EP3732095B1 - Engin sous-marin - Google Patents
Engin sous-marin Download PDFInfo
- Publication number
- EP3732095B1 EP3732095B1 EP18833073.2A EP18833073A EP3732095B1 EP 3732095 B1 EP3732095 B1 EP 3732095B1 EP 18833073 A EP18833073 A EP 18833073A EP 3732095 B1 EP3732095 B1 EP 3732095B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- axis
- underwater vehicle
- underwater
- rotation
- vehicle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000006073 displacement reaction Methods 0.000 claims description 2
- 241000251468 Actinopterygii Species 0.000 description 9
- 208000031968 Cadaver Diseases 0.000 description 9
- 230000005484 gravity Effects 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 6
- 230000006641 stabilisation Effects 0.000 description 6
- 238000011105 stabilization Methods 0.000 description 6
- 238000013519 translation Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 3
- 230000001687 destabilization Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 101100536354 Drosophila melanogaster tant gene Proteins 0.000 description 1
- 241000287107 Passer Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 229940082150 encore Drugs 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B21/00—Tying-up; Shifting, towing, or pushing equipment; Anchoring
- B63B21/56—Towing or pushing equipment
- B63B21/66—Equipment specially adapted for towing underwater objects or vessels, e.g. fairings for tow-cables
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63G—OFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
- B63G8/00—Underwater vessels, e.g. submarines; Equipment specially adapted therefor
- B63G8/14—Control of attitude or depth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63G—OFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
- B63G8/00—Underwater vessels, e.g. submarines; Equipment specially adapted therefor
- B63G8/14—Control of attitude or depth
- B63G8/26—Trimming equipment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63G—OFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
- B63G8/00—Underwater vessels, e.g. submarines; Equipment specially adapted therefor
- B63G8/42—Towed underwater vessels
Definitions
- the field of the invention is that of underwater vehicles, that is to say that of vehicles capable of being totally submerged.
- SAS Synthetic Antenna Sonar
- Underwater vehicles are conventionally connected to the surface vessel by a cable attached to a longitudinal end of the underwater vehicle.
- the tensile force exerted by the cable on the underwater vehicle is exerted at the point of attachment of the cable, that is to say at the level of the longitudinal end of the underwater vehicle.
- the power dimensioning of these stabilization means must be all the more important as the weight of the underwater vehicle is important.
- An aim of the invention is to provide a simplified solution.
- the invention relates to an underwater vehicle comprising an underwater vehicle, the underwater vehicle comprising a body of the underwater vehicle, the underwater vehicle comprising a connecting element connected to the body of the underwater vehicle and being able to cooperate with a cable to take up a tensile force (F) exerted by the cable on the underwater vehicle, the connecting element being connected to the body of the vehicle and being configured so that the axis of the traction force (F) is movable relative to the body of the vehicle and capable of presenting different orthogonal projections in a plane P fixed with respect to the body passes through the center of inertia (G) of the vehicle under -marine, the connecting element is connected to the body of the underwater vehicle by a connection to at least a degree of freedom in rotation about an axis of rotation (y; yo) so that the tensile force (F) exerted by the cable on the underwater vehicle is able to pivot about the axis of rotation (y; yo), the projection of the axis of the
- the connecting element is connected to the body of the underwater vehicle by a connection with at least one degree of freedom in rotation about an axis of rotation so that the tensile force exerted by the cable on the vehicle submarine is able to pivot about the axis of rotation, the projection of the axis of the tensile force on the plane P being radial to the axis of rotation.
- the connecting element is configured and connected to the body so that when the cable cooperates with the connecting element, the projection of the axis of the tensile force on the plane passing through the center of inertia of the underwater vehicle regardless of the orientation of the tensile force around the axis in an angular working sector of predetermined non-zero opening.
- the figure 1a shows an underwater vehicle 1 comprising a body 10 and a thruster 2.
- the thruster 2 is mounted on the body 10 of the underwater vehicle 1.
- the thruster 2 is able to propel the underwater vehicle 1.
- the underwater vehicle 1 is able to be mechanically connected to a surface vessel 100 as shown in the figure. figure 1a , the two vehicles being mechanically connected to each other by a cable 3.
- the surface vessel 100 is, for example, a surface vehicle, that is to say a vessel navigating on the surface or an underwater vehicle navigating at a shallower depth than the underwater vehicle 1.
- the underwater vehicle 1 can be used as an ROV, that is to say mechanically connected to a surface vessel 100 by means of the cable 3 without being towed by the surface vessel 100, the underwater vehicle 1 totally submerged ensuring its own propulsion by being propelled by its thruster 2.
- the relative speed of the underwater vehicle 1 and the surface vessel 100 is, for example, adjusted so that the surface vessel 100 and the underwater vehicle sailor 1 move at the same speed, one of the vehicles being in front of the other without the cable 3 being stretched between the two vehicles 1 and 100.
- the thruster 2 of the ROV is supplied with electrical energy via the electro-tractor cable 3 , either directly or via an electric energy accumulator of the underwater vehicle.
- the cable 3 is stretched between the two vehicles. This is, for example, the case when the underwater vehicle 1 tows the surface vessel 100 or vice versa.
- the vehicle 1 can be detached from the surface building 100 and move independently in the water as shown in the figure. figure 1b .
- the underwater vehicle 1 is then propelled by its own thruster 2 powered by an electric energy accumulator ACC, 300 of the underwater vehicle 1 shown in figure 2 .
- the invention relates to an underwater vehicle E, shown schematically on figure 2 , comprising the underwater vehicle 1 shown in the preceding figures provided with a connecting element 4, able to cooperate with the cable 3 so as to allow the underwater vehicle 1 to be mechanically connected to a surface vessel 100, when the cable 3 is mechanically connected to the surface building 100.
- the cable 3 is then fixed to the connecting element 4.
- the cable 3 When the cable 3 mechanically connects the underwater vehicle 1 to the surface vessel 100, it is able to exert, on the underwater vehicle 1, a tensile force F, shown in the figure. figure 2 .
- This tensile force F is directed along an axis I which is the longitudinal axis of the cable 3 in the vicinity of the connecting element 4.
- the connecting element 4 takes up the tensile force F exerted by the body 10 on the underwater vehicle 1.
- the connecting element 4 is connected to the body 10 of the underwater vehicle 1 by a connection 5 allowing movement of the connecting element 4 relative to the body 10 of the underwater vehicle 1.
- the control element link 4 is movable relative to the body 10 of the underwater vehicle 1 so that the tensile force F exerted by the cable 3 on the vehicle 1 is movable relative to the body 10.
- the connecting element 4 is connected to the body 10 of the vehicle 1 and is configured so that the axis of the tensile force F exerted by the cable 3 on the vehicle is capable of presenting orthogonal projections. different in the plane P fixed with respect to the body 10 passing through the center of inertia G of the underwater vehicle 1. In other words, there is a plurality of orthogonal projections different from the axis of the tensile force F in the plane P. These projections pass through the center of inertia G of the underwater vehicle 1. These various orthogonal projections passing through the plane P are obtained by a movement of the connecting element 4 relative to the body 10 of the underwater vehicle. sailor and thanks to the configuration of the connecting element. In other words, these different orthogonal projections are obtained for different positions of the connecting element 4 with respect to the body 10.
- the axis of the tensile force F is the axis of the tensile force taken up by the connecting element 4 and exerted by the connecting element 4 on the vehicle 1.
- the connecting element 4 does not deform between these different positions.
- the connecting element 4 does not deform between the different orthogonal projections of the axis of the tensile force F.
- the connecting element 4 passes from one position to another while moving relative to to the body 10, that is to say by a translation and / or a rotation of the connecting element relative to the body 10.
- the different axes of the tensile force giving the different orthogonal projections in the plane P are obtained by a movement of the connecting element 4 relative to the body 10 of the underwater vehicle 1 without deformation of the connecting element 4.
- the plane P is the vertical plane passing through the center of inertia G.
- the z axis is a vertical axis.
- the longitudinal axis I of the cable 3 in the vicinity of its attachment point with the connecting element 4 is located on the portion of the cable 3 between this attachment point and the surface building 100, in the vicinity of the connection element 4.
- the projections, on the plane P, of the longitudinal axis I of the cable 3 in the vicinity of the fixing point of the cable 3 on the connecting element pass through the center of inertia G of the underwater vehicle 1.
- the axis of the traction force F passes through the center of inertia G when the traction force F, is located in the plane P Consequently, when the tensile force F is in the plane P and the connecting element 4 in these different positions, the point of application of the tensile force F on the underwater vehicle 1 is substantially the same. center of inertia G of the underwater vehicle 1.
- the connecting element 4 ensures that the forces of the cable 3 are taken up on the center of inertia G of the underwater vehicle 1 when the tensile force F is in the P plane and the connecting element is in these positions.
- This configuration allows the underwater vehicle 1 to minimize, or even cancel, the destabilization of the underwater vehicle 1 when, the vehicle being used as an ROV, the traction force F is in the plane P for these different positions of element 4, for example when the underwater vehicle 1 and the surface vessel are in this same plane P in the absence of current.
- the orientations of the underwater vehicle 1 and of its speed vector are not modified by a modification of the orientation of the cable, in the vicinity of the connecting element, in this plane P.
- This configuration makes it possible to avoid having providing sophisticated or powerful means or methods for controlling the two vehicles in a coordinated fashion or oversized stabilization devices (control surfaces, thrusters) in order to ensure stabilization of the underwater vehicle.
- This solution allows the underwater vehicle 1 on its own to ensure its stability in the plane P, independently of the surface vessel 100.
- the underwater vehicle 1 consumes little energy to stabilize in the plane P this stabilization does not require to compensate the lever arm between the point of application of the tensile force F of the cable 3 and the center of inertia G of the vehicle.
