control unit of the electric vehicle, which thus when charging the
  • Battery cell of the battery pack can limit the charging current according to this limit.
  • Selection unit from the plurality of data sets of state variables those state variables representing a worst case state of the virtual cell.
  • Management system further comprises an energy prediction unit for the prediction of a storable in the battery cells electrical energy from the selected state variables of the virtual data set of the virtual cell.
  • the so predicted in the battery cells storable electrical energy can be transmitted to a central control unit of the electric vehicle, which can take into account the predicted stored in the battery cells electrical energy, for example, in determining a range of the electric vehicle.
  • the management system further comprises a nurse josdiktionsmother for prediction of the battery cells maximum removable electrical power from the selected state variables of the virtual data set of the virtual cell.
  • the so predicted maximum power removable battery cells can be transmitted to a central control unit of the electric vehicle, which can take into account the predicted the battery cells maximum removable electrical power, for example, to limit a discharge of the battery pack.
  • a battery pack which comprises a management system according to the invention, a plurality of battery cells which are connected in series with one another, and at least one detection unit for detecting a respective set of state variables of each battery cell and for transmitting the data set to a selection unit of the management system.
  • each battery cell can be assigned a separate detection unit.
  • a detection unit which records data sets of state variables of a plurality of battery cells.
  • Electric vehicle comprising at least one battery pack according to the invention.
  • the electric vehicle may be, inter alia, a purely electrically powered vehicle, a hybrid vehicle and a plug-in hybrid vehicle.
  • the invention makes it possible to calculate or predicate important parameters for the safe and sustainable operation of the battery cells of the battery pack in a relatively simple manner and with the use of comparatively low computing power.
  • the said parameters include, inter alia, a limit value of a charging current for charging the battery cells, a maximum capacity of the battery cells removable electrical power and stored in the battery cells electrical energy.
  • the said parameters do not have to be calculated separately for each of the battery cells, or predicted, and then linked to one another, but each of the aforementioned parameters only has to be calculated or predicted once. become.
  • computing power and memory requirements are in the
  • Figure 1 is a schematic representation of a battery pack
  • Figure 2 is a schematic representation of a management system of a
  • FIG. 1 shows a schematic representation of a battery pack 5, which is provided in particular for use in an electric vehicle.
  • the battery pack 5 comprises a management system 30, which in the present case has a selection unit 32, a simulation unit 34 and a
  • Data processing unit 36 has.
  • the battery pack 5 further comprises a plurality of battery cells 2, which are electrically connected to one another in series.
  • Each battery cell 2 includes a
  • Electrode unit which has an anode 11 and a cathode 12, respectively.
  • the anode 11 of the electrode unit is connected to a negative current collector 15 of the battery cell 2.
  • the cathode 12 of the electrode unit is connected to a positive current collector 16 of the battery cell 2.
  • a separator 18 is arranged between the anode 11 and the cathode 12.
  • the negative current collector 15 of a battery cell 2 is electrically connected to the positive current collector 16 of the adjacent battery cell 2.
  • the battery cells 2 of the battery pack 5 are traversed by a charging current I in the illustration shown here. Due to the electrical serial
  • the battery pack 5 also comprises a plurality of detection units 20.
  • each battery cell 2 is assigned a detection unit 20.
  • Each of the detection units 20 each records a data set of state variables of the associated battery cell 2.
  • a detection unit 20 can also be provided, which records data sets of state variables
  • the battery pack 5 thus includes the management system 30 and the battery unit 7.
  • Each data set of state variables of one of the battery cells 2 in the present case comprises a voltage of the battery cell 2 which is present between the positive current collector 16 and the negative current collector 15. Furthermore, each data set of state variables comprises a temperature of the battery cell 2, an overpotential at the anode 11, an overpotential at the cathode 12, a state of charge at the anode 11 and a state of charge at the cathode 12.
  • the data set can also comprise further state variables.
  • the acquired data sets of state variables of the battery cells 2 are transmitted by the detection units 20 to the selection unit 32 of the management system 30.
  • the selection unit 32 is thus for each battery cell 2 of the Baterie packs 5 a record, which the above described
  • the detection units 20 can be arranged close to the battery cells 2 and connected to the management system 30. However, the detection units 20 can also be integrated into the management system 30 and connected to corresponding sensors for measuring different sizes of the battery cells 2.
  • This virtual data set also includes the state variables described above.
  • the selected state variables of the virtual data record can all originate from a single battery cell 2. As a rule, however, the selected state variables of the virtual data record originate from the data sets of state variables of different battery cells 2.
  • State variables of the Bateriezellen 2 selected those state variables, which each represent a worst possible state. For example, the highest voltage of the battery cells 2, the highest temperature of the battery cells 2, the lowest overpotential at the anode 11 of the battery cells 2, the highest overpotential at the cathode 12 of the battery cells 2, the highest charge state at the anode 11 of the battery cells from all records 2 and the lowest state of charge at the cathode 12 of the Bateriezellen 2 selected.
  • a simulation of a virtual cell 8 is created by the simulation unit 34 of the management system 30.
  • the virtual cell 8 simulates a battery cell 2 with the previously created virtual data set of state variables.
  • the virtual cell 8 thus has those state variables which respectively represent the worst-possible state.
  • a limit value of a charging current I for charging the battery cells 2 of the battery pack 5 is calculated by a data processing unit 36 of the management system 30.
  • the calculated limit value of the charging current I is transmitted to a central control unit 40 of the electric vehicle.
  • the central control unit 40 can thus limit the charging current I according to this limit when charging the battery cells 2 of the battery pack 5.
  • FIG. 2 shows a schematic representation of a management system 30 of the battery pack 5.
  • the management system 30 illustrated in FIG. 2 additionally has an energy prediction unit 37 and a power prediction unit 38.
  • the selection unit 32, the simulation unit 34 and the data processing unit 36 are unchanged.
  • the selection unit 32 is connected only to a single detection unit 20, which records and transmits the data sets of state variables of all the battery cells 2.
  • Battery pack 5 storable electrical energy predicts.
  • the predicted in the battery cells 2 storable electrical energy is also transmitted to the central control unit 40 of the electric vehicle.
  • the central control unit 40 can thus the predicted in the battery cells 2 storable electrical energy in determining a range of the electric vehicle
  • Battery pack 5 predicts maximum removable electrical power.
  • the so predicted the battery cells 2 maximum removable electrical power is also transmitted to the central control unit 40 of the electric vehicle.
  • the central control unit 40 can thus take into account the predicted electrical power that can be removed from the battery cells 2 to limit, for example, a discharge current of the battery pack 5, for example during acceleration of the electric vehicle.
  • the invention is not limited to the embodiments described herein and the aspects highlighted therein. Rather, within the scope given by the claims a variety of modifications are possible, which are within the scope of expert action.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Steuern und Überwachen von mehreren Batteriezellen (2) eines Batteriepacks (5), wobei von mindestens einer Erfassungseinheit (20) von jeder Batteriezelle (2) je ein Datensatz von Zustandsgrößen erfasst und zu einer Selektiereinheit (32) übertragen wird; von der Selektiereinheit (32) einzelne Zustandsgrößen aus den mehreren Datensätzen von Zustandsgrößen selektiert werden,welche einen virtuellen Datensatz von Zustandsgrößen bilden; von einer Simulationseinheit (34) ein Modell einer virtuellen Zelle (8) aus den selektierten Zustandsgrößen erstellt wird; und von einer Datenverarbeitungseinheit (36) ein Grenzwert eines Ladestroms (I) zum Laden der Batteriezellen (2) des Batteriepacks (5) aus den selektierten Zustandsgrößen der virtuellen Zelle (8) berechnet wird.

