EP3728432A1 - Verstärktes produkt mit einer zusammensetzung mit einer polysulfidverbindung und reifen mit diesem verstärkten produkt - Google Patents

Verstärktes produkt mit einer zusammensetzung mit einer polysulfidverbindung und reifen mit diesem verstärkten produkt

Info

Publication number
EP3728432A1
EP3728432A1 EP18836486.3A EP18836486A EP3728432A1 EP 3728432 A1 EP3728432 A1 EP 3728432A1 EP 18836486 A EP18836486 A EP 18836486A EP 3728432 A1 EP3728432 A1 EP 3728432A1
Authority
EP
European Patent Office
Prior art keywords
reinforced product
product according
composition
phr
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18836486.3A
Other languages
English (en)
French (fr)
Inventor
Anne-Frédérique SALIT
Sophie GANDER
Anne-Lise THUILLIEZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compagnie Generale des Etablissements Michelin SCA
Original Assignee
Compagnie Generale des Etablissements Michelin SCA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale des Etablissements Michelin SCA filed Critical Compagnie Generale des Etablissements Michelin SCA
Publication of EP3728432A1 publication Critical patent/EP3728432A1/de
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • C08K5/372Sulfides, e.g. R-(S)x-R'
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0041Compositions of the carcass layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C2001/0066Compositions of the belt layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/39Thiocarbamic acids; Derivatives thereof, e.g. dithiocarbamates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • C08K5/46Heterocyclic compounds having sulfur in the ring with oxygen or nitrogen in the ring
    • C08K5/47Thiazoles