- This configuration allows this vehicle to be used both as a towed fish and ROV and, if it has the required batteries, as a UUV. This makes it possible to acquire high-quality sonar images at high speed.
- the position of the center of gravity unlike the center of thrust and the center of pressure, does not change as a function of the speed and the forces involved.
- the torques generated by gravity and Archimedes' thrust are fixed.
- the stabilization device for example the vector thruster does not have (or little) to compensate for variations in torque due to a variation in speed.
- the proposed configuration goes against the tendency of those skilled in the art which is, when an underwater vehicle 1 is intended to be towed by a surface vessel 100, to provide a point of application of the traction force F distant from the center of inertia G of the vehicle so that the attitude and the trajectory of this vehicle are imposed by the trajectory of the surface building 100 and by its speed.
- the center of inertia G of the underwater vehicle 1 and its center of the hull are located in the plane P.
- the submerged underwater vehicle 1 is subjected only to hydrodynamic forces and to gravity, the vehicle comes in an equilibrium configuration in which the axis which connects the center of the bottom of the underwater vehicle 1 and the center of gravity of the underwater vehicle is vertical, the plane P is then a vertical plane.
- the proposed solution then makes it possible to avoid destabilization of the underwater vehicle 1 in the P plane by a change of relative speed between the underwater vehicle 1 and the surface vessel 100 in the P plane.
- the underwater vehicle 1 is intended to move mainly along an axis, called the main axis of movement x in the patent application, integral with the body 10 of the underwater vehicle 1.
- This main axis of movement x is advantageously parallel. in the P plane or included in the P plane and perpendicular to the line passing through the center of the hull and the center of inertia G of the underwater vehicle 1.
- This solution is particularly suitable for sonar imaging of the seabed which involves long journeys of the vehicle along its main axis of movement, in the same plane P as the surface vessel (in the absence of current), the surface vessel being at an altitude greater than that of the underwater vehicle in relation to the bottom marine.
- the vehicle is then destabilized only during heading changes.
- the underwater vehicle 1 extends longitudinally along the main axis of movement x.
- the body 10 of the underwater vehicle 1 extends longitudinally along this axis.
- a change in direction of the traction force F in the vertical plane then has no impact on the longitudinal attitude of the underwater vehicle 1.
- This configuration allows the underwater vehicle 1 to control its longitudinal attitude during of a mission in which the underwater vehicle is used as an ROV or towed fish.
- This configuration makes it possible to facilitate the maintenance of the underwater vehicle at a predetermined depth or at a predetermined altitude with respect to a seabed even in the event of a change in depth or speed of the surface vehicle.
- the connecting element 4 is connected to the body 10 of the underwater vehicle 1 by a connection 5 with at least one degree of freedom in rotation about an axis of rotation y so that the tensile force F exerted by the cable 3 on the underwater vehicle 1 is able to pivot about the axis of rotation y, the projection of the axis of the tensile force F on the plane P being radial to the axis of rotation y . Therefore, when the plane P is vertical at equilibrium, the axis of rotation y is substantially horizontal as shown in the figures.
- the connecting element 4 is configured and connected to the body 10 so that when the cable 3 cooperates with the connecting element 4 itself connected to the body 10, the projection of the axis of the tensile force F on the plane P passes through the center of inertia G of the vehicle whatever the orientation of the traction force F around the axis y in an angular working sector defining a non-zero angle, it is at say non-zero opening. In this angular working sector, the cable does not come to rest on the body 10 of the underwater vehicle 1.
- the axis of rotation is connected there to the body 10 so as to obtain this effect.
- the axis of rotation y is capable of passing through the center of inertia G. It may be capable of occupying a single position relative to the body 10 of the underwater vehicle 1 or more. In the latter case, the machine can comprise, but this is not compulsory, drive means making it possible to move this axis of rotation y relative to the body 10.
- connection 5 or 65 comprising a pivot connection of axis of rotation y so that when the connecting element 4 pivots about the axis of rotation y relative to the body 10, the tensile force F pivots about the axis of rotation y relative to the body 10.
- the connecting element 4 is connected to the body 10 of the underwater vehicle 1 by a connection with a degree of freedom.
- the link 5 comprises only the pivot link of axis y.
- the axis of rotation y is fixed relative to the body 10 of the underwater vehicle 1. It passes through the center of inertia G.
- the axis of the tensile force F is then radial to the axis of rotation y when the cable 3 is in a plane P perpendicular to the axis of rotation y in the vicinity of the connecting element 4.
- the connecting element 4 comprises a fork 14 comprising two branches 14a and 14b mounted in a pivot connection on an arm 15 which is fixed relative to the body of the vehicle and whose longitudinal axis is the y axis.
- the fork 14 includes a handle 14c.
- the two branches extend to a handle 14c extending longitudinally radially with respect to to the y axis.
- the handle is intended to cooperate with the cable 3 so that the cable 3 passes through the longitudinal axis of the handle 14c.
- the arm 15 passes through the body of the vehicle perpendicular to the x axis and the two branches 14a, 14b each extend opposite one of the sides of the underwater vehicle.
- the connecting element 4 is configured and connected to the body 10 of the underwater vehicle 1 so that the tensile force F is located substantially in the plane P when the cable 3 is in a plane perpendicular to the axis of rotation y in the vicinity of the connecting element 4.
- the handle 14c extends longitudinally in the plane P.
- the axis of the traction force F passes permanently through the center of inertia G. If the traction force F leaves this plane, that is to say if the axis I of the cable 3 tilts with respect to this plane P, then the cable 3 generates a rolling torque on the vehicle.
- the handle 14c extends in a plane parallel to the plane P and distant from the plane P or in a plane not coincident with the plane P.
- this generates a torque in roll and / or in yaw on the vehicle under- marine, it is therefore necessary to counter these torques so that the underwater vehicle maintains its stability
- the connecting element is connected to the body of the vehicle by a connection with more than 1 degree of freedom in rotation.
- the axis of rotation y is able to pivot, relative to the body of the underwater vehicle, about the axis x. This makes it possible to limit the roll torque when changing the heading of one of the two vehicles.
- figure 3 differs from that of the figure 2 in that the axis of rotation y is capable of being moved relative to the body 10 of the underwater vehicle 1a of the underwater vehicle E1.
- the underwater vehicle E1 comprises locking means comprising for example stops B, making it possible to immobilize the axis of rotation y relative to the body 10 of the underwater vehicle 1a in a position visible on the figure 3 , in which the axis of rotation y passes through the center of inertia G. In this position the axis of rotation y is perpendicular to the plane P.
- the stops B are movable so as to be able to fix the axis of rotation y by relative to the body 10 in several positions relative to the body 10.
- This configuration makes it possible to adjust the position of the axis of rotation y as a function of the position of the center of inertia G and therefore to be able to obtain the desired stabilization effect for various configurations of the underwater vehicle in which the position of the center of inertia of the underwater vehicle varies. For example, it is possible to modify the position or the number of underwater equipment items of the underwater vehicle with an impact on the position of its center of inertia.
- the link 65 making it possible to connect the link element 4 to the body 10 comprises the pivot link 5 and a slide link 66 of axis x connecting the pivot link 5 to the body 10.
- the vehicle 1a comprises, for example, guides GG making it possible to guide the axis of rotation y in the direction of the slideway. Only one guide is visible on the figure 3 , the other being located on the other side of the vehicle.
- the direction of the slide connection is that of the main axis x of movement of the vehicle which is also that of the longitudinal axis x of the vehicle, the direction in which the position of the center of inertia will mainly vary when modifying the number of equipment in the vehicle.
- the axis of rotation y is connected to the body 10 of the underwater vehicle 1a by a connection with more than one degree of freedom in translation, which makes it possible to obtain greater positioning precision of the axis y. in the event of changes in the position of the center of gravity in a direction other than the direction of the x axis.
- the connecting element is connected to the body of the vehicle by a connection with more than 1 degree of freedom in rotation.
- the axis of rotation y is able to pivot, relative to the body of the underwater vehicle, about the axis x.
- the underwater vehicle can include an actuator making it possible to drive the y axis in translation along the x axis along the guides GG.
- This actuator may include a brake making it possible to block the translation of the axis of rotation y along the axis x.
- the locking means may or may not be included in the underwater vehicle.
- FIG. 4 there is shown a second embodiment of the invention.
- This embodiment differs from that of figures 2 and 3 in that the axis of rotation, reference yo on the figures 4 and 5 , is distant from the center of gravity G of the vehicle. Consequently, the axis of rotation yo is movable relative to the body 10 of the underwater vehicle 1b or 1c.
- the underwater vehicle Eb or Ec comprises adjustment means 50 configured to adjust the position of the axis of rotation yo as a function of an orientation O of the projection of the axis of the tensile force F on the plane P so as to move this projection so that it passes through the center of inertia G of the underwater vehicle whatever the direction of the orthogonal projection of the tensile force in the plane P in a predetermined angular sector .
- the underwater vehicle may include a sensor 51 making it possible to measure the orientation of the orthogonal projection of the traction force. This measurement can be carried out directly by an angle sensor on the connecting element for example or on the cable or indirectly, for example, by a strain gauge.
- the adjustment means 50 comprise, for example, as shown in figure 6 , an actuator A making it possible to move the axis of rotation yo relative to the body 10 of the underwater vehicle 1b or 1c and control means C able to control the actuator A and configured to control the actuator as a function of an orientation O of an orthogonal projection of the axis of the tensile force on the plane P.
- the orientation O can be the angle ⁇ formed between the tensile force F and the axis x in the plane P
- the control means are configured to control the actuator so as to move the yo axis to move the orthogonal projection of the axis of the tensile force on the plane P so that it passes through the center of gravity G.
- the adjustment means comprise passive means comprising for example a calibrated spring to ensure the desired positioning of the connecting element as a function of the orientation.