Description

Verfahren und Managementsystem zum Steuern und Überwachen von mehreren
Batteriezellen eines Batteriepacks sowie Batteriepack
Die Erfindung betrifft ein Verfahren zum Steuern und Überwachen von mehreren Batteriezellen eines Batteriepacks durch Erfassen von Zustandsgrößen der Batteriezellen und Berechnen eines Grenzwerts eines Ladestroms zum Laden der Batteriezellen des Batteriepacks aus den Zustandsgrößen. Die Erfindung betrifft auch ein Managementsystem zum Steuern und Überwachen von mehreren Batteriezellen eines Batteriepacks. Die Erfindung betrifft ferner ein Batteriepack, welches ein erfindungsgemäßes Managementsystem und mehrere Batteriezellen umfasst.
Stand der Technik
Es zeichnet sich ab, dass in Zukunft insbesondere in Elektrofahrzeugen vermehrt Batteriesysteme zum Einsatz kommen werden, an welche hohe Anforderungen bezüglich Zuverlässigkeit, Leistungsfähigkeit, Sicherheit und Lebensdauer gestellt werden. Für solche Anwendungen eignen sich insbesondere
Batteriesysteme mit Lithium-Ionen-Batteriezellen. Diese zeichnen sich unter anderem durch hohe Energiedichten, thermische Stabilität und eine äußerst geringe Selbstentladung aus. Lithium-Ionen-Batteriezellen weisen hohe
Anforderungen bezüglich der funktionalen Sicherheit auf. Ein nicht sachgemäßer Betrieb der Batteriezellen kann zu exothermen Reaktionen bis hin zum Brand und/oder zur Entgasung führen.
Eine Batteriezelle weist eine mit einem negativen Terminal verbundene Anode und eine mit einem positiven Terminal verbundene Kathode auf. Mehrere derartige Batteriezellen werden elektrisch insbesondere seriell miteinander verschaltet und zu Batteriemodulen oder Batteriepacks verbunden. Mehrere solcher Batteriemodule oder Batteriepacks werden miteinander verschaltet und bilden so das Batteriesystem des Elektrofahrzeugs. Ein Batteriepack umfasst ein Baterie- Managementsystem, welches den Betrieb der Bateriezellen überwacht und derart steuert, dass die Bateriezellen sicher und nachhaltig bezüglich ihrer Lebensdauer betrieben werden.
Um dieses zu realisieren, wird von dem Baterie- Managementsystem für jede Bateriezelle eines Bateriepacks ein aktueller Betriebszustand ermitelt. Der Betriebszustand kann durch verschiedene Parameter, beispielsweise
Ladezustand, Alterungszustand, Innenwiderstand, Kapazität, Temperatur, Spannung, Überpotential der Elektroden und Lithiumkonzentration in der Bateriezelle beschrieben werden. Für eine möglichst genaue Bestimmung des Betriebszustands kommen komplexe elektrochemische Modellbeschreibungen zum Einsatz.
Basierend auf den Betriebszuständen der Bateriezellen werden in weiteren Funktionen des Baterie- Managementsystems Kenngrößen des Bateriepacks, beispielsweise Stromgrenzwerte für verschiedene Betriebszustände der Bateriezellen, berechnet. Besagte Kenngrößen werden von dem Baterie- Managementsystem an ein Zentralsteuergerät des Elektrofahrzeugs
kommuniziert.
Aus der US 2013/154572 Al ist ein Energiespeichersystem für ein
Elektrofahrzeug bekannt, welches mehrere Energiespeichervorrichtungen umfasst. Dabei sind mehrere Zustandsinformations- Erfassungsvorrichtungen vorgesehen, welche Zustandsinformationen, insbesondere einen Strom, eine Gesamtspannung, eine Zellenspannung und eine Temperatur erfassen. Beim Betrieb des Energiespeichersystems wird dabei insbesondere ein schlechtester Wert der erfassten Zustandsinformationen berücksichtigt.
Aus der US 2015/0258897 Al ist ein Bateriesystem für ein Elektrofahrzeug bekannt, welches mehrere Bateriezellen umfasst. Es sind Erfassungseinheiten vorgesehen, welche Daten erfassen, wie beispielsweise einen Strom sowie eine Gesamtspannung. Weitere Daten, wie beispielsweise ein Ladezustand, werden berechnet. Anhand dieser Daten wird dann die schlechteste Bateriezelle identifiziert. Offenbarung der Erfindung
Es wird ein Verfahren zum Steuern und Überwachen von mehreren
Batteriezellen eines Batteriepacks vorgeschlagen. Das Batteriepack ist dabei insbesondere zur Verwendung in einem Elektrofahrzeug vorgesehen. Dabei kann es sich unter anderem um ein rein elektrisch angetriebenes Fahrzeug, ein Hybridfahrzeug sowie ein Plug-In-Hybridfahrzeug handeln. Das Batteriepack kann aber auch in Consumer-Elektronik-Produkten, wie beispielsweise
Mobiltelefonen, Tablet-PCs, Notebooks oder Elektrowerkzeugen verwendet werden. Die Batteriezellen des Batteriepacks sind vorzugsweise elektrisch seriell miteinander verschaltet.
Gemäß dem erfindungsgemäßen Verfahren wird von mindestens einer
Erfassungseinheit von jeder Batteriezelle je ein Datensatz von Zustandsgrößen erfasst und zu einer Selektiereinheit übertragen. Dabei kann jeder Batteriezelle eine separate Erfassungseinheit zugeordnet sein. Es kann auch eine
Erfassungseinheit vorgesehen sein, welche Datensätze von Zustandsgrößen mehrerer Batteriezellen erfasst. Aus dem Datensatz von Zustandsgrößen kann ein Zustand der Batteriezelle ermittelt werden.
