EP3730197A1 - Reinforcement for gliding board - Google Patents

Reinforcement for gliding board Download PDF

Info

Publication number
EP3730197A1
EP3730197A1 EP20000108.9A EP20000108A EP3730197A1 EP 3730197 A1 EP3730197 A1 EP 3730197A1 EP 20000108 A EP20000108 A EP 20000108A EP 3730197 A1 EP3730197 A1 EP 3730197A1
Authority
EP
European Patent Office
Prior art keywords
reinforcement
strands
carbon
fibers
basalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20000108.9A
Other languages
German (de)
French (fr)
Inventor
Alain Grenetier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Salomon SAS
Original Assignee
Salomon SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Salomon SAS filed Critical Salomon SAS
Publication of EP3730197A1 publication Critical patent/EP3730197A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C5/00Skis or snowboards
    • A63C5/12Making thereof; Selection of particular materials
    • A63C5/122Selection of particular materials for damping purposes, e.g. rubber or the like
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C5/00Skis or snowboards
    • A63C5/12Making thereof; Selection of particular materials
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C5/00Skis or snowboards
    • A63C5/12Making thereof; Selection of particular materials
    • A63C5/126Structure of the core

Definitions

  • the invention relates to a gliding board for the practice of winter sports.
  • the invention relates to a gliding board comprising a composite structure.
  • the invention is particularly suitable for the manufacture of skis but can also be used for the manufacture of snowboard snowboards or any other sliding device.
  • a typical composite structure for a gliding board has an upper sub-assembly, a lower sub-assembly, and an intermediate core. Functionally, the lower sub-assembly is among other things responsible for the functions of gliding and grip on snow, while the upper sub-assembly constitutes the top of the ski. It is also known to equip each of the upper and lower subassemblies with reinforcing elements. These upper and lower reinforcement elements are very important mechanical components of the gliding board, because the mechanical characteristics of the gliding board are mainly influenced by the mechanical characteristics of the reinforcements.
  • the core has, for its part, mainly an intermediate function, it maintains the distance between the lower reinforcement and the upper reinforcement.
  • the assembly formed by the upper and lower reinforcement elements constitutes a deformable beam.
  • the skiability the behavior of the board for gliding on snow is, of course, dependent on the weight of the latter but above all on its behavior in bending and, to a lesser extent, in torsion. This is why the designer of sliding boards will take particular care in the realization of the reinforcement elements.
  • Both the upper reinforcement and the upper reinforcement can comprise one or more distinct or identical layers.
  • the reinforcing layers generally consist of a fibrous structure embedded in a matrix of thermoplastic or thermosetting resin which represents approximately 40% of the total weight of the reinforcement. Often the fibers used are glass, carbon or other fibers. Each of these fibers has its own characteristics and their use for the manufacture of a gliding board leads to different behaviors in terms of skiability.
  • a reinforcement made of fiberglass has a thickness of between 0.3 and 1 mm.
  • the present invention aims to remedy the aforementioned drawbacks.
  • the present invention aims to provide a reinforcement which can be used for the manufacture of a gliding board which improves its damping properties.
  • a gliding board comprising at least one upper reinforcement, one lower reinforcement, an intermediate structure placed between said upper reinforcement and said lower reinforcement, characterized in that at least one upper reinforcement or lower reinforcement consists of an assembly of carbon fibers and basalt fibers, said basalt fibers representing a proportion of between 15% and 70% of the total weight of said lower or upper reinforcement, preferably between 45 % and 55%.
  • the reinforcement comprises a plurality of strands of carbon fiber and a plurality of strands of basalt fiber, said strands of carbon fibers and said strands of basalt fiber being arranged on the same layer so as to that the strands of basalt fibers are interposed between strands of carbon fibers.
  • the reinforcement comprises an assembly of a plurality of juxtaposed panels and in that part of the panels are made from plies of basalt strands arranged unidirectionally while another part of the panels are made. from a web of carbon strands also arranged unidirectionally.
  • the reinforcement comprises a fiberglass ply, a carbon ply and a ply comprising basalt fibers.
  • the figure 1 shows in cross section a ski according to the invention.
  • this comprises an upper sub-assembly, a lower sub-assembly and an intermediate structure placed between the two sub-assemblies.
  • Each of the sub-assemblies includes a reinforcement.
  • at least one of the reinforcements is designed according to the invention.
  • the upper sub-assembly comprises an upper reinforcement 5 and a top layer 6.
  • the lower sub-assembly comprises at least one lower reinforcement 7, a gliding sole 8 and metal edges 9.
  • the intermediate structure comprises a core 10 made of wood or synthetic material and side edges 11.
  • the figure 2 shows in cross section a reinforcement 4 according to a first embodiment of the invention.
  • each carbon fiber having a thickness of between 5 ⁇ m and 10 ⁇ m are first assembled with each other to form strands 12 of substantially cylindrical shape.
  • Each strand 12 is of the type between 3K and 48K, that is to say it comprises between 3000 and 48000 carbon fibers.
  • each carbon strand is of type 12 K, that is to say comprising approximately 12,000 fibers.
  • the basalt fibers are first assembled together to form strands 13.
  • Each strand has a count of between 68 Tex and 2400 Tex. They may be natural fibers or modified fibers of the Filava type (registered trademark). In the embodiments described here, strands of about 1200 Tex were used.
  • the strands and strands are draped over a single layer.
  • the carbon strands 12 and the basalt strands 13 are interposed with each other.
  • it is preferable that the carbon strands and the basalt strands have substantially the same diameter. So to vary the weight distribution of the basalt and carbon fibers, it suffices to modify the diagram according to which the strands are inserted between them: 1-1, 2-1, 3-1, etc ......
  • the entire layup of the carbon and basalt strands can be held in place using a light veil or a grid and a stitching thread which places the draping on the veil in places.
  • the reinforcement When the reinforcement is not pre-impregnated, it is at the time of molding, for the manufacture of the ski, that the reinforcement will be brushed with uncrosslinked resin. After curing, the lay-up of the carbon strands and the basalt strands embedded in the crosslinked resin constitutes the upper or lower reinforcement of the ski 1.
  • the basalt fibers can represent a percentage of between 15% and 70% of the weight of all the fibers of the reinforcement. However, better results were observed for a percentage between 45% and 55%.
  • the figure 3 represents a reinforcement 4 "according to a second embodiment of the invention.
  • the reinforcement 4" consists of an assembly of a plurality of juxtaposed and superimposed panels.
  • the panels 17 are made from layers of basalt strands arranged unidirectionally.
  • the panels 18 are made from a sheet of carbon strands also arranged unidirectionally.
  • the panels 17 and 18 are juxtaposed so as to constitute a first layer.
  • the panels 17, 18 have a thickness between 0.1 and 0.5 mm so that it is possible to superpose several layers thus formed to constitute a lower or upper reinforcement which has the usual thickness of a reinforcement by example made exclusively in fiberglass.
  • the figure 4 represents a reinforcement 4 '"according to a third embodiment of the invention. It is an upper or lower reinforcement. It is a reinforcement which combines three plies of different material: a fiberglass ply 21, a carbon ply 22 and a ply comprising basalt fibers 23.
  • the carbon ply 22 may for example be produced in the form of a ply of carbon strands arranged unidirectionally.
  • the basalt ply 23 is for its part a juxtaposition of basalt strands and carbon strands in a proportion between 15% and 70%.
  • test pieces were carried out. These five test pieces are made to have a bending constant identical to a fiberglass reinforcement of 1000g / m 2 . This corresponds to the basis weight of an upper or lower reinforcement usually used in a ski. Since fiberglass reinforcements are the most widely used in the manufacture of skis, the mechanical characteristics of these specimens are compared with those of the fiberglass specimen.
  • test pieces are compared in a damping experiment.
  • delta
  • the invention has mainly been described for the manufacture of a pair of skis for the practice of alpine skiing. It nevertheless applies to any gliding board, for example for a snowboard.