- the example of figure 4 differs from that of the figure 3 in that the axis of rotation yo of the connection with at least one degree of freedom in rotation is distant from the center of inertia G.
- the connection 70 connecting the connecting element 4b to the body 10 of the vehicle 1b comprises a pivot connection 71 of axis yo and a sliding link 72 of axis xo parallel to the axis x, connecting the axis yo to the body of the vehicle.
- the xo axis advantageously belongs to the plane P
- the connecting element 4b has the same fork shape as the connecting element 4 with two branches 14a 'and 14b' connected to a handle 14c 'a handle 14c' extending longitudinally radially with respect to the yo axis.
- the handle is intended to cooperate with the cable 3 so that the cable 3 passes through the longitudinal axis of the handle 14c '.
- the two branches 14a 'and 14b' are mounted in a pivot connection on a stud 73 around a longitudinal arm 74 of longitudinal axis yo.
- the fork includes a handle 14c '.
- the vehicle 1b comprises a guide GU making it possible to guide the stud 73 in translation along an axis xo parallel to the axis x.
- the example of figure 5 differs from that of the figure 4 , in that the connecting element 4c is connected to the body of the underwater vehicle by a connection 80 comprising a ball joint with finger 81 with two axes of rotation of which the axis of rotation yo and another axis parallel to the x axis. This is to prevent the vehicle from pitching during heading changes.
- the ball joint with finger is connected to the body of the underwater vehicle by a slide connection 72 like the pivot connection of the embodiment of the figure 4 .
- the connecting element 4c comprises a loop 85 connected to a stud 83 by a ball joint with finger 81.
- the stud 83 is connected to the vehicle by the sliding link 72.
- the vehicle 1c comprises a guide GU making it possible to guide the stud 83 in translation along the axis of the slide link.
- the connecting element 4c comprises a handle 86 intended to cooperate with the cable so that the axis I is substantially the longitudinal axis of the cable.
- the handle 86 extends longitudinally radially with respect to the axis yo.
- the handle 86 is intended to cooperate with the cable 3 so that the cable 3 passes through the longitudinal axis of the handle 86.
- the connecting element 4c has a greater angular movement around the axis of rotation y than around the other axis of rotation of the ball joint to the finger.
- the connecting element is configured and connected to the body of the vehicle so that the handle 86 is able to pivot on either side of the plane P.
- the link member can be removably connected to the underwater vehicle.
- the connecting element is suitable for being placed in a storage position relative to the body of the underwater vehicle in which it is placed inside the volume delimited by the body of the underwater vehicle.
- the cable can be removably attached to the connecting element or be permanently fixed to the connecting element.
- the underwater vehicle advantageously comprises attitude adjustment means making it possible to vary at least one attitude angle of the underwater vehicle.
- the adjustment means make it possible to adjust the attitude of the underwater vehicle. These means allow the vehicle to adjust this attitude angle itself.
- These means comprise for example means for varying at least one angle of attitude of the vehicle, for example its attitude, and means for controlling the means for varying the angle of attitude so as to adjust this angle of attitude. .
- This is for example the control unit.
- the thruster 2 is for example a vector thruster.
- the thruster 2 is a vector thruster capable of generating a vector thrust, that is to say a thrust which can be oriented with respect to the body 10 of the underwater vehicle 11.
- This thruster is an omnidirectional vector thruster. It is able to generate an orientable thrust on 4 ⁇ steradians.
- An example of such a thruster is a thruster comprising two contra-rotating propellers each comprising blades 17, the collective and cyclical incidence of which around a neutral position is variable.
- the thruster 2 therefore makes it possible to adjust the three attitude angles of the underwater vehicle.
- the means for varying at least one attitude angle of the vehicle comprise control surfaces.
- the vehicle comprises at least one energy accumulator making it possible to accumulate electrical energy and to supply electrical equipment of the vehicle, for example the thruster, at least one sensor of the thruster, for example a sonar antenna, the adjustment means at least one attitude, any means for adjusting the position of the axis of rotation, etc.
- the underwater vehicle 1 can then be used as a towed fish, ROV and AUV.
- the connecting element 4 is provided with an electrical interface electrically connecting the cable 3 and the underwater vehicle when the cable 3 cooperates with the connecting element 4 so as to allow transmission of electrical energy from the cable. to the underwater vehicle 1, for example to supply the electrical equipment directly or via at least one electrical energy accumulator.
- the link element 4 is provided with a data interface allowing data transmission from the cable 3 to the underwater vehicle 1, for example to a sonar antenna or a sonar data storage memory, and / or vice versa, when the cable 3 cooperates with the connecting element 4.
- This overall interface comprises an interface cable connected to the connecting element 4 and to the vehicle.
- the towed fish equipped with an SAS requires the use of a surface vessel powerful enough to tow the fish and to launch and retrieve it (it must therefore be equipped with a launching system. water and towed fish recovery), whereby the speed of the fish can be relatively fast (in the order of 10 knots) and the hourly imagery coverage is relatively high.
- the high speed requires having a long SAS antenna (of the order of 2m) well suited to fast speeds.
- the cable allows real-time SAS data to be fed back to the surface and also allows power to be supplied to the ROV.
- ROVs are generally linked to a low speed imposed by the joint navigation of the craft and the surface vessel.
- the use of this solution often requires surface vessels to accommodate the ROV on board and deploy and retrieve it on demand.
- the ROV being under motorized compared to the surface vessel, the operating speed is slow (a few knots) and the SAS antenna by nature rather short (of the order of 1m).
- the UUV equipped with an SAS has a limited energy reserve which requires it to navigate slowly to optimize the duration of the mission.
- the area covered by the imagery is generally all the more limited the higher the speed of the AUV, since propulsion then becomes the dominant factor in battery consumption.
- this solution requires data processing at the end of the mission because they are only available when the UUV rises to the surface.
- this solution makes it possible to carry out a mission in complete autonomy and therefore without being spotted and at significant depths.
- the invention makes it possible to equip the underwater vehicle with the ability to operate at high speed as an ROV without destabilizing the vehicle and to allow the analysis of its data in real time while maintaining its deep intervention capacity. .
- the underwater vehicle advantageously comprises at least one ANT sensor, shown only on the figure 5 for greater clarity, intended to acquire data on an environment of the vehicle such as for example at least one sonar antenna and / or at least one image sensor.
- the vehicle is advantageously equipped with a synthetic antenna sonar comprising an antenna for transmitting acoustic waves and at least one linear antenna for receiving acoustic waves.
- the transmitting antenna can be the receiving antenna or a separate antenna.
- the SAS comprises two antennas for receiving acoustic waves arranged on either side of the P plane.
- the invention makes it possible to prevent the drag of the cable from exerting an excessive return torque on the underwater vehicle at the level of the connecting element and from generating navigation instabilities, which is beneficial for the quality of the vehicles.
- acoustic images obtained by means of an SAS can thus be used at high speed and therefore makes it possible to obtain a significant hourly coverage (size of the area imaged per unit of time) while providing a sufficiently long reception antenna.
- Each control unit or means may include one or more dedicated electronic circuits or a general purpose circuit.
- Each electronic circuit can comprise a reprogrammable computing machine (a processor or a microcontroller for example) and / or a computer executing a program comprising a sequence of instructions and / or a dedicated computing machine (for example a set of logic gates such as an FPGA, a DSP or an ASIC, or any other hardware module).
- the gravitational constant is assumed to be fixed.
- the center of inertia of the vehicle is substantially its center of gravity.
- the main axis of rotation is substantially perpendicular to the axis of rotation y or yo.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Ocean & Marine Engineering (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Flexible Shafts (AREA)
Description
- Le domaine de l'invention est celui des véhicules sous-marins, c'est-à-dire celui des véhicules aptes à être totalement immergés.
- Elle concerne notamment les véhicules sous-marins sans équipage aussi appelés UUV en référence à l'expression anglo-saxonne « Unmanned Underwater Vehicle ».
- Ces véhicules peuvent être équipés de sonars à antenne synthétique (SAS) pour explorer le fond marin. Ces sonars sont utilisés notamment dans le domaine de la guerre des mines pour détecter, identifier et éventuellement localiser les objets posés sur le fond marin.
- Actuellement, l'imagerie acoustique sous-marine est effectuée :
- soit à partir d'un poisson (véhicule sous-marin dépourvu de propulseur) muni d'un sonar et tracté au moyen d'un câble électro-tracteur, par un bâtiment de surface, tel qu'un navire de surface ; le sonar est alimenté électriquement par le bâtiment de surface via le câble électro-tracteur et les données sont transmises en surface par le câble électro-tracteur pour permettre le traitement en temps réel à bord du bâtiment de surface et/ou transmission par voie radio vers un centre de traitement terrestre,
- soit à partir d'un véhicule sous-marin doté d'un propulseur, utilisé en tant que véhicule non autonome encore appelé ROV acronyme de l'expression anglo-saxonne « Remote Operated Vehicle ». Ce véhicule est relié à un bâtiment de surface par un câble. Le bâtiment de surface alimente électriquement le propulseur du véhicule sous-marin et le sonar via le câble qui transmet les données sonar en surface par le câble pour permettre le traitement en temps réel à bord du bâtiment de surface et/ou transmission par voie radio vers un centre de traitement terrestre. Ce véhicule fonctionne le plus souvent à vitesse lente car le câble exerce une force de traction sur le véhicule sous-marin même si le câble n'est pas tendu,
- soit à bord d'un drone sous-marin doté d'un propulseur alimenté par des batteries embarquées à bord du véhicule, navigant de façon autonome et enregistrant les données à son bord, les données n'étant transmises à un équipement extérieur au véhicule qu'en fin de mission.
- Une bonne stabilité du véhicule est requise pour détecter, identifier et localiser avec précision les objets posés sur le fond marin.