Anschließend werden von der Selektiereinheit einzelne Zustandsgrößen aus den mehreren übertragenen Datensätzen von Zustandsgrößen selektiert. Die selektierten Zustandsgrößen bilden dabei einen virtuellen Datensatz von
Zustandsgrößen. Die selektierten Zustandsgrößen des virtuellen Datensatzes können somit aus den Datensätzen von Zustandsgrößen verschiedener
Batteriezellen stammen.
Dann wird von einer Simulationseinheit ein Modell einer virtuellen Zelle aus den selektierten Zustandsgrößen des virtuellen Datensatzes erstellt. Die virtuelle Zelle simuliert somit eine Batteriezelle mit dem zuvor erstellten virtuellen
Datensatz von Zustandsgrößen. Aus dem virtuellen Datensatz von
Zustandsgrößen kann ein Zustand der virtuellen Zelle ermittelt werden.
Anschließend wird von einer Datenverarbeitungseinheit ein Grenzwert eines Ladestroms zum Laden der Batteriezellen des Batteriepacks aus den selektierten Zustandsgrößen des virtuellen Datensatzes der virtuellen Zelle berechnet. Der so berechnete Grenzwert des Ladestroms wird dann beispielsweise zu einem Zentralsteuergerät des Elektrofahrzeugs übertragen. Das Zentralsteuergerät kann somit beim Laden der Batteriezellen des Batteriepacks den Ladestrom entsprechend diesem Grenzwert begrenzen.
In Abhängigkeit von dem Zustand der Batteriezelle kann ein zu hoher Ladestrom die Batteriezelle beschädigen. Deshalb darf jede der Batteriezellen nur mit einem zulässigen Ladestrom geladen werden, welcher keine Beschädigung der Batteriezelle verursacht. Der jeweils zulässige Ladestrom ist dabei von dem Zustand der Batteriezelle abhängig. Je schlechter der Zustand der Batteriezelle ist, umso kleiner ist der zulässige Ladestrom. Je besser der Zustand der Batteriezelle ist, umso größer ist der zulässige Ladestrom.
Der Grenzwert des Ladestroms zum Laden der Batteriezellen des Batteriepacks wird erfindungsgemäß lediglich einmal aus den selektierten Zustandsgrößen der virtuellen Zelle berechnet. Eine separate Berechnung von zulässigen
Ladeströmen für mehrere oder gar für alle Batteriezellen des Batteriepacks ist nicht erforderlich. Wenn die Batteriezellen des Batteriepacks elektrisch seriell miteinander verschaltet sind, so fließt auch stets der gleiche Ladestrom durch alle Batteriezellen.
Vorzugsweise werden dabei von der Selektiereinheit aus den mehreren
Datensätzen von Zustandsgrößen diejenigen Zustandsgrößen selektiert, welche einen Schlechtestmöglichen Zustand der virtuellen Zelle darstellen. Der Zustand der virtuellen Zelle ist somit nicht besser als der Zustand einer beliebigen Batteriezelle des Batteriepacks. Dadurch ist sichergestellt, dass der so berechnete Grenzwert des Ladestroms nicht größer ist als der zulässige
Ladestrom einer beliebigen Batteriezelle des Batteriepacks. Somit wird ein minimaler Grenzwert des Ladestroms berechnet.
Gemäß einer vorteilhaften Weiterbildung der Erfindung wird von einer
Energieprädiktionseinheit zusätzlich eine in den Batteriezellen des Batteriepacks speicherbare elektrische Energie aus den selektierten Zustandsgrößen des virtuellen Datensatzes der virtuellen Zelle prädiziert. Die so prädizierte in den Bateriezellen speicherbare elektrische Energie wird dann beispielsweise zu einem Zentralsteuergerät des Elektrofahrzeugs übertragen. Das
Zentralsteuergerät kann die prädizierte in den Bateriezellen speicherbare elektrische Energie beispielsweise bei der Ermitlung einer Reichweite des Elektrofahrzeugs berücksichtigen.
Die in einer der Bateriezellen speicherbare elektrische Energie ist dabei von dem Zustand der Bateriezelle abhängig. Je schlechter der Zustand der
Bateriezelle ist, umso kleiner ist die in der Bateriezelle speicherbare elektrische Energie. Je besser der Zustand der Bateriezelle ist, umso größer ist die in der Bateriezelle speicherbare elektrische Energie.
Vorzugsweise werden dabei von der Selektiereinheit aus den mehreren
Datensätzen von Zustandsgrößen diejenigen Zustandsgrößen selektiert, welche einen Schlechtestmöglichen Zustand der virtuellen Zelle darstellen. Der Zustand der virtuellen Zelle ist somit nicht besser als der Zustand einer beliebigen Bateriezelle des Bateriepacks. Dadurch ist sichergestellt, dass die so prädizierte in den Bateriezellen speicherbare elektrische Energie nicht größer ist als eine real in den Bateriezellen speicherbare elektrische Energie.
Gemäß einer weiteren vorteilhaften Weiterbildung der Erfindung wird von einer Leistungsprädiktionseinheit zusätzlich eine den Bateriezellen des Bateriepacks maximal entnehmbare elektrische Leistung aus den selektierten Zustandsgrößen des virtuellen Datensatzes der virtuellen Zelle prädiziert. Die so prädizierte den Bateriezellen maximal entnehmbare elektrische Leistung wird dann
beispielsweise zu einem Zentralsteuergerät des Elektrofahrzeugs übertragen.