Abstract

Planche de glisse (1) comportant au moins un renfort supérieur (5), un renfort inférieur (7), une structure intercalaire placée entre ledit renfort supérieur et ledit renfort inférieur, caractérisée en ce qu'au moins un des renforts supérieur ou renfort inférieur est constitué d'un assemblage de fibres de carbone et de fibres de basalte, lesdites fibres de basalte représentant une proportion comprise entre 15% et 70% du poids total dudit renfort inférieur ou supérieur, de préférence comprise entre 45% et 55%.Gliding board (1) comprising at least one upper reinforcement (5), one lower reinforcement (7), an intermediate structure placed between said upper reinforcement and said lower reinforcement, characterized in that at least one of the upper reinforcements or lower reinforcement consists of an assembly of carbon fibers and basalt fibers, said basalt fibers representing a proportion of between 15% and 70% of the total weight of said lower or upper reinforcement, preferably between 45% and 55%.

Description

L'invention concerne une planche de glisse pour la pratique des sports d'hiver. En particulier, l'invention concerne une planche de glisse comportant une structure composite. L'invention est particulièrement adaptée à la fabrication de skis mais peut également être utilisée pour la fabrication de snowboard surf des neiges ou de tout autre engin de glisse.The invention relates to a gliding board for the practice of winter sports. In particular, the invention relates to a gliding board comprising a composite structure. The invention is particularly suitable for the manufacture of skis but can also be used for the manufacture of snowboard snowboards or any other sliding device.