- Les documents
US 2010/242823 ,FR 2 304 511 US 3 137 264 ouUS 3 688 730 divulguent des véhicules sous-marins reliés à un bâtiment de surface par un câble attaché à un élément de liaison du véhicule sous-marin. - Les véhicules sous-marins sont classiquement reliés au bâtiment de surface par un câble attaché à une extrémité longitudinale du véhicule sous-marin. L'effort de traction exercée par le câble sur le véhicule sous-marin s'exerce au point de fixation du câble c'est-à-dire au niveau de l'extrémité longitudinale du véhicule sous-marin. Ainsi, dès que le bâtiment de surface vient tracter le véhicule sous-marin, cela déstabilise le véhicule sous-marin dont l'attitude, notamment l'assiette, varie. Il est nécessaire de prévoir des moyens, par exemple des gouvernes et/ou un propulseur, permettant de stabiliser le véhicule sous-marin, par exemple pour lui permettre de rester à une profondeur déterminée et pour lui permettre de garder une assiette stable lorsqu'il est remorqué par le bâtiment de surface. Le dimensionnement en puissance de ces moyens de stabilisation doit être d'autant plus important que le poids du véhicule sous-marin est important.
- Une solution permettant de limiter les problèmes d'instabilité du véhicule sous-marin est décrite dans le brevet américain
US 7, 775, 174 . Elle consiste à prévoir une commande coordonnée du bâtiment de surface et du véhicule sous-marin afin de découpler au maximum les mouvements de l'un et de l'autre. - Un but de l'invention est de proposer une solution simplifiée.
- A cet effet, l'invention a pour objet un engin sous-marin comprenant un véhicule sous-marin, le véhicule sous-marin comprenant un corps du véhicule sous-marin, l'engin sous-marin comprenant un élément de liaison relié au corps du véhicule sous-marin et étant apte à coopérer avec un câble pour reprendre un effort de traction (F) exercé par le câble sur le véhicule sous-marin, l'élément de liaison étant relié au corps du véhicule et étant configuré de sorte que l'axe de l'effort de traction (F) est mobile par rapport au corps du véhicule et apte à présenter des projections orthogonales différentes dans un plan P fixe par rapport au corps passe par le centre d'inertie (G) du véhicule sous-marin, l'élément de liaison est relié au corps du véhicule sous-marin par une liaison à au moins un degré de liberté en rotation autour d'un axe de rotation (y ; yo) de sorte que l'effort de traction (F) exercé par le câble sur le véhicule sous-marin est apte à pivoter autour de l'axe de rotation (y ; yo), la projection de l'axe de l'effort de traction (F) sur le plan (P) étant radiale à l'axe de rotation (y ; yo), l'élément de liaison étant configuré et relié au corps de sorte que lorsque le câble coopère avec l'élément de liaison, la projection de l'axe de l'effort de traction (F) sur le plan (P) passant par le centre d'inertie (G) du véhicule sous-marin quelle que soit l'orientation de l'effort de traction (F) autour de l'axe (y ; yo) dans un secteur angulaire de travail d'ouverture prédéterminée non nulle.
- Avantageusement, l'élément de liaison est relié au corps du véhicule sous-marin par une liaison à au moins un degré de liberté en rotation autour d'un axe de rotation de sorte que l'effort de traction exercé par le câble sur le véhicule sous-marin est apte à pivoter autour de l'axe de rotation, la projection de l'axe de l'effort de traction sur le plan P étant radiale à l'axe de rotation.
- Avantageusement, l'élément de liaison est configuré et relié au corps de sorte que lorsque le câble coopère avec l'élément de liaison, la projection de l'axe de l'effort de traction sur le plan passant par le centre d'inertie du véhicule sous-marin quelle que soit l'orientation de l'effort de traction autour de l'axe dans un secteur angulaire de travail d'ouverture prédéterminée non nulle.
- Avantageusement, l'engin sous-marin comprend au moins une des caractéristiques suivantes prises seules ou en combinaison :
- le centre d'inertie du véhicule sous-marin et le centre de carène du véhicule sous-marin sont situés dans le plan P,
- un axe principal de déplacement du véhicule est parallèle au plan P et perpendiculaire à une droite passant par le centre de carène et le centre d'inertie du véhicule sous-marin,
- le corps du véhicule sous-marin s'étend longitudinalement selon l'axe principal de déplacement,
- l'axe de rotation est fixe par rapport au corps du véhicule sous-marin,
- l'élément de liaison est relié au corps du véhicule sous-marin par une liaison à un seul degré de liberté,
- l'axe de rotation est susceptible d'être déplacé par rapport au corps du véhicule sous-marin,
- l'engin sous-marin comprend des moyens de blocage permettant d'immobiliser l'axe de rotation par rapport au corps du véhicule sous-marin dans une position dans laquelle l'axe de rotation passe par le centre d'inertie,
- la liaison comprend une liaison glissière reliant la liaison à au moins un degré de liberté en rotation au corps, la liaison glissière étant sensiblement perpendiculaire à l'axe de rotation,
- la direction de la liaison glissière est parallèle à l'axe principal de déplacement du véhicule sous-marin,
- l'axe de rotation est distant du centre d'inertie du véhicule sous-marin et l'axe de rotation est mobile par rapport au corps du véhicule sous-marin, l'engin sous-marin comprenant des moyens de réglage configurés pour régler la position de l'axe de rotation de sorte à partir d'une orientation d'une projection orthogonale de l'axe de l'effort de traction de sorte à faire passer la projection orthogonale de l'effort de traction par le centre d'inertie du véhicule sous-marin quelle que soit son orientation dans un secteur angulaire prédéterminé d'angle d'ouverture non nul,
- les moyens de réglage comprennent un actionneur permettant de déplacer l'axe de rotation par rapport au corps du véhicule sous-marin et un organe de commande apte à commander l'actionneur,
- la liaison à au moins un degré de liberté en rotation autour de l'axe de rotation est une liaison pivot,
- la liaison à au moins un degré de liberté en rotation autour de l'axe de rotation est une liaison rotule à doigt à deux axes dont l'axe de rotation et un autre axe de rotation du plan P,
- l'effort de traction présente un débattement angulaire plus important autour de l'axe de rotation qu'autour de l'autre axe de rotation,
- les différentes projections orthogonales de l'axe de l'effort de traction dans le plan P sont obtenues par un mouvement de l'élément de liaison par rapport au corps du véhicule sous-marin sans déformation de l'élément de liaison,
- le véhicule sous-marin comprend un propulseur,
- le propulseur est un propulseur vectoriel.
- le véhicule sous-marin comprend des moyens de réglage d'attitude permettant de régler au moins un angle d'attitude du véhicule sous-marin,
- le véhicule sous-marin comprend un accumulateur d'énergie électrique.
- L'invention sera mieux comprise à l'étude de quelques modes de réalisation décrits à titre d'exemples nullement limitatifs, et illustrés par des dessins annexés sur lesquels :
- la
figure 1a représente un véhicule sous-marin relié mécaniquement à un véhicule de surface et lafigure 1b représente un véhicule sous-marin autonome, - la
figure 2 représente schématiquement un premier exemple du premier mode de réalisation de l'invention, - la
figure 3 représente schématiquement un deuxième exemple d'un premier mode de réalisation de l'invention, - la
figure 4 représente schématiquement un premier exemple d'un deuxième mode de réalisation de l'invention, - la
figure 5 représente schématiquement un deuxième exemple du deuxième mode de réalisation de l'invention, - la
figure 6 représente schématiquement des moyens de réglage de la position de l'axe de rotation du deuxième mode de réalisation de l'invention. - D'une figure à l'autre les mêmes éléments sont désignés par les mêmes références.
- La
figure 1a représente un véhicule sous-marin 1 comprenant un corps 10 et un propulseur 2. Le propulseur 2 est monté sur le corps 10 du véhicule sous-marin 1. Le propulseur 2 est apte à propulser véhicule sous-marin 1. - Le véhicule sous-marin 1 est apte à être relié mécaniquement à un bâtiment de surface 100 comme représenté sur la
figure 1a , les deux véhicules étant reliés mécaniquement l'un à l'autre par un câble 3. - Le bâtiment de surface 100 est, par exemple, un véhicule de surface, c'est-à-dire un navire naviguant en surface ou un véhicule sous-marin naviguant à une profondeur plus faible que le véhicule sous-marin 1.
- Le véhicule sous-marin 1 peut être utilisé en tant que ROV, c'est-à-dire relié mécaniquement à un bâtiment de surface 100 au moyen du câble 3 sans être tracté par le bâtiment de surface 100, le véhicule sous-marin 1 totalement immergé assurant lui-même sa propulsion en étant propulsé par son propulseur 2. La vitesse relative du véhicule sous-marin 1 et du bâtiment de surface 100 est, par exemple, réglée de façon que le bâtiment de surface 100 et le véhicule sous-marin 1 se déplacent à la même vitesse, un des véhicules étant devant l'autre sans que le câble 3 ne soit tendu entre les deux véhicules 1 et 100. Le propulseur 2 du ROV est alimenté en énergie électrique via le câble électro-tracteur 3, soit directement, soit via un accumulateur d'énergie électrique du véhicule sous-marin.
- Dans une variante, le câble 3 est tendu entre les deux véhicules. C'est, par exemple, le cas lorsque le véhicule sous-marin 1 remorque le bâtiment de surface 100 ou inversement.