Das Zentralsteuergerät kann die prädizierte den Bateriezellen maximal entnehmbare elektrische Leistung beispielsweise berücksichtigen, um einen Entladestrom des Bateriepacks zu begrenzen.
Die in einer der Bateriezellen entnehmbare elektrische Leistung ist dabei von dem Zustand der Bateriezelle abhängig. Je schlechter der Zustand der
Bateriezelle ist, umso kleiner ist die der Bateriezelle entnehmbare elektrische Leistung. Je besser der Zustand der Bateriezelle ist, umso größer ist die der Bateriezelle entnehmbare elektrische Leistung. Vorzugsweise werden dabei von der Selektiereinheit aus den mehreren
Datensätzen von Zustandsgrößen diejenigen Zustandsgrößen selektiert, welche einen Schlechtestmöglichen Zustand der virtuellen Zelle darstellen. Der Zustand der virtuellen Zelle ist somit nicht besser als der Zustand einer beliebigen
Batteriezelle des Batteriepacks. Dadurch ist sichergestellt, dass die so prädizierte den Batteriezellen entnehmbare elektrische Leistung nicht größer ist als eine real den Batteriezellen entnehmbare elektrische Leistung.
Vorteilhaft umfasst jeder Datensatz von Zustandsgrößen einer Batteriezelle mindestens eine Spannung der Batteriezelle, eine Temperatur der Batteriezelle, ein Überpotential an einer Anode der Batteriezelle, ein Überpotential an einer Kathode der Batteriezelle, einen Ladezustand an der Anode der Batteriezelle und einen Ladezustand an der Kathode der Batteriezelle. Aus den besagten
Zustandsgrößen kann der Zustand der Batteriezelle ausreichend genau ermittelt werden.
Vorteilhaft umfasst der virtuelle Datensatz von Zustandsgrößen der virtuellen Zelle mindestens eine Spannung der Batteriezelle, eine Temperatur der
Batteriezelle, ein Überpotential an einer Anode der Batteriezelle, ein
Überpotential an einer Kathode der Batteriezelle, einen Ladezustand an der Anode der Batteriezelle und einen Ladezustand an der Kathode der Batteriezelle. Aus den besagten Zustandsgrößen kann der Zustand der Batteriezelle ausreichend genau ermittelt werden.
Es wird auch ein Managementsystem zum Steuern und Überwachen von mehreren Batteriezellen eines Batteriepacks vorgeschlagen. Das
erfindungsgemäße Managementsystem umfasst dabei eine Selektiereinheit zum Selektieren von einzelnen Zustandsgrößen aus mehreren Datensätzen von Zustandsgrößen, welche zu der Selektiereinheit übertragen werden. Die selektierten Zustandsgrößen bilden einen virtuellen Datensatz von
Zustandsgrößen.
Vorzugsweise erfasst dabei eine Erfassungseinheit von jeder Batteriezelle des Batteriepacks je einen Datensatz von Zustandsgrößen und überträgt die erfassten Datensätzen von Zustandsgrößen zu der Selektiereinheit des
Managementsystems.
Das erfindungsgemäße Managementsystem umfasst auch eine
Simulationseinheit zum Erstellen eines Modells einer virtuellen Zelle aus den selektierten Zustandsgrößen des virtuellen Datensatzes. Die virtuelle Zelle simuliert eine Batteriezelle mit dem gebildeten virtuellen Datensatz von
Zustandsgrößen.
Das erfindungsgemäße Managementsystem umfasst ferner eine
Datenverarbeitungseinheit zum Berechnen eines Grenzwerts eines Ladestroms zum Laden der Batteriezellen des Batteriepacks aus den selektierten
Zustandsgrößen des virtuellen Datensatzes der virtuellen Zelle. Der so berechnete Grenzwert des Ladestroms kann zu einem Zentralsteuergerät des Elektrofahrzeugs übertragen werden, welches somit beim Laden der
Batteriezellen des Batteriepacks den Ladestrom entsprechend diesem Grenzwert begrenzen kann.
Gemäß einer bevorzugten Ausgestaltung der Erfindung selektiert die
Selektiereinheit aus den mehreren Datensätzen von Zustandsgrößen diejenigen Zustandsgrößen, welche einen Schlechtestmöglichen Zustand der virtuellen Zelle darstellen.
Gemäß einer vorteilhaften Weiterbildung der Erfindung umfasst das
Managementsystem ferner eine Energieprädiktionseinheit zur Prädiktion einer in den Batteriezellen speicherbaren elektrischen Energie aus den selektierten Zustandsgrößen des virtuellen Datensatzes der virtuellen Zelle. Die so prädizierte in den Batteriezellen speicherbare elektrische Energie kann zu einem Zentralsteuergerät des Elektrofahrzeugs übertragen werden, welches die prädizierte in den Batteriezellen speicherbare elektrische Energie beispielsweise bei der Ermittlung einer Reichweite des Elektrofahrzeugs berücksichtigen kann.
Gemäß einer weiteren vorteilhaften Weiterbildung der Erfindung umfasst das Managementsystem ferner eine Leistungsprädiktionseinheit zur Prädiktion einer den Batteriezellen maximal entnehmbaren elektrischen Leistung aus den selektierten Zustandsgrößen des virtuellen Datensatzes der virtuellen Zelle. Die so prädizierte den Batteriezellen maximal entnehmbare elektrische Leistung kann einem Zentralsteuergerät des Elektrofahrzeugs übertragen werden, welches die prädizierte den Batteriezellen maximal entnehmbare elektrische Leistung beispielsweise berücksichtigen kann, um einen Entladestrom des Batteriepacks zu begrenzen.