Il est connu dans le domaine des sports de glisse sur neige de construire les planches de glisse en utilisant une structure composite. Une structure composite typique pour une planche de glisse comporte un sous-ensemble supérieur, un sous-ensemble inférieur et un noyau intercalaire. Fonctionnellement, le sous-ensemble inférieur est entre autres chargé des fonctions de glisse et d'accroche sur neige, tandis que le sous-ensemble supérieur constitue le dessus du ski. Il est également connu d'équiper chacun des sous-ensembles supérieur et inférieur d'éléments de renfort. Ces éléments de renfort supérieur et inférieur sont des composants mécaniques très importants de la planche de glisse, car les caractéristiques mécaniques de la planche de glisse sont principalement influencées par les caractéristiques mécaniques des renforts. Le noyau a, quant à lui, principalement une fonction intercalaire, il maintient la distance entre le renfort inférieur et le renfort supérieur. L'ensemble constitué par les éléments de renfort supérieur et inférieur constitue une poutre déformable. La skiabilité, le comportement de la planche de glisse sur la neige est, bien entendu, dépendant du poids de celle-ci mais surtout de son comportement en flexion et, dans une moindre mesure, en torsion. C'est pourquoi le concepteur de planches de glisse apportera un soin particulier à la réalisation des éléments de renfort. Le renfort supérieur comme le renfort supérieur peuvent comprendre une ou plusieurs couches distinctes ou identiques. Les couches de renforts sont généralement constituées par une structure fibreuse noyée dans une matrice de résine thermoplastique ou thermodurcissable qui représente environ 40% du poids total du renfort. Souvent les fibres utilisées sont des fibres de verre, de carbone ou autre. Chacune de ces fibres a ses caractéristiques propres et leur utilisation pour la fabrication d'une planche de glisse conduit à des comportements différents en terme de skiabilité.It is known in the field of snow sliding sports to construct sliding boards using a composite structure. A typical composite structure for a gliding board has an upper sub-assembly, a lower sub-assembly, and an intermediate core. Functionally, the lower sub-assembly is among other things responsible for the functions of gliding and grip on snow, while the upper sub-assembly constitutes the top of the ski. It is also known to equip each of the upper and lower subassemblies with reinforcing elements. These upper and lower reinforcement elements are very important mechanical components of the gliding board, because the mechanical characteristics of the gliding board are mainly influenced by the mechanical characteristics of the reinforcements. The core has, for its part, mainly an intermediate function, it maintains the distance between the lower reinforcement and the upper reinforcement. The assembly formed by the upper and lower reinforcement elements constitutes a deformable beam. The skiability, the behavior of the board for gliding on snow is, of course, dependent on the weight of the latter but above all on its behavior in bending and, to a lesser extent, in torsion. This is why the designer of sliding boards will take particular care in the realization of the reinforcement elements. Both the upper reinforcement and the upper reinforcement can comprise one or more distinct or identical layers. The reinforcing layers generally consist of a fibrous structure embedded in a matrix of thermoplastic or thermosetting resin which represents approximately 40% of the total weight of the reinforcement. Often the fibers used are glass, carbon or other fibers. Each of these fibers has its own characteristics and their use for the manufacture of a gliding board leads to different behaviors in terms of skiability.

Jusqu'à présent, la fibre de verre a été très souvent utilisée, notamment du fait de son bon rapport qualité/prix. Cependant, elle présente l'inconvénient d'être lourde et peu dynamique. De plus un renfort réalisé en fibre de verre présente une épaisseur comprise entre 0,3 et 1 mm.Until now, fiberglass has been used very often, especially because of its good quality / price ratio. However, it has the drawback of being heavy and not very dynamic. In addition, a reinforcement made of fiberglass has a thickness of between 0.3 and 1 mm.

Pour remédier aux inconvénients de la fibre de verre, il est connu d'utiliser des fibres de carbone. Ces dernières sont plus légères que les fibres de verre et surtout, elles possèdent un module de Young beaucoup plus important. Dans certaines configurations de constructions, les renforts réalisées en fibres de carbone donnent au ski un côté vibrant qui a pour conséquence de détériorer la précision du pilotage. En effet les vibrations occasionnent des pertes de contact entre les carres du ski et la neige.To remedy the drawbacks of fiberglass, it is known to use carbon fibers. The latter are lighter than glass fibers and above all, they have a much higher Young's modulus. In certain configurations of constructions, the reinforcements made of carbon fibers give the ski a vibrating side which has the consequence of damaging the precision of piloting. In fact, vibrations cause loss of contact between the edges of the ski and the snow.

Il est également connu, de concevoir des renforts qui combinent des fibres de différentes natures comme par exemple dans le document FR 3017306 qui décrit la fabrication d'un renfort combinant des fibres naturelles de lin avec des fibres carbone. Cette solution n'est pas totalement satisfaisante car elle se révèle un peu lourde et offre des caractéristiques qui se rapprochent plus de celles de la fibre de verre plutôt que de celles de la fibre de carbone.It is also known practice to design reinforcements which combine fibers of different types, for example in document FR 3017306 which describes the manufacture of a reinforcement combining natural flax fibers with carbon fibers. This solution is not completely satisfactory because it turns out to be a little heavy and offers characteristics which are closer to those of fiberglass rather than to those of carbon fiber.

La présente invention vise à remédier aux inconvénients précités. En particulier, la présente invention vise à fournir un renfort utilisable pour la fabrication d'une planche de glisse qui en améliore les propriétés d'amortissement.The present invention aims to remedy the aforementioned drawbacks. In particular, the present invention aims to provide a reinforcement which can be used for the manufacture of a gliding board which improves its damping properties.

