EP3730020A1 - Roboter zum transport von selbstfahrenden reinigungsrobotern - Google Patents

Roboter zum transport von selbstfahrenden reinigungsrobotern Download PDF

Info

Publication number
EP3730020A1
EP3730020A1 EP20164246.9A EP20164246A EP3730020A1 EP 3730020 A1 EP3730020 A1 EP 3730020A1 EP 20164246 A EP20164246 A EP 20164246A EP 3730020 A1 EP3730020 A1 EP 3730020A1
Authority
EP
European Patent Office
Prior art keywords
robot
self
propelled cleaning
designed
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20164246.9A
Other languages
English (en)
French (fr)
Other versions
EP3730020B1 (de
Inventor
Leif Krahmüller
Fabian Sellmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miele und Cie KG
Original Assignee
Miele und Cie KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miele und Cie KG filed Critical Miele und Cie KG
Publication of EP3730020A1 publication Critical patent/EP3730020A1/de
Application granted granted Critical
Publication of EP3730020B1 publication Critical patent/EP3730020B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/0009Storing devices ; Supports, stands or holders
    • A47L9/0063External storing devices; Stands, casings or the like for the storage of suction cleaners
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/009Carrying-vehicles; Arrangements of trollies or wheels; Means for avoiding mechanical obstacles
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2868Arrangements for power supply of vacuum cleaners or the accessories thereof
    • A47L9/2873Docking units or charging stations
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation

Definitions

  • the invention relates to a robot for transporting self-propelled cleaning robots with a drive device for autonomous movement over a floor surface, the robot having a sensor device for detecting its surroundings, the robot having a storage device for self-propelled cleaning robots, the robot having a movement device for moving self-propelled Has cleaning robot.
  • the WO 2018/234823 A1 discloses a trolley for transporting self-propelled cleaning robots with a drive device for moving over a floor surface.
  • the trolley has several storage devices for storing self-propelled cleaning robots and a movement device for moving self-propelled cleaning robots.
  • self-propelled cleaning robots In cleaning operations, self-propelled cleaning robots have to be removed manually from the trolley and placed on a floor surface. As a result, the trolley is not suitable for an autonomous cleaning operation.
  • the invention therefore addresses the problem of providing a device for the autonomous cleaning of surfaces.
  • a device for the autonomous cleaning of surfaces which have a large area and are divided into a large number of smaller sub-areas.
  • this problem is solved by a device having the features of patent claim 1.
  • the cleaning robots which are transported by the robot according to the invention are, in particular, vacuum robots or mopping robots.
  • the robot is designed to transport both vacuum robots and mopping robots simultaneously.
  • the robot is designed to transport at least two cleaning robots and, in a particularly preferred embodiment, to transport ten cleaning robots.
  • the drive device of the robot comprises a motor device and a plurality of wheel elements, the drive device being designed to move the robot autonomously over surfaces.
  • the robot has four wheel elements which are driven by two motor devices.
  • each wheel element of the robot is driven by its own motor device.
  • the robot has a sensor device for detecting its surroundings.
  • the sensor device is designed in particular to detect room boundaries such as walls, doors, Recognize stairs or landings. Furthermore, the sensor device is designed to recognize immobile or mobile objects which are located on a floor surface.
  • the sensor device is designed, in particular, to detect self-propelled cleaning robots in its environment. Furthermore, the sensor device is designed to detect the distances covered by the self-propelled cleaning robot in its surroundings.
  • the sensor device can include a large number of sensors, for example LiDAR, ultrasonic, radar, infrared and / or CMOS sensors or 2D / 3D camera systems.
  • the robot has a storage device which is designed to store a plurality of cleaning robots during the operation of the robot.
  • the storage facility enables the self-propelled cleaning robots to be transported safely and, on the other hand, the cleaning robots are protected from external damage or theft by the storage facility.
  • the storage device comprises receiving elements which are designed to receive and secure the self-propelled cleaning robot.
  • the receiving elements are designed to effect a form-fitting and / or force-fitting fixation of the self-propelled cleaning robot.
  • the movement device of the robot is designed such that the movement device can pick up a self-propelled cleaning robot from the floor surface and can set it in the bearing device of the robot.
  • a self-propelled cleaning robot can independently drive over a receiving element of the storage device and the receiving element together with the self-propelled cleaning robot is then moved from a receiving position to a transport position by the moving device.
  • self-propelled cleaning robots are fixed positively and / or non-positively by a fixing element of the movement device and then moved into a storage device of the robot.
  • the movement device is designed such that the movement device can pick up a self-propelled cleaning robot from the storage device and can set it down on the floor surface.
  • the moving device moves the receiving element with a self-propelled cleaning robot from a transport position to a delivery position. As soon as the receiving element is in the delivery position, the self-propelled cleaning robot drives autonomously out of the receiving element onto the floor surface.
  • a self-propelled cleaning robot is fixed positively and / or non-positively in the storage device of the robot by a fixing element of the movement device and then removed from the storage device and is placed on the floor. As soon as a self-propelled cleaning robot is parked on the floor surface by the movement device, the form-fitting and / or force-fitting fixing of the fixing element is released.
  • the automatic pick-up and delivery of self-propelled cleaning robots by the robot's movement device is an important prerequisite for its autonomous cleaning operation. This enables the robot to specifically dispense and pick up self-propelled cleaning robots as a function of an existing cleaning scenario. As a result, the robot is able to independently set down a required number or type of self-propelled cleaning robots on a floor surface. After the floor area has been cleaned and / or as a function of an operating parameter of a self-propelled cleaning robot, these can be resumed by the robot.
  • the movement device is designed as an elevator device, the elevator device moving the self-propelled cleaning robot between the bearing device of the robot and the floor surface.
  • the elevator device moves the receiving elements of the robot between the storage device and a floor surface.
  • the elevator device is also designed to move the receiving elements between different positions in the storage device of the robot.
  • the elevator device is driven by a drive device, particularly preferably by a linear drive.
  • An elevator device is a particularly reliable type of movement device.
  • the robot has a navigation device for autonomous movement over the floor area, the navigation device being designed to create a map of the surroundings and to navigate the robot over the floor area using the map.
  • the navigation device is designed to further process the information from the sensor device about the surroundings of the robot to form a map of the surroundings of the robot.
  • the map created by the navigation device can, for example, be a topological or metric map in which the spatial boundaries of the floor area to be processed and all objects on the floor area are drawn.
  • floor covering types, degrees of soiling or processing conditions of floor areas can be drawn on the map.
  • restricted areas can be drawn in on the map which the robot and / or the self-propelled cleaning robots should not use.
  • the map created by the navigation device can be edited by a user via an input module internal to the robot or external to the robot.
  • the navigation device is designed to integrate sensor information about the environment, which was collected by the sensor device of a self-propelled cleaning robot, into the existing map or to expand the existing map.
  • the navigation device determines a movement path for the robot and / or the self-propelled cleaning robot.
  • the navigation device is designed to continuously localize the robot and / or the self-propelled cleaning robot in the map using the map and the information from the sensor device. The navigation device enables the robot to operate autonomously.
  • the robot has a control device which is designed to create and manage cleaning plans for a mapped environment.
  • the control device is designed to determine which floor areas are to be processed by which self-propelled cleaning robots. It is conceivable here that floor areas with a textile floor covering are processed exclusively by robotic vacuum cleaners and floor areas with a non-textile floor covering are exclusively processed by mopping robots.
  • the control device is designed to determine when a floor area is to be processed by a self-propelled cleaning robot. It is conceivable here that a floor area is only processed by a self-propelled cleaning robot at specific times.
  • a calendar function in the control device which provides that a specific floor area is processed, for example, only on the days of the week Tuesday or Friday.
  • processing by a self-driving cleaning robot would also be conceivable, for example only on weekdays in a time window between 7 p.m. and 10 p.m.
  • the control device is designed to determine the order in which a floor area is to be processed by a plurality of self-propelled cleaning robots. It is conceivable here to process a floor area one after the other using several cleaning robots of the same and / or different types. In this way, a floor area can be vacuumed one after the other, for example by two vacuum robots. In this way, a particularly thorough suction of the floor surface is achieved.
  • a floor surface is first processed by a robot vacuum cleaner and then by a robot mop.
  • the robot has a communication system for exchanging data with self-propelled cleaning robots.
  • the communication system of the robot is designed for wireless data transmission.
  • a WLAN, Bluetooth or ZigBee module is particularly preferred as the communication system.
  • the communication system can be designed to exchange data with an external module which is used for control and / or monitoring.
  • an external control element can be, for example, a personal computer, a smartphone / smartwatch or a tablet.
  • the communication system is designed to receive operating parameters from self-propelled cleaning robots.
  • the operating parameters of the self-propelled cleaning robots include, for example, the current capacity of the energy storage units, current fill levels of fluid storage tanks or dust boxes, or the presence of an error message.
  • self-propelled cleaning robots send a degree of soiling or wear of their own cleaning components to the robot. Sending operating parameters of the self-propelled cleaning robots to the robot creates the prerequisite for the control device of the robot being able to take into account the current operating parameters of the self-propelled cleaning robots in the course of further cleaning planning.
  • the control device thus knows, for example, which cleaning robot has a low remaining capacity of the energy storage units and is only available for further cleaning trips after a charging phase.
  • the communication system is designed to exchange map information with self-propelled cleaning robots.
  • the communication system is designed to send map information from the robot to the self-propelled cleaning robots and / or to send map information from the self-propelled cleaning robots to the robot.
  • Map information can be a map of a sub-area of a work environment as well as sensor information relating to a sub-area of a work environment.
  • the exchange of map information between robots and self-propelled cleaning robots enables the creation of a consistent overall map of a work environment. In addition, this saves time-consuming and redundant exploration trips for work environments that have already been mapped.
  • the communication system is designed to send work orders to self-propelled cleaning robots.
  • work orders include a sub-area of the environment, a cleaning path, a cleaning mode and / or a cleaning duration.
  • the communication system is designed to receive status reports from the self-propelled cleaning robots, the status reports containing information on a current processing status of the work orders.
  • the robot has a charging device for charging an energy storage device of the self-propelled cleaning robots in the storage device.
  • the storage device has a charging contact which is brought into connection with a corresponding contact on the self-propelled cleaning robot when the self-propelled cleaning robot is arranged in the storage device.
  • the energy storage unit of the self-propelled cleaning robot is charged via the connected charging contacts when it is arranged in the robot's storage facility.
  • the storage device has a charging device which effects a contactless charging of the energy storage unit of a self-propelled cleaning robot.
  • the robot's autonomous surface cleaning performance is increased via the robot's charging device.
  • the robot has an energy storage unit which is designed to supply the robot and the self-propelled cleaning robots with electrical energy.
  • the energy storage unit is designed to supply all components of the robot as well as the energy storage units of the self-propelled cleaning robots with electrical energy.
  • the robot has a mains connection to charge the energy storage unit.
  • the energy storage unit of the robot is removably arranged in its housing. The robot's energy storage unit enables a cleaning operation that is largely independent of existing connections to the power supply network. In addition, the elimination of the otherwise required power cord increases the mobility of the robot.
  • the robot has a cleaning device for cleaning the self-propelled cleaning robots in the storage spaces.
  • the cleaning device is designed to free self-propelled cleaning robots from dirt that results from their cleaning operation. This can be superficial soiling of the housing of self-propelled cleaning robots, such as For example, dust and dirt particles on top or cleaning and dirt fluids.
  • the cleaning device can be designed to specifically clean the sensors of the self-propelled cleaning robots from soiling.
  • the cleaning device can be designed to clean the cleaning elements of the self-propelled cleaning robots.
  • the bristle rollers can be freed from wound fibers, hairs and threads by vacuum robots.
  • the cleaning performance of the robot is improved by the cleaning device for cleaning the self-propelled cleaning robots. Soiling of the cleaning robots, which occurred in a cleaning scenario, is removed by the robot autonomously and therefore not transferred to a subsequent cleaning scenario.
  • the cleaning device reduces the maintenance effort of the robot, as the effort for removing, checking and manual cleaning of the self-propelled cleaning robots in the robot is reduced.
  • the robot has a first storage device for storing a cleaning fluid, the robot being designed to fill self-propelled cleaning robots in the storage device with cleaning fluid.
  • water and / or cleaning agents can be used as the cleaning fluid.
  • the robot can, in particular, fill wiping robots, which are arranged in the storage device, with cleaning fluid.
  • the robot has a pump element for this purpose, which is designed to fill the self-propelled cleaning robot with cleaning fluid.
  • the self-propelled cleaning robots are filled with cleaning fluid exclusively via the influence of gravity.
  • the first storage device with cleaning fluid increases the autonomous cleaning surface performance of the robot.
  • the robot has a second storage device for storing dust and dirt particles, the robot being designed to pick up dust and dirt particles from the self-propelled cleaning robots and to store them in the second storage device. Dust and dirt particles are removed from the self-propelled cleaning robots when they are arranged in the robot's storage facility.
  • the robot removes dust and dirt particles from the self-propelled cleaning robots via a suction air stream which is generated by the fan of the respective self-propelled vacuum robot.
  • the robot has a fan which generates a suction air flow by means of which dust and dirt particles are removed from self-propelled cleaning robots.
  • a compression device arranged which compresses the content of the second storage device.
  • the robot has a third storage device for storing a dirty fluid, the robot being designed to receive the dirty fluid from the self-propelled cleaning robot and to store it in the third storage device.
  • a cleaning fluid mixed with cleaning agent and dirt particles is particularly suitable as the dirty fluid.
  • the dirty fluid is removed from the self-propelled cleaning robot via a pump element which is arranged in the robot.
  • the dirty fluid is removed from the self-propelled cleaning robot exclusively under the influence of gravity.
  • the robot can, in particular, take dirty fluid from mopping robots which are arranged in the storage device. As a result, the third storage device increases the autonomous cleaning area performance of the robot.
  • Figure 1 shows a schematic side view of a robot 10 for transporting self-propelled cleaning robots 12.
  • the wheels of a drive device 14 with which the robot 10 moves over a floor surface are arranged on the underside of the device body 30 of the robot 10.
  • the device body 30 forms a storage device inside 16, in which ten self-propelled cleaning robots 12 are arranged.
  • the cleaning robots 12 are arranged one above the other in the storage device 16 of the robot 10.
  • Four storage devices 24, 26, 28 are arranged in lateral receptacles of the device body 30 of the robot 10.
  • the storage devices 24, 26, 28 can be removed from the device body 30.
  • the four storage devices 24, 26, 28 are designed to store dust and dirt particles, fresh water, dirty water and cleaning agents.
  • the self-propelled cleaning robots 12 can be filled with fresh water and cleaning agents or stored dust and dirt particles or dirty water can be emptied via these four storage devices 24, 26, 28.
  • Figure 2 shows a schematic cross section of a robot 10 for transporting self-propelled cleaning robots 12.
  • no self-propelled cleaning robots 12 are arranged in the storage device 16 of the robot 10.
  • a removable storage device 24, 26, 28 is arranged on the side of the device body 30 of the robot 10.
  • a storage device 16 for self-propelled cleaning robots 12 is arranged in the device body 30.
  • This storage device 16 comprises a movement device 18 which is formed by two laterally arranged lifting elements 32.
  • the two lifting elements 32 are arranged in the device body 30 at two opposite ends thereof.
  • the lifting elements 32 form corresponding fixing elements 34, which together bring about a form-fitting reception of a self-propelled cleaning robot 12.
  • it In order to accommodate a cleaning robot 12, it automatically moves into the device body 30 of the robot 10.
  • the retraction creates a positive connection between the self-propelled cleaning robot 12 and two corresponding fixing elements 34 of the lifting elements 32.
  • the storage device 16 is designed to accommodate eight cleaning robots 12.
  • the storage device 16 has four supply connections 38.
  • the dust box of a vacuum robot 12 can be emptied via the first supply connection 38.
  • the dirty water tank of a robot mop can be emptied via the second supply connection 38.
  • the fresh water tank of a mopping robot can be filled with fresh water via the third supply connection 38.
  • the detergent tank can be connected via the fourth supply connection 38 a robot mop can be filled with cleaning agent.
  • the storage device 16 has charging contacts 42 Energy storage is charged via the charging contacts 42 of the robot 10.
  • the charging contacts 42 are part of the charging device 22 of the robot 10.
  • FIG 3 shows a schematic cross section of a robot 10 with an alternative elevator device 20.
  • the elevator device 20 of the robot 10 is designed as a paternoster elevator.
  • the elevator device 20 has a plurality of receiving elements 44 which are moved along a largely rectangular orbit.
  • the orbit has two longitudinal sides, on which the receiving elements in the device body are moved up and down. At the ends of the long sides, these are connected to one another via transfer elements.
  • the receiving elements are moved between the two long sides via the relocating elements. If there is a receiving element on the lower transfer element, the receiving element can be driven over by a self-propelled cleaning robot.
  • the storage device forms supply connections, with which a cleaning robot in the receiving element can be supplied with fresh water and / or cleaning agent, for example, and can be emptied of collected dust particles or dirty water.
  • this has charging contacts, via which the energy storage units of the self-propelled cleaning robots can be supplied with electrical energy.
  • FIG 4 shows a schematic cross section of a robot 10 with a further alternative elevator device 20.
  • the elevator device 20 of the robot 10 is designed as a lift elevator.
  • the elevator device 20 has a vertically movable receiving element 44 which is movable between a lower position 36 and an upper position 40. In the lower position 36, the receiving element 44 can be driven on independently by a self-propelled cleaning robot 12.
  • the elevator device 20 can move the receiving element 44 together with a cleaning robot 12 into an upper position 40.
  • the storage device 16 of the robot 10 has a plurality of storage cells 46 for cleaning robots 12, which are arranged one above the other in the device body 30 of the robot 10.
  • the elevator device 20 is designed to move the receiving element 44 together with a robot 10 to an identical height with a storage cell 46 of the storage device 16.
  • the cleaning robot 12 can then automatically move in and out of the receiving element 44 into the storage cell 46.
  • the receiving element 44 has a transport element.
  • the transport element causes the cleaning robot 12 to move horizontally between the receiving element 44 and a corresponding storage cell 46. In this way, cleaning robots 12 are moved by the transport element from the receiving element 44 into a storage cell 46 and from the storage cell 46 into a receiving element 44.
  • the storage cells 46 each have a charging contact 42. If a self-propelled cleaning robot 12 is arranged in a storage cell 46, the energy store of the self-propelled cleaning device 12 is charged with electrical energy via the charging contact 42. In the lower position of the receiving element, the device housing 30 forms supply connections 38. A cleaning robot 12 in the receiving element 44 can, for example, be supplied with fresh water and / or cleaning agent via the supply connections 38 and can be emptied of collected dust particles or dirty water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Electric Vacuum Cleaner (AREA)