Es wird auch ein Batteriepack vorgeschlagen, welches ein erfindungsgemäßes Managementsystem, mehrere Batteriezellen, welche seriell miteinander verschaltet sind, und mindestens eine Erfassungseinheit zum Erfassen von je einem Datensatz von Zustandsgrößen jeder Batteriezelle und zum Übertragen des Datensatzes an eine Selektiereinheit des Managementsystems umfasst.
Dabei kann jeder Batteriezelle eine separate Erfassungseinheit zugeordnet sein. Es kann aber auch eine Erfassungseinheit vorgesehen sein, welche Datensätze von Zustandsgrößen mehrerer Batteriezellen erfasst.
Das erfindungsgemäße Verfahren findet vorteilhaft Verwendung in einem
Elektrofahrzeug, welches mindestens ein erfindungsgemäßes Batteriepack umfasst. Bei dem Elektrofahrzeug kann es sich unter anderem um ein rein elektrisch angetriebenes Fahrzeug, ein Hybridfahrzeug sowie ein Plug-In- Hybridfahrzeug handeln.
Vorteile der Erfindung
Die Erfindung gestattet, wichtige Kenngrößen zum sicheren und nachhaltigen Betrieb der Batteriezellen des Batteriepacks auf verhältnismäßig einfache Weise und mit Einsatz verhältnismäßig geringer Rechenleistung zu berechnen, beziehungsweise zu prädizieren. Zu den besagten Kenngrößen gehören unter anderem ein Grenzwert eines Ladestroms zum Laden der Batteriezellen, eine den Batteriezellen maximal entnehmbare elektrische Leistung sowie eine in den Batteriezellen speicherbare elektrische Energie. Die besagten Kenngrößen müssen nicht für jede der Batteriezellen separat berechnet, beziehungsweise prädiziert, und anschließend miteinander verknüpft werden, sondern jede der besagten Kenngrößen muss nur einmal berechnet, beziehungsweise prädiziert, werden. Somit sind Rechenleistung und Speicherbedarf in dem
Managementsystem vorteilhaft reduziert. Auch ist auch sichergestellt, dass die besagten Kenngrößen stets derart berechnet, beziehungsweise prädiziert, werden, dass ein sicherer und nachhaltiger Betrieb aller Batteriezellen des Batteriepacks möglich ist.
Kurze Beschreibung der Zeichnungen
Ausführungsformen der Erfindung werden anhand der Zeichnungen und der nachfolgenden Beschreibung näher erläutert.
Es zeigen:
Figur 1 eine schematische Darstellung eines Batteriepacks und
Figur 2 eine schematische Darstellung eines Managementsystems eines
Batteriepacks 5.
Ausführungsformen der Erfindung
In der nachfolgenden Beschreibung der Ausführungsformen der Erfindung werden gleiche oder ähnliche Elemente mit gleichen Bezugszeichen bezeichnet, wobei auf eine wiederholte Beschreibung dieser Elemente in Einzelfällen verzichtet wird. Die Figuren stellen den Gegenstand der Erfindung nur schematisch dar.
Figur 1 zeigt eine schematische Darstellung eines Batteriepacks 5, welches insbesondere zur Verwendung in einem Elektrofahrzeug vorgesehen ist. Das Batteriepack 5 umfasst ein Managementsystem 30, welches vorliegend eine Selektiereinheit 32, eine Simulationseinheit 34 und eine
Datenverarbeitungseinheit 36 aufweist.
Das Batteriepack 5 umfasst ferner mehrere Batteriezellen 2, welche elektrisch seriell miteinander verschaltet sind. Jede Batteriezelle 2 umfasst eine
Elektrodeneinheit, welche jeweils eine Anode 11 und eine Kathode 12 aufweist. Die Anode 11 der Elektrodeneinheit ist mit einem negativen Stromsammler 15 der Batteriezelle 2 verbunden. Die Kathode 12 der Elektrodeneinheit ist mit einem positiven Stromsammler 16 der Batteriezelle 2 verbunden. Zwischen der Anode 11 und der Kathode 12 ist ein Separator 18 angeordnet. Zur seriellen Verschaltung der Batteriezellen 2 des Batteriepacks 5 ist jeweils das negative Stromsammler 15 einer Batteriezelle 2 mit dem positiven Stromsammler 16 der benachbarten Batteriezelle 2 elektrisch verbunden.
Die Batteriezellen 2 des Batteriepacks 5 werden in der hier gezeigten Darstellung von einem Ladestrom I durchflossen. Aufgrund der elektrisch seriellen
Verschaltung der Batteriezellen 2 fließt der gleiche Ladestrom I durch jede der Batteriezellen 2.
Das Batteriepack 5 umfasst vorliegend auch mehrere Erfassungseinheiten 20. Dabei ist jeder Batteriezelle 2 eine Erfassungseinheit 20 zugeordnet. Jede der Erfassungseinheiten 20 erfasst je einen Datensatz von Zustandsgrößen der zugeordneten Batteriezelle 2. Alternativ kann auch eine Erfassungseinheit 20 vorgesehen sein, welche Datensätze von Zustandsgrößen mehrerer
Batteriezellen 2 oder aller Batteriezellen 2 erfasst.
Die Batteriezellen 2 und die den Batteriezellen 2 zugeordneten
Erfassungseinheiten 20 bilden eine Batterieeinheit 7. Das Batteriepack 5 umfasst somit das Managementsystem 30 und die Batterieeinheit 7.
Jeder Datensatz von Zustandsgrößen einer der Batteriezellen 2 umfasst vorliegend eine Spannung der Batteriezelle 2, welche zwischen dem positiven Stromsammler 16 und dem negativen Stromsammler 15 anliegt. Ferner umfasst jeder Datensatz von Zustandsgrößen eine Temperatur der Batteriezelle 2, ein Überpotential an der Anode 11, ein Überpotential an der Kathode 12, einen Ladezustand an der Anode 11 und einen Ladezustand an der Kathode 12. Der Datensatz kann auch noch weitere Zustandsgrößen umfassen.