L'objectif de l'invention est atteint par la fourniture d'une planche de glisse comportant au moins un renfort supérieur, un renfort inférieur, une structure intercalaire placée entre ledit renfort supérieur et ledit renfort inférieur, caractérisée en ce qu'au moins un des renforts supérieur ou renfort inférieur est constitué d'un assemblage de fibres de carbone et de fibres de basalte, lesdites fibres de basalte représentant une proportion comprise entre 15% et 70% du poids total dudit renfort inférieur ou supérieur, de préférence comprise entre 45% et 55%.The objective of the invention is achieved by providing a gliding board comprising at least one upper reinforcement, one lower reinforcement, an intermediate structure placed between said upper reinforcement and said lower reinforcement, characterized in that at least one upper reinforcement or lower reinforcement consists of an assembly of carbon fibers and basalt fibers, said basalt fibers representing a proportion of between 15% and 70% of the total weight of said lower or upper reinforcement, preferably between 45 % and 55%.

Dans un premier mode de réalisation, le renfort comporte une pluralité de torons de fibre de carbone et une pluralité de torons de fibre de basalte, lesdits torons de fibres de carbone et lesdits torons de fibre de basalte étant disposés sur une même couche de manière à ce que les torons de fibres de basalte soient intercalés entre des torons de fibres de carbone.In a first embodiment, the reinforcement comprises a plurality of strands of carbon fiber and a plurality of strands of basalt fiber, said strands of carbon fibers and said strands of basalt fiber being arranged on the same layer so as to that the strands of basalt fibers are interposed between strands of carbon fibers.

Dans un deuxième mode de réalisation, le renfort comporte un assemblage d'une pluralité de panneaux juxtaposés et en ce qu'une partie des panneaux sont réalisés à partir de nappes de torons de basalte disposés unidirectionnellement tandis qu'une autre partie des panneaux sont réalisés à partir d'une nappe de brins de carbones également disposés unidirectionnellement.In a second embodiment, the reinforcement comprises an assembly of a plurality of juxtaposed panels and in that part of the panels are made from plies of basalt strands arranged unidirectionally while another part of the panels are made. from a web of carbon strands also arranged unidirectionally.

Dans un troisième mode de réalisation, le renfort comprend un pli fibre de verre, un pli carbone et un pli comportant des fibres de basalte.In a third embodiment, the reinforcement comprises a fiberglass ply, a carbon ply and a ply comprising basalt fibers.

L'invention sera mieux comprise à la lumière de la description qui suit dans laquelle :

  • [Fig. 1] La figure 1 est une coupe transversale d'un ski équipé de renfort selon l'invention.
  • [Fig. 2] La figure 2 est une vue en coupe d'un renfort selon un premier mode de réalisation de l'invention.
  • [Fig. 3] La figure 3 est une vue en coupe d'un renfort selon un premier mode de réalisation de l'invention.
  • [Fig. 4] La figure 4 est une vue en coupe d'un renfort selon un troisième mode de réalisation de l'invention.
  • [Fig. 5] La figure 5 est un graphe comparant l'évolution des capacités d'amortissement d'un renfort selon l'invention avec la même évolution pour des renforts de l'art antérieur.
The invention will be better understood in the light of the following description in which:
  • [ Fig. 1 ] The figure 1 is a cross section of a ski equipped with reinforcement according to the invention.
  • [ Fig. 2 ] The figure 2 is a sectional view of a reinforcement according to a first embodiment of the invention.
  • [ Fig. 3 ] The figure 3 is a sectional view of a reinforcement according to a first embodiment of the invention.
  • [ Fig. 4 ] The figure 4 is a sectional view of a reinforcement according to a third embodiment of the invention.
  • [ Fig. 5 ] The figure 5 is a graph comparing the evolution of the damping capacities of a reinforcement according to the invention with the same evolution for reinforcements of the prior art.

La figure 1 montre en coupe transversale, un ski selon l'invention. De manière connue, celui-ci comporte un sous-ensemble supérieur, un sous-ensemble inférieur et une structure intercalaire placée entre les deux sous-ensembles. Chacun des sous-ensembles comprend un renfort. Dans un ski ou plus généralement dans une planche de glisse selon l'invention, au moins un des renforts est conçu selon l'invention.The figure 1 shows in cross section a ski according to the invention. In known manner, this comprises an upper sub-assembly, a lower sub-assembly and an intermediate structure placed between the two sub-assemblies. Each of the sub-assemblies includes a reinforcement. In a ski or more generally in a gliding board according to the invention, at least one of the reinforcements is designed according to the invention.

Le sous-ensemble supérieur comprend un renfort supérieur 5 et une couche de dessus 6. Le sous-ensemble inférieur comprend au moins un renfort inférieur 7, une semelle de glisse 8 et des carres métalliques 9.The upper sub-assembly comprises an upper reinforcement 5 and a top layer 6. The lower sub-assembly comprises at least one lower reinforcement 7, a gliding sole 8 and metal edges 9.

La structure intercalaire comprend un noyau 10 en bois ou en matière synthétique et des chants latéraux 11.The intermediate structure comprises a core 10 made of wood or synthetic material and side edges 11.

La figure 2 représente en coupe transversale un renfort 4 selon un premier mode de réalisation de l'invention.The figure 2 shows in cross section a reinforcement 4 according to a first embodiment of the invention.