Abstract

Die Erfindung betrifft einen Roboter zum Transport von selbstfahrenden Reinigungsrobotern mit einer Antriebseinrichtung zum autonomen Verfahren über eine Bodenfläche, wobei der Roboter eine Sensoreinrichtung zum Erfassen seiner Umgebung aufweist, wobei der Roboter eine Lagereinrichtung für selbstfahrende Reinigungsroboter aufweist, wobei der Roboter eine Bewegungseinrichtung zum Bewegen von selbstfahrenden Reinigungsroboter aufweist.

Description

  • Die Erfindung betrifft einen Roboter zum Transport von selbstfahrenden Reinigungsrobotern mit einer Antriebseinrichtung zum autonomen Verfahren über eine Bodenfläche, wobei der Roboter eine Sensoreinrichtung zum Erfassen seiner Umgebung aufweist, wobei der Roboter eine Lagereinrichtung für selbstfahrende Reinigungsroboter aufweist, wobei der Roboter eine Bewegungseinrichtung zum Bewegen von selbstfahrenden Reinigungsroboter aufweist.
  • Die WO 2018/234823 A1 offenbart einen Rollwagen zum Transport von selbstfahrenden Reinigungsrobotern mit einer Antriebseinrichtung zum Verfahren über eine Bodenfläche. Der Rollwagen weist mehrere Lagervorrichtungen zum Lagern von selbstfahrenden Reinigungsrobotern und eine Bewegungseinrichtung zum Bewegen von selbstfahrenden Reinigungsrobotern auf. Im Reinigungsbetrieb müssen selbstfahrende Reinigungsroboter manuell aus dem Rollwagen entnommen werden und auf eine Bodenfläche aufgesetzt werden. Hierdurch eignet sich der Rollwagen nicht für einen autonomen Reinigungsbetrieb.
  • Der Erfindung stellt sich somit das Problem eine Vorrichtung zur autonomen Reinigung von Flächen zur Verfügung zu stellen. Insbesondere zum autonomen Reinigung von Flächen, welche eine flächenmäßig große Erstreckung aufweisen und sich dabei in eine Vielzahl kleinerer Teilflächen unterteilen. Erfindungsgemäß wird dieses Problem durch eine Vorrichtung mit den Merkmalen von Patentanspruch 1 gelöst.
  • Bei den Reinigungsrobotern, welche vom erfindungsgemäßen Roboter transportiert werden, handelt es sich insbesondere um Saugroboter oder Wischroboter. Der Roboter ist dabei dazu ausgebildet, sowohl Saugroboter als auch Wischroboter simultan zu transportieren. Weiterhin ist der Roboter in einer bevorzugten Ausführungsform dazu ausgebildet mindestens zwei Reinigungsroboter zu transportieren und in einer besonders bevorzugten Ausführungsform zehn Reinigungsroboter zu transportieren.
  • Die Antriebseinrichtung des Roboters umfasst eine Motoreinrichtung und mehrere Radelemente, wobei die Antriebseinrichtung dazu ausgebildet ist, den Roboter autonom über Flächen zu bewegen. In einer bevorzugten Ausführungsform weist der Roboter vier Radelemente auf, welche von zwei Motoreinrichtungen angetrieben werden. In einer alternativen Ausführungsform wird jedes Radelement des Roboters über eine eigene Motoreinrichtung angetrieben.
  • Der Roboter weist eine Sensoreinrichtung zum Erfassen seiner Umgebung auf. Die Sensoreinrichtung ist insbesondere dazu ausgebildet, Raumbegrenzungen, wie Wände, Türen, Treppen oder Absätze zu erkennen. Weiterhin ist die Sensoreinrichtung dazu ausgebildet, immobile oder mobile Objekte zu erkennen, welche sich auf einer Bodenfläche befinden. Die Sensoreinrichtung ist insbesondere dazu ausgebildet, selbstfahrende Reinigungsroboter in seiner Umgebung zu erkennen. Weiterhin ist die Sensoreinrichtung dazu ausgebildet die zurückgelegten Wegstrecken der selbstfahrenden Reinigungsroboter in seiner Umgebung zu erfassen. Die Sensoreinrichtung kann dabei eine Vielzahl an Sensoren umfassen, beispielweise LiDAR-, Ultraschall-, Radar-, Infrarot- und / oder CMOS-Sensoren oder 2D- / 3D-Kamerasysteme.
  • Weiterhin weist der Roboter eine Lagereinrichtung auf, welche dazu ausgebildet ist, mehrere Reinigungsroboter während des Betriebs des Roboters zu lagern. Die Lagereinrichtung ermöglicht einerseits einen sicheren Transport der selbstfahrenden Reinigungsroboter und andererseits werden die Reinigungsroboter durch die Lagereinrichtung vor äußeren Beschädigungen oder Diebstahl geschützt. Die Lagereinrichtung umfasst Aufnahmeelemente, welche zur Aufnahme und Sicherung der selbstfahrenden Reinigungsroboter ausgebildet sind. In einer bevorzugten Ausführungsform sind die Aufnahmeelemente dazu ausgebildet eine form- und/oder kraftschlüssige Fixierung der selbstfahrenden Reinigungsroboter zu bewirken.
  • Erfindungsgemäß ist die Bewegungseinrichtung des Roboters so ausgebildet, dass die Bewegungseinrichtung einen selbstfahrenden Reinigungsroboter von der Bodenfläche aufnehmen kann und in die Lagereinrichtung des Roboters einstellen kann. Hierbei ist eine Ausführungsform denkbar, bei welcher ein selbstfahrende Reinigungsroboter selbstständig ein Aufnahmeelement der Lagereinrichtung befahren kann und das Aufnahmeelement samt selbstfahrenden Reinigungsroboter dann anschließend von der Bewegungseinrichtung von einer Aufnahmeposition in eine Transportposition verbracht wird. In einer alternativen Ausführungsform werden selbstfahrende Reinigungsroboter durch ein Fixierelement der Bewegungseinrichtung form- und/oder kraftschlüssig fixiert und anschließend in eine Lagereinrichtung des Roboters bewegt.
  • Zudem ist es bevorzugt, dass die Bewegungseinrichtung so ausgebildet ist, dass die Bewegungseinrichtung einen selbstfahrenden Reinigungsroboter aus der Lagereinrichtung aufnehmen kann und auf der Bodenfläche abstellen kann. In einer bevorzugten Ausführungsform bewegt die Bewegungseinrichtung das Aufnahmeelement mit einem selbstfahrenden Reinigungsroboter von einer Transportposition in eine Abgabeposition. Sobald sich das Aufnahmeelement in der Abgabeposition befindet, fährt der selbstfahrende Reinigungsroboter autonom aus dem Aufnahmeelement auf die Bodenfläche. In einer alternativen Ausführungsform ist es denkbar, dass ein selbstfahrender Reinigungsroboter in der Lagereinrichtung des Roboters durch ein Fixierelement der Bewegungseinrichtung form- und/oder kraftschlüssig fixiert wird und anschließend aus der Lagereinrichtung entnommen und auf der Bodenfläche abgestellt wird. Sobald ein selbstfahrender Reinigungsroboter durch die Bewegungseinrichtung auf der Bodenfläche abgestellt ist, wird die form- und/oder kraftschlüssige Fixierung des Fixierelementes gelöst.
  • Die automatische Aufnahme und Abgabe von selbstfahrenden Reinigungsrobotern durch die Bewegungseinrichtung des Roboters ist eine wichtige Voraussetzung für dessen autonomen Reinigungsbetrieb. Dies ermöglicht eine gezielte Abgabe und Aufnahme von selbstfahrenden Reinigungsrobotern durch den Roboter in Abhängigkeit von einem vorliegenden Reinigungsszenario. Der Roboter ist hierdurch in der Lage eine erforderliche Anzahl oder Art von selbstfahrenden Reinigungsrobotern selbstständig auf einer Bodenfläche abzusetzen. Nach abgeschlossener Reinigung der Bodenfläche und/oder in Abhängigkeit von einem Betriebsparameter eines selbstfahrenden Reinigungsroboters können diese vom Roboter wiederaufgenommen werden.
  • Weiterhin ist es bevorzugt, dass die Bewegungseinrichtung als Aufzugseinrichtung ausgeführt ist, wobei die Aufzugseinrichtung die selbstfahrenden Reinigungsroboter zwischen der Lagereinrichtung des Roboters und der Bodenfläche bewegt. In einer bevorzugten Ausführungsform bewegt die Aufzugseinrichtung die Aufnahmeelemente des Roboters zwischen der Lagereinrichtung und einer Bodenfläche. In einer weiteren bevorzugten Ausführungsform ist die Aufzugseinrichtung auch dazu ausgebildet, die Aufnahmeelemente zwischen verschiedenen Positionen in der Lagereinrichtung des Roboters zu bewegen. Dabei wird die Aufzugeinrichtung über eine Antriebseinrichtung, insbesondere bevorzugt über einen Linearantrieb, angetrieben. Eine Aufzugeinrichtung stellt eine besonders zuverlässige Art der Bewegungseinrichtung dar.