Die erfassten Datensätze von Zustandsgrößen der Batteriezellen 2 werden von den Erfassungseinheiten 20 an die Selektiereinheit 32 des Managementsystems 30 übertragen. In der Selektiereinheit 32 liegt somit für jede Batteriezelle 2 des Bateriepacks 5 ein Datensatz vor, welcher die oben beschriebenen
Zustandsgrößen umfasst.
Die Erfassungseinheiten 20 können dabei nahe der Bateriezellen 2 angeordnet und mit dem Managementsystem 30 verbunden sein. Die Erfassungseinheiten 20 können aber auch in das Managementsystem 30 integriert sein und mit entsprechenden Sensoren zur Messung verschiedener Größen der Bateriezellen 2 verbunden sein.
Von der Selektiereinheit 32 des Managementsystems 30 werden einzelne Zustandsgrößen aus den Datensätzen von Zustandsgrößen der Bateriezellen 2 selektiert. Die selektierten Zustandsgrößen bilden dann einen virtuellen
Datensatz von Zustandsgrößen. Dieser virtuelle Datensatz umfasst ebenfalls die oben beschriebenen Zustandsgrößen. Die selektierten Zustandsgrößen des virtuellen Datensatzes können dabei alle aus einer einzigen Bateriezelle 2 stammen. In der Regel stammen die selektierten Zustandsgrößen des virtuellen Datensatzes aber aus den Datensätzen von Zustandsgrößen verschiedener Bateriezellen 2.
Von der Selektiereinheit 32 werden aus den mehreren Datensätzen von
Zustandsgrößen der Bateriezellen 2 diejenigen Zustandsgrößen selektiert, welche jeweils einen Schlechtestmöglichen Zustand darstellen. Beispielsweise werden aus allen Datensätzen die höchste Spannung der Bateriezellen 2, die höchste Temperatur der Bateriezellen 2, das geringste Überpotential an der Anode 11 der Bateriezellen 2, das höchste Überpotential an der Kathode 12 der Bateriezellen 2, der höchste Ladezustand an der Anode 11 der Bateriezellen 2 und der geringste Ladezustand an der Kathode 12 der Bateriezellen 2 selektiert.
Aus den selektierten Zustandsgrößen des virtuellen Datensatzes wird von der Simulationseinheit 34 des Managementsystems 30 ein Modell einer virtuellen Zelle 8 erstellt. Die virtuelle Zelle 8 simuliert eine Bateriezelle 2 mit dem zuvor erstellten virtuellen Datensatz von Zustandsgrößen. Die virtuelle Zelle 8 weist somit diejenigen Zustandsgrößen auf, welche jeweils den Schlechtestmöglichen Zustand darstellen. Aus den selektierten Zustandsgrößen der virtuellen Zelle 8 wird von einer Datenverarbeitungseinheit 36 des Managementsystems 30 ein Grenzwert eines Ladestroms I zum Laden der Batteriezellen 2 des Batteriepacks 5 berechnet. Der so berechnete Grenzwert des Ladestroms I wird zu einem Zentralsteuergerät 40 des Elektrofahrzeugs übertragen. Das Zentralsteuergerät 40 kann somit beim Laden der Batteriezellen 2 des Batteriepacks 5 den Ladestrom I entsprechend diesem Grenzwert begrenzen.
Figur 2 zeigt eine schematische Darstellung eines Managementsystems 30 des Batteriepacks 5. Abweichend von dem in Figur 1 gezeigten Managementsystem 30 weist das in Figur 2 dargestellte Managementsystems 30 zusätzlich eine Energieprädiktionseinheit 37 und eine Leistungsprädiktionseinheit 38 auf. Die Selektiereinheit 32, die Simulationseinheit 34 und die Datenverarbeitungseinheit 36 sind unverändert. Die Selektiereinheit 32 ist vorliegend nur mit einer einzigen Erfassungseinheit 20 verbunden, welche die Datensätze von Zustandsgrößen aller Batteriezellen 2 erfasst und überträgt.
Aus den selektierten Zustandsgrößen der virtuellen Zelle 8 wird von der
Energieprädiktionseinheit 37 zusätzlich eine in den Batteriezellen 2 des
Batteriepacks 5 speicherbare elektrische Energie prädiziert. Die so prädizierte in den Batteriezellen 2 speicherbare elektrische Energie wird ebenfalls zu dem Zentralsteuergerät 40 des Elektrofahrzeugs übertragen. Das Zentralsteuergerät 40 kann somit die prädizierte in den Batteriezellen 2 speicherbare elektrische Energie bei der Ermittlung einer Reichweite des Elektrofahrzeugs
berücksichtigen.
Aus den selektierten Zustandsgrößen der virtuellen Zelle 8 wird von der
Leistungsprädiktionseinheit 38 zusätzlich eine den Batteriezellen 2 des
Batteriepacks 5 maximal entnehmbare elektrische Leistung prädiziert. Die so prädizierte den Batteriezellen 2 maximal entnehmbare elektrische Leistung wird auch zu dem Zentralsteuergerät 40 des Elektrofahrzeugs übertragen. Das Zentralsteuergerät 40 kann somit die prädizierte den Batteriezellen 2 maximal entnehmbare elektrische Leistung berücksichtigen, um beispielsweise einen Entladestrom des Batteriepacks 5, beispielsweise beim Beschleunigen des Elektrofahrzeugs, zu begrenzen. Die Erfindung ist nicht auf die hier beschriebenen Ausführungsbeispiele und die darin hervorgehobenen Aspekte beschränkt. Vielmehr ist innerhalb des durch die Ansprüche angegebenen Bereichs eine Vielzahl von Abwandlungen möglich, die im Rahmen fachmännischen Handelns liegen.