Definitions

  • reinforced products or reinforced semi-finished products
  • reinforcement elements or "reinforcements”, metal or textile sheathed with a thermoplastic polymeric composition, said sheathed reinforcements being embedded in a composition of rubber.
  • These reinforced products or reinforced semi-finished products can be used in particular for reinforcing finished articles of rubber such as for example tires for motor vehicles.
  • These reinforced products or reinforced semi-finished products can be used in particular in the carcass reinforcement of the tires, the crown, and in the protection of the reinforcement reinforcement of the crown, also called belts. (“belts”) of these tires.
  • a tire with a radial carcass reinforcement in known manner, comprises a tread, two inextensible beads, two flanks connecting the beads to the tread and a belt circumferentially disposed between the carcass reinforcement and the tread, this belt and the carcass reinforcement being constituted by various plies (or "layers") of rubber reinforced by reinforcing elements or reinforcements such as cords or monofilaments, of the metal or textile type.
  • a tire belt generally consists of at least two superposed belt plies, sometimes called “working” or “crossed” plies, whose reinforcements, textile or metal are arranged substantially parallel to each other at the same time. interior of a web, but crossed from one web to another, that is to say inclined, symmetrically or otherwise, with respect to the median circumferential plane, of an angle which is generally between 10 ° and 45 ° depending on the type of tire considered.
  • Each of these two crossed plies consists of a rubber matrix or "coating gum” or sometimes “calendering gum” coating the reinforcements.
  • the crossed plies may be supplemented by various other plies or layers of auxiliary rubber, of varying widths depending on the case, with or without reinforcements;
  • examples of simple rubber cushions include so-called "protection” plies intended to protect the rest of the belt from external aggression, perforations, or so-called “hooping” plies comprising reinforcements oriented substantially along the circumferential direction (so-called “zero degree” plies), whether radially external or internal with respect to the crossed plies.
  • reinforcement is generally used in the form of steel cords or textile cords. ”) consisting of thin wires assembled together by wiring or twisting.
  • these steel cables or textiles must meet a very large number of technical criteria, sometimes contradictory, such as high compression endurance, high tensile, wear and corrosion resistance, high adhesion to the surrounding rubber, and be able to maintain such performance at a very high level for as long as possible.
  • the adhesion between the cables, in particular metal and the surrounding rubber is therefore a key property for the effectiveness of the reinforced semi-finishes.
  • State of the art is known of coating compositions comprising a diene elastomer, in particular natural rubber, a reinforcing filler, and a very specific vulcanization system for these compositions.
  • This vulcanization system usually comprises sulfur and zinc oxide at high levels, low rate stearic acid, a so-called slow vulcanization accelerator and a vulcanization retarder.
  • the presence of a high level of sulfur has the advantage of allowing the consumption of a portion of this sulfur for the sulphidation of metal cables, especially brass, and the crosslinking of the elastomeric matrix by vulcanization.
  • This specific vulcanization system if it makes it possible to obtain a satisfactory adhesion between the cable and the surrounding rubber composition, constitutes a strong constraint during the manufacture of semi-finished products.
  • the processability, the cooking time or the elongation modulus can be impacted, causing implementation difficulties, an extended preparation time and therefore a greater cost of the reinforced semi-finished products.
  • this specific vulcanization system causes a certain sensitivity to thermooxidation, resulting in a change of mixtures over time, which can lead to cracking of the mixtures.
  • a coating gum based on at least one diene elastomer, a reinforcing filler and a sulfur vulcanization system in which the ratio of the amounts, in phr (parts by weight per hundred parts by weight elastomer), sulfur and reinforcing filler is less than 0.08.
  • the amount of sulfur is 1.6 phr and the amount of carbon black is 47 phr. It is interesting for the manufacturers to have coating gum compositions that can be crosslinked at high temperature, in order to save time in the manufacturing process, without penalizing the adhesion of the coating gum to the reinforcement, such as a sheathed wire, embedded in this coating gum.
  • a reinforced product used in particular for the reinforcement of a finished article of rubber, comprising one or more wire (s) of reinforcement, textile (s) or metal (S), said one or more yarn (s) being covered with a sheath comprising a thermoplastic polymeric composition, the sheathed yarn (s) being themselves embedded in a so-called rubber compound coating composition, characterized in that said coating gum is a composition based on at least one diene elastomer, a reinforcing filler and a polyisulfide compound of general formula (I)
  • a and B together form a covalent bond, or A represents a hydrogen atom and B represents a hydrogen atom or a group -SR I -ZR 2 -SH,
  • n is a number greater than or equal to 1
  • p is a number greater than or equal to 1
  • Z represents a covalent bond or a heteroatom selected from -O-, -Si-, - (S) m - and -N (H) -, wherein m is a number greater than or equal to 1,
  • R1 and R2 represent, independently of one another, identical or different linear or branched divalent hydrocarbon groups having from 1 to 18 carbon atoms.
  • a and B together form a covalent bond it is meant that the sulfur atoms adjacent to A and B respectively are connected directly by a covalent bond.
  • the polysulfurized compound of general formula (I) is cyclic.
  • This invention allows a high temperature crosslinking, and therefore an accelerated production of reinforced products (or semi-finished reinforced), without reducing the adhesion of the coating gum to the reinforcement, such as a sheathed wire, embedded in this coating gum.
  • the invention relates to a reinforced product as defined above in which R1 and R2 represent linear divalent hydrocarbon groups.
  • R1 and R2 represent an alkylene radical having from 1 to 18 carbon atoms. carbon, preferably from 2 to 10 carbon atoms.
  • R 1 and R 2 are identical radicals.
  • the invention relates to a reinforced product as defined above in which n represents a number in a range from 1 to 8, preferably from 1 to 6, more preferably from 1 to 3.
  • the invention relates to a reinforced product as defined above in which p represents a number in a range from 1 to 30, preferably from 1 to 15, more preferably from 1 to 3.
  • the invention relates to a reinforced product as defined above wherein A and B together form a covalent bond.
  • A represents a hydrogen atom and B represents a hydrogen atom or a -S-R1-Z-R2-SH group, preferably B represents a -S-R1-Z-R2-SH group.
  • the invention relates to a reinforced product as defined above wherein Z represents a covalent bond or a heteroatom selected from the group consisting of -Si, - (S) m- and -N (H) -.
  • the invention relates to a reinforced product as defined above in which m is a number in a range from 1 to 8, preferably from 1 to 6.
  • m is a number included in a range ranging from 1 to 3, preferably from 1 to 2.
  • the invention relates to a reinforced product as defined above in which Z represents a covalent bond.
  • Z represents a radical - (S) m-.
  • the invention relates to a reinforced product as defined above in which A and B together form a covalent bond, R1 and R2 are C1-C7 alkylenes, Z is a covalent bond or a group -S- or - SS-, n represents 1 or 3 and p represents 1.
  • the invention relates to a reinforced product as defined above in which A is a hydrogen atom, B represents a group -S-R1-Z-R2-SH; Wherein R 1 and R 2 are C 1 -C 7 alkylenes, Z being a bond or a group -S- or -SS-, where n is 1 or 3 and p is a number within a range of 1 to 30.
  • the invention relates to a reinforced product as defined above in which the polysulfurized compound of general formula (I) is present in the composition of the coating gum at a rate in a range from 0, From 5 to 10 phr, preferably from 0.5 to 5 phr, and more preferably from 0.5 to 3 phr.
  • the invention relates to a reinforced product as defined above wherein the composition of the coating gum comprises a vulcanization accelerator selected from the group consisting of thiazoles, sulfenamides, guanidines, amines, aldehyde amines, dithiophosphates, xanthates, thiurams, dithiocarbamates and mixtures thereof.
  • a vulcanization accelerator selected from the group consisting of thiazoles, sulfenamides, guanidines, amines, aldehyde amines, dithiophosphates, xanthates, thiurams, dithiocarbamates and mixtures thereof.
  • the invention relates to a reinforced product as defined above in which the composition of the coating gum comprises a complementary vulcanization accelerator, different from the preceding accelerator, described above, chosen from the group consisting of diphenyl guanidine (DPG), triphenyl guanidine (TPG), diorthotolyl guanidine (DOTG), o-tolylbiguanide (OTBG), benzothiazole disulfide (MBTS), tetramethylthiuram disulfide (TMTD), disulfide tetrabenzylthiuram (TBzTD), zinc dibenzyldithiocarbamate (ZBEC), zinc N, N'-dimethylcarbamodithioates (ZDMC), zinc N, N'-diethylcarbamodithioates (ZDEC), zinc N, N'-dibutylcarbamodithioates (ZDBC), zinc N, N'-dibenzylcarbamodithioates (ZDPG),
  • the invention relates to a reinforced product as defined above in which the composition of the coating gum does not comprise a vulcanization retarder.
  • the invention relates to a reinforced product as defined above in which the composition of the coating gum does not comprise elemental sulfur or comprises less than 1 phr, preferably less than 0.5 phr. .
  • the invention relates to a reinforced product as defined above in which the composition of the coating gum does not comprise a cobalt salt.