Les fibres de carbone ayant chacune une épaisseur comprise entre 5µm et 10 µm sont d'abord assemblées les unes avec les autres pour constituer des brins 12 de forme sensiblement cylindrique. Chaque brin 12 est de type compris entre 3K et 48K, c'est-à-dire qu'il comporte entre 3000 et 48000 fibres de carbone. Dans le mode de réalisation présenté ici, chaque brin de carbone est de type 12 K, c'est-à-dire comprenant environ 12000 fibres.The carbon fibers each having a thickness of between 5 μm and 10 μm are first assembled with each other to form strands 12 of substantially cylindrical shape. Each strand 12 is of the type between 3K and 48K, that is to say it comprises between 3000 and 48000 carbon fibers. In the embodiment presented here, each carbon strand is of type 12 K, that is to say comprising approximately 12,000 fibers.

De manière similaire, les fibres de basalte dont l'épaisseur est comprise entre 5 et 15 µm sont d'abord assemblées ensemble pour constituer des torons 13. Chaque toron présente un titre compris entre 68 Tex et 2400 Tex. Il peut s'agir de fibres naturelles ou de fibres modifiées de type Filava (marque déposée). Dans les modes de réalisations décrits ici, des torons d'environ 1200 Tex ont été utilisés.Similarly, the basalt fibers, the thickness of which is between 5 and 15 μm, are first assembled together to form strands 13. Each strand has a count of between 68 Tex and 2400 Tex. They may be natural fibers or modified fibers of the Filava type (registered trademark). In the embodiments described here, strands of about 1200 Tex were used.

Le drapage des torons et des brins se fait sur une seule couche. Les brins de carbone 12 et les torons de basalte 13 s'intercalent les uns avec les autres. Dans cette configuration, il est préférable que les torons de carbone et les torons de basalte aient sensiblement le même diamètre. Alors pour faire varier la répartition pondérale des fibres de basalte et de carbone, il suffit de modifier le schéma selon lequel les torons s'intercalent entre eux : 1-1, 2-1, 3-1, etc......The strands and strands are draped over a single layer. The carbon strands 12 and the basalt strands 13 are interposed with each other. In this configuration, it is preferable that the carbon strands and the basalt strands have substantially the same diameter. So to vary the weight distribution of the basalt and carbon fibers, it suffices to modify the diagram according to which the strands are inserted between them: 1-1, 2-1, 3-1, etc ......

L'ensemble du drapage des torons de carbone et de basalte peut être maintenu en place à l'aide d'un voile léger ou d'une grille et d'un fil de couture qui plaque à certains endroits le drapage sur le voile.The entire layup of the carbon and basalt strands can be held in place using a light veil or a grid and a stitching thread which places the draping on the veil in places.

Il est également possible de faire le pré-imprégné en même temps que l'imprégnation. Dans ce cas on peut se passer de voile et de fil.It is also possible to make the prepreg at the same time as the impregnation. In this case we can do without veil and thread.

Lorsque le renfort n'est pas pré-imprégné, c'est au moment de la mise en moule, pour la fabrication du ski que le renfort sera badigeonné de résine non réticulée. Après cuisson, le drapage des torons de carbone et des torons de basalte noyés dans la résine réticulée constitue le renfort supérieur ou inférieur du ski 1.When the reinforcement is not pre-impregnated, it is at the time of molding, for the manufacture of the ski, that the reinforcement will be brushed with uncrosslinked resin. After curing, the lay-up of the carbon strands and the basalt strands embedded in the crosslinked resin constitutes the upper or lower reinforcement of the ski 1.

La variation du titre et de l'épaisseur relative du diamètre des torons de basalte et de carbone respectivement permet de faire varier la répartition pondérale des deux matériaux du renfort. En pratique les fibres de basalte peuvent représenter un pourcentage compris entre 15% et 70% du poids de l'ensemble des fibres du renfort. On a cependant pu constater de meilleurs résultats pour un pourcentage compris entre 45% et 55%.The variation in the count and the relative thickness of the diameter of the basalt and carbon strands respectively makes it possible to vary the weight distribution of the two materials of the reinforcement. In practice, the basalt fibers can represent a percentage of between 15% and 70% of the weight of all the fibers of the reinforcement. However, better results were observed for a percentage between 45% and 55%.