Claims

Ansprüche
1. Verfahren zum Steuern und Überwachen von mehreren Batteriezellen (2) eines Batteriepacks (5), wobei
von mindestens einer Erfassungseinheit (20) von jeder Batteriezelle (2) je ein Datensatz von Zustandsgrößen erfasst und zu einer
Selektiereinheit (32) übertragen wird;
von der Selektiereinheit (32) einzelne Zustandsgrößen aus den mehreren Datensätzen von Zustandsgrößen selektiert werden, welche einen virtuellen Datensatz von Zustandsgrößen bilden;
von einer Simulationseinheit (34) ein Modell einer virtuellen Zelle (8) aus den selektierten Zustandsgrößen des virtuellen Datensatzes erstellt wird; und
von einer Datenverarbeitungseinheit (36) ein Grenzwert eines
Ladestroms (I) zum Laden der Batteriezellen (2) des Batteriepacks (5) aus den selektierten Zustandsgrößen des virtuellen Datensatzes der virtuellen Zelle (8) berechnet wird.
2. Verfahren nach Anspruch 1, wobei
von der Selektiereinheit (32) aus den mehreren Datensätzen von Zustandsgrößen diejenigen Zustandsgrößen selektiert werden, welche einen Schlechtestmöglichen Zustand der virtuellen Zelle (8) darstellen.
3. Verfahren nach einem der vorstehenden Ansprüche, wobei
von einer Energieprädiktionseinheit (37) eine in den Batteriezellen (2) speicherbare elektrische Energie aus den selektierten Zustandsgrößen des virtuellen Datensatzes der virtuellen Zelle (8) prädiziert wird.
4. Verfahren nach einem der vorstehenden Ansprüche, wobei von einer Leistungsprädiktionseinheit (38) eine den Batteriezellen (2) maximal entnehmbare elektrische Leistung aus den selektierten Zustandsgrößen des virtuellen Datensatzes der virtuellen Zelle (8) prädiziert wird.
5. Verfahren nach einem der vorstehenden Ansprüche, wobei
jeder Datensatz von Zustandsgrößen einer Batteriezelle (2) mindestens eine Spannung der Batteriezelle (2),
eine Temperatur der Batteriezelle (2),
ein Überpotential an einer Anode (11) der Batteriezelle (2),
ein Überpotential an einer Kathode (12) der Batteriezelle (2), einen Ladezustand an der Anode (11) der Batteriezelle (2) und einen Ladezustand an der Kathode (12) der Batteriezelle (2) umfasst.
6. Verfahren nach einem der vorstehenden Ansprüche, wobei
der virtuelle Datensatz von Zustandsgrößen der virtuellen Zelle (8) mindestens
eine Spannung der Batteriezelle (2),
eine Temperatur der Batteriezelle (2),
ein Überpotential an einer Anode (11) der Batteriezelle (2),
ein Überpotential an einer Kathode (12) der Batteriezelle (2), einen Ladezustand an der Anode (11) der Batteriezelle (2) und einen Ladezustand an der Kathode (12) der Batteriezelle (2) umfasst.
7. Managementsystem (30) zum Steuern und Überwachen von mehreren Batteriezellen (2) eines Batteriepacks (5), umfassend
eine Selektiereinheit (32) zum Selektieren von einzelnen
Zustandsgrößen aus mehreren Datensätzen von Zustandsgrößen, welche zu der Selektiereinheit (32) übertragen werden, wobei die selektierten Zustandsgrößen einen virtuellen Datensatz von
Zustandsgrößen bilden;
eine Simulationseinheit (34) zum Erstellen eines Modells einer virtuellen Zelle (8) aus den selektierten Zustandsgrößen des virtuellen
Datensatzes; und
eine Datenverarbeitungseinheit (36) zum Berechnen eines Grenzwerts eines Ladestroms (I) zum Laden der Batteriezellen (2) des Batteriepacks (5) aus den selektierten Zustandsgrößen des virtuellen Datensatzes der virtuellen Zelle (8).
8. Managementsystem (30) nach Anspruch 7, wobei
die Selektiereinheit (32) aus den mehreren Datensätzen von
Zustandsgrößen diejenigen Zustandsgrößen selektiert, welche einen Schlechtestmöglichen Zustand der virtuellen Zelle (8) darstellen.
9. Managementsystem (30) nach einem der Ansprüche 7 bis 8,
ferner umfassend eine Energieprädiktionseinheit (37) zur Prädiktion einer in den Batteriezellen (2) speicherbaren elektrischen Energie aus den selektierten Zustandsgrößen des virtuellen Datensatzes der virtuellen Zelle (8).
10. Managementsystem (30) nach einem der Ansprüche 7 bis 9,
ferner umfassend eine Leistungsprädiktionseinheit (38) zur Prädiktion einer den Batteriezellen (2) maximal entnehmbaren elektrischen Leistung aus den selektierten Zustandsgrößen des virtuellen
Datensatzes der virtuellen Zelle (8).
11. Bateriepack (5), umfassend
ein Managementsystem (30) nach einem der Ansprüche 7 bis 10, mehrere Bateriezellen (2), welche seriell miteinander verschaltet sind, und mindestens eine Erfassungseinheit (20) zum Erfassen von je einem Datensatz von Zustandsgrößen jeder Bateriezelle (2) und zum
Übertragen des Datensatzes an eine Selektiereinheit (32) des
Managementsystem (30).
12. Verwendung des Verfahrens nach einem der Ansprüche 1 bis 6 in einem Elektrofahrzeug, welches mindestens ein Bateriepack (5) nach
Anspruch 11 umfasst.
EP18830883.7A 2018-01-08 2018-12-28 Verfahren und managementsystem zum steuern und überwachen von mehreren batteriezellen eines batteriepacks sowie batteriepack Ceased EP3737581A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018200144.8A DE102018200144A1 (de) 2018-01-08 2018-01-08 Verfahren und Managementsystem zum Steuern und Überwachen von mehreren Batteriezellen eines Batteriepacks sowie Batteriepack
PCT/EP2018/097110 WO2019134891A1 (de) 2018-01-08 2018-12-28 Verfahren und managementsystem zum steuern und überwachen von mehreren batteriezellen eines batteriepacks sowie batteriepack

Publications (1)

Publication Number Publication Date
EP3737581A1 true EP3737581A1 (de) 2020-11-18

Family

ID=65009750

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18830883.7A Ceased EP3737581A1 (de) 2018-01-08 2018-12-28 Verfahren und managementsystem zum steuern und überwachen von mehreren batteriezellen eines batteriepacks sowie batteriepack