  • the composition of the coating gum does not comprise an adhesion promoter.
  • the invention relates to a reinforced product as defined above in which the diene elastomer of the composition of the coating gum predominantly comprises an elastomer chosen from the group consisting of natural rubber, synthetic polyisoprene or mixture of these.
  • the composition of the The coating gum comprises from 60 to 100 phr, preferably from 70 to 100 phr of an elastomer selected from the group consisting of natural rubber, synthetic polyisoprene or a mixture thereof. More preferably, the composition of the coating gum comprises from 80 to 100 phr, preferably from 90 to 100 phr, of an elastomer chosen from the group consisting of natural rubber, synthetic polyisoprene or a mixture of these.
  • the invention relates to a reinforced product as defined above in which the composition of the coating gum comprises from 20 to 80 phr, preferably from 30 to 70 phr, of reinforcing filler.
  • the composition of the coating gum comprises from 35 to 60 phr, preferably from 40 to 55 phr, of reinforcing filler.
  • the invention relates to a reinforced product as defined above wherein the composition of the coating gum comprises carbon black as the majority filler.
  • the invention relates to a reinforced product as defined above in which the reinforcement son or son are metal son.
  • the invention relates to a reinforced product as defined above in which the sheathed yarn (s) is coated with an adhesive, preferably a Resorcinol-F oraldehyde-based adhesive. Latex.
  • the invention also relates to a tire comprising a reinforced product as defined above, preferably at least in a web chosen from the reinforcement plies of the crown and the carcass plies.
  • the invention relates in particular to tires intended to equip tourism-type motor vehicles, SUVs ("Sport Utility Vehicles"), two wheels (in particular bicycles, motorcycles), planes, such as industrial vehicles chosen from light trucks, "Heavy goods vehicles” means metros, buses, road transport vehicles (trucks, tractors, trailers), off-the-road vehicles such as agricultural or civil engineering machinery, other transport vehicles or handling.
  • SUVs Sport Utility Vehicles
  • the reinforced product of the invention can be used for the manufacture of rubber belts or for conveyor belts such as conveyor belts.
  • pce (usually “phr” in English) means parts by weight per hundred parts of elastomer or rubber (of the total elastomers if several elastomers are present).
  • any range of values designated by the expression "between a and b" represents the range of values from more than a to less than b (i.e. terminals a and b excluded) while any range of values designated by the term “from a to b” means the range from a to b (i.e., including the strict limits a and b).
  • the reinforced product of the invention also known as "reinforced semi-finished", "composite reinforcement” is thus a sheathed reinforcement, that is to say covered with a sheath, then embedded in a so-called coating composition, in rubber, raw or cooked (crosslinked). It has the essential characteristic of comprising at least one (that is to say one or more) reinforcing wire (s), textile (s) or metal (s), and a specific composition called cladding layer or sheath, which covers, individually wraps said wire or collectively several wires, forming a sheathed reinforcement.
  • This sheathed reinforcement is then itself embedded in a rubber composition, called coating composition or coating gum.
  • coating composition or coating gum The structure of this reinforced product of the invention is described in detail below.
  • composition based on is meant a composition comprising the mixture and / or the reaction product in situ of the various basic constituents used, some of these constituents being able to react and / or being intended to react with one another, at least partially, during the various phases of manufacture of the composition, or during subsequent firing, modifying the composition as it was initially prepared.
  • the compositions as implemented for the invention may be different in the uncrosslinked state and in the crosslinked state.
  • a majority compound in the sense of the present invention, it is understood that this compound is predominant among the compounds of the same type in the composition, that is to say that it is the one which represents the largest amount by mass among the compounds of the same type.
  • a majority polymer is the polymer representing the largest mass relative to the total mass of the polymers in the composition.
  • a so-called majority charge is that representing the largest mass among the charges of the composition.
  • a "minor" compound is a compound that does not represent the largest mass fraction among compounds of the same type.
  • the term "reinforcing thread” is generally understood to mean any elongate element of great length relative to its cross section, whatever the shape of the latter, for example circular, oblong, rectangular or square. , or even flat, this wire may be rectilinear as non-rectilinear, for example twisted or corrugated. When it is circular in shape, its diameter is preferably less than 5 mm, more preferably in a range of 0.1 to 2 mm.
  • This reinforcement yarn may take any known form, it may be for example an elementary monofilament of large diameter (for example and preferably equal to or greater than 50 mh), an elementary ribbon, a film, a multifilament fiber (consisting of a plurality of elementary filaments of small diameter, typically less than 30 mhi), a textile twist formed of several fibers twisted together, a textile or metal cable formed of several fibers or monofilaments Wired or twisted together, or an assembly, a row of threads comprising several of these monofilaments, fibers, twisted or ropes grouped together.
  • the filament reinforcement useful for the needs of the invention may therefore be in the form of a single reinforcing thread, covered in its sheath, to form a sheathed unitary composite yarn embedded in the composition of the invention. specific coating of the invention.
  • the filament reinforcement useful for the purposes of the invention may also be in the form of several reinforcing threads (monofilaments, ribbons, films, fibers, twists or cables) grouped together, for example aligned according to a main direction, rectilinear or not. These reinforcing threads are then collectively covered in their sheath and then embedded in the specific coating composition of the invention, to constitute a reinforced product according to the invention, for example a band, strip, a composite rubber fabric of various shapes. such as those usually encountered in the tire structure.
  • a reinforced product according to the invention for example a band, strip, a composite rubber fabric of various shapes. such as those usually encountered in the tire structure.
  • reinforced products in accordance with the invention mention will be made in particular of the fabrics constituting the carcass reinforcement plies, the crown protection plies, the hooping crest plies or the working crown plies present in the belts. tires.
  • the reinforcing wire is a metal reinforcing wire.
  • metal is meant by definition a wire (or monofilament) consisting predominantly (that is to say, for more than 50% of its mass) or integrally (for 100% of its mass) of a metallic material.
  • Each monofilament is preferably made of steel, more preferably of pearlitic (or ferrito-pearlitic) carbon steel hereinafter referred to as "carbon steel", or else of stainless steel (by definition, steel comprising at least 11% chromium and at least minus 50% iron).
  • carbon steel its carbon content (% by weight of steel) is preferably between 0.2% and 0.9%.
  • NT Normal Tensile
  • HT High Tensile
  • Rm tensile strength
  • the reinforcing yarn is a textile yarn, consisting of a synthetic or natural polymeric material, or even a mineral material.
  • reinforcing yarns made of polyvinyl alcohol (PVA), aliphatic polyamide (eg polyamides 4-6, 6, 6-6, 11 or 12), aromatic polyamide (or “aramid”), polyamide-imide, polyimide, polyester (eg PET, PEN), aromatic polyester, polyethylene, polypropylene, polyketone, cellulose, rayon, viscose, polyphenylene benzobisoxazole (PBO), glass, carbon or ceramic.
  • PVA polyvinyl alcohol
  • aliphatic polyamide eg polyamides 4-6, 6, 6-6, 11 or 12
  • aromatic polyamide or "aramid”
  • polyamide-imide polyimide
  • polyester eg PET, PEN
  • aromatic polyester polyethylene, polypropylene, polyketone, cellulose, rayon, viscose, polyphenylene benzobisoxazole (PBO),
  • the wire reinforcement described below includes a sheath, also called sheathing layer.
  • sheath also called sheathing layer.
  • This type of sheath is well known to those skilled in the art.
  • the sheath comprises a thermoplastic polymeric composition.
  • the sheath comprises a single layer of the thermoplastic polymeric composition.
  • the sheath comprises several layers, at least one of which comprises a thermoplastic polymeric composition.
  • thermoplastic polymeric composition a composition comprising at least one polymer having the properties of a thermoplastic polymer.
  • the composition may optionally further include other thermoplastic polymers, elastomers and other non-polymeric components.
  • thermoplastic polymers that are useful in the preparation of the sheath, a thermoplastic polymer preferably selected from the group consisting of polyamides, polyesters and polyimides, more particularly from the group consisting of aliphatic polyamides, and preferably a thermoplastic polymer, will be selected for example and the polyesters.
  • polyesters that may be mentioned for example are PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PBT (polybutylene terephthalate), PBN (polybutylene naphthalate), PPT (polypropylene terephthalate), PPN (polypropylene naphthalate).
  • aliphatic polyamides that may be mentioned in particular are polyamides 4-6, 6, 6-6, 11 or 12.
  • This thermoplastic polymer is preferably an aliphatic polyamide, more preferably a polyamide 6, 6-6 or a polyamide 11.