  • Es ist bevorzugt, dass der Roboter eine Navigationseinrichtung zum autonomen Verfahren über die Bodenfläche aufweist, wobei die Navigationseinrichtung dazu ausgebildet ist, eine Karte der Umgebung zu erstellen und den Roboter anhand der Karte über die Bodenfläche zu navigieren. Die Navigationseinrichtung ist dazu ausgebildet, die Informationen der Sensoreinrichtung über die Umgebung des Roboters zu einer Karte der Umgebung des Roboters weiterzuverarbeiten. Bei der von der Navigationseinrichtung erstellten Karte kann es sich beispielweise um eine topologische oder metrische Karte handeln, in welcher die Raumbegrenzungen der zu bearbeitenden Bodenfläche und sämtliche Objekte auf der Bodenfläche eingezeichnet sind. Zusätzlich können auf der Karte beispielsweise Bodenbelagstypen, Verschmutzungsgrade oder Bearbeitungszustände von Bodenflächen eingezeichnet sein. Weiterhin können in der Karte Sperrflächen eingezeichnet sein, welche vom Roboter und/oder den selbstfahrenden Reinigungsrobotern nicht befahren werden sollen. Die von der Navigationseinrichtung erstellte Karte kann durch einen Benutzer über ein roboterinternes oder roboterexternes Eingabemodul bearbeitet werden.
  • In einer bevorzugten Ausführungsform ist die Navigationseinrichtung dazu ausgebildet, Sensorinformationen über die Umgebung, welche durch die Sensoreinrichtung eines selbstfahrenden Reinigungsroboters gesammelt wurde, in die bestehende Karte zu integrieren oder die bestehende Karte zu erweitern.
  • Mittels der Karte und den Informationen der Sensoreinrichtung ermittelt die Navigationseinrichtung einen Bewegungspfad für den Roboter und/oder die selbstfahrenden Reinigungsroboter. Zudem ist die Navigationseinrichtung dazu ausgebildet mittels der Karte und den Informationen der Sensoreinrichtung eine Lokalisation des Roboters und/oder der selbstfahrenden Reinigungsroboter in der Karte kontinuierlich vorzunehmen. Die Navigationseinrichtung ermöglicht einen autonomen Betrieb des Roboters.
  • In einer alternativen Ausführungsform ist es bevorzugt, dass der Roboter eine Steuerungseinrichtung aufweist, welche dazu ausgebildet ist, Reinigungspläne für eine kartierte Umgebung zu erstellen und zu verwalten. Die Steuereinrichtung ist dazu ausgebildet festzulegen, welche Bodenbereiche von welchen selbstfahrenden Reinigungsrobotern bearbeitet werden sollen. Hierbei ist es denkbar, dass Bodenbereiche mit einem textilen Bodenbelag ausschließlich von Saugrobotern bearbeitet werden und Bodenbereiche mit einem nicht-textilen Bodenbelag ausschließlich von Wischrobotern bearbeitet werden. In einer weiteren bevorzugten Ausführungsform ist die Steuereinrichtung dazu ausgebildet festzulegen, wann ein Bodenbereich von einem selbstfahrenden Reinigungsroboter bearbeitet werden soll. Hierbei ist es denkbar, dass ein Bodenbereich nur zu bestimmten Zeitpunkten durch einen selbstfahrenden Reinigungsroboter bearbeitet wird. Insbesondere bevorzugt ist hierbei die Implementierung einer Kalenderfunktion in der Steuereinrichtung, welche vorsieht, dass ein bestimmter Bodenbereich beispielweise nur an den Wochentagen Dienstag oder Freitag bearbeitet wird. Alternativ wäre auch denkbar eine Bearbeitung durch einen selbstfahrenden Reinigungsroboter beispielsweise nur Werktags in einem Zeitfenster zwischen 19 und 22 Uhr vorzusehen.
  • In einer weiteren bevorzugten Ausführungsform ist die Steuereinrichtung dazu ausgebildet festzulegen, in welcher Reihenfolge ein Bodenbereich durch mehrere selbstfahrende Reinigungsroboter bearbeitet werden soll. Hierbei ist es denkbar einen Bodenbereich nacheinander durch mehrere Reinigungsroboter gleichen und/oder unterschiedlichen Typs zu bearbeiten. Hierdurch kann eine Bodenfläche beispielweise durch zwei Saugroboter nacheinander abgesaugt werden. Auf diese Weise wird eine besonders gründliche Absaugung der Bodenfläche erreicht. In einer weiteren Ausführungsform wird eine Bodenfläche zunächst durch einen Saugroboter und anschließend durch einen Wischroboter bearbeitet. In einer weiteren Ausführungsform wäre es zudem denkbar, eine Bodenfläche zunächst durch mehrere Saugroboter und anschließend durch mehrere Wischroboter bearbeiten zu lassen. Über die Koordination der Reinigungsaktivität der selbstfahrenden Reinigungsroboter mittels der Steuereinrichtung lässt sich die Reinigungsleistung für einzelne Bodenbereiche skalieren.
  • Bevorzugt ist, dass der Roboter ein Kommunikationssystem zum Datenaustausch mit selbstfahrenden Reinigungsrobotern aufweist. Das Kommunikationssystem des Roboters ist in einer bevorzugten Ausführungsform zur kabellosen Datenübertragung ausgebildet. Als Kommunikationssystem insbesondere bevorzugt sind dabei eine WLAN-, Bluetooth- oder ZigBee-Modul. In einer weiteren Ausführungsform kann das Kommunikationssystem dazu ausgeführt sein, Daten mit einem externen Modul auszutauschen, welche zur Steuerung und/oder Überwachung eingesetzt wird. Bei einem solchen externen Bedienelement kann es sich beispielweise um einen Personal Computer, ein Smartphone / eine Smartwatch oder ein Tablet handeln.
  • Zudem ist es bevorzugt, dass das Kommunikationssystem dazu ausgebildet ist, Betriebsparameter von selbstfahrenden Reinigungsrobotern zu empfangen. Als Betriebsparameter der selbstfahrenden Reinigungsroboter kommt dabei beispielweise eine aktuelle Kapazität der Energiespeichereinheiten, aktuelle Füllstände von Fluidspeichern oder Staubboxen oder das Vorliegen einer Fehlermeldung in Frage. In einer weiteren Ausführungsform wäre es denkbar, dass selbstfahrende Reinigungsroboter einen Verschmutzungs- oder Abnutzungsgrad eigener Reinigungskomponenten an den Roboter senden. Das Senden von Betriebsparametern der selbstfahrenden Reinigungsroboter an den Roboter schafft die Voraussetzung dafür, dass die Steuereinrichtung des Roboters im Zuge der weiteren Reinigungsplanung die aktuellen Betriebsparameter der selbstfahrenden Reinigungsroboter berücksichtigen kann. Die Steuereinrichtung weiß dadurch beispielweise welche Reinigungsroboter, eine geringe verbleibende Kapazität der Energiespeichereinheiten aufweist und für weiteren Reinigungsfahrten erst nach einer Ladephase zur Verfügung steht.
  • Es ist bevorzugt, dass das Kommunikationssystem dazu ausgebildet ist, Karteninformationen mit selbstfahrenden Reinigungsrobotern auszutauschen. In einer bevorzugten Ausführungsform ist das Kommunikationssystem dazu ausgebildet, Karteninformationen vom Roboter an die selbstfahrenden Reinigungsroboter zu senden und/oder Karteninformationen von den selbstfahrenden Reinigungsrobotern an den Roboter zu senden. Bei einer Karteninformation kann es sich um eine Karte eines Teilbereiches einer Arbeitsumgebung als auch um Sensorinformationen zu einem Teilbereich einer Arbeitsumgebung handeln. Der Austausch von Karteninformationen zwischen Roboter und selbstfahrenden Reinigungsrobotern ermöglicht den Aufbau einer konsistenten Gesamtkarte einer Arbeitsumgebung. Darüber hinaus lassen sich hierdurch zeitintensive und redundante Erkundungsfahrten für bereits kartierte Arbeitsumgebungen einsparen.
  • Weiterhin ist es bevorzugt, dass das Kommunikationssystem dazu ausgebildet ist, Arbeitsaufträge an selbstfahrende Reinigungsroboter zu senden. In einer bevorzugten Ausführungsform umfassen Arbeitsaufträge einen Teilbereich der Umgebung, einen Reinigungspfad, einen Reinigungsmodus und/oder eine Reinigungsdauer. In einer weiteren Ausführungsform ist das Kommunikationssystem dazu ausgebildet, Statusmeldungen der selbstfahrenden Reinigungsroboter zu empfangen, wobei die Statusmeldungen Informationen zu einem aktuellen Bearbeitungsstand der Arbeitsaufträge enthalten.