La figure 3 représente un renfort 4" selon un deuxième mode de réalisation de l'invention. Le renfort 4" est constitué d'un assemblage d'une pluralité de panneaux juxtaposés et superposés. Les panneaux 17 sont réalisés à partir de nappes de torons de basalte disposés unidirectionnellement. Les panneaux 18 sont réalisés à partir d'une nappe de brins de carbones également disposés unidirectionnellement. Les panneaux 17 et 18 sont juxtaposés de manière à constituer une première couche. Les panneaux 17, 18 ont une épaisseur comprise entre 0,1 et 0,5 mm si bien, qu'il est possible de superposer plusieurs couches ainsi formées pour constituer un renfort inférieur ou supérieur qui ait l'épaisseur habituelle d'un renfort par exemple fait exclusivement en fibre de verre. Il est, d'autre part, possible de réaliser un renfort supérieur ou inférieur dont la composition n'a pas une structure homogène sur toute sa longueur avec une proportion de carbone plus importante au niveau du patin du ski qu'elle ne l'est au niveau des portions avant et arrière du ski. L'orientation des fibres dans les différents panneaux 17 et 18 peuvent être parallèles ou bien faires un angle non nul les unes avec les autres.The figure 3 represents a reinforcement 4 "according to a second embodiment of the invention. The reinforcement 4" consists of an assembly of a plurality of juxtaposed and superimposed panels. The panels 17 are made from layers of basalt strands arranged unidirectionally. The panels 18 are made from a sheet of carbon strands also arranged unidirectionally. The panels 17 and 18 are juxtaposed so as to constitute a first layer. The panels 17, 18 have a thickness between 0.1 and 0.5 mm so that it is possible to superpose several layers thus formed to constitute a lower or upper reinforcement which has the usual thickness of a reinforcement by example made exclusively in fiberglass. It is, on the other hand, possible to produce an upper or lower reinforcement whose composition does not have a homogeneous structure over its entire length with a greater proportion of carbon at the level of the ski skate than it is. at the front and rear portions of the ski. The orientation of the fibers in the different panels 17 and 18 may be parallel or else form a non-zero angle with each other.

La figure 4 représente un renfort 4'" selon un troisième mode de réalisation de l'invention. Il s'agit d'un renfort supérieur ou inférieur. Il s'agit d'un renfort qui combine trois plis de matière différentes : un pli fibre de verre 21, un pli carbone 22 et un pli comportant des fibres de basalte 23. Le pli carbone 22 peut par exemple être réalisé sous la forme d'une nappe de brins de carbones disposés unidirectionnelle. Le pli basalte 23 est quant à lui une juxtaposition de torons de basalte et de torons de carbone dans une proportion comprise entre 15 % et 70 %.The figure 4 represents a reinforcement 4 '"according to a third embodiment of the invention. It is an upper or lower reinforcement. It is a reinforcement which combines three plies of different material: a fiberglass ply 21, a carbon ply 22 and a ply comprising basalt fibers 23. The carbon ply 22 may for example be produced in the form of a ply of carbon strands arranged unidirectionally. The basalt ply 23 is for its part a juxtaposition of basalt strands and carbon strands in a proportion between 15% and 70%.

Afin de bien comprendre l'intérêt que présentent les renforts selon l'invention, le demandeur a réalisé des éprouvettes sur lesquelles plusieurs expérimentations ont été faites. En effet, comptetenu du process de fabrication d'un ski, c'est seulement lorsque le ski est fini, avec tous ses composants, que le renfort présente les caractéristiques mécaniques souhaitées.In order to fully understand the benefit of the reinforcements according to the invention, the applicant has produced test pieces on which several experiments have been carried out. Indeed, taking into account the manufacturing process of a ski, it is only when the ski is finished, with all its components, that the reinforcement has the desired mechanical characteristics.

Dans un premier temps, cinq éprouvettes ont été réalisées. Ces cinq éprouvettes sont faites pour avoir une constante de flexion identique à un renfort fibre de verre de 1000g/m2. Cela correspond à la masse surfacique d'un renfort supérieur ou inférieur habituellement utilisé dans un ski. Etant donné que les renforts en fibre de verre sont les plus utilisés dans la fabrication des skis, les caractéristiques mécaniques de ces éprouvettes sont comparées à celles de l'éprouvette en fibre de verre.Initially, five test pieces were carried out. These five test pieces are made to have a bending constant identical to a fiberglass reinforcement of 1000g / m 2 . This corresponds to the basis weight of an upper or lower reinforcement usually used in a ski. Since fiberglass reinforcements are the most widely used in the manufacture of skis, the mechanical characteristics of these specimens are compared with those of the fiberglass specimen.

Les résultats sont compilés dans le tableau 1 (Voir tableau 1 ci-dessous). Il apparaît clairement que le poids et l'épaisseur d'un renfort combinant des fibres de carbone et des fibres de basalte sont diminués de moitié par rapport au renfort en verre ayant une constante de flexion similaire. [Table 1] Matière % matière pondérale Module Mpa Poids fibre pour équivalent 1000g/m2fibre de verre Poids renfort pour équivalent 1000g/m2 fibre de verre Epaisseur pour équivalent 1mm renfort verre Verre 100% 37 000 1000 1538 1,00 Basalte 100% 45 000 862 1326 0,82 Carbone 100% 97 000 303 504 0,36 CFX1 Carbone 40% 43 000 645 1112 1,12 Lin 60% CBX Carbone 50% 70 000 513 828 0,53 Basalte 50% The results are compiled in Table 1 (See Table 1 below). It is clear that the weight and thickness of a reinforcement combining carbon fibers and basalt fibers are halved compared to the glass reinforcement having a similar bending constant. [Table 1] Material % weight Mpa module Fiber weight for 1000g / m 2 glass fiber equivalent Reinforcement weight for equivalent 1000g / m 2 fiberglass Thickness for equivalent 1mm glass reinforcement Glass 100% 37,000 1000 1538 1.00 Basalt 100% 45,000 862 1326 0.82 Carbon 100% 97,000 303 504 0.36 CFX1 Carbon 40% 43,000 645 1112 1.12 Linen 60% CBX Carbon 50% 70,000 513 828 0.53 Basalt 50%