  • the elastomers that can be used in the thermoplastic composition of the sheath may preferably be of two types: styrenic thermoplastic elastomers and functionalized diene elastomers. These two types of elastomers are described below.
  • Styrenic thermoplastic elastomers are thermoplastic elastomers in the form of styrene-based block copolymers. Of intermediate structure between thermoplastic polymers and elastomers, they consist in a known manner of rigid polystyrene blocks connected by flexible elastomer blocks, for example polybutadiene, polyisoprene or poly (ethylene / butylene).
  • TPS copolymers are generally characterized by the presence of two glass transition peaks, the first peak (the lowest temperature, negative) being relative to the elastomer block of the TPS copolymer, the second peak (highest temperature, positive, typically around 80 ° C or more) being relative to the thermoplastic portion (styrene blocks) of the TPS copolymer.
  • These TPS elastomers are often triblock elastomers with two rigid segments connected by a flexible segment. The rigid and flexible segments can be arranged linearly, star or connected.
  • These TPS elastomers may also be diblock elastomers with a single rigid segment connected to a flexible segment.
  • each of these segments or blocks contains at least more than 5, usually more than 10 base units (e.g., styrene units and isoprene units for a styrene / isoprene / styrene block copolymer).
  • base units e.g., styrene units and isoprene units for a styrene / isoprene / styrene block copolymer.
  • random diene copolymer elastomers such as for example SIR (styrene-isoprene copolymers) or SBR (styrene-butadiene copolymers) which, in a well-known manner, have no thermoplastic character .
  • the TPS useful for preparing the sheath is preferably unsaturated.
  • unsaturated TPS elastomer is defined by definition and well known a TPS elastomer which is provided with ethylenic unsaturations, that is to say which has carbon-carbon double bonds (conjugated or not); conversely, a TPS elastomer said saturated is of course a TPS elastomer which is free of such double bonds.
  • the TPS useful for the preparation of the cladding is functionalized carrying functional groups chosen from epoxide, carboxyl, anhydride or acid ester groups or functional groups.
  • this TPS elastomer is an epoxidized elastomer, that is to say one carrying one or more epoxide groups.
  • the TPS used in the preparation of the sheath is chosen from the group consisting of styrene / butadiene (SB), styrene / isoprene (SI), styrene / butadiene / butylene (SBB), styrene / butadiene / block copolymers.
  • SB styrene / butadiene
  • SI styrene / isoprene
  • SI styrene / butadiene / butylene
  • SBB styrene / butadiene / block copolymers
  • elastomers useful in the preparation of the sheath there will be chosen for example and preferably a functionalized diene elastomer, said elastomer carrying functional groups selected from groups or functions epoxide, carboxyl, anhydride or acid ester.
  • the functional groups are epoxide groups, that is to say that the diene elastomer is an epoxide diene elastomer.
  • poly (p phenylene ether) (or PPE) used for the preparation of the sheath one will choose, for example and preferably a PPE selected from the group consisting of poly (2,6-dimethyl-1,4-phenylene -ether), poly (2,6-dimethyl-2,3,6-trimethyl-1,4-phenylene ether), poly (2,3,6-trimethyl-1,4-phenylene ether) , poly (2,6-diethyl-1,4-phenylene ether), poly (2-methyl-6-ethyl-1,4-phenylene ether), poly (2-methyl-6-propyl) -1,4 phenylene ether), poly (2,6-dipropyl-1,4-phenylene ether), poly (2-ethyl-6-propyl-1,4-phenylene ether), poly (2,6-dilauryl) 1,4-phenylene ether), poly (2,6-diphenyl-1,4-phenylene ether), poly (2,6-dip
  • the EPP used is poly (2,6-dimethyl-1,4-phenylene ether) also sometimes referred to as polyphenylene oxide (or abbreviated as "PPO").
  • PPO polyphenylene oxide
  • Examples of such commercially available EPPs or PPOs are, for example, the PEP under the name “Xyron S202" from Asahi Kasei or the “Noryl SA120” EPP from Sabic.
  • the sheath comprising a thermoplastic polymeric composition as described above may be self-adhering, that is to say that its composition may be such that it has a very good adhesion to the composition surrounding rubber without requiring the use of glue.
  • This type of thermoplastic polymer composition as self-adhering sheath is described in the applications WO2010 / 136389, WO2010 / 105975, WO2011 / 012521, WO2011 / 051204, WO2012 / 016757, WO2012 / 038340, WO2012 / 038341, WO2012 / 069346, WO2012 / 104279. , WO2012 / 104280, WO2012 / 104281, WO2013 / 117474 and WO2013 / 117475.
  • the sheath is coated with an adhesion layer (glue) between the sheath and the elastomer matrix.
  • the adhesive used is for example of the RFL type (Resorcinol-Formaldehyde-Latex) or for example, as described in publications WO2013017421, WO2013017422, WO2013017423.
  • the coating composition of the reinforced product of the invention may contain a single diene elastomer or a mixture of several diene elastomers.
  • elastomer or "rubber”, the two terms being considered synonymous
  • the two terms being considered synonymous
  • one (or several) elastomer derived at least in part ie, a homopolymer or a copolymer of monomers dienes (monomers bearing two carbon-carbon double bonds, conjugated or not).
  • the diene elastomers can be classified into two categories: "essentially unsaturated” or “essentially saturated”.
  • the term "essentially unsaturated” is generally understood to mean a diene elastomer derived at least in part from conjugated diene monomers, having a level of units or units of diene origin (conjugated dienes) which is greater than 15% (mol%);
  • diene elastomers such as butyl rubbers or copolymers of dienes and alpha-olefins of the EPDM type do not fall within the above definition and may in particular be described as "essentially saturated” diene elastomers ( low or very low diene origin, always less than 15%).
  • the term “highly unsaturated” diene elastomer is particularly understood to mean a diene elastomer having a content of units of diene origin (conjugated dienes) which is greater than 50%.
  • iene elastomer can be understood more particularly to be used in the compositions according to the invention:
  • diene elastomer any type of diene elastomer
  • the person skilled in the tire art will understand that the present invention is preferably implemented with essentially unsaturated diene elastomers, in particular of the type (a) or (b). ) above.
  • conjugated dienes 1,3-butadiene, 2-methyl-1,3-butadiene (or isoprene), 2,3-di (C 1 -C 5) alkyl-1,3-butadienes, such as for example 2,3-dimethyl-1,3-butadiene, 2,3-diethyl-1,3-butadiene, 2-methyl-3-ethyl-1,3-butadiene, 2-methyl-3- isopropyl-1,3-butadiene, aryl-1,3-butadiene, 1,3-pentadiene, 2,4-hexadiene.
  • 2,3-di (C 1 -C 5) alkyl-1,3-butadienes such as for example 2,3-dimethyl-1,3-butadiene, 2,3-diethyl-1,3-butadiene, 2-methyl-3-ethyl-1,3-butadiene, 2-methyl-3- isopropyl-1,3-butadiene, aryl
  • Suitable vinylaromatic compounds are, for example, styrene, ortho-, meta-, para-methylstyrene, the commercial mixture "vinyl-toluene", para-tert-butylstyrene, methoxystyrenes, chlorostyrenes, vinylmesitylene, divinylbenzene, vinylnaphthalene.
  • the copolymers may contain between 99% and 20% by weight of diene units and between 1% and 80% by weight of vinylaromatic units.
  • the elastomers may have any microstructure which is a function of the polymerization conditions used, in particular the presence or absence of a modifying and / or randomizing agent and the amounts of modifying and / or randomizing agent used.
  • the elastomers can be for example block, statistical, sequenced, microsequenced, and be prepared in dispersion or in solution; they may be coupled and / or starred or functionalized with a coupling agent and / or starring or functionalization.
  • silanol or polysiloxane functional groups having a silanol end as described, for example, in FR 2,740,778, US 6,013,718 and WO 2008/141702
  • alkoxysilane groups as described for example in FR 2,765,882 or US 5,977,238,
  • carboxylic groups as described for example in WO 01/92402 or US 6,815,473, WO 2004/096865 or US 2006/0089445).
  • elastomers such as SBR, BR, NR or IR
  • functionalized elastomers may be used in a blend with each other or with unfunctionalized elastomers.
  • a functionalized silanol or polysiloxane elastomer having a silanol end, in admixture with a coupled and / or stanned tin elastomer may be used, the latter representing a rate of from 5 to 50 %, for example from 25 to 50%.
  • Tg glass transition temperature Tg, measured according to ASTM D3418
  • styrene content between 5% and 60% by weight and more particularly between 20% and 50%, a content (% molar) in -1,2 bonds of the butadiene part of between 4% and 75%, a content (% molar) in trans-1,4 bonds between 10% and 80%, butadiene-isoprene copolymers and in particular those having an isoprene content of between 5% and 90% by weight and a Tg of -40 ° C to At 80 ° C., the isoprene-styrene copolymers and especially those having a styrene content of between 5% and 50% by weight and a Tg between -5 ° C and -60 ° C.
  • butadiene-styrene-isoprene copolymers those having a styrene content of between 5% and 50% by weight and more particularly between 10% and 40%, an isoprene content of between 15% and 60% by weight and more particularly between 20% and 50%, a butadiene content of between 5% and 50% by weight and more particularly between 20% and 40%, a content (mol%) in units - 1,2 of the butadiene part of between 4% and 85%, a content (mol%) in trans units -1,4 of the butadiene part of between 6% and 80% %, a content (mol%) in -1,2 units plus -3,4 of the isoprene part of between 5% and 70% and a content (mol%) in trans units -1,4 of the isoprene part between 10% and 50%, and more generally any butadiene-styrene-isoprene copolymer having a Tg of between -20 ° C and -70 ° C
  • the diene elastomer of the composition is preferably chosen from the group of highly unsaturated diene elastomers consisting of polybutadienes (abbreviated "BR"), synthetic polyisoprenes (IR), natural rubber (NR), copolymers butadiene, isoprene copolymers and mixtures of these elastomers.
  • BR polybutadienes
  • IR synthetic polyisoprenes
  • NR natural rubber