- En variante, le véhicule 1 peut être détaché du bâtiment de surface 100 et évoluer de façon indépendante dans l'eau comme représenté sur la
figure 1b . Le véhicule sous-marin 1 est alors propulsé par son propre propulseur 2 alimenté par un accumulateur d'énergie électrique ACC, 300 du véhicule sous-marin 1 représenté sur lafigure 2 . - L'invention se rapporte à un engin sous-marin E, représenté schématiquement sur la
figure 2 , comprenant le véhicule sous-marin 1 représenté sur les figures précédentes muni d'un élément de liaison 4 , apte à coopérer avec le câble 3 de sorte à permettre de relier mécaniquement le véhicule sous-marin 1 à un bâtiment de surface 100, lorsque le câble 3 est relié mécaniquement au bâtiment de surface 100. Le câble 3 est alors fixé à l'élément de liaison 4. - Lorsque le câble 3 relie mécaniquement le véhicule sous-marin 1 au bâtiment de surface 100 il est apte à exercer, sur le véhicule sous-marin 1, une force de traction F, représentée sur la
figure 2 . Cette force de traction F est dirigée selon un axe I qui est l'axe longitudinal du câble 3 au voisinage de l'élément de liaison 4. L'élément de liaison 4 reprend l'effort de traction F exercé par le corps 10 sur le véhicule sous-marin 1. - Selon l'invention, comme représenté sur la
figure 2 , l'élément de liaison 4 est relié au corps 10 du véhicule sous-marin 1 par une liaison 5 autorisant un mouvement de l'élément de liaison 4 par rapport au corps 10 du véhicule sous-marin 1. Ainsi, l'élément de liaison 4 est mobile par rapport au corps 10 du véhicule sous-marin 1 de sorte que l'effort de traction F exercée par le câble 3 sur le véhicule 1 soit mobile par rapport au corps 10. - Selon l'invention, l'élément de liaison 4 est relié au corps 10 du véhicule 1 et est configuré de sorte que l'axe de l'effort de traction F exercé par le câble 3 sur le véhicule soit apte à présenter des projections orthogonales différentes dans le plan P fixe par rapport au corps 10 passant par le centre d'inertie G du véhicule sous-marin 1. Autrement dit, il existe pluralité de projections orthogonales différentes de l'axe de l'effort de traction F dans le plan P. Ces projections passent par le centre d'inertie G du véhicule sous-marin 1. Ces différentes projections orthogonales passant par le plan P sont obtenues grâce à un mouvement de l'élément de liaison 4 par rapport au corps 10 du véhicule sous-marin et grâce à la configuration de l'élément de liaison. Autrement dit, ces différentes projections orthogonales sont obtenues pour différentes positions de l'élément de liaison 4 par rapport au corps 10.
- L'axe de l'effort de traction F est l'axe de l'effort de traction reprise par l'élément de liaison 4 et exercée par l'élément de liaison 4 sur le véhicule 1.
- Dans les réalisations des figures, l'élément de liaison 4 ne se déforme pas entre ces différentes positions. Autrement dit, l'élément de liaison 4 ne se déforme pas entre les différentes projections orthogonales de l'axe de l'effort de traction F. L'élément de liaison 4 passe d'une position à l'autre en se déplaçant par rapport au corps 10, c'est-à-dire par une translation et/ou une rotation de l'élément de liaison par rapport au corps 10. Autrement dit, les différents axes de l'effort de traction donnant les différentes projections orthogonales dans le plan P sont obtenus par un mouvement de l'élément de liaison 4 par rapport au corps 10 du véhicule sous-marin 1 sans déformation de l'élément de liaison 4.
- Dans la réalisation non limitative des figures, le plan P est le plan vertical passant par le centre d'inertie G. L'axe z est un axe vertical.
- L'axe longitudinal I du câble 3 au voisinage de son point de fixation avec l'élément de liaison 4 est situé sur la portion du câble 3 entre ce point de fixation et le bâtiment de surface 100, au voisinage de l'élément de liaison 4.
- Pour différentes positions de l'élément de liaison 4 par rapport au corps 10, les projections, sur le plan P, de l'axe longitudinal I du câble 3 au voisinage du point de fixation du câble 3 sur l'élément de liaison passent par le centre d'inertie G du véhicule sous-marin 1. Pour ces différentes positions, l'axe de l'effort de traction F passe par le centre d'inertie G lorsque l'effort de traction F, est situé dans le plan P. Par conséquent, lorsque l'effort de traction F est dans le plan P et l'élément de liaison 4 dans ces différentes positions, le point d'application de l'effort de traction F sur le véhicule sous-marin 1 est sensiblement le centre d'inertie G du véhicule sous-marin 1. L'élément de liaison 4 permet d'assurer une reprise des efforts du câble 3 sur le centre d'inertie G du véhicule sous-marin 1 lorsque l'effort de traction F est dans le plan P et l'élément de liaison est dans ces positions. Cette configuration permet au véhicule sous-marin 1 de minimiser, voire d'annuler, la déstabilisation du véhicule sous-marin 1 lorsque, le véhicule étant utilisé en ROV, l'effort de traction F est dans le plan P pour ces différentes positions de l'élément 4, par exemple lorsque le véhicule sous-marin 1 et le bâtiment de surface se trouvent dans ce même plan P en l'absence de courant.
- Les orientations du véhicule sous-marin 1 et de son vecteur vitesse ne sont pas modifiées par une modification de l'orientation du câble, au voisinage de l'élément de liaison, dans ce plan P. Cette configuration permet d'éviter d'avoir à prévoir des moyens ou procédés sophistiqués ou puissants pour piloter les deux véhicules de façon coordonnée ou des dispositifs de stabilisation (gouvernes, propulseurs) surdimensionnés afin d'assurer une stabilisation du véhicule sous-marin. Cette solution permet au véhicule sous-marin 1 d'assurer à lui-seul sa stabilité dans le plan P, indépendamment du bâtiment de surface 100.
- Le véhicule sous-marin 1 consomme peu d'énergie pour se stabiliser dans le plan P cette stabilisation ne nécessite pas de compenser le bras de levier entre le point d'application de l'effort de traction F du câble 3 et le centre d'inertie G du véhicule. Cette configuration permet d'utiliser ce véhicule à la fois en tant que poisson remorqué et ROV et, s'il dispose des batteries requises, en tant qu'UUV. Cela permet de réaliser à grande vitesse l'acquisition d'images sonar de qualité.
- Par ailleurs, la position du centre de gravité, contrairement au centre de poussée et au centre de pression n'évolue pas en fonction de la vitesse et des forces mises en jeu. Ainsi, les couples générés par la gravité et la poussée d'Archimède sont fixes. Le dispositif de stabilisation, par exemple le propulseur vectoriel n'a pas (ou peu) à compenser de variations de couples dues à une variation de la vitesse.
- La configuration proposée va à l'encontre de la tendance de l'homme du métier qui est, lorsqu'un véhicule sous-marin 1 est destiné à être remorqué par un bâtiment de surface 100, à prévoir un point d'application de l'effort de traction F distant du centre d'inertie G du véhicule afin que l'attitude et la trajectoire de ce véhicule soient imposées par la trajectoire du bâtiment de surface 100 et par sa vitesse.
- Avantageusement mais non nécessairement, le centre d'inertie G du véhicule sous-marin 1 et son centre de carène sont situés dans le plan P. Le véhicule sous-marin 1 immergé est soumis uniquement aux forces hydrodynamiques et à la gravité, le véhicule vient dans une configuration d'équilibre dans laquelle l'axe qui relie le centre de carène du véhicule sous-marin 1 et le centre de gravité du véhicule sous-marin est vertical, le plan P est alors un plan vertical. La solution proposée permet alors d'éviter une déstabilisation du véhicule sous-marin 1 dans le plan P par un changement de vitesse relative entre le véhicule sous-marin 1 et le bâtiment de surface 100 dans le plan P.
- Avantageusement, le véhicule sous-marin 1 est destiné à se déplacer principalement selon un axe, appelé axe principal x de déplacement dans la demande de brevet, solidaire du corps 10 du véhicule sous-marin 1. Cet axe principal de déplacement x est avantageusement parallèle au plan P ou compris dans le plan P et perpendiculaire à la droite passant par le centre de carène et le centre d'inertie G du véhicule sous-marin 1. Cette solution est particulièrement adaptée à l'imagerie sonar des fonds marins qui impliquent de longs trajets du véhicule selon son axe principal de déplacement, dans un même plan P que le bâtiment de surface (en l'absence de courant), le bâtiment de surface étant à une altitude supérieure à celle du véhicule sous-marin par rapport au fond marin. Le véhicule est alors déstabilisé uniquement lors des changements de cap.
- Dans les exemples représentés sur les
figures 2 à 5 , le véhicule sous-marin 1 s'étend longitudinalement selon l'axe principal de déplacement x. Autrement dit, le corps 10 du véhicule sous-marin 1 s'étend longitudinalement selon cet axe. Un changement de direction de l'effort de traction F dans le plan vertical n'a alors pas d'impact sur l'assiette longitudinale du véhicule sous-marin 1. Cette configuration permet au véhicule sous-marin 1 de maitriser son assiette longitudinale lors d'une mission dans laquelle le véhicule sous-marin est utilisé en ROV ou en poisson remorqué. Cette configuration permet de faciliter le maintien du véhicule sous-marin à une profondeur prédéterminée ou à une altitude prédéterminée par rapport à un fond marin même en cas de changement de profondeur ou de vitesse du véhicule de surface. - Avantageusement, l'élément de liaison 4 est relié au corps 10 du véhicule sous-marin 1 par une liaison 5 à au moins un degré de liberté en rotation autour d'un axe de rotation y de sorte que l'effort de traction F exercée par le câble 3 sur le véhicule sous-marin 1 est apte à pivoter autour de l'axe de rotation y, la projection de l'axe de l'effort de traction F sur le plan P étant radiale à l'axe de rotation y. Par conséquent, lorsque le plan P est vertical à l'équilibre, l'axe de rotation y est sensiblement horizontal comme représenté sur les figures.