Dans un deuxième temps, les éprouvettes sont comparées dans une expérience d'amortissement. Dans cette expérience, on mesure les tangentes δ (delta), c'est-à-dire le déphasage entre l'onde à laquelle on soumet l'éprouvette et sa vibration propre, cela en fonction de la fréquence de l'onde à laquelle elle est soumise.Secondly, the test pieces are compared in a damping experiment. In this experiment, we measure the tangents δ (delta), that is to say the phase shift between the wave to which the test piece is subjected and its own vibration, this as a function of the frequency of the wave at which she is submissive.

On voit alors nettement que, quelle que soit la fréquence, entre 0 Hz et 50 Hz, les performances d'amortissement de l'éprouvette contenant 50% de fibre de basalte et de 50% de fibre de carbone en poids, sont entre 30% et 50% meilleures que celles des éprouvettes ne contenant que du carbone.It is then clearly seen that, whatever the frequency, between 0 Hz and 50 Hz, the damping performance of the specimen containing 50% of basalt fiber and 50% of carbon fiber by weight, is between 30% and 50% better than that of specimens containing only carbon.

Ces expériences et comparaisons mettent en lumière l'intérêt qu'il y a à utiliser là une certaine proportion de fibre de basalte à l'intérieur d'un renfort carbone. Les avantages apportés par la mise en place d'un ou de deux renforts selon l'invention dans un ski sont également parfaitement évaluables lorsqu'on compare des skis selon l'invention avec des skis ayant de simples renforts en fibre de verre ou bien des renforts en fibre de carbone. Les avantages principaux sont notamment un poids maîtrisé et un meilleur amortissement des vibrations.These experiments and comparisons highlight the advantage of using a certain proportion of basalt fiber inside a carbon reinforcement. The advantages provided by the placement of one or two reinforcements according to the invention in a ski can also be perfectly assessed when comparing skis according to the invention with skis having simple fiberglass reinforcements or else carbon fiber reinforcements. The main advantages are in particular a controlled weight and better damping of vibrations.

L'invention a principalement été décrite pour la fabrication d'une paire de ski pour la pratique du ski alpin. Elle s'applique néanmoins à toute planche de glisse, par exemple pour une planche de snowboard.The invention has mainly been described for the manufacture of a pair of skis for the practice of alpine skiing. It nevertheless applies to any gliding board, for example for a snowboard.

Claims (4)

Planche de glisse (1) comportant au moins un renfort supérieur (5), un renfort inférieur (7), une structure intercalaire placée entre ledit renfort supérieur et ledit renfort inférieur, caractérisée en ce qu'au moins un des renforts supérieur ou renfort inférieur est constitué d'un assemblage de fibres de carbone et de fibres de basalte, lesdites fibres de basalte représentant une proportion comprise entre 15% et 70% du poids total dudit renfort inférieur ou supérieur, et en ce que ledit renfort comporte une pluralité de torons de fibre de carbone et une pluralité de torons de fibre de basalte et en ce que les torons de fibres de carbone et les torons de fibre de basalte sont disposés sur une même couche de manière à ce que les torons de fibres de basalte soient intercalés entre des torons de fibres de carbone.Gliding board (1) comprising at least one upper reinforcement (5), one lower reinforcement (7), an intermediate structure placed between said upper reinforcement and said lower reinforcement, characterized in that at least one of the upper reinforcements or lower reinforcement consists of an assembly of carbon fibers and basalt fibers, said basalt fibers representing a proportion of between 15% and 70% of the total weight of said lower or upper reinforcement, and in that said reinforcement comprises a plurality of strands of carbon fiber and a plurality of strands of basalt fiber and in that the strands of carbon fibers and the strands of basalt fiber are arranged on a same layer so that the strands of basalt fibers are interposed between strands of carbon fibers. Planche de glisse (1) selon la revendication 1, caractérisée en ce que la proportion de fibres de basalte est comprise entre 45% et 55%.Gliding board (1) according to Claim 1, characterized in that the proportion of basalt fibers is between 45% and 55%. Planche de glisse (1) selon l'une des revendications précédentes, caractérisée en ce que ledit renfort comporte un assemblage d'une pluralité de panneaux (17, 18) juxtaposés et/ou superposés et en ce qu'une partie des panneaux (17) sont réalisés à partir de nappes de torons de basalte disposés unidirectionnellement tandis qu'une autre partie des panneaux (18) sont réalisés à partir d'une nappe de brins de carbones également disposés unidirectionnellemen t.Gliding board (1) according to one of the preceding claims, characterized in that said reinforcement comprises an assembly of a plurality of panels (17, 18) juxtaposed and / or superimposed and in that part of the panels (17 ) are made from layers of basalt strands arranged unidirectionally while another part of the panels (18) are made from a layer of carbon strands also arranged unidirectionally. Planche de glisse (1) selon l'une des revendications précédentes, caractérisée en ce que ledit renfort comprend un pli fibre de verre (21), un pli carbone (22) et un pli comportant des fibres de basalte (23).Gliding board (1) according to one of the preceding claims, characterized in that said reinforcement comprises a fiberglass ply (21), a carbon ply (22) and a ply comprising basalt fibers (23).
EP20000108.9A 2019-04-02 2020-03-16 Reinforcement for gliding board Pending EP3730197A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1903500A FR3094647B1 (en) 2019-04-02 2019-04-02 Reinforcement for sliding board