  • copolymers butadiene butadiene
  • isoprene copolymers and mixtures of these elastomers.
  • Such copolymers are more preferably selected from the group consisting of butadiene-styrene copolymers (SBR), isoprene-butadiene copolymers (BIR), isoprene-styrene copolymers (SIR), isoprene-copolymers of butadiene-styrene (SBIR), butadiene-acrylonitrile copolymers (NBR), butadiene-styrene-acrylonitrile copolymers (NSBR) or a mixture of two or more of these compounds.
  • SBR butadiene-styrene copolymers
  • BIR isoprene-butadiene copolymers
  • SIR isoprene-styrene copolymers
  • NBR butadiene-acrylonitrile copolymers
  • NSBR butadiene-styrene-acrylonitrile copolymers
  • an SBR elastomer In the case of an SBR elastomer (ESBR or SSBR), an SBR having an average styrene content, for example between 20% and 35% by weight, or a high styrene content, for example 35 to 35% by weight, is used in particular. 45%, a vinyl ring content of the butadiene part of between 15% and 70%, a content (mol%) of trans 1,4 bonds of between 15% and 75% and a Tg of between -10 ° C. and 55 ° C; such an SBR can be advantageously used in admixture with a BR preferably having more than 90% (mol%) of 1,4 cis bonds.
  • the diene elastomer is a predominantly isoprene elastomer (that is to say whose mass fraction of isoprene elastomer is the largest, compared to the mass fraction of other elastomers).
  • isoprene elastomer is meant in known manner a homopolymer or copolymer of isoprene, in other words a diene elastomer selected from the group consisting of natural rubber (NR) which can be plasticized or peptized, the polyisoprenes of synthesis (IR), the various isoprene copolymers and the mixtures of these elastomers.
  • isoprene copolymers examples include butyl rubber IIR), isoprene-styrene (SIR), isoprene-butadiene (BIR) or isoprene-butadiene-styrene ( SBIR).
  • This isoprene elastomer is preferably natural rubber or a synthetic cis-1,4 polyisoprene; of these synthetic polyisoprenes, polyisoprenes having a level (mol%) of cis-1,4 bonds greater than 90%, more preferably still greater than 98%, are preferably used.
  • the level of isoprene diene elastomer is more than 50 phr (that is to say 50 to 100 phr), more preferably at least 60 phr (i.e. 60 to 100 phr), more preferably at least 70 phr (i.e. 70 to 100 phr). pce), more preferably still at least 80 phr (that is to say 80 to 100 phr) and very preferably at least 90 phr (that is to say 90 to 100 phr). ).
  • the level of isoprene diene elastomer is very preferably 100 phr.
  • the composition according to the invention comprises a reinforcing filler.
  • a reinforcing filler Any type of reinforcing filler known for its ability to reinforce a rubber composition that can be used for the manufacture of tires, for example an organic filler such as carbon black, a reinforcing inorganic filler such as silica, silica, can be used. alumina, or a blend of these two types of filler.
  • Carbon blacks are suitable for all carbon blacks, especially so-called pneumatic grade blacks.
  • the reinforcing carbon blacks of the 100, 200 or 300 series for example the N115, N134, N234, N326, N330, N339, N347 or N375 blacks, or even targeted applications, blacks of higher series (eg N660, N683, N772).
  • the carbon blacks could for example already be incorporated into an isoprene elastomer in the form of a masterbatch (see for example WO 97/36724 or WO 99/16600).
  • organic fillers other than carbon blacks mention may be made of functionalized polyvinyl organic fillers as described in applications WO-A-2006/069792 and WO-A-2006/069793, WO-A-2008/003434. and WO-A-2008/003435.
  • the composition may contain a type of silica or a blend of several silicas.
  • the silica used may be any reinforcing silica known to those skilled in the art, in particular any precipitated or fumed silica having a BET surface and a CTAB specific surface both less than 450 m 2 / g, preferably from 30 to 400 m 2 / g.
  • HDS highly dispersible precipitated silicas
  • compositions may optionally also contain, in addition to the coupling agents, coupling activators, inorganic charge-covering agents or, more generally, processing aid agents that can be used in a known manner, thanks to an improvement in the dispersion of the filler in the rubber matrix and a lowering of the viscosity of the compositions, to improve their ability to use in the green state, these agents, well known to those skilled in the art, being examples of hydrolysable silanes such as alkylalkoxysilanes, polyols, fatty acids, polyethers, primary, secondary or tertiary amines, hydroxylated or hydrolysable polyorganosiloxanes.
  • these agents well known to those skilled in the art, being examples of hydrolysable silanes such as alkylalkoxysilanes, polyols, fatty acids, polyethers, primary, secondary or tertiary amines, hydroxylated or hydrolysable polyorganosiloxanes.
  • polysulfide silanes called “symmetrical” or “asymmetrical” silanes according to their particular structure, are used, as described, for example, in claims WO 03/002648 (or US 2005/016651) and WO 00/002649 (or US 2005/016650).
  • the physical state under which the reinforcing filler is present is indifferent, whether in the form of powder, microbeads, granules, beads or any other suitable densified form.
  • the content of total reinforcing filler is 20 to 80 phr, more preferably 30 to 70 phr, very preferably 35 to 60 phr, better from 40 to 55 pce.
  • the composition could be less effective in rigidity depending on the desired application while above 80 phr of the load, the composition could be less effective in rolling resistance.
  • majority reinforcing filler is meant that which has the highest rate among the reinforcing fillers present in the composition.
  • major reinforcing filler means any reinforcing filler which represents at least 50% by weight of the reinforcing fillers present, preferably more than 50% and more preferably more than 60%.
  • the composition comprises carbon black as a majority filler, in optional cutting with silica, as a minority filler.
  • the level of black is preferably in a range from 20 to 80 phr, preferably from 30 to 70 phr, more preferably from 35 to 60 phr, more preferably from 40 to 55 phr.
  • the silica content is preferably less than 10 phr, and more preferably 0 phr.
  • the composition comprises silica as a majority filler, optionally in the form of carbon black, as a minority filler.
  • the silica content is preferably within a range from 20 to 80 phr, preferably from 30 to 70 phr, more preferably from 35 to 60 phr, more preferably from 40 to 55 phr.
  • the black content is preferably less than 10 phr, and more preferably less than 5 phr.
  • composition of the invention comprises at least one polysulfurized compound of general formula (I)
  • a and B together form a covalent bond, or A represents a hydrogen atom and B represents a hydrogen atom or a group -SR I -ZR 2 -SH,
  • n is a number greater than or equal to 1
  • p is a number greater than or equal to 1
  • Z represents a covalent bond or a heteroatom selected from -O-, -Si-, - (S) m - and -N (H) -, wherein m is a number greater than or equal to 1,
  • R1 and R2 represent, independently of one another, identical or different linear or branched divalent hydrocarbon groups having from 1 to 18 carbon atoms.
  • the polysulfurized compound of general formula (I) may be a crosslinking agent. It can advantageously replace the elemental sulfur usually used in crosslinking. It can also be used in addition to a crosslinking system, as an anti reversion agent.
  • the term "divalent hydrocarbon group” means a group comprising carbon and hydrogen atoms.
  • the hydrocarbon group may optionally be branched, in particular substituted with C 1 -C 6 alkyl groups, with phenyl and / or with benzyl.
  • the hydrocarbon group may also and preferably be linear, that is to say, it is not branched. It can be cyclical too. It can optionally include one or more carbon-carbon double bonds.
  • the radicals R 1 and R 2 which are identical or different, represent an alkylene radical containing from 1 to 18 carbon atoms, preferably from 2 to 10 carbon atoms, more preferably still from 2 to 8 atoms. of carbon.
  • the groups R 1 and R 2 are identical.
  • n represents a number in a range from 1 to 8, preferably from 1 to 6, more preferably from 1 to 3.
  • p represents a number comprised in a range from 1 to 30, preferably from 1 to 15, more preferably from 1 to 3.
  • a and B together form a covalent bond.
  • the polysulfide compound is a cyclic compound.
  • A represents a hydrogen atom and B represents a hydrogen atom or a group -SR I -ZR 2 -SH, and preferably, B represents a group -SR I -ZR 2 - SH.
  • the polysulfide compound is a non-cyclic compound.
  • Z represents a covalent bond or a heteroatom selected from the group consisting of -Si, - (S) m - and -N (H) -.
  • Z represents a covalent bond.
  • Z represents a radical - (S) m - in which m is a number in a range from 1 to 8, preferably from 1 to 6, more preferably from 1 to 3. More preferably, m is in a range from 1 to 2.
  • the polysulfide compounds of general formula (I), including their preferred variants, can be mixtures of compounds of general formula (I) in which case the indices n, p and m are average values. These indices can therefore be integers like fractional numbers. Also, the polysulfide compound may be in the form of a mixture of cyclic and non-cyclic form.
  • Very preferred embodiments are those in which the compound of general formula (I) is such that A and B together form a covalent bond, R1 and R2 are C1-C7 alkylenes, Z being a bond or a group -S or -SS-, n representing 1 or 3 and p representing 1.
  • A is a hydrogen atom
  • B represents a group -SR I -ZR 2 -SH
  • R 1 and R 2 being alkylene in C1-C7
  • Z being a bond or a group -S- or -SS-
  • n representing 1 or 3
  • p representing a number in a range from 1 to 30.
  • the composition has a content of polysulfurized compound of general formula (I) in a range from 0.5 to 10 phr, preferably from 0.5 to 5 phr, and more preferably from 0.5 to 3 phr. .
  • crosslinking system comprising the polysulfide compound described above