- Avantageusement, l'élément de liaison 4 est configuré et relié au corps 10 de sorte que lorsque le câble 3 coopère avec l'élément de liaison 4 lui-même relié au corps 10, la projection de l'axe de l'effort de traction F sur le plan P passe par le centre d'inertie G du véhicule quelle que soit l'orientation de l'effort de traction F autour de l'axe y dans un secteur angulaire de travail définissant un angle non nul, c'est à dire d'ouverture non nulle. Dans ce secteur angulaire de travail, le câble ne vient pas en appui sur le corps 10 du véhicule sous-marin 1.
- Avantageusement, l'axe de rotation y est relié au corps 10 de façon à obtenir cet effet.
- Dans un premier mode de réalisation dont des exemples sont représentés sur les
figures 2 et3 , l'axe de rotation y est susceptible de passer par le centre d'inertie G. Il peut être susceptible d'occuper une seule position par rapport au corps 10 du véhicule sous-marin 1 ou plusieurs. Dans ce dernier cas, l'engin peut comprendre, mais ce n'est pas obligatoire, des moyens d'entraînement permettant de déplacer cet axe de rotation y par rapport au corps 10. - Dans les exemples représentés sur les
figures 2 à 3 , l'élément de liaison 4 est relié au corps 10 du véhicule sous-marin 1 par une liaison 5 ou 65 comprenant une liaison pivot d'axe de rotation y de sorte que lorsque l'élément de liaison 4 pivote autour de l'axe de rotation y par rapport au corps 10, l'effort de traction F pivote autour de l'axe de rotation y par rapport au corps 10. - Dans l'exemple de la
figure 2 , l'élément de liaison 4 est relié au corps 10 du véhicule sous-marin 1 par une liaison à un degré de liberté. Autrement dit, la liaison 5 comprend uniquement la liaison pivot d'axe y. L'axe de rotation y est fixe par rapport au corps 10 du véhicule sous-marin 1. Il passe par le centre d'inertie G. L'axe de l'effort de traction F est alors radial à l'axe de rotation y lorsque le câble 3 est dans un plan P perpendiculaire à l'axe de rotation y au voisinage de l'élément de liaison 4. - A cet effet, l'élément de liaison 4 comprend une fourche 14 comprenant deux branches 14a et 14b montées en liaison pivot sur un bras 15 fixe par rapport au corps du véhicule et dont l'axe longitudinal est l'axe y. La fourche 14 comprend un manche 14c. Les deux branches se prolongent jusqu'à un manche 14c s'étendant longitudinalement radialement par rapport à l'axe y. Le manche est destiné à coopérer avec le câble 3 de sorte que le câble 3 passe par l'axe longitudinal du manche 14c.
- Le bras 15 traverse le corps du véhicule perpendiculairement à l'axe x et les deux branches 14a, 14b s'étendent chacune en regard d'un des flancs du véhicule sous-marin.
- Avantageusement, l'élément de liaison 4 est configuré et relié au corps 10 du véhicule sous-marin 1 de sorte que l'effort de traction F est situé sensiblement dans le plan P lorsque le câble 3 est dans un plan perpendiculaire à l'axe de rotation y au voisinage de l'élément de liaison 4. Autrement dit, sur la
figure 2 , le manche 14c s'étend longitudinalement dans le plan P. - Ainsi, si le véhicule sous-marin 1 et le bâtiment de surface 100 naviguent dans un même plan vertical, l'axe d'effort de traction F passe en permanence par le centre d'inertie G. Si l'effort de traction F quitte ce plan, c'est-à-dire si l'axe I du câble 3 s'incline par rapport à ce plan P, alors le câble 3 génère un couple de roulis sur le véhicule.
- En variante, le manche 14c s'étend dans un plan parallèle au plan P et distant du plan P ou dans un plan non confondu avec le plan P. Toutefois, cela génère un couple en roulis et/ou en lacet sur le véhicule sous-marin, il faut donc contrer ces couples pour que le véhicule sous-marin conserve sa stabilité
- En variante, l'élément de liaison est relié au corps du véhicule par une liaison à plus de 1 degré de liberté en rotation. Par exemple, l'axe de rotation y est apte à pivoter, par rapport au corps du véhicule sous-marin, autour de l'axe x. Cela permet de limiter le couple de roulis lors d'un changement de cap d'un des deux véhicules.
- L'exemple de la
figure 3 diffère de celle de lafigure 2 en ce que l'axe de rotation y est susceptible d'être déplacé par rapport au corps 10 du véhicule sous-marin 1a de l'engin sous-marin E1. - L'engin sous-marin E1 comprend des moyens de blocage comprenant par exemple des butées B, permettant d'immobiliser l'axe de rotation y par rapport au corps 10 du véhicule sous-marin 1a dans une position visible sur la
figure 3 , dans laquelle l'axe de rotation y passe par le centre d'inertie G. Dans cette position l'axe de rotation y est perpendiculaire au plan P. Les butées B sont mobiles de façon à pouvoir fixer l'axe de rotation y par rapport au corps 10 dans plusieurs positions par rapport au corps 10. Cette configuration permet de régler la position de l'axe de rotation y en fonction de la position du centre d'inertie G et donc de pouvoir obtenir l'effet de stabilisation souhaité pour différentes configurations du véhicule sous-marin dans lesquelles la position du centre d'inertie du véhicule sous-marin varie. On peut par exemple modifier la position ou le nombre d'équipements sous-marin du véhicule sous-marin avec un impact sur la position de son centre d'inertie. - Dans l'exemple non limitatif de la
figure 3 , la liaison 65 permettant de relier l'élément de liaison 4 au corps 10 comprend la liaison pivot 5 et une liaison glissière 66 d'axe x reliant la liaison pivot 5 au corps 10. Cette configuration permet de s'adapter aux variations de la position du centre de gravité G selon la direction de la liaison glissière. A cet effet, le véhicule 1a comprend par exemples des guides GG permettant de guider l'axe de rotation y selon la direction de la glissière. Un seul guide est visible sur lafigure 3 , l'autre étant situé sur l'autre flanc du véhicule. - Dans l'exemple particulier de la
figure 3 , la direction de la liaison glissière est celle de l'axe principal x de déplacement du véhicule qui est aussi celle de l'axe longitudinal x du véhicule, direction dans laquelle la position du centre d'inertie va principalement varier lorsque l'on modifie le nombre d'équipements dans le véhicule. - En variante, l'axe de rotation y est relié au corps 10 du véhicule sous-marin 1a par une liaison à plus d'un degré de liberté en translation ce qui permet d'obtenir une plus grande précision de positionnement de l'axe y en cas de modifications de la position du centre de gravité selon une autre direction que la direction de l'axe x.
- En variante, l'élément de liaison est relié au corps du véhicule par une liaison à plus de 1 degré de liberté en rotation. Par exemple, l'axe de rotation y est apte à pivoter, par rapport au corps du véhicule sous-marin, autour de l'axe x.
- En variante aux butées, l'engin sous-marin peut comprendre un actionneur permettant d'entraîner l'axe y en translation selon l'axe x le long des guides GG. Cet actionneur peut comprendre un frein permettant de bloquer la translation de l'axe de rotation y selon l'axe x.
- Les moyens de blocage peuvent être compris dans le véhicule sous-marin ou non.
- Sur les
figures 4 et5 , on a représenté un deuxième mode de réalisation de l'invention. Ce mode de réalisation diffère de celui desfigures 2 et3 en ce que l'axe de rotation, référence yo sur lesfigures 4 et5 , est distant du centre de gravité G du véhicule. Par conséquent, l'axe de rotation yo est mobile par rapport au corps 10 du véhicule sous-marin 1b ou 1c. - Comme visible sur la
figure 6 , l'engin sous-marin Eb ou Ec comprend des moyens de réglage 50 configurés pour régler la position de l'axe de rotation yo en fonction d'une orientation O de la projection de l'axe de l'effort de traction F sur le plan P de sorte à déplacer cette projection pour qu'elle passe par le centre d'inertie G du véhicule sous-marin quelle que soit la direction de la projection orthogonale de l'effort de traction dans le plan P dans un secteur angulaire prédéterminé. - L'engin sous-marin peut comprendre un capteur 51 permettant de mesurer l'orientation de la projection orthogonale de l'effort de traction. Cette mesure peut être réalisée directement par un capteur d'angle sur l'élément de liaison par exemple ou sur le câble ou indirectement, par exemple, par une jauge de contrainte.
- Les moyens de réglage 50 comprennent par exemple, comme représenté sur la
figure 6 , un actionneur A permettant de déplacer l'axe de rotation yo par rapport au corps 10 du véhicule sous-marin 1b ou 1c et des moyens de commande C aptes à commander l'actionneur A et configurés pour commander l'actionneur en fonction d'une orientation O d'une projection orthogonale de l'axe de l'effort de traction sur le plan P. L'orientation O peut être l'angle α formé entre l'effort de traction F et l'axe x dans le plan P. Les moyens de commande sont configurés pour commander l'actionneur de sorte à déplacer l'axe yo pour déplacer la projection orthogonale de l'axe de l'effort de traction sur le plan P de sorte qu'elle passe par le centre de gravité G. - En variante, les moyens de réglage comprennent des moyens passifs comprenant par exemple un ressort calibré pour assurer le positionnement souhaité de l'élément de liaison en fonction de l'orientation.
- L'exemple de la
figure 4 diffère de celui de lafigure 3 en ce que l'axe de rotation yo de la liaison à au moins un degré de liberté en rotation est distant du centre d'inertie G. La liaison 70 reliant l'élément de liaison 4b au corps 10 du véhicule 1b comprend une liaison pivot 71 d'axe yo et une liaison glissière 72 d'axe xo parallèle à l'axe x, reliant l'axe yo au corps du véhicule. L'axe xo appartient avantageusement au plan P L'élément de liaison 4b présente la même forme de fourche que l'élément de liaison 4 avec deux branches 14a' et 14b' reliées à un manche 14c' un manche 14c' s'étendant longitudinalement radialement par rapport à l'axe yo. Le manche est destiné à coopérer avec le câble 3 de sorte que le câble 3 passe par l'axe longitudinal du manche 14c'. - Les deux branches 14a' et 14b' sont montées en liaison pivot sur un plot 73 autour d'un bras longitudinal 74 d'axe longitudinal yo. La fourche comprend un manche 14c'.