Country Status (7)

Country Link
US (1) US11486935B2 (de)
EP (1) EP3737581A1 (de)
JP (1) JP7242683B2 (de)
KR (1) KR20200106512A (de)
CN (1) CN111542451B (de)
DE (1) DE102018200144A1 (de)
WO (1) WO2019134891A1 (de)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7321220B2 (en) * 2003-11-20 2008-01-22 Lg Chem, Ltd. Method for calculating power capability of battery packs using advanced cell model predictive techniques
JP5089883B2 (ja) * 2005-12-16 2012-12-05 日立ビークルエナジー株式会社 蓄電池管理装置
DE102009045783A1 (de) * 2009-10-19 2011-04-21 Robert Bosch Gmbh Verfahren zur präzisen Leistungsvorhersage für Batteriepacks
EP2495576B1 (de) * 2009-10-30 2018-10-24 NGK Insulators, Ltd. Verfahren zur steuerung einer sekundärzelle und stromspeichervorrichtung
US8519674B2 (en) * 2009-11-12 2013-08-27 GM Global Technology Operations LLC Method for estimating battery degradation in a vehicle battery pack
JP5725444B2 (ja) 2010-08-24 2015-05-27 スズキ株式会社 蓄電システム
US8872481B2 (en) * 2011-04-27 2014-10-28 General Electric Company Systems and methods for predicting battery power-delivery performance
JP5808605B2 (ja) * 2011-08-17 2015-11-10 株式会社日立製作所 異常検知・診断方法、および異常検知・診断システム
JP5349567B2 (ja) * 2011-11-11 2013-11-20 カルソニックカンセイ株式会社 バッテリ・パックの入出力可能電力推定装置およびその方法
JP5932596B2 (ja) 2012-10-11 2016-06-08 日立オートモティブシステムズ株式会社 車両の回生制御装置
US9337680B2 (en) * 2013-03-12 2016-05-10 Ford Global Technologies, Llc Method and system for controlling an electric vehicle while charging
JP2015172557A (ja) * 2014-03-12 2015-10-01 株式会社豊田中央研究所 電池内部状態推定装置
CN105196888B (zh) 2015-10-20 2017-05-17 西安特锐德智能充电科技有限公司 一种电动汽车充电机的充电管理系统及方法

Also Published As

Publication number Publication date
CN111542451A (zh) 2020-08-14
KR20200106512A (ko) 2020-09-14
CN111542451B (zh) 2024-04-26
DE102018200144A1 (de) 2019-07-11
US20200386824A1 (en) 2020-12-10
US11486935B2 (en) 2022-11-01
JP2021510059A (ja) 2021-04-08
WO2019134891A1 (de) 2019-07-11
JP7242683B2 (ja) 2023-03-20

Similar Documents

Publication Publication Date Title
EP1941289B1 (de) Verfahren und vorrichtung zur bestimmung eines alterungszustands einer batterie
EP1150131B1 (de) Verfahren zur Ermittlung des Ladezustands und der Belastbarkeit eines elektrischen Akkumulators
EP3017496B1 (de) Verfahren zum batteriemanagement und batteriemanagementsystem
WO2020064221A1 (de) Detektion abnormaler selbstentladung von lithiumionenzellen und batteriesystem
EP1189326B1 (de) Verfahren zur Überwachung der Ladung gasdichter alkalischer Akkumulatoren
EP2923429A1 (de) Vorrichtung zum testen und warten einer hochvoltbatterie und verwendungen dieser vorrichtung
EP2630000A2 (de) Batteriemanagementsystem für stromversorgungssystem mit niederspannungsbereich und hochspannungsbereich
DE112012005901T5 (de) Batteriesystem und Verschlechterungsbestimmungsverfahren
WO2019175357A1 (de) Verfahren zum betreiben eines elektrischen energiespeichers, steuerung für einen elektrischen energiespeicher und vorrichtung und/oder fahrzeug
EP2944009B1 (de) Verfahren und vorrichtung zum erhöhen der verfügbaren kapazität in einem batteriestrang durch angleichen der zell-ladungsmengen, batteriemanagementsystem, batterie und batterieladegerät
DE102018104212A1 (de) Lithiumanreicherung zum eindämmen von kapazitätsverlust in li-ionen-batterien
WO2015014761A1 (de) Verfahren zur diagnose eines zustands einer batterie
DE112008003377B4 (de) Batterie-Lernsystem
WO2015000954A1 (de) Verfahren und system zur minimierung von leistungsverlusten bei einem energiespeicher
DE102019129170A1 (de) Steuerungsanordnung für eine Hochvoltbatterie und Verfahren zum Betreiben einer Steuerungsanordnung
DE202016105619U1 (de) Intelligenter Akkumulator
EP2834656B1 (de) Verfahren zur bestimmung eines gesamtkapazitätsverlusts einer sekundärzelle
EP3737581A1 (de) Verfahren und managementsystem zum steuern und überwachen von mehreren batteriezellen eines batteriepacks sowie batteriepack
DE102020109210A1 (de) Verfahren zum Ermitteln einer Kapazität von Batteriezellen, Kapazitätsermittlungsvorrichtung und Kraftfahrzeug mit einer Kapazitätsermittlungsvorrichtung
DE102019215054A1 (de) Ladevorrichtung und Verfahren zum Laden eines elektrischen Energiespeichers
WO2014023544A1 (de) Ersatzzelle für ein batteriesystem
DE102013201451A1 (de) Verfahren und System zur Batteriediagnose
DE102012212648A1 (de) Batteriesystem mit Zellüberwachungsschaltungen sowie ein Verfahren zum Balancing der Ladezustände von Batteriezellen eines Batteriesystems
DE102017209659A1 (de) Verfahren und Vorrichtung zum Betrieb eines elektrischen Energiespeichersystems
EP3602675B1 (de) Verfahren und vorrichtung zum betrieb eines elektrischen energiespeichersystems sowie elektrisches energiespeichersystem und verwendung desselben

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200810

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220407

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20240118