  • basic crosslinking system of the invention may be added, incorporated during the first non-productive phase and / or during the productive phase such as described later, various co-crosslinking agents known to those skilled in the art.
  • co-agents may be vulcanization activators, vulcanization accelerators, well known to those skilled in the art.
  • stearic acid derivative As vulcanization activators, mention may be made of zinc oxide and stearic acid derivatives.
  • stearic acid salt As an example of a stearic acid salt that may be used in the context of the present invention, there may be mentioned in particular zinc or magnesium stearate.
  • vulcanization accelerators well known to those skilled in the art, preference will be given to the group consisting of thiazoles, sulfenamides, guanidines, amines, aldehyde-amines, dithiophosphates, xanthates, thiuramides , dithiocarbamates and mixtures thereof.
  • benzothiazyl-2-cyclohexyl sulfenamide (CBS), benzothiazepicyclohexyl sulfenamide (DCBS), benzothiazoyl-2-tert.-butyl sulphenamide (TBBS), 2-mercaptobenzothiazole (MBT) are preferred for the present invention.
  • benzothiazole disulfide MBTS
  • 2-mercaptobenzothiazole zinc salt or sodium salt ZMBT
  • benzothiazyl-2-sulfene morpholide MS
  • DPG guanidine diphenyl
  • TPG guanidine triphenyl
  • DDG diorthotolyl guanidine
  • OTBG o-tolylbiguanide
  • benzothiazole disulfide MBTS
  • TMTD tetramethylthiuram disulfide
  • TBzTD zinc dibenzyldithiocarbamate
  • ZBEC zinc N, N'-dimethylcarbamodithioates
  • ZDMC zinc N, N'-diethylcarbamodithioates
  • ZDBC zinc N, N'-dibenzylcarbamod
  • the coating composition comprises a complementary vulcanization accelerator, different from the preceding accelerator, described above, selected from the group consisting of diphenyl guanidine (DPG), triphenyl guanidine (GPT) , the Diolotolyl guanidine (DOTG), o-tolylbiguanide (OTBG), benzothiazole disulfide (MBTS), tetramethylthiuram disulfide (TMTD), tetrabenzylthiuram disulfide (TBzTD), zinc dibenzyldithiocarbamate (ZBEC), zinc N, N'-dimethylcarbamodithioates (ZDMC), zinc N, N'-diethylcarbamodithioates (ZDEC), zinc N, N'-dibutylcarbamodithioates (ZDBC), zinc N, N'-dibenzylcarbamodithioates (ZDBC), zinc isopropylxanthate
  • DPG diphen
  • a vulcanization retarder is used, in order to allow the sulfurization of the reinforcement before the sulfur is consumed by the vulcanization.
  • This retarder is well known to those skilled in the art, for example N-cyclohexylthiophthalimide (abbreviated as "CTP") sold under the name “Vulkalent G” by the company Lanxess, and N- (trichloromethylthio) benzene-sulfonamide marketed under the name "Vulkalent E / C” by Lanxess, or the phthalic anhydride sold under the name "Vulkalent B / C” by Lanxess.
  • no vulcanization retarder is preferably used, thereby simplifying the mixing and decreasing the cost.
  • the coating compositions for the purposes of the invention may contain elemental sulfur, in a manner complementary to the polysulfurized compound. However, preferably to obtain the full benefit of the invention, the coating compositions do not comprise elemental sulfur or comprise less than 1 phr, preferably less than 0.5 phr and more preferably less than 0.2 phr. .
  • the coating composition of the reinforced product according to the invention optionally also includes all or part of the usual additives usually used in elastomer compositions intended in particular for the manufacture of tires, for example pigments, protective agents such as waxes. anti-ozone agents, chemical anti-ozonants, antioxidants, plasticizing agents such as plasticizing oils or hydrocarbon resins well known to those skilled in the art, reinforcing resins, acceptors (for example phenolic novolac resin) or methylene donors (eg HMT or H3M).
  • the coating compositions also comprise an adhesion promoter, for example a cobalt salt.
  • the composition is used for the manufacture of semi-finished products intended to be in contact with one or more metal reinforcing elements, for example metal cables.
  • the cobalt salt allows a durable adhesion of the composition to the metal cables, in particular to their coating comprising for example brass.
  • cobalt salts are relatively expensive.
  • no cobalt salt is used and preferably no adhesion promoter.
  • compositions according to the invention can be used alone or in a blend (i.e., in a mixture) with any other rubber composition that can be used for the manufacture of tires.
  • the invention relates to reinforced products whose coating composition is in the "raw” or non-crosslinked state (ie, before cooking) or in the so-called “cooked” or cross-linked state, or vulcanized (ie, after crosslinking or vulcanization).
  • polysulfide compounds useful for the invention may be prepared by any means known to those skilled in the art.
  • the polysulphide compounds of general formula (I) may in particular be obtained by an oxidative coupling reaction of the alkylthiol precursors, corresponding arylthiols.
  • all the reactions described in the following references make it possible to obtain polysulphide compounds by oxidative coupling.
  • the rubber compositions forming the coating gum are manufactured in suitable mixers, for example using two successive preparation phases according to a general procedure well known to those skilled in the art: a first thermomechanical working or mixing phase (sometimes qualified of "non-productive" phase) at a high temperature, up to a maximum temperature of between l30 ° C and 200 ° C, preferably between l45 ° C and l85 ° C, followed by a second phase of mechanical work (sometimes described as "productive" phase) at a lower temperature, typically below 120 ° C., for example between 60 ° C. and 100 ° C., a finishing phase during which the crosslinking system is incorporated.
  • a first thermomechanical working or mixing phase sometimes qualified of "non-productive" phase
  • a second phase of mechanical work sometimes described as "productive” phase
  • a finishing phase during which the crosslinking system is incorporated.
  • a process which can be used for the manufacture of such rubber compositions comprises, for example, and preferably the following steps: in a mixer, incorporate into the diene elastomer and the reinforcing filler and any other ingredients of the composition except for the crosslinking, by thermomechanically kneading the whole, one or more times, until a maximum temperature of between 130 ° C and 200 ° C is reached;
  • the first (non-productive) phase is carried out in a single thermomechanical step during which all the necessary constituents, the possible coating agents, are introduced into a suitable mixer such as a conventional internal mixer. or other complementary additives and other additives, with the exception of the crosslinking system.
  • a suitable mixer such as a conventional internal mixer. or other complementary additives and other additives, with the exception of the crosslinking system.
  • the low temperature crosslinking system is then incorporated, generally in an external mixer such as a roll mill; the whole is then mixed (productive phase) for a few minutes, for example between 5 and 15 min.
  • the final composition thus obtained is then calendered, for example in the form of a sheet or a plate, in particular for a characterization in the laboratory, or else calendered or extruded in the form of a sheet or a usable rubber profile.
  • a sheathed reinforcement that is to say, one (or more) thread (s) reinforcement, textile (s) or metal (s) said son or son being covered in a sheath, as previously described.
  • the crosslinking (or cooking) is conducted in a known manner at a temperature generally between 130 ° C. and 200 ° C., for a sufficient time which may vary, for example, between 5 and 90 min, depending in particular on the cooking temperature, the system adopted crosslinking and crosslinking kinetics of the composition under consideration.
  • Figure 1 attached represents a tire according to a first embodiment of the invention and designated by the general reference 10.
  • the tire 10 is substantially of revolution about an axis substantially parallel to the axial direction.
  • the tire 10 is here intended for a passenger vehicle or a heavy vehicle such as a truck.
  • the tire 10 has an apex 12 comprising a crown reinforcement 14 comprising a working reinforcement 15 comprising two working plies 16, 18 of reinforcing elements and a frettage reinforcement 17 comprising a hooping ply 19.
  • the crown reinforcement 14 is surmounted by a tread 20.
  • the hooping reinforcement 17, here the hooping web 19, is radially interposed between the working reinforcement 15 and the tread 20.
  • flanks 22 extend the vertex 12 radially inwards.
  • the tire 10 further comprises two beads 24 radially inner to the flanks 22 and each having an annular reinforcement structure 26, in this case a bead wire 28, surmounted by a mass of tamping rubber 30, and a carcass reinforcement. radial 32.
  • the crown reinforcement 14 is radially interposed between the carcass reinforcement 32 and the tread 20.
  • Each flank 22 connects each bead 24 to the top 14.
  • the carcass reinforcement 32 preferably comprises a single carcass ply 34 of radial textile reinforcement elements.
  • the carcass reinforcement 32 is anchored to each of the beads 24 by a turn around the rod 28 so as to form in each bead 24 a forward strand 38 extending from the beads 24 through the flanks 22 to the vertex 12 , and a return strand 40, the radially outer end 42 of the return strand 40 being radially outside the annular reinforcing structure 26.
  • the carcass reinforcement 32 thus extends from the beads 24 through the flanks 22 to the crown 12. In this embodiment, the carcass reinforcement 32 also extends axially through the top 12.
  • Each working ply 16, 18 forms a reinforced product 21 according to the invention comprising reinforcing elements 44 forming an angle ranging from 15 ° and 40 °, preferably from 20 ° to 30 ° and here equal to 26 ° with the circumferential direction of the tire 10.
  • the reinforcing elements 44 are crossed with one working ply with respect to the other.
  • the hooping web 19 comprises reinforcing textile reinforcing elements forming an angle at most equal to 10 °, preferably ranging from 5 ° to 10 ° with the circumferential direction of the tire 10.