- Le véhicule 1b comprend un guide GU permettant de guider le plot 73 en translation selon un axe xo parallèle à l'axe x.
- Avantageusement, comme sur la
figure 3 , l'axe longitudinal du manche 14c' appartient au plan P. - L'exemple de la
figure 5 diffère de celui de lafigure 4 , en ce que l'élément de liaison 4c est relié au corps du véhicule sous-marin par une liaison 80 comprenant une liaison rotule à doigt 81 à deux axes de rotation dont l'axe de rotation yo et un autre axe parallèle à l'axe x. Cela permet d'éviter un tangage du véhicule lors des changements de cap. La liaison rotule à doigt est reliée au corps du véhicule sous-marin par une liaison glissière 72 comme la liaison pivot du mode de réalisation de lafigure 4 . L'élément de liaison 4c comprend une boucle 85 reliée à un plot 83 par une liaison rotule à doigt 81. Le plot 83 est relié au véhicule par la liaison glissière 72. Le véhicule 1c comprend un guide GU permettant de guider le plot 83 en translation selon l'axe de la liaison glissière. L'élément de liaison 4c comprend un manche 86 destiné à coopérer avec le câble de façon que l'axe I soit sensiblement l'axe longitudinal du câble. - Le manche 86 s'étend longitudinalement radialement par rapport à l'axe yo. Le manche 86 est destiné à coopérer avec le câble 3 de sorte que le câble 3 passe par l'axe longitudinal du manche 86.
- Avantageusement, l'élément de liaison 4c présente un débattement angulaire plus important autour de l'axe de rotation y qu'autour de l'autre axe de rotation de la liaison rotule à doigt.
- Avantageusement, l'élément de liaison est configuré et relié au corps du véhicule de sorte que le manche 86 est apte à pivoter de part et d'autre du plan P.
- Dans chacun des modes de réalisation, l'élément de liaison peut être relié de façon amovible au véhicule sous-marin. En variante l'élément de liaison est apte à être disposé dans une position de rangement par rapport au corps du véhicule sous-marin dans lequel il est disposé à l'intérieur du volume délimité par le corps du véhicule sous-marin.
- Le câble peut être fixé de façon amovible à l'élément de liaison ou être fixé de manière définitive à l'élément de liaison.
- Le véhicule sous-marin, comprend avantageusement des moyens de réglage d'attitude permettant de faire varier au moins un angle d'attitude du véhicule sous-marin. Dans un exemple, les moyens de réglage permettent de régler l'assiette du véhicule sous-marin. Ces moyens permettent au véhicule de régler lui-même cet angle d'attitude.
- Ces moyens comprennent par exemple des moyens pour faire varier au moins un angle d'attitude du véhicule, par exemple son assiette, et des moyens pour commander les moyens pour faire varier l'angle d'attitude de sorte à régler cet angle d'attitude. Il s'agit par exemple de l'organe de commande.
- Le propulseur 2 est par exemple un propulseur vectoriel. Autrement dit, le propulseur 2 est un propulseur vectoriel apte à générer une poussée vectorielle, c'est-à-dire une poussée orientable par rapport au corps 10 du véhicule sous-marin 11. Ce propulseur est un propulseur vectoriel omnidirectionnel. Il est apte à générer une poussée orientable sur 4π stéradians. Un exemple de tel propulseur est un propulseur comprenant deux hélices contrarotatives comprenant chacune des pâles 17 dont l'incidence collective et cyclique autour d'une position neutre est variable. Le propulseur 2 permet donc de régler les trois angles d'attitude du véhicule sous-marin. En variante, les moyens pour faire varier au moins un angle d'attitude du véhicule comprennent des gouvernes.
- Le véhicule comprend au moins un accumulateur d'énergie permettant d'accumuler de l'énergie électrique et d'alimenter des équipements électriques du véhicule, par exemple le propulseur, au moins un capteur du propulseur par exemple une antenne sonar, les moyens de réglage d'au moins une attitude, les éventuels moyens de réglage de la position de l'axe de rotation, etc... Le véhicule sous-marin 1 peut alors être utilisé en poisson remorqué, ROV et AUV.
- Avantageusement, l'élément de liaison 4 est muni d'une interface électrique reliant électriquement le câble 3 et le véhicule sous-marin lorsque le câble 3 coopère avec l'élément de liaison 4 de sorte à permettre une transmission d'énergie électrique du câble vers le véhicule sous-marin 1, par exemple pour alimenter les équipements électriques directement ou via au moins un accumulateur d'énergie électrique.
- Avantageusement, l'élément de liaison 4 est muni d'une interface de données permettant une transmission de données depuis le câble 3 vers le véhicule sous-marin 1, par exemple vers une antenne sonar ou une mémoire de stockage de données sonar, et/ou inversement, lorsque le câble 3 coopère avec l'élément de liaison 4.
- Pour plus de clarté, on a représenté uniquement sur les
figures 2 et3 , une interface globale permettant d'assurer les deux types d'interface. Cette interface globale comprend un câble d'interface relié à l'élément de liaison 4 et au véhicule. - La possibilité d'utiliser le véhicule sous-marin en tant que poisson remorqué, ROV et éventuellement UUV permet d'obtenir les avantages des différentes utilisations avec un même véhicule.
- Le poisson remorqué équipé d'un SAS nécessite l'emploi d'un navire de surface suffisamment puissant pour remorquer le poisson et pour le mettre à l'eau et le récupérer (il doit donc être équipé d'un système de mise à l'eau et de récupération du poisson remorqué), moyennant quoi la vitesse du poisson peut être relativement rapide (de l'ordre de 10 nœuds) et la couverture horaire en imagerie est relativement élevée. Techniquement, la vitesse élevée nécessite de disposer d'une antenne SAS longue (de l'ordre de 2m) bien adaptée aux vitesses rapides. Le câble permet de remonter les données SAS en temps réel en surface et permet aussi d'alimenter le ROV en puissance.
- L'utilisation des ROV est généralement liée à une vitesse faible imposée par la navigation conjointe de l'engin et du navire de surface. Le ROV étant mis en œuvre depuis le navire, l'emploi de cette solution nécessite souvent des navires de surface permettant d'accueillir le ROV à bord et de le déployer et de le récupérer à la demande. Le ROV étant sous motorisé par rapport au navire de surface, la vitesse d'opération est lente (quelques nœuds) et l'antenne SAS par nature plutôt courte (de l'ordre de 1m).
- L'UUV équipé d'un SAS dispose d'une réserve d'énergie limitée qui lui impose de naviguer lentement pour optimiser la durée de mission. La surface couverte par l'imagerie est généralement d'autant plus limitée que la vitesse de l'AUV est élevée car la propulsion devient alors le facteur dominant de consommation des batteries. Par ailleurs, cette solution nécessite un traitement des données en fin de mission car celles-ci ne sont disponibles que lorsque l'UUV remonte en surface. Toutefois cette solution permet d'effectuer une mission en tout autonomie et donc sans être repéré et à des profondeurs importantes.
- L'invention permet de doter le véhicule sous-marin d'une capacité à opérer à grande vitesse en tant que ROV sans déstabilisation du véhicule et à permettre l'analyse de ses données en temps réel tout en lui conservant sa capacité d'intervention profonde.
- Le véhicule sous-marin comprend avantageusement au moins un capteur ANT, représenté uniquement sur la
figure 5 pour plus de clarté, destiné à acquérir des données sur un environnement du véhicule comme par exemple au moins une antenne sonar et/ou au moins un capteur d'image. Le véhicule est avantageusement équipé d'un sonar à antenne synthétique comprenant une antenne d'émission d'ondes acoustiques et au moins une antenne linéaire de réception d'ondes acoustiques. L'antenne d'émission peut être l'antenne de réception ou une antenne séparée. Avantageusement, le SAS comprend deux antennes de réception d'ondes acoustiques disposées de part et d'autre du plan P. - L'invention permet d'éviter que la trainée du câble n'exerce un couple de rappel trop important sur le véhicule sous-marin au niveau de l'élément de liaison et ne génère des instabilités de navigation ce qui est bénéfique pour la qualité des images acoustiques obtenues au moyen d'un SAS. Le véhicule peut ainsi être utilisé à grande vitesse et permet donc d'obtenir une couverture horaire (taille de la zone imagée par unité de temps) importante et en prévoyant une antenne de réception suffisamment longue.
- Chaque organe ou moyen de commande peut comprendre un ou plusieurs circuits électroniques dédiés ou un circuit à usage général. Chaque circuit électronique peut comprendre une machine de calcul reprogrammable (un processeur ou un micro contrôleur par exemple) et/ ou un calculateur exécutant un programme comprenant une séquence d'instructions et/ou une machine de calcul dédiée (par exemple un ensemble de portes logiques comme un FPGA, un DSP ou un ASIC, ou tout autre module matériel).
- Dans le domaine des applications sous-marines, la constante gravitationnelle est supposée fixe. Le centre d'inertie du véhicule est sensiblement son centre de gravité.
- Avantageusement, l'axe principal de rotation est sensiblement perpendiculaire à l'axe de rotation y ou yo.