  • Zudem ist es bevorzugt, dass der Roboter eine Ladevorrichtung zum Laden einer Energiespeichereinrichtung der selbstfahrenden Reinigungsroboter in der Lagereinrichtung aufweist. In einer bevorzugten Ausführungsform weist die Lagereinrichtung einen Ladekontakt auf, welcher mit einem korrespondierenden Kontakt am selbstfahrenden Reinigungsroboter in Verbindung gebracht wird, wenn der selbstfahrenden Reinigungsroboter in der Lagereinrichtung angeordnet ist. Über die in Verbindung stehenden Ladekontakte wird eine Aufladung der Energiespeichereinheit des selbstfahrenden Reinigungsroboters bewirkt, wenn dieser in der Lagereinrichtung des Roboters angeordnet ist. In einer weiteren alternativen Ausführungsform weist die Lagereinrichtung eine Ladevorrichtung auf, welche eine berührungslose Aufladung der Energiespeichereinheit eines selbstfahrenden Reinigungsroboters bewirkt. Über die Ladevorrichtung des Roboters wird die autonome Flächenreinigungsleistung des Roboters gesteigert. Darüber hinaus entfällt ein manuell initiiertes Laden jedes einzelnen selbstfahrenden Reinigungsroboters.
  • In einer alternativen Ausführungsform ist es bevorzugt, dass der Roboter eine Energiespeichereinheit aufweist, welche dazu ausgebildet ist den Roboter und die selbstfahrenden Reinigungsroboter mit elektrischer Energie zu versorgen. Das heißt die Energiespeichereinheit ist dazu ausgelegt, sämtliche Komponenten des Roboters als auch die Energiespeichereinheiten der selbstfahrenden Reinigungsroboter mit elektrischer Energie versorgen. Zum Aufladen der Energiespeichereinheit verfügt der Roboter über einen Netzanschluss. In einer weiteren Ausführungsform ist die Energiespeichereinheit des Roboter entnehmbar in dessen Gehäuse angeordnet. Die Energiespeichereinheit des Roboters ermöglicht einen Reinigungsbetrieb, welcher weitestgehend autark von bestehenden Anschlüssen an Stromversorgungsnetz ist. Darüber hinaus erhöht der Wegfall eines sonst erforderlichen Netzanschlusskabels den Mobilitätsgrad des Roboters.
  • Es ist zudem bevorzugt, dass der Roboter eine Reinigungseinrichtung zur Reinigung der selbstfahrenden Reinigungsroboter in den Lagerplätzen aufweist. Die Reinigungseinrichtung ist dazu ausgebildet selbstfahrende Reinigungsroboter von Verschmutzungen zu befreien, welche aus deren Reinigungsbetrieb resultieren. Dabei kann es sich um oberflächliche Verschmutzungen der Gehäuse von selbstfahrenden Reinigungsrobotern handeln, wie beispielweise aufliegende Staub- und Schmutzpartikel oder Reinigungs- und Schmutzfluide. Darüber hinaus kann die Reinigungseinrichtung dazu ausgebildet sein, gezielt die Sensorik der selbstfahrenden Reinigungsroboter von Verschmutzungen zu reinigen. Zudem kann die Reinigungseinrichtung dazu ausgebildet sein, die Reinigungselemente der selbstfahrenden Reinigungsroboter zu reinigen. Besonders bevorzugt können dabei die Borstenwalzen von Saugrobotern von aufgewickelten Fasern, Haaren und Fäden befreit werden. Weiterhin ist es besonders bevorzugt die Wischelemente von Wischrobotern von aufgenommenen Schmutzpartikeln zu befreien. Durch die Reinigungseinrichtung zur Reinigung der selbstfahrenden Reinigungsroboter wird die Reinigungsleistung des Roboters verbessert. Verschmutzungen der Reinigungsroboter, welche in einem Reinigungsszenario aufgetreten sind, werden autonom vom Roboter entfernt und dadurch nicht in ein nachfolgendes Reinigungsszenario übertragen. Zudem reduziert die Reinigungseinrichtung den Wartungsaufwand des Roboters, da der Aufwand zur Entnahme, Kontrolle und manuellen Reinigung der selbstfahrenden Reinigungsroboter im Roboter reduziert wird.
  • Weiterhin ist es bevorzugt, dass der Roboter eine erste Speichereinrichtung zum Speichern eines Reinigungsfluids aufweist, wobei der Roboter dazu ausgebildet ist, selbstfahrende Reinigungsroboter in der Lagereinrichtung mit Reinigungsfluid zu befüllen. Als Reinigungsfluid kommt dabei insbesondere Wasser und/oder Reinigungsmittel in Frage. Über die erste Speichereinrichtung kann der Roboter insbesondere Wischroboter, welche in der Lagereinrichtung angeordnet sind, mit Reinigungsfluid befüllen. In einer bevorzugten Ausführungsform weist der Roboter hierfür ein Pumpenelement auf, welches zur Befüllung der selbstfahrenden Reinigungsroboter mit Reinigungsfluid ausgebildet ist. In einer alternativen Ausführungsform erfolgt die Befüllung der selbstfahrenden Reinigungsroboter mit Reinigungsfluid ausschließlich über Gravitationseinfluss. Dadurch steigert die erste Speichereinrichtung mit Reinigungsfluid, die autonome Reinigungsflächenleistung des Roboters.
  • Bevorzugt ist es, dass der Roboter eine zweite Speichereinrichtung zum Speichern von Staubund Schmutzpartikeln aufweist, wobei der Roboter dazu ausgebildet ist, Staub- und Schmutzpartikel aus den selbstfahrenden Reinigungsrobotern aufzunehmen und in der zweiten Speichereinrichtung zu speichern. Die Entnahme von Staub- und Schmutzpartikeln aus den selbstfahrenden Reinigungsrobotern erfolgt, wenn diese in der Lagereinrichtung des Roboters angeordnet sind. In einer bevorzugten Ausführungsform entnimmt der Roboter Staub- und Schmutzpartikel aus den selbstfahrenden Reinigungsrobotern über einen Saugluftstrom, welcher vom Gebläse des jeweiligen selbstfahrenden Saugroboter erzeugt wird. In einer alternativen Ausführungsform weist der Roboter ein Gebläse auf, welches einen Saugluftstrom erzeugt mittels dem Staub- und Schmutzpartikel aus selbstfahrenden Reinigungsrobotern entnommen wird. In einer weiteren bevorzugten Ausführungsform ist in der zweiten Speichereinrichtung eine Kompressionseinrichtung angeordnet, welche den Inhalt der zweiten Speichereinrichtung verdichtet. Die Entnahme von Staub- und Schmutzpartikeln aus selbstfahrenden Reinigungsrobotern und die Speicherung in der zweiten Speichereinrichtung erhöht die autonome Reinigungsflächenleistung des Roboters. Dieser kann dadurch größere und/oder stärker verschmutzte Flächenbereiche reinigen ohne dass ein manueller Wartungseingriff durch einen Benutzer erforderlich wird.
  • Zudem ist es bevorzugt, dass der Roboter eine dritte Speichereinrichtung zum Speichern eines Schmutzfluids aufweist, wobei der Roboter dazu ausgebildet ist das Schmutzfluid aus dem selbstfahrenden Reinigungsroboter aufzunehmen und in der dritten Speichereinrichtung zu speichern. Als Schmutzfluid kommt dabei insbesondere mit Reinigungsmittel und Schmutzpartikel vermengtes Reinigungsfluid in Frage. In einer bevorzugten Ausführungsform erfolgt die Entnahme des Schmutzfluid aus den selbstfahrenden Reinigungsroboter über ein Pumpenelement, welches im Roboter angeordnet ist. In einer alternativen Ausführungsform erfolgt die Entnahme des Schmutzfluid aus dem selbstfahrenden Reinigungsroboter ausschließlich unter Gravitationseinfluss. Über die dritte Speichereinrichtung kann der Roboter insbesondere aus Wischrobotern, welche in der Lagereinrichtung angeordnet sind, Schmutzfluid entnehmen. Dadurch steigert die dritte Speichereinrichtung die autonome Reinigungsflächenleistung des Roboters.
  • Weiterhin ist es denkbar eine Service-Station für den Roboter zum Transport von selbstfahrenden Reinigungsrobotern vorzusehen. An dieser Service-Station würde die Energiespeichereinheit des Roboters mit elektrischer Energie aufgeladen. Zusätzlich würden an der Service-Station die Speichereinrichtungen des Roboters neu befüllt beziehungsweise entleert.
  • Ein Ausführungsbeispiel der Erfindung ist in den Zeichnungen rein schematisch dargestellt und wird nachfolgend näher beschrieben. Es zeigen:
  • Figur 1
    Schematische Seitenansicht eines Roboters zum Transport von selbstfahrenden Reinigungsrobotern;
    Figur 2
    Querschnitt eines Roboters zum Transport von selbstfahrenden Reinigungsrobotern;
    Figur 3
    Querschnitt eines Roboters mit Paternoster-Aufzugseinrichtung;
    Figur 4
    Querschnitt eines Roboters mit Aufzugseinrichtung.