  • the textile reinforcing elements shrink sleeves are twists made of a heat-shrinkable material, here polyamide 66, each twist consisting of two yarns of 140 tex which have been twisted together (on direct wirer) at 250 revolutions / meter, whose diameter is equal to about 0, 66 mm.
  • the thermal contraction CT of each shrinkable textile reinforcing element is about 7%.
  • the working plies 16, 18, frettage 19 and carcass 34 comprise an elastomer matrix 23 in which are embedded the reinforcing elements of the corresponding ply.
  • the rubber compositions of the elastomeric matrices 23 of the working plies 16, 18, shrinkwrap 19 and carcass plies 34 may be conventional compositions for the coating of reinforcement elements conventionally comprising a diene elastomer, for example natural rubber, a reinforcing filler, for example carbon black and / or silica, a crosslinking system, for example a vulcanization system, preferably comprising sulfur, stearic acid and zinc oxide and optionally an accelerator and / or a vulcanization retarder and / or various additives.
  • At least one of the plies comprising a reinforced product comprises a reinforced product according to the invention.
  • this web comprises a specific coating composition 23 of the invention, that is to say a composition as defined above and hereinafter for the purposes of the invention.
  • FIGS 2 to 5 show various embodiments of the invention, that is to say various arrangements of reinforced products 21 according to the invention.
  • the reinforcing elements (one or more threads) 44 of the reinforced product 21 are arranged side by side in a main direction.
  • the reinforcing elements 44 extend parallel to each other.
  • Each reinforcing element 44 comprises at least one wire element 46.
  • Each reinforcing element 44 also comprises at least one sheath 48 coating the wire element 46 and comprising at least one layer 50 of a thermoplastic polymeric composition.
  • the sheathed reinforcement 44 is embedded in a coating composition 23.
  • the sheath 48 comprises a single layer 50 of the thermoplastic polymeric composition which may comprise a thermoplastic polymer, a functionalized diene elastomer, a poly (p-phenylene ether) or a mixture of these materials.
  • the thermoplastic polymeric composition comprises a thermoplastic polymer, for example polyamide 66.
  • the thermoplastic polymeric composition may comprise a functionalized diene elastomer, for example a styrenic thermoplastic comprising an epoxide, carbonyl, anhydride or ester function and / or a poly- p-phenylene ether.
  • the sheath 48 is coated with a layer of adhesion adhesive (not shown) between the sheath 48 and the elastomer matrix 23.
  • the sheathed reinforcement 44 is in the form of 3 cables individually covered with a sheath, and embedded together in the coating composition in Figure 2; in the form of 3 groups of cables, each group of cables being covered with a sheath, the three groups of cables, sheathed, being embedded in the coating composition in FIG.
  • the reinforced product of the invention described above can especially be used for the manufacture of any finished article or semi-finished rubber product, in particular for the reinforcement of pneumatic tires of all types of vehicles, in particular passenger vehicles or industrial vehicles such as Heavy weights.
  • this reinforced product of the invention can be in various forms, in a unitary form (with a single reinforcing thread) or in the form of a sheet, strip, band or block of rubber in which are incorporated, for example by calendering, several textile reinforcement son (s) and / or metal (s).
  • the definitive adhesion between the sheathed wire reinforcement and the coating rubber can be obtained after the firing, preferably under pressure, of the finished article for which the wire reinforcement of the invention is intended.
  • the 1,8-dithiacyclotetradecane 1,8-disulfide is synthesized according to the scheme below and according to the following synthesis protocol:
  • the solvents are evaporated under reduced pressure (70 mbar, 36 ° C.).
  • the expected product is treated with MTBE (350 mL) and washed 3 times with water (50 mL).
  • the organic phase is dried with sodium sulphate and then concentrated under reduced pressure (35 mbar, 36 ° C.).
  • the solid is treated twice with acetone (twice for 250 ml): after stirring for 3 hours at room temperature, the precipitate is filtered and washed on the filter with acetone (twice per 25 ml). After drying, the product is treated with MB TE (200 ml) with stirring for 3 hours at room temperature, then the residual solid is filtered and washed with MTBE (twice in 15 ml) and finally dried for 10 - 15 hours at room temperature. room. A white solid (20.09 g, 85% yield) with a melting point of 62 ° C. is obtained. The molar purity is greater than 94% (1 H NMR).
  • 1,2,3,4-Tetrathiecane is synthesized according to the reaction scheme below and according to the following synthesis protocol:
  • the molar purity is greater than 98 mol%. (1H NMR).
  • the mixed polysulfide compound 3 is synthesized according to the reaction scheme below and the following synthesis protocol:
  • the white solid obtained is filtered, washed with petroleum ether (twice for 25 mL) and dried at room temperature under atmospheric pressure. The product is then taken up in chloroform (6 ml of the solvent to 1 g of product) and is heated at 50 ° C. (bath temperature) for 3 hours. An insoluble fraction and a soluble fraction are obtained.
  • the compound is thus obtained in the form of a mixture of the cyclic form (insoluble fraction) and of the open form (soluble fraction).
  • the proportion of the reactants is such that the value of the index n is centered on 3.
  • the insoluble fraction (cyclic form) is filtered and washed on the filter with chloroform (50 ml) and dried at room temperature under atmospheric pressure. At the end of this treatment, a white polymer product (9.8 g) is obtained. This product being insoluble in the usual solvents, it has not been characterized.
  • the soluble fraction (open form) is in turn concentrated and analyzed by NMR (see NMR characterization below). The product obtained contains oligomers in which the index p has a value in the range from 12 to 23.
  • the NMR data are as follows: The chemical shifts in 1 H and 13 C for patterns 1, 2, 3 and 4 are approximate since they change according to the number of sulfur (S) n.
  • rubber compositions have been prepared in accordance with the invention, the formulations of which are given in Table 1; the rate of the different products is expressed in phr (parts by weight per hundred parts by weight of elastomer).
  • the reinforcing filler carbon black
  • the elastomer were successively introduced into an internal mixer, the initial batch temperature of which was approximately 50 ° C. diene, as well as the various other ingredients with the exception of the crosslinking system; the mixer was thus filled to about 70% (% by volume).
  • Theromechanical work was then carried out in one step of about 3 to 5 minutes, until a maximum temperature of "falling" of 160 ° C. was reached.
  • the mixture thus obtained was recovered, cooled, and sulfur and a sulfenamide accelerator were incorporated on an external mixer (homo-finisher) at 40 ° C, mixing the whole (productive phase) for a few minutes. .
  • the composition thus obtained was then calendered in the form of plates that can be used as coating gum for the sheathed wire reinforcements according to the invention.
  • compositions according to the invention C1 to C5 were compared with two control compositions (T1 and T2) of similar formulation-prepared identically, of which only the crosslinking system differs.
  • Table 1 The compositions according to the invention C1 to C5 were compared with two control compositions (T1 and T2) of similar formulation-prepared identically, of which only the crosslinking system differs.
  • Zinc dibenzyldithiocarbamate (CAS No.14726-36-4) ("ZBEC” from Anvis France Decize).
  • the measured properties are the modules of the compositions, as determined by tensile tests. These tests make it possible to determine the elastic stress and the properties at break. They are carried out in accordance with the French standard NF T 46-002 of September 1988.
  • the elongations at break (in%) are measured in second elongation (i.e. after an accommodation cycle).
  • the measurements of elongation at break (denoted AR) are carried out under the normal conditions of temperature (23 ⁇ 2 ° C.) and hygrometry (50 ⁇ 5% relative humidity), according to the French standard NF T 40- 101 (December 1979), and also at 100 ° C.
  • the nominal secant moduli (or apparent stresses, in MPa, related to deformation, without unit) at 10%, 100% or 300% elongation (denoted MA10, MA100 and MA300) and the true stresses at break (in MPa) can also be measured.
  • compositions T1 and T2 (controls) and C1 to C5 (in accordance with the invention) presented in Table 2 below were combined with a brass-coated metal reinforcement consisting of 3 steel wires with 0.7% carbon, 18/100 e millimeters in diameter with an assembly pitch of 5 mm, the brass comprising 63% copper.
  • the reinforcement is sheathed, the sheath is 6-6 polyamide about 0.1 mm thick on average for a cable diameter sheathed about 0.53 mm, and covered with an RFL glue.
  • compositions C1 to C5 in accordance with the invention, have a lower decrease in adhesion after firing at 190 ° C. compared to adhesion after firing at 150 ° C. , thus saving time in the manufacturing process, without penalizing the adhesion of the coating gum to the reinforcement.
  • compositions in accordance with the invention have the additional advantage of having higher elongation at break properties than those of controls T1 and T2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
EP18836486.3A 2017-12-19 2018-12-18 Verstärktes produkt mit einer zusammensetzung mit einer polysulfidverbindung und reifen mit diesem verstärkten produkt Pending EP3728432A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1762443 2017-12-19
PCT/FR2018/053370 WO2019122686A1 (fr) 2017-12-19 2018-12-18 Produit renforce comprenant une composition comprenant un compose polysulfuré et pneumatique comprenant ledit produit renforce

Publications (1)

Publication Number Publication Date
EP3728432A1 true EP3728432A1 (de) 2020-10-28

Family

ID=61224131

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18836486.3A Pending EP3728432A1 (de) 2017-12-19 2018-12-18 Verstärktes produkt mit einer zusammensetzung mit einer polysulfidverbindung und reifen mit diesem verstärkten produkt

Country Status (2)

Country Link
EP (1) EP3728432A1 (de)
WO (1) WO2019122686A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113980371A (zh) * 2021-11-17 2022-01-28 山东新宝龙工业科技有限公司 一种不粘辊阻燃钢丝绳芯胶及其制备方法和应用

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2732351B1 (fr) 1995-03-29 1998-08-21 Michelin & Cie Composition de caoutchouc pour enveloppe de pneumatique renfermant de la silice dopee aluminium a titre de charge renforcante
FR2740778A1 (fr) 1995-11-07 1997-05-09 Michelin & Cie Composition de caoutchouc a base de silice et de polymere dienique fonctionalise ayant une fonction silanol terminale
DE69739057D1 (de) 1996-04-01 2008-12-04 Cabot Corp Neue elastomere verbundwerkstoffe, verfahren und vorrichtung zur herstellung derselben
FR2765882B1 (fr) 1997-07-11 1999-09-03 Michelin & Cie Composition de caoutchouc a base de noir de carbone ayant de la silice fixee a sa surface et de polymere dienique fonctionnalise alcoxysilane
EP1019228B1 (de) 1997-09-30 2004-12-01 Cabot Corporation Mischungen aus elastomeren verbundwerkstoffen und verfahren zu ihrer herstellung
CA2311437A1 (en) * 1999-08-17 2001-02-17 Marc Jules Alexis Henoumont Pneumatic tire having a rubber component containing a liquid polysulfide compound
DE60109224T2 (de) 2000-02-24 2006-01-19 Société de Technologie Michelin Vulkanisierbare Kautschukmischung zur Herstellung eines Luftreifens und Luft- reifens und Luftreifen, der eine solche Zusammensetzung enthält.
WO2001092402A1 (fr) 2000-05-26 2001-12-06 Societe De Technologie Michelin Composition de caoutchouc utilisable comme bande de roulement de pneumatique
JP4536375B2 (ja) 2001-06-28 2010-09-01 ソシエテ ド テクノロジー ミシュラン 極めて低い比表面積のシリカで強化されたタイヤトレッド
ATE465208T1 (de) 2001-06-28 2010-05-15 Michelin Soc Tech Reifenlauffläche verstärkt durch kieselsäure mit niedriger spezifischer oberfläche
SE519792C2 (sv) 2001-08-17 2003-04-08 Volvo Lastvagnar Ab Metod för estimering av massan hos ett fordon vilket framförs på en väg med en varierande lutning samt metod för estimering av lutningen av den väg där ett fordon framförs
FR2854404B1 (fr) 2003-04-29 2005-07-01 Michelin Soc Tech Procede d'obtention d'un elastomere greffe a groupes fonctionnels le long de la chaine et compositions de caoutchouc
EP1674521A4 (de) * 2003-10-14 2009-10-28 Yokohama Rubber Co Ltd Kautschukzusammensetzung mit cyclischem polysulfod als vulkanisationsmittel und daraus hergestellter luftreifen
FR2880354B1 (fr) 2004-12-31 2007-03-02 Michelin Soc Tech Composition elastomerique renforcee d'une charge de polyvinylaromatique fonctionnalise
FR2880349B1 (fr) 2004-12-31 2009-03-06 Michelin Soc Tech Nanoparticules de polyvinylaromatique fonctionnalise
FR2903411B1 (fr) 2006-07-06 2012-11-02 Soc Tech Michelin Nanoparticules de polymere vinylique fonctionnalise
FR2903416B1 (fr) 2006-07-06 2008-09-05 Michelin Soc Tech Composition elastomerique renforcee d'une charge de polymere vinylique non aromatique fonctionnalise
FR2915202B1 (fr) 2007-04-18 2009-07-17 Michelin Soc Tech Elastomere dienique couple monomodal possedant une fonction silanol en milieu de chaine, son procede d'obtention et composition de caoutchouc le contenant.
FR2918064B1 (fr) 2007-06-28 2010-11-05 Michelin Soc Tech Procede de preparation d'un copolymere dienique a bloc polyether, composition de caoutchouc renforcee et enveloppe de pneumatique.
FR2918065B1 (fr) 2007-06-28 2011-04-15 Michelin Soc Tech Procede de preparation d'un copolymere dienique a bloc polyether, composition de caoutchouc renforcee et enveloppe de pneumatique.
FR2943269B1 (fr) 2009-03-20 2011-04-22 Michelin Soc Tech Renfort composite auto-adherent
FR2945826B1 (fr) 2009-05-25 2011-12-02 Michelin Soc Tech Renfort composite auto-adherent
FR2948598B1 (fr) 2009-07-31 2011-08-19 Michelin Soc Tech Renfort composite
FR2951178B1 (fr) 2009-10-08 2012-08-17 Michelin Soc Tech Elastomere dienique fonctionnalise et composition de caoutchouc le contenant.
FR2952076B1 (fr) 2009-10-29 2011-12-02 Michelin Soc Tech Renfort composite
FR2963579B1 (fr) 2010-08-05 2013-04-26 Michelin Soc Tech Renfort composite
FR2965209B1 (fr) 2010-09-23 2014-04-18 Michelin Soc Tech Renfort composite auto-adherent
FR2965208B1 (fr) 2010-09-23 2012-10-12 Michelin Soc Tech Renfort composite
FR2967604B1 (fr) 2010-11-22 2012-12-14 Michelin Soc Tech Renfort composite auto-adherent
FR2971188B1 (fr) 2011-02-03 2013-03-08 Michelin Soc Tech Renfort composite gaine d'une couche de polymere auto-adherente au caoutchouc
FR2971187B1 (fr) 2011-02-03 2013-03-08 Michelin Soc Tech Renfort composite gaine d'une couche de polymere auto-adherente au caoutchouc
FR2971266B1 (fr) 2011-02-03 2014-06-27 Soc Tech Michelin Materiau textile pourvu d'une colle thermoplastique
FR2978769B1 (fr) 2011-08-04 2013-09-27 Michelin Soc Tech Composition adhesive aqueuse a base de polyaldehyde et de polyphenol
FR2978770B1 (fr) 2011-08-04 2013-09-27 Michelin Soc Tech Composition adhesive aqueuse a base de polyaldehyde et phloroglucinol
FR2978771B1 (fr) 2011-08-04 2013-09-27 Michelin Soc Tech Composition adhesive aqueuse a base de polyaldehyde et 2,2', 4,4'-tetrahydroxydiphenyl sulfide
FR2986456B1 (fr) 2012-02-08 2014-03-07 Michelin & Cie Renfort composite gaine d'une couche de polymere auto-adherente au caoutchouc
FR2986455B1 (fr) 2012-02-08 2014-10-31 Michelin & Cie Renfort composite gaine d'une couche de polymere auto-adherente au caoutchouc
FR3027025B1 (fr) 2014-10-13 2016-12-09 Michelin & Cie Produit renforce comprenant une composition a faible taux de soufre et pneumatique comprenant ledit produit renforce

Also Published As

Publication number Publication date
WO2019122686A1 (fr) 2019-06-27

Similar Documents

Publication Publication Date Title
EP3206890B1 (de) Verstärktes produkt mit einer zusammensetzung mit niedrigem schwefelgehalt und reifen mit besagtem verstärktem produkt
EP3352998B1 (de) Verwendung eines veresterten aromatischen polyphenolderivats zur herstellung eines phenol-aldehyd-harzes zur verstärkung einer kautschukzusammensetzung
EP3207080B1 (de) Verstärktes element enthaltend eine zusammensetzung enthaltend ein austariertes system aus metalloxid und stearinsäurederivat und reifen enthaltend dieses element
EP3206889B1 (de) Verstärktes produkt mit einer zusammensetzung mit niedrigem schwefelgehalt und reifen mit besagtem verstärktem produkt
EP3206891B1 (de) Verstärktes produkt mit einer zusammensetzung mit einem schnellvulkanisierungsbeschleuniger und reifen mit besagtem verstärktem produkt
EP3532304B1 (de) Kautschukzusammensetzung mit einem spezifischen verstärkenden füllstoff
EP2576894B1 (de) Verbunddrahtverstärkung für einen reifen mit gummibeschichtung mit verbesserten wassersperreigenschaften
EP3532306B1 (de) Kautschukzusammensetzung mit einem spezifischen verstärkenden füllstoff
EP3532305B1 (de) Kautschukzusammensetzung mit einem spezifischen verstärkenden füllstoff
EP3352997B1 (de) Verwendung eines silylierten aromatischen polyphenolderivats zur herstellung eines phenol-aldehyd-harzes zur verstärkung einer kautschukzusammensetzung
EP2279085B1 (de) Reifen mit lagenrandmantel mit geringer hysterese
EP3352996A1 (de) Hochfeste kautschukzusammensetzung mit einem aromatischen polyphenolderivat
EP3898788B1 (de) Verstärktes produkt mit einer eine polysulfidverbindung enthaltenden zusammensetzung
WO2019122686A1 (fr) Produit renforce comprenant une composition comprenant un compose polysulfuré et pneumatique comprenant ledit produit renforce
EP3853043B1 (de) Reifen mit wulsten aus einer spezifischen kautschukzusammensetzung
WO2020128261A1 (fr) Produit renforce comprenant une composition comportant un compose polysulfuré
FR3041647A1 (fr) Composition de caoutchouc a haute rigidite a base d'un derive de polyphenol aromatique
FR3079843A1 (fr) Pneumatique avec bourrelets comprenant une composition de caoutchouc specifique
EP3774388A1 (de) Kautschukmischung mit einem verstärkenden füllstoff mit einer kleinen spezifischen oberfläche
FR3041642A1 (fr) Compose silyle pour eviter la reticulation precoce d'une resine phenol aldehyde
FR3041633A1 (fr) Compose esterifie pour eviter la reticulation precoce d'une resine phenol aldehyde

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200720

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230329