Claims (17)
- Engin sous-marin (E) comprenant un véhicule sous-marin (1), le véhicule sous-marin (1) comprenant un corps (10) du véhicule sous-marin (1), l'engin sous-marin (E) comprenant un élément de liaison (4) relié au corps (10) du véhicule sous-marin (1) et étant apte à coopérer avec un câble pour reprendre un effort de traction (F) exercé par le câble (3) sur le véhicule sous-marin (1), l'élément de liaison étant relié au corps du véhicule et étant configuré de sorte que l'axe de l'effort de traction (F) est mobile par rapport au corps (10) du véhicule et apte à présenter des projections orthogonales différentes dans un plan P fixe par rapport au corps (10) passant par le centre d'inertie (G) du véhicule sous-marin (1), l'élément de liaison (4) est relié au corps (10) du véhicule sous-marin (1) par une liaison (5) à au moins un degré de liberté en rotation autour d'un axe de rotation (y ; yo) de sorte que l'effort de traction (F) exercé par le câble (3) sur le véhicule sous-marin (1) est apte à pivoter autour de l'axe de rotation (y ; yo), la projection de l'axe de l'effort de traction (F) sur le plan (P) étant radiale à l'axe de rotation (y ; yo), caractérisé en ce que l'élément de liaison (4) est configuré et relié au corps (10) de sorte que lorsque le câble (3) coopère avec l'élément de liaison (4), la projection de l'axe de l'effort de traction (F) sur le plan (P) passe par le centre d'inertie (G) du véhicule sous-marin (1) quelle que soit l'orientation de l'effort de traction (F) autour de l'axe (y ; yo) dans un secteur angulaire de travail d'ouverture prédéterminée non nulle.
- Engin sous-marin (E) selon la revendication précédente, dans lequel l'axe de rotation (y) est fixe par rapport au corps (10).
- Engin sous-marin (E) selon la revendication précédente, dans lequel l'élément de liaison est relié au corps du véhicule sous-marin par une liaison à un seul degré de liberté.
- Engin sous-marin (E) selon la revendication 1, dans lequel l'axe de rotation (yo) est distant du centre d'inertie (G) du véhicule sous-marin (1b, 1c), et dans lequel l'axe de rotation (yo) est mobile par rapport au corps (10) du véhicule sous-marin, l'engin sous-marin comprenant des moyens de réglage configurés pour régler la position de l'axe de rotation (yo) à partir d'une orientation d'une projection orthogonale de l'axe de l'effort de traction de sorte à faire passer la projection orthogonale de l'effort de traction par le centre d'inertie (G) du véhicule sous-marin (1b, 1c) quelle que soit son orientation dans le secteur angulaire.
- Engin sous-marin (E) selon la revendication 4, dans lequel les moyens de réglage comprennent un actionneur permettant de déplacer l'axe de rotation (yo) par rapport au corps (10) du véhicule sous-marin (1b, 1c) et un organe de commande apte à commander l'actionneur.
- Engin sous-marin selon l'une quelconque des revendications 4 à 5, dans lequel la liaison à au moins un degré de liberté en rotation autour de l'axe de rotation est une liaison pivot.
- Engin sous-marin (E) selon l'une quelconque des revendications 4 à 5, dans lequel la liaison à au moins un degré de liberté en rotation autour de l'axe de rotation est une liaison rotule à doigt à deux axes dont l'axe de rotation et un autre axe de rotation du plan P.
- Engin sous-marin selon la revendication précédente, dans lequel l'effort de traction présente un débattement angulaire plus important autour de l'axe de rotation qu'autour de l'autre axe de rotation.
- Engin sous-marin (E) selon l'une quelconque des revendications précédentes, dans lequel le centre d'inertie (G) du véhicule sous-marin (1) et le centre de carène du véhicule sous-marin sont situés dans le plan P.
- Engin sous-marin (E) selon l'une quelconque des revendications précédentes, dans lequel l'axe principal (x) de déplacement du véhicule est parallèle au plan P et perpendiculaire à une droite passant par le centre de carène et le centre d'inertie (G) du véhicule sous-marin (1).
- Engin sous-marin (E) selon l'une quelconque des revendications précédentes, dans lequel le corps (10) du véhicule sous-marin (1) s'étend longitudinalement selon l'axe principal de déplacement (x).
- Engin sous-marin selon l'une quelconque des revendications précédentes, dans lequel les différentes projections orthogonales de l'axe de l'effort de traction dans le plan P sont obtenues par un mouvement de l'élément de liaison (4) par rapport au corps du véhicule sous-marin sans déformation de l'élément de liaison.
- Engin sous-marin selon l'une quelconque des revendications précédentes, dans lequel le véhicule sous-marin comprend un propulseur.
- Engin sous-marin selon l'une quelconque des revendications précédentes, dans lequel le propulseur est un propulseur vectoriel.
- Engin sous-marin (E) selon la revendication précédente, dans lequel le véhicule sous-marin (1) comprend des moyens de réglage d'attitude permettant de régler au moins un angle d'attitude du véhicule sous-marin.
- Engin sous-marin selon la revendication précédente, dans lequel le véhicule sous-marin (1) comprend un accumulateur d'énergie électrique.
- Ensemble comprenant l'engin sous-marin (E) selon l'une quelconque des revendications précédentes et le câble (3), l'élément de liaison coopérant avec le câble (3) pour reprendre l'effort de traction (T).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1701393A FR3076279B1 (fr) | 2017-12-28 | 2017-12-28 | Engin sous-marin |
PCT/EP2018/097082 WO2019129853A1 (fr) | 2017-12-28 | 2018-12-28 | Engin sous-marin |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3732095A1 EP3732095A1 (fr) | 2020-11-04 |
EP3732095B1 true EP3732095B1 (fr) | 2021-10-20 |
Family
ID=62528467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18833073.2A Active EP3732095B1 (fr) | 2017-12-28 | 2018-12-28 | Engin sous-marin |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3732095B1 (fr) |
AU (1) | AU2018396084A1 (fr) |
CA (1) | CA3084653A1 (fr) |
FR (1) | FR3076279B1 (fr) |
WO (1) | WO2019129853A1 (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022197686A1 (fr) * | 2021-03-17 | 2022-09-22 | Grant Calverley | Élingue pour un véhicule |
FR3122911B1 (fr) * | 2021-05-11 | 2023-09-01 | Ixblue | Dispositif de transmission et de transformation de mouvement et véhicule équipé d’un tel dispositif |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3137264A (en) * | 1961-11-15 | 1964-06-16 | Braincon Corp | Underwater towed vehicle |
DE1909242A1 (de) * | 1969-02-25 | 1970-08-27 | Dornier System Gmbh | Steuerbares Unterwasserfahrzeug,insbesondere Unterwasserschleppkoerper |
GB1501981A (en) * | 1975-03-15 | 1978-02-22 | British Aircraft Corp Ltd | Submersible vehicles |
US7775174B1 (en) | 2008-08-29 | 2010-08-17 | Vehicle Control Technologies, Inc. | Self-propelled tow body |
US8479676B2 (en) * | 2009-03-26 | 2013-07-09 | Lockheed Martin Corporation | Controlled towed array depressor |
-
2017
- 2017-12-28 FR FR1701393A patent/FR3076279B1/fr not_active Expired - Fee Related
-
2018
- 2018-12-28 WO PCT/EP2018/097082 patent/WO2019129853A1/fr unknown
- 2018-12-28 CA CA3084653A patent/CA3084653A1/fr active Pending
- 2018-12-28 AU AU2018396084A patent/AU2018396084A1/en not_active Abandoned
- 2018-12-28 EP EP18833073.2A patent/EP3732095B1/fr active Active
Also Published As
Publication number | Publication date |
---|---|
FR3076279A1 (fr) | 2019-07-05 |
EP3732095A1 (fr) | 2020-11-04 |
AU2018396084A1 (en) | 2020-04-23 |
CA3084653A1 (fr) | 2019-07-04 |
FR3076279B1 (fr) | 2020-09-25 |
WO2019129853A1 (fr) | 2019-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014135522A1 (fr) | Systeme et procede de recuperation d'un engin sous-marin autonome | |
US10479452B2 (en) | Tow body arrangement for a towable device in a sonar system | |
EP3058431B1 (fr) | Dispositif et procédé de repérage de terrain en vol pour microdrone | |
EP3732095B1 (fr) | Engin sous-marin | |
NO341022B1 (no) | Lateral kraft- og dybdestyringsanordning med enkelt styreflate for marin seismisk streamer | |
FR2912818A1 (fr) | Systeme de flutes automotrices pour prospection en sismique marine 3d a grande productivite | |
US20180052247A1 (en) | Flush design of an autonomous underwater vehicle with negative buoyancy for marine seismic surveys | |
WO2016026744A1 (fr) | Dispositif d'accueil d'un engin sous-marin et véhicule naval associé | |
EP0290325B1 (fr) | Système perfectionné d'exploration et de surveillance de fonds sub-aquatiques par un engin submersible, et de commande de celui-ci | |
EP3728019A1 (fr) | Vehicule apte a etre immerge comprenant un mat | |
GB2335888A (en) | Autonomous underwater vehicle | |
CA3074327C (fr) | Dispositif submersible remorquable | |
EP3732099B1 (fr) | Vehicule sous-marin et procede de commande | |
WO2016062769A1 (fr) | Engin sous-marin a portance variable selon le mode de navigation | |
WO2023208951A1 (fr) | Vehicule autonome sous-marin et procede de guidage correspondant | |
EP2322420B1 (fr) | Véhicule naval de surface à bras instrumenté pivotant. | |
FR3074473A1 (fr) | Procede de recuperation de dispositifs flottants et dispositif flottant associe | |
FR3081563A1 (fr) | Procede de positionnement d'un ensemble de vehicules |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200519 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210806 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602018025476 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1439723 Country of ref document: AT Kind code of ref document: T Effective date: 20211115 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20211020 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1439723 Country of ref document: AT Kind code of ref document: T Effective date: 20211020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220120 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220220 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220221 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220120 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220121 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602018025476 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220721 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211228 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211228 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20181228 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231116 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231122 Year of fee payment: 6 Ref country code: DE Payment date: 20231114 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20231121 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 |