  • Figur 1 zeigt eine schematische Seitenansicht eines Roboters 10 zum Transport von selbstfahrenden Reinigungsrobotern 12. Auf der Unterseite des Gerätekorpus 30 des Roboters 10 sind die Räder einer Antriebseinrichtung 14 angeordnet, mit welchen sich der Roboter 10 über eine Bodenfläche bewegt. Der Gerätekorpus 30 bildet im Inneren eine Lagereinrichtung 16 aus, in welcher zehn selbstfahrende Reinigungsroboter 12 angeordnet sind. Die Reinigungsroboter 12 sind dabei übereinander in der Lagereinrichtung 16 des Roboters 10 angeordnet. In seitlichen Aufnahmen des Gerätekorpus 30 des Roboters 10 sind vier Speichereinrichtungen 24, 26, 28 angeordnet. Die Speichereinrichtung 24, 26, 28 sind aus dem Gerätekorpus 30 entnehmbar. Die vier Speichereinrichtungen 24, 26, 28 sind zur Bevorratung von Staub- und Schmutzpartikeln, von Frischwasser, von Schmutzwasser und von Reinigungsmitteln ausgebildet. Über diese vier Speichereinrichtungen 24, 26, 28 können die selbstfahrenden Reinigungsroboter 12 mit Frischwasser und Reinigungsmitteln befüllt werden oder gespeicherten Staub- und Schmutzpartikeln oder Schmutzwasser entleert werden.
  • Figur 2 zeigt einen schematischen Querschnitt eines Roboters 10 zum Transport von selbstfahrenden Reinigungsrobotern 12. In dieser Ansicht sind keine selbstfahrenden Reinigungsroboter 12 in der Lagereinrichtung 16 des Roboters 10 angeordnet. Seitlich am Gerätekorpus 30 des Roboters 10 ist eine entnehmbare Speichereinrichtung 24, 26, 28 angeordnet.
  • Im Gerätekorpus 30 ist eine Lagervorrichtung 16 für selbstfahrende Reinigungsroboter 12 angeordnet. Diese Lagervorrichtung 16 umfasst eine Bewegungseinrichtung 18, welche durch zwei seitlich angeordnete Hebeelemente 32 gebildet wird. Die beiden Hebeelemente 32 sind an zwei gegenüberliegenden Ende des Gerätekorpus 30 in diesem angeordnet. Die Hebeelemente 32 bilden dabei korrespondierende Fixierelemente 34 aus, welche gemeinsam eine formschlüssige Aufnahme eines selbstfahrenden Reinigungsroboters 12 bewirken. Zur Aufnahme eines Reinigungsroboters 12 fährt dieser selbstständig in den Gerätekorpus 30 des Roboters 10 ein. Durch das Einfahren entsteht eine formschlüssige Verbindung zwischen den selbstfahrenden Reinigungsroboter 12 und zwei korrespondierenden Fixierelementen 34 der Hebeelemente 32. Nach erfolgter Aufnahme des selbstfahrenden Reinigungsroboters 12 kann dieser über die Hebeelemente 32 der Bewegungseinrichtung 18 im Gerätekorpus 30 des Roboters 10 nach oben bewegt werden. Unterhalb des angehobenen Reinigungsroboters 12 kann anschließend ein weiterer Reinigungsroboter 12 den Roboter 10 befahren und durch die Lagereinrichtung 16 des Roboters 10 aufgenommen werden. Die Lagereinrichtung 16 ist dazu ausgebildet acht Reinigungsroboter 12 aufzunehmen.
  • An der ersten Position 36 der Lagervorrichtung 16, welche durch einen Reinigungsroboter 12 selbstständig befahren werden kann, verfügt die Lagervorrichtung 16 über vier Versorgungsanschlüsse 38. Über den ersten Versorgungsanschluss 38 kann die Staubbox eines Saugroboters 12 entleert werde. Über den zweiten Versorgunganschluss 38 kann der Schmutzwassertank eines Wischroboters entleert werden. Über den dritten Versorgungsanschluss 38 kann der Frischwassertank eines Wischroboters mit Frischwasser befüllt werden. Über den vierten Versorgungsanschluss 38 kann der Reinigungsmitteltank eines Wischroboters mit Reinigungsmittel befüllt werden. An den oberen Positionen 40 der Lagervorrichtung 16, welche sich oberhalb der ersten Position 36 im Gerätekorpus 30 des Roboters 10 befinden, verfügt die Lagervorrichtung 16 über Ladekontakte 42. Befindet sich ein selbstfahrender Reinigungsroboter 12 in einer dieser oberen Positionen 40 der Lagervorrichtung 16, wird dessen Energiespeicher über die Ladekontakte 42 des Roboters 10 aufgeladen. Die Ladekontakte 42 sind ein Teil der Ladevorrichtung 22 des Roboters 10.
  • Figur 3 zeigt einen schematischen Querschnitt eines Roboters 10 mit einer alternativen Aufzugseinrichtung 20. In dieser Ausführungsform ist die Aufzugseinrichtung 20 des Roboters 10 als Paternoster-Aufzug ausgeführt. Dabei weist die Aufzugseinrichtung 20 mehrere Aufnahmeelemente 44 auf, welche entlang einer weitestgehend rechtecksförmigen Umlaufbahn bewegt werden. Die Umlaufbahn weist zwei Längsseiten auf, an welchen die Aufnahmeelemente im Gerätekorpus aufwärts und abwärts bewegt werden. An den Enden der Längsseiten sind diese über Umsetzelemente miteinander verbunden. Über die Umsetzelemente werden die Aufnahmeelemente zwischen den beiden Längsseiten bewegt. Befindet sich ein Aufnahmeelement am unteren Umsetzelement, kann das Aufnahmeelement durch einen selbstfahrenden Reinigungsroboter befahren werden. An diesem unteren Umsetzelement bildet die Lagereinrichtung Versorgungsanschlüsse aus, mit welchen ein Reinigungsroboter im Aufnahmeelement beispielweise mit Frischwasser und / oder Reinigungsmittel versorgt werden kann und von aufgesammelten Staubpartikeln oder Schmutzwasser entleert werden kann. An den oberen Positionen der Lagereinrichtung weist diese Ladekontakte auf, über welche die Energiespeichereinheiten der selbstfahrenden Reinigungsroboter mit elektrischer Energie versorgt werden können.
  • Figur 4 zeigt einen schematischen Querschnitt eines Roboters 10 mit einer weiteren alternativen Aufzugseinrichtung 20. In dieser Ausführungsform ist die Aufzugseinrichtung 20 des Roboters 10 als Lift-Aufzug ausgeführt. Die Aufzugeinrichtung 20 weist dabei ein vertikal bewegliches Aufnahmeelement 44 auf, welches zwischen einer unteren Position 36 und oberen Positionen 40 beweglich ist. In der unteren Position 36 kann das Aufnahmeelement 44 durch einen selbstfahrenden Reinigungsroboter 12 eigenständig befahren werden. Die Aufzugeinrichtung 20 kann das Aufnahmeelement 44 mitsamt einem Reinigungsroboter 12 in eine obere Position 40 bewegen. Die Lagereinrichtung 16 des Roboters 10 weist mehrere Lagerzellen 46 für Reinigungsroboter 12 auf, welche übereinander im Gerätekorpus 30 des Roboters 10 angeordnet sind. Die Aufzugeinrichtung 20 ist dazu ausgebildet, das Aufnahmeelement 44 mitsamt einem Roboter 10 auf eine identische Höhe mit einer Lagerzelle 46 der Lagereinrichtung 16 zu bewegen. Anschließend kann der Reinigungsroboter 12 selbstständig aus dem Aufnahmeelement 44 in die Lagerzelle 46 ein- und ausfahren. In einer alternativen Ausführungsform weist das Aufnahmeelement 44 ein Transportelement auf. Das Transportelement bewirkt eine horizontale Bewegung des Reinigungsroboters 12 zwischen dem Aufnahmeelement 44 und einer korrespondierenden Lagerzelle 46. Auf diese Weise werden Reinigungsroboter 12 durch das Transportelement aus dem Aufnahmeelement 44 in eine Lagerzelle 46 und aus der Lagezelle 46 in ein Aufnahmeelement 44 bewegt.
  • Die Lagerzellen 46 weisen jeweils einen Ladekontakt 42 auf. Ist ein selbstfahrender Reinigungsroboter 12 in einer Lagezelle 46 angeordnet, wird über den Ladekontakt 42 der Energiespeicher des selbstfahrenden Reinigungsgerätes 12 mit elektrischer Energie aufgeladen. In der unteren Position des Aufnahmeelementes bildet das Gerätegehäuse 30 Versorgungsanschlüsse 38 aus. Über die Versorgungsanschlüsse 38 kann ein Reinigungsroboter 12 im Aufnahmeelement 44 beispielweise mit Frischwasser und / oder Reinigungsmittel versorgt werden und von aufgesammelten Staubpartikeln oder Schmutzwasser entleert werden.
  • Bezugszeichenliste
  • 10
    Roboter
    12
    Selbstfahrender Reinigungsroboter
    14
    Antriebseinrichtung
    16
    Lagereinrichtung
    18
    Bewegungseinrichtung
    20
    Aufzugseinrichtung
    22
    Ladevorrichtung
    24
    Erste Speichereinrichtung
    26
    Zweite Speichereinrichtung
    28
    Dritte Speichereinrichtung
    30
    Gerätekorpus
    32
    Hebelelemente
    34
    Fixierelemente
    36
    Erste Position Lagereinrichtung
    38
    Versorgungsanschlüsse
    40
    Obere Position Lagereinrichtung
    42
    Ladekontakte
    44
    Aufnahmeelement
    46
    Lagerzellen

Claims (15)

  1. Roboter (10) zum Transport von selbstfahrenden Reinigungsrobotern (12) mit einer Antriebseinrichtung (14) zum autonomen Verfahren über eine Bodenfläche, wobei der Roboter (10) eine Sensoreinrichtung zum Erfassen seiner Umgebung aufweist, wobei der Roboter (10) eine Lagereinrichtung (16) für selbstfahrende Reinigungsroboter (12) aufweist, wobei der Roboter (10) eine Bewegungseinrichtung (18) zum Bewegen von selbstfahrenden Reinigungsroboter (12) aufweist,
    dadurch gekennzeichnet,
    dass die Bewegungseinrichtung (18) so ausgebildet ist, dass die Bewegungseinrichtung (18) einen selbstfahrenden Reinigungsroboter (12) von der Bodenfläche aufnehmen kann und in die Lagereinrichtung (16) des Roboters (10) einstellen kann.
  2. Roboter (10) nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Bewegungseinrichtung (18) so ausgebildet ist, dass die Bewegungseinrichtung (18) einen selbstfahrenden Reinigungsroboter (12) aus der Lagereinrichtung (16) aufnehmen kann und auf der Bodenfläche abstellen kann.
  3. Roboter (10) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Bewegungseinrichtung (18) als Aufzugseinrichtung (20) ausgeführt ist, wobei die Aufzugseinrichtung (20) die selbstfahrenden Reinigungsroboter (12) zwischen der Lagereinrichtung (16) des Roboters (10) und der Bodenfläche bewegt.
  4. Roboter (10) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Roboter (10) eine Navigationseinrichtung zum autonomen Verfahren über die Bodenfläche aufweist, wobei die Navigationseinrichtung dazu ausgebildet ist, eine Karte der Umgebung zu erstellen und den Roboter (10) anhand der Karte über die Bodenfläche zu navigieren.
  5. Roboter (10) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Roboter (10) eine Steuerungseinrichtung aufweist, welche dazu ausgebildet ist, Reinigungspläne für eine kartierte Umgebung zu erstellen und zu verwalten.
  6. Roboter (10) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Roboter (10) ein Kommunikationssystem zum Datenaustausch mit selbstfahrenden Reinigungsrobotern (12) aufweist.
  7. Roboter (10) nach Anspruch 6,
    dadurch gekennzeichnet,
    dass das Kommunikationssystem dazu ausgebildet ist, Betriebsparameter von selbstfahrenden Reinigungsrobotern (12) zu empfangen.
  8. Roboter (10) nach Anspruch 5 oder 7,
    dadurch gekennzeichnet,
    dass das Kommunikationssystem dazu ausgebildet ist, Karteninformationen mit selbstfahrenden Reinigungsrobotern (12) auszutauschen.
  9. Roboter (10) nach einem der Ansprüche 6 bis 8,
    dadurch gekennzeichnet,
    dass das Kommunikationssystem dazu ausgebildet ist, Arbeitsaufträge an selbstfahrende Reinigungsroboter (12) zu senden.
  10. Roboter (10) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Roboter (10) eine Ladevorrichtung (22) zum Laden einer Energiespeichereinrichtung der selbstfahrenden Reinigungsroboter (12) in der Lagereinrichtung (16) aufweist.
  11. Roboter (10) nach einem der vorgehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Roboter (10) eine Energiespeichereinheit aufweist, welche dazu ausgebildet den Roboter (10) und die selbstfahrenden Reinigungsroboter (12) mit elektrischer Energie zu versorgen.
  12. Roboter (10) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Roboter (10) eine Reinigungseinrichtung zur Reinigung der selbstfahrenden Reinigungsroboter (12) in der Lagereinrichtung (16) aufweist.
  13. Roboter (10) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Roboter (10) eine erste Speichereinrichtung (24) zum Speichern eines Reinigungsfluids aufweist, wobei der Roboter (10) dazu ausgebildet ist, selbstfahrende Reinigungsroboter (12) in der Lagereinrichtung (16) mit Reinigungsfluid zu befüllen.
  14. Roboter (10) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Roboter (10) eine zweite Speichereinrichtung (26) zum Speichern von Staubund Schmutzpartikeln aufweist, wobei der Roboter (10) dazu ausgebildet ist, Staub- und Schmutzpartikel aus den selbstfahrenden Reinigungsrobotern (12) aufzunehmen und in der zweiten Speichereinrichtung (26) zu speichern.
  15. Roboter (10) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Roboter (10) eine dritte Speichereinrichtung (28) zum Speichern eines Schmutzfluids aufweist, wobei der Roboter (10) dazu ausgebildet ist, das Schmutzfluid aus dem selbstfahrenden Reinigungsroboter (12) aufzunehmen und in der dritten Speichereinrichtung (28) zu speichern.
EP20164246.9A 2019-04-24 2020-03-19 Roboter zum transport von selbstfahrenden reinigungsrobotern Active EP3730020B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019110539.0A DE102019110539A1 (de) 2019-04-24 2019-04-24 Roboter zum Transport von selbstfahrenden Reinigungsrobotern

Publications (2)

Publication Number Publication Date
EP3730020A1 true EP3730020A1 (de) 2020-10-28
EP3730020B1 EP3730020B1 (de) 2021-08-11

Family

ID=69903036

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20164246.9A Active EP3730020B1 (de) 2019-04-24 2020-03-19 Roboter zum transport von selbstfahrenden reinigungsrobotern

Country Status (2)

Country Link
EP (1) EP3730020B1 (de)
DE (1) DE102019110539A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220346611A1 (en) * 2021-05-03 2022-11-03 Miele & Cie. Kg Method for bringing cleaning robots into and out of a trolley, and cleaning system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1029365B1 (de) 2021-05-03 2022-12-06 Miele & Cie Verfahren zum Entleeren von Reinigungsrobotern und Reinigungssystem
BE1029361B1 (de) 2021-05-03 2022-12-05 Miele & Cie Wagen und Verfahren zum Ein- und Ausbringen von Reinigungsrobotern in und aus einem Wagen

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018234823A1 (en) 2017-06-22 2018-12-27 The Perfect Little Company Limited TROLLEY FOR ROBOTS
WO2019054129A1 (ja) * 2017-09-13 2019-03-21 学校法人 千葉工業大学 自走式掃除機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018234823A1 (en) 2017-06-22 2018-12-27 The Perfect Little Company Limited TROLLEY FOR ROBOTS
WO2019054129A1 (ja) * 2017-09-13 2019-03-21 学校法人 千葉工業大学 自走式掃除機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220346611A1 (en) * 2021-05-03 2022-11-03 Miele & Cie. Kg Method for bringing cleaning robots into and out of a trolley, and cleaning system

Also Published As

Publication number Publication date
DE102019110539A1 (de) 2020-10-29
EP3730020B1 (de) 2021-08-11

Similar Documents

Publication Publication Date Title
EP3730020B1 (de) Roboter zum transport von selbstfahrenden reinigungsrobotern
EP2982285B1 (de) Bodenreinigungsgerät zur trocken- und feuchtreinigung sowie verfahren zum betrieb eines selbstfahrenden bodenreinigungsgerätes
EP3822730B1 (de) Verfahren zum betreiben eines bodenreinigungsgerätes und bodenreinigungsgerät
EP3581083B1 (de) Reinigungssystem, umfassend versorgungsroboter und reinigungssatelliten, und verfahren zur reinigung
EP2812766B2 (de) Verfahren zum automatischen auslösen einer selbstlokalisierung
EP3569129B1 (de) Verfahren zur bestimmung einer route für eine bodenreinigungsmaschine
EP1967116B2 (de) Verfahren zur Reinigung einer Bodenfläche mittels eines selbstfahrenden Reinigungsgerätes, insbesondere eines Robotsaugers
DE102010000174A1 (de) Verfahren zur Reinigung eines Raumes mittels eines selbsttätig verfahrbaren Reinigungsgerätes
EP3441842B1 (de) Verfahren zum betrieb eines sich selbsttätig fortbewegenden bodenbearbeitungsgerätes
DE102018000083B4 (de) Reinigungsroboter, Reinigungssystem mit Reinigungsroboter und Verfahren zur Reinigung einer Fläche
DE102017113288A1 (de) System mit mindestens zwei Bodenbearbeitungseinrichtungen
DE102016124684A1 (de) Serviceeinrichtung für ein Haushaltsgerät
DE102010017258A1 (de) Basisstation für ein selbsttätig verfahrbares Gerät
DE102010029238A1 (de) Verfahren zur Reinigung einer Bodenfläche, Bodenreinigungsgerät sowie Reinigungssystem
EP3897327A1 (de) Verfahren zum reinigen eines innenraums eines fahrzeugs, mobiler reinigungsroboter, mobile hebevorrichtung und system
DE102016108460A1 (de) Reinigungsroboter und Verfahren zur Steuerung
DE102017208963A1 (de) Eckenreinigungsmodul für modular aufgebaute Reinigungsroboter
WO2019048449A1 (de) Selbstfahrendes und selbstlenkendes bodenreinigungsgerät, bodenreinigungssystem und verfahren zum reinigen einer bodenfläche
DE102017112740A1 (de) Haushaltsgerät zur automatischen Reinigung von Fußböden und Verfahren zur Steuerung eines Haushaltsgeräts
EP3581082B1 (de) Saugroboter und verfahren zur steuerung eines saugroboters
EP3669739B1 (de) Haushaltsroboter und verfahren für seine steuerung
DE102021200757A1 (de) Verfahren für ein Reinigen mit einem Reinigungsroboter und Reinigungsroboter
DE102023205528B3 (de) Verfahren zum Betrieb eines mobilen, selbstfahrenden Geräts an einer Servicestation
BE1028920B1 (de) Verfahren und System zum Reinigen mindestens eines Fahrwegs eines fahrerlosen Transportfahrzeugs
BE1029365B1 (de) Verfahren zum Entleeren von Reinigungsrobotern und Reinigungssystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201026

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210504

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502020000123

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020000123

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: AT

Ref legal event code: REF

Ref document number: 1418501

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20210924

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211111

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211213

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211111

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020000123

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220319

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240331

Year of fee payment: 5

Ref country code: GB

Payment date: 20240319

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20200319

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240306

Year of fee payment: 5

Ref country code: IT

Payment date: 20240321

Year of fee payment: 5

Ref country code: FR

Payment date: 20240326

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811