Publications (1)

Publication Number Publication Date
EP3730197A1 true EP3730197A1 (en) 2020-10-28

Family

ID=67810760

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20000108.9A Pending EP3730197A1 (en) 2019-04-02 2020-03-16 Reinforcement for gliding board

Country Status (2)

Country Link
EP (1) EP3730197A1 (en)
FR (1) FR3094647B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012100965A1 (en) * 2012-02-06 2013-08-08 Jörg Kaufmann Sliding sports equipment e.g. snowboard, has lower and upper belts made from consolidated, partly-consolidated or unconsolidated semi-finished fiber material in form of continuous filaments in thermoplastic matrix
EP2762208A1 (en) * 2013-02-05 2014-08-06 Skis Rossignol Method for manufacturing a snowboard and snowboard obtained by said method
FR3017306A1 (en) 2014-02-13 2015-08-14 Salomon Sas BOARD OF SLIDERS
US20160096103A1 (en) * 2014-10-07 2016-04-07 Mervin Manufacturing, Inc. Dual-edged snowboard and snow skis
CH713005A2 (en) * 2016-10-04 2018-04-13 Abdi Selim Core of sports equipment for gliding or on wheels made of curved fibrous composite material.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012100965A1 (en) * 2012-02-06 2013-08-08 Jörg Kaufmann Sliding sports equipment e.g. snowboard, has lower and upper belts made from consolidated, partly-consolidated or unconsolidated semi-finished fiber material in form of continuous filaments in thermoplastic matrix
EP2762208A1 (en) * 2013-02-05 2014-08-06 Skis Rossignol Method for manufacturing a snowboard and snowboard obtained by said method
FR3017306A1 (en) 2014-02-13 2015-08-14 Salomon Sas BOARD OF SLIDERS
US20160096103A1 (en) * 2014-10-07 2016-04-07 Mervin Manufacturing, Inc. Dual-edged snowboard and snow skis
CH713005A2 (en) * 2016-10-04 2018-04-13 Abdi Selim Core of sports equipment for gliding or on wheels made of curved fibrous composite material.

Also Published As

Publication number Publication date
FR3094647B1 (en) 2021-12-17
FR3094647A1 (en) 2020-10-09

Similar Documents

Publication Publication Date Title
CA1277687C (en) Multilayered material tennis racket
EP0235087B1 (en) Reinforcing element intended for impregnation with a resin and the use of such an element
EP0597166B1 (en) Hockey stick
EP2000180B1 (en) Snowboard or skateboard with reinforcement made of natural fibers
EP1199155B1 (en) Composite laminate and its use in sport articles such as shoes
FR2565837A1 (en) WOODEN CORE SKI AND FOAM COMPRISING STRAINING SPACERS
EP0498963B1 (en) Alpine ski for gliding in snow and ice
FR2887178A1 (en) Sport shoe`s e.g. skating boot, three dimensional structure component e.g. cradle, manufacturing method, involves applying fabric layer and resin on polished surface of rough outline, where layer entirely covers external surface of outline
CA2547620A1 (en) Fibreglass yarn-based woven cloth for reinforcing moulded parts
FR2529860A1 (en) HUB PLATE, MANUFACTURING METHOD AND ROTOR HUB OF GIRAVION EQUIPPED WITH SUCH PLATES
EP3730197A1 (en) Reinforcement for gliding board
CH713005B1 (en) Core of sports gliding or rolling machine in curved fibrous composite material.
FR2947182A1 (en) BOARD OF SLIDERS
FR3086883A1 (en) DEVICE FOR REINFORCING THE STRUCTURE OF A SLIDING BOARD
EP3251730B1 (en) Ski with lightweight core
FR3017306A1 (en) BOARD OF SLIDERS
FR3067615B1 (en) BOARD OF SLIDERS
FR3030289A1 (en) SNOWBOARD BOARD WITH COMPLEX SONGS
FR2481575A1 (en) Composite bamboo fishing rod - has synthetic fibres bonded to wood by impregnation or gluing to increase elasticity
FR2771644A1 (en) Snow board with longitudinal beams in core
FR3068123B1 (en) ARC BRANCH, METHOD FOR MANUFACTURING ARC BRANCH, AND ARC COMPRISING TWO BRANCHES
EP2699322B1 (en) Next-generation wooden racket
FR2600868A1 (en) Sports shoe sole
FR2718648A1 (en) Ski and its manufacturing process.
EP2745885A1 (en) Sidewall for ski

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210428

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR