EP3702572A1 - Insulating glazing with electrochromic functional element and infrared-reflective coating - Google Patents

Insulating glazing with electrochromic functional element and infrared-reflective coating Download PDF

Info

Publication number
EP3702572A1
EP3702572A1 EP19159556.0A EP19159556A EP3702572A1 EP 3702572 A1 EP3702572 A1 EP 3702572A1 EP 19159556 A EP19159556 A EP 19159556A EP 3702572 A1 EP3702572 A1 EP 3702572A1
Authority
EP
European Patent Office
Prior art keywords
pane
glazing
insulating glazing
interior
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19159556.0A
Other languages
German (de)
French (fr)
Inventor
Marcus Neander
Bianca Bergs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Priority to EP19159556.0A priority Critical patent/EP3702572A1/en
Publication of EP3702572A1 publication Critical patent/EP3702572A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66309Section members positioned at the edges of the glazing unit
    • E06B3/66366Section members positioned at the edges of the glazing unit specially adapted for units comprising more than two panes or for attaching intermediate sheets

Definitions

  • the invention relates to insulating glazing with an electrochromic functional element and an infrared-reflecting coating, a method for its production and its use.
  • Insulating glazing has become an indispensable part of building construction, especially in the wake of ever stricter environmental protection regulations. These are made from at least two panes that are connected to one another via at least one circumferential spacer. Depending on the embodiment, the space between the two panes, referred to as the glazing interior, is filled with air or gas, but in any case free of moisture. If the moisture content in the space between the glazing is too high, this leads to condensation of water droplets in the space between the panes, which must be avoided at all costs. Hollow body spacers filled with a desiccant, for example, can be used to absorb the residual moisture remaining in the system after assembly. However, since the absorption capacity of the desiccant is limited, the sealing of the system is also of enormous importance in this case in order to prevent further moisture from penetrating.
  • insulating glazing can also contain other elements in the form of fixtures or panes with controllable additional functions.
  • One type of modern, active glazing is glazing with switchable or controllable optical properties.
  • the transmission of light can be actively influenced as a function of an applied electrical voltage.
  • the user can, for example, switch from a transparent to a non-transparent state of the glazing in order to prevent a view into a room from outside.
  • the transmission can be regulated continuously, for example to regulate the entry of solar energy into a room. This will cause unwanted heating of buildings or Avoid vehicle interiors and reduce the energy consumption and CO 2 emissions caused by air conditioning.
  • Active glazing is therefore not only used for the visually appealing design of facades and pleasant lighting design in interiors, but is also advantageous from an energetic and ecological point of view.
  • Active glazings contain a functional element which typically contains an active layer between two surface electrodes.
  • the optical properties of the active layer can be changed by a voltage applied to the surface electrodes.
  • electrochromic functional elements for example from US 20120026573 A1 and WO 2012007334 A1 are known. These are used in building construction in particular to shade large areas of glass and to avoid dazzling people inside the building from solar radiation.
  • the transmission of visible light through the electrochromic functional element can be controlled by a voltage applied to the functional element.
  • the voltage is supplied via so-called bus bars, which are usually attached to the surface electrodes and are connected to a voltage source via suitable connecting cables.
  • the object of the present invention is to provide insulating glazing with an electrochromic functional element and improved heat dissipation and stability of the edge bond, as well as an economical method for producing the insulating glazing.
  • the object of the present invention is achieved according to the invention by insulating glazing with an electrochromic functional element and double spacer, a method for its production and its use according to independent claims 1 and 14. Preferred embodiments of the invention emerge from the subclaims.
  • the insulating glazing according to the invention with an electrochromic functional element comprises at least a first pane, a second pane, a third pane and a spacer with a polymer base body.
  • the polymer base body has a first pane contact surface and a second pane contact surface running parallel thereto, a first glazing interior surface, a second glazing interior surface and an outer surface.
  • the first pane is attached to the first pane contact surface and the second pane of the insulating glazing is attached to the second pane contact surface.
  • a first hollow chamber and a second hollow chamber as well as a groove are introduced into the polymeric base body. The groove runs parallel to the first disk contact surface and the second disk contact surface and is used to accommodate the third disk.
  • the first hollow chamber adjoins the first glazing interior surface, while the second hollow chamber adjoins the second glazing interior surface, the glazing interior surfaces being located above the hollow chambers in the interior of the insulating glazing and the outer surface being located below the hollow chambers on the surface facing the environment.
  • above is defined as facing the pane interior of insulating glazing and below as facing away from the pane interior.
  • the groove runs between the first interior glazing surface and the second interior glazing surface, it delimits it laterally and separates the first hollow chamber and the second hollow chamber from one another.
  • the side flanks of the groove are formed by the walls of the first hollow chamber and the second hollow chamber.
  • the groove forms a recess that is suitable for receiving the middle pane (third pane) of the insulating glazing.
  • the position of the third disc is fixed via two side flanks of the groove and the bottom surface of the groove.
  • the electrochromic functional element of the insulating glazing is on the surface of the first pane applied, which lies within the first glazing interior.
  • the glazing according to the invention comprises at least one infrared-reflecting coating which is located on the second pane and / or the third pane within the first glazing interior and / or the second glazing interior.
  • a one-piece double spacer is thus used, to which all three panes of a triple glazing can be fixed.
  • the one-piece spacer used enables the triple glazing to be installed in a simplified, yet precisely fitting manner. It is impossible for two individual spacers to slip, as is also known from the prior art.
  • This is particularly advantageous in combination with functional elements, since when functional elements are used, the elements must be placed much more precisely in order to avoid a collision with electrical connection cables and bus bars for making electrical contact with the functional element.
  • insulating glazing without functional elements such incorrect placement only leads to an optical defect, while incorrect placement in insulating glazing with functional elements can also lead to an unfavorable overlap of busbars and spacers.
  • the spacer collides, for example, with connection cables attached to the busbar.
  • connection cables attached to the busbar As a result of this collision, it is also possible for the spacer to slip further and for gas-tight pressing to be impossible. This can lead to leaks in the insulating glazing.
  • This can be avoided by the more precise assembly of the insulating glazing according to the invention using a one-piece spacer with a groove.
  • an outer space between the panes located between the first pane, the second pane and the outer surface of the spacer is not interrupted by the third pane. This continuous edge area, which is available for full-surface filling with a seal, is advantageous for the stability and, as a result, also for the tightness of the glazing.
  • insulating glazing with electrochromic functional elements in the heating of these functional elements in the operating state.
  • the electrochromic functional element is attached to the surface of the first pane located in the first glazing interior.
  • the functional element is protected from environmental influences by the choice of an internal surface.
  • the waste heat from an electrochromic functional element on an inner pane (third pane) of the insulating glazing is significantly worse in comparison, which is why the outer first pane is selected according to the invention. This avoids a build-up of heat inside the insulating glazing and the heat can be given off directly to the environment.
  • the first pane When installing the insulating glazing in a window frame, the first pane is oriented as the outer pane of the insulating glazing in the direction of the building environment. On the one hand, this ensures that heat is dissipated to the outside environment instead of the interior of the building. On the other hand, shading by the electrochromic functional element takes place directly on the outer surface of the insulating glazing, so that additional heating of the glazing due to solar radiation falling into the glazing is avoided.
  • the insulating glazing has, in addition to the electrochromic functional element, an infrared-reflecting coating. This is applied to the middle third pane or on the inside of the second pane. In this position the infrared reflective coating is protected from environmental influences.
  • the infrared-reflecting coating reduces the heat transfer through the double glazing, so that a loss of heat can be avoided in winter. In summer, on the other hand, the infrared-reflecting coating prevents the interior from being heated up by incident solar radiation.
  • the use of an infrared-reflecting coating is advantageous, since this also avoids the heat transfer of the waste heat from the functional element.
  • the stability of the edge seal is particularly important when combining electrochromic functional elements and infrared-reflecting coatings. This required stability is achieved by using a one-piece spacer with a groove.
  • the infrared-reflecting coating is arranged on the third pane and is located within the first glazing interior on the surface of the third pane facing the electrochromic functional element.
  • the waste heat of the electrochromic functional element is prevented from entering the second glazing interior of the insulating glazing.
  • the heating is accordingly limited to the first glazing interior and the second glazing interior facing the building interior experiences no or only slight heating.
  • the use according to the invention of a one-piece spacer with a groove is also particularly advantageous for realizing this embodiment, since the third disk can be fixed in the groove without tension.
  • An additional thermal or chemical pretensioning of the third pane for stress compensation can be dispensed with. This eliminates the pre-tensioning process, which means that costs can be reduced.
  • the infrared-reflecting coating is arranged on the second pane within the second glazing interior. This embodiment is optimized with regard to the thermal insulation of the building interior. Heat loss is minimized by arranging the infrared-reflecting coating directly on the inner pane of the double glazing.
  • the infrared reflective coating is preferably transparent to visible light in the wavelength range from 390 nm to 780 nm. “Transparent” means that the total transmission of the pane is especially preferably> 70% and especially> 75% transparent to visible light. This does not affect the visual impression of the glazing or the view through.
  • the infrared-reflective coating serves to protect the sun and has reflective properties in the infrared range of the light spectrum.
  • the infrared-reflecting coating has particularly low emissivities (Low-E). This advantageously reduces heating of the interior of a building as a result of solar radiation.
  • Panes that are provided with such an infrared-reflecting coating are commercially available and are referred to as low-E glass (low-emissivity glass).
  • Low-E coatings usually contain a diffusion barrier, a metal or metal oxide-containing multilayer and a barrier layer.
  • the diffusion barrier is applied directly to the glass surface and prevents discoloration due to the diffusion of metal atoms into the glass. Often double silver layers or triple silver layers are used as multilayers.
  • a wide variety of Low-E coatings are known from, for example DE 10 2009 006 062 A1 , WO 2007/101964 A1 , EP 0 912 455 B1 , DE 199 27 683 C1 , EP 1 218 307 B1 and EP 1 917 222 B1 .
  • the deposition of low-E coatings is preferably carried out using the known method of magnetic field-assisted cathode sputtering.
  • Layers deposited by magnetic field-assisted cathode sputtering have an amorphous structure and cause opacity of transparent substrates such as glass or transparent polymers.
  • a temperature treatment of the amorphous layers causes a crystal structure change to a crystalline layer with improved transmission.
  • the temperature input into the coating can take place via a flame treatment, a plasma torch, infrared radiation or a laser treatment.
  • Such coatings typically contain at least one metal, in particular silver or an alloy containing silver.
  • the infrared-reflecting coating can comprise a sequence of a plurality of individual layers, in particular at least one metallic layer and dielectric layers that contain, for example, at least one metal oxide.
  • the metal oxide preferably contains zinc oxide, tin oxide, indium oxide, titanium oxide, silicon oxide, aluminum oxide or the like and combinations of one or more thereof.
  • the dielectric material can also contain silicon nitride, silicon carbide or aluminum nitride.
  • Particularly suitable transparent, infrared-reflecting coatings contain at least one metal, preferably silver, nickel, chromium, niobium, tin, titanium, copper, palladium, zinc, gold, cadmium, aluminum, silicon, tungsten or alloys thereof, and / or at least one metal oxide layer, preferably tin-doped indium oxide (ITO), aluminum-doped zinc oxide (AZO), fluorine-doped tin oxide (FTO, SnO 2 : F), antimony-doped tin oxide (ATO, SnO 2 : Sb), and / or carbon nanotubes and / or optically transparent, electrically conductive polymers, preferably poly (3,4-ethylenedioxythiophenes), polystyrene sulfonate, poly (4,4-dioctylcylopentadithiophene), 2,3-dichloro-5,6-dicyano-1,4-benzoquino
  • the infrared-reflecting coating preferably has a layer thickness of 10 nm to 5 ⁇ m and particularly preferably 30 nm to 1 ⁇ m.
  • the sheet resistance of the infrared reflective coating is e.g. 0.35 ohms / square to 200 ohms / square, preferably 0.6 ohms / square to 30 ohms / square, and especially from 2 ohms / square to 20 ohms / square.
  • a silver layer with a thickness of 6 nm to 15 nm surrounded by two barrier layers with a thickness of 0.5 nm to 2 nm containing nickel-chromium and / or titanium is used as the infrared-reflecting coating.
  • a diffusion barrier with a thickness of 25 nm to 35 nm containing Si 3 N 4 , TiO 2 , SnZnO and / or ZnO is preferably applied between a barrier layer and the glass surface.
  • a diffusion barrier with a thickness of 35 nm to 45 nm is preferably facing the surroundings on the upper barrier layer containing ZnO and / or Si 3 N 4 applied.
  • This upper diffusion barrier is optionally equipped with a protective layer with a thickness of 1 nm to 5 nm comprising TiO 2 and / or SnZnO 2 .
  • the total thickness of all layers is preferably 67.5 nm to 102 nm.
  • the electrochromic functional element comprises at least one electrochemically active layer which is capable of reversibly storing charges.
  • the oxidation states in the stored and removed state differ in their coloring, one of these states being transparent.
  • the storage reaction can be controlled via the externally applied potential difference.
  • the basic structure of the electrochromic functional element thus comprises at least one electrochromic material, such as tungsten oxide, which is in contact with both a flat electrode and a charge source such as an ion-conductive electrolyte.
  • the electrochromic layer structure contains a counter-electrode, which is also capable of reversibly storing cations and is in contact with the ion-conductive electrolyte, as well as a further surface electrode that connects to the counter-electrode.
  • the surface electrodes are connected to an external voltage source, whereby the voltage applied to the active layer can be regulated.
  • the surface electrodes are usually thin layers of electrically conductive material, often indium tin oxide (ITO). Often at least one of the flat electrodes is applied directly to the surface of the first pane, for example by means of cathode atomization (sputtering).
  • the flat electrodes of the functional element are preferably electrically conductively contacted via so-called bus bars and connected via the bus bars to an electrical supply line that is connected to an external voltage source.
  • bus bars strips of an electrically conductive material or electrically conductive imprints can be used as busbars, with which the surface electrodes are connected.
  • the bus bars also known as bus bars, are used to transmit electrical power and enable homogeneous voltage distribution.
  • the bus bars are advantageously manufactured by printing a conductive paste.
  • the conductive paste preferably contains Silver particles and glass frits.
  • the layer thickness of the conductive paste is preferably from 5 ⁇ m to 20 ⁇ m.
  • busbars which preferably contain copper and / or aluminum, in particular copper foil strips with a thickness of, for example, about 50 ⁇ m are used.
  • the width of the copper foil strips is preferably 1 mm to 10 mm.
  • the electrical supply line which is used to contact the busbars with an external voltage source, is an electrical conductor, preferably containing copper. Other electrically conductive materials can also be used. Examples are aluminum, gold, silver or tin and alloys thereof.
  • the electrical supply line can be designed both as a flat conductor and as a round conductor, and in both cases as a single-wire or multi-wire conductor (stranded wire).
  • the electrical supply line preferably has a line cross section of 0.08 mm 2 to 2.5 mm 2 .
  • Foil conductors can also be used as supply lines. Examples of foil conductors are given in DE 42 35 063 A1 , DE 20 2004 019 286 U1 and DE 93 13 394 U1 described.
  • Flexible foil conductors sometimes also called flat conductors or ribbon conductors, preferably consist of a tinned copper strip with a thickness of 0.03 mm to 0.1 mm and a width of 2 mm to 16 mm. Copper has proven itself for such conductor tracks because it has good electrical conductivity and can be easily processed into foils. At the same time, the material costs are low.
  • the electrical leads of the electrochromic functional element are guided in the edge bond of the insulating glazing and can, for example, within the Spacer, be guided on the outer surface of the spacer or loosely in the edge bond.
  • the electrical leads can be connected directly to the busbars, for example by soldering the lead onto the busbar or by gluing using a conductive adhesive.
  • Electrical contact elements can also be used to electrically connect the busbars to the supply lines. Such contact elements are familiar to the person skilled in the art, for example in the form of plug contacts or crimp connections.
  • the pane of the insulating glazing which has the electrochromic functional element is laminated with another pane via a thermoplastic composite film to form a composite pane.
  • the composite pane has improved resistance and stability.
  • the additional pane laminated to the first pane also makes it more difficult for the first pane to bend and thermally expand.
  • a composite pane has improved penetration resistance. This is particularly advantageous in order to protect the electrochromic functional element.
  • thermoplastic composite films are known to the person skilled in the art.
  • the thermoplastic composite films contain at least one thermoplastic polymer, preferably ethylene vinyl acetate (EVA), polyvinyl butyral (PVB) or polyurethane (PU) or mixtures or copolymers or derivatives thereof.
  • EVA ethylene vinyl acetate
  • PVB polyvinyl butyral
  • PU polyurethane
  • the thickness of the thermoplastic composite films is preferably from 0.2 mm to 2 mm, particularly preferably from 0.3 mm to 1.5 mm.
  • Polyvinyl butyral with a thickness of, for example, 0.38 mm or 0.76 mm is particularly preferably used for laminating two panes of glass.
  • the first glazing interior and the second glazing interior are preferably connected to one another in such a way that pressure equalization between the glazing interiors is possible. This is possible, for example, by dispensing with an insert in at least a partial area of the groove. An exchange of air can take place via this section of the groove. Communicating Gaps between panes are advantageous in order to avoid the stresses on the edge area associated with pressure differences between the glazing interiors. In particular with the insulating glazing according to the invention, this measure is useful to relieve the edge bond, since when the first pane is heated by the functional element, a pressure change inevitably takes place in the adjacent first glazing interior.
  • the insulating glazing comprises at least three panes which are kept at a distance from one another by a spacer.
  • the insulating glazing can also comprise a fourth or additional pane. These can for example be inserted into the spacer via a further groove. Alternatively, additional panes can also be attached to the first pane or second pane via a further spacer.
  • the insulating glazing preferably comprises three or four panes.
  • the outer surface of the spacer is connected to the two disc contact surfaces via connecting surfaces, i. via a connection surface with a disk contact surface and / or via another connection surface with the other disk contact surface, wherein preferably both disk contact surfaces are connected to the outer surface via such connection surfaces.
  • the connection surface can be at an angle in the range from 30 ° to 60 ° to the outer surface.
  • the two pane contact surfaces are generally approximately perpendicular or perpendicular to the plane in which the outer surface is located and / or to the plane in which the glazing interior surface is located.
  • the outer surface and the interior surface of the glazing run parallel to one another.
  • the glazing interior surface is usually directly connected to the two pane contact surfaces.
  • the glazing interior surface can, however, optionally also be connected to the pane contact surfaces via connection surfaces.
  • the polymer base body preferably contains polyethylene (PE), polycarbonate (PC), polypropylene (PP), polystyrene, polybutadiene, polynitrile, polyester, polyurethane, polymethyl methacrylate, polyacrylate, polyamide, polyethylene terephthalate (PET), Polybutylene terephthalate (PBT), preferably acrylonitrile-butadiene-styrene (ABS), acrylic ester-styrene-acrylonitrile (ASA), acrylonitrile-butadiene-styrene / polycarbonate (ABS / PC), styrene-acrylonitrile (SAN), PET / PC, PBT / PC and / or copolymers or mixtures thereof.
  • ABS acrylonitrile-butadiene-styrene
  • ABS acrylic ester-styrene-acrylonitrile
  • ABS / PC acrylonitrile-butadiene-styrene / poly
  • the polymer base body is preferably reinforced with glass fibers.
  • the base body preferably has a glass fiber content of 20% to 50%, particularly preferably 30% to 40%. The glass fiber content in the polymer base body improves strength and stability at the same time.
  • the polymeric base body is filled with hollow glass spheres or glass bubbles.
  • These hollow glass spheres have a diameter of 10 ⁇ m to 20 ⁇ m and improve the stability of the polymeric hollow profile. Suitable glass spheres are commercially available under the name "3M TM Glass Bubbles".
  • the polymer base body particularly preferably contains polymers, glass fibers and glass spheres. An admixture of glass spheres leads to an improvement in the thermal properties of the hollow profile.
  • the spacer contains a drying agent, preferably silica gels, molecular sieves, CaCl 2 , Na 2 SO 4 , activated carbon, silicates, bentonites, zeolites and / or mixtures thereof.
  • a drying agent preferably silica gels, molecular sieves, CaCl 2 , Na 2 SO 4 , activated carbon, silicates, bentonites, zeolites and / or mixtures thereof.
  • the spacer can optionally have two or more hollow chambers inside, preferably two hollow chambers, which are separated from one another by the groove.
  • the desiccant is preferably contained in the hollow chambers.
  • the interior surfaces of the glazing preferably have openings in order to facilitate the absorption of humidity by the desiccant present in the spacer. The total number of openings depends on the size of the double glazing.
  • the openings connect the hollow chamber with the inner one Space between the panes, which enables gas exchange between them. This allows air humidity to be absorbed by the desiccant located in the hollow chamber and prevents the windows from fogging up.
  • the openings are preferably designed as slots, particularly preferably as slots with a width of 0.2 mm and a length of 2 mm. The slots ensure an optimal exchange of air without desiccant penetrating from the hollow chamber into the interior of the glazing.
  • a gas-tight and vapor-tight barrier is preferably applied at least on the outer surface of the polymeric base body, preferably on the outer surface and on some of the pane contact surfaces.
  • the gas- and vapor-tight barrier improves the tightness of the spacer against gas loss and the ingress of moisture.
  • the barrier is preferably applied to approximately one-half to two-thirds of the pane contact areas.
  • a suitable spacer with a polymer base body is for example in WO 2013/104507 A1 disclosed.
  • the gas- and vapor-tight barrier is designed as a film on the outer surface of a polymeric spacer.
  • This barrier film contains at least one polymer layer and a metallic layer or a ceramic layer.
  • the layer thickness of the polymeric layer is between 5 ⁇ m and 80 ⁇ m, while metallic layers and / or ceramic layers with a thickness of 10 nm to 200 nm are used. A particularly good tightness of the barrier film is achieved within the specified layer thicknesses.
  • the barrier film can be applied, for example glued, to the polymeric base body. Alternatively, the film can be co-extruded together with the base body.
  • the barrier film particularly preferably contains at least two metallic layers and / or ceramic layers which are arranged alternately with at least one polymer layer.
  • the layer thicknesses of the individual layers are preferably as described in the previous paragraph.
  • the outer layers are preferably formed by polymer layers.
  • the metallic layers are particularly well protected from damage.
  • the Alternating layers of the barrier film can be connected or applied to one another using the most varied of methods known from the prior art. Methods for depositing metallic or ceramic layers are well known to the person skilled in the art.
  • the use of a barrier film with an alternating sequence of layers is particularly advantageous with regard to the tightness of the system. A fault in one of the layers does not lead to a loss of function of the barrier film.
  • the polymeric layer of the film preferably comprises polyethylene terephthalate, ethylene vinyl alcohol, polyvinylidene chloride, polyamides, polyethylene, polypropylene, silicones, acrylonitriles, polyacrylates, polymethyl acrylates and / or copolymers or mixtures thereof.
  • the metallic layer preferably contains iron, aluminum, silver, copper, gold, chromium and / or alloys or oxides thereof.
  • the ceramic layer of the film preferably contains silicon oxides and / or silicon nitrides.
  • the metallic or ceramic layers are preferably applied to the polymer layer via a PVD process (physical vapor deposition).
  • the polymeric layer can be provided, for example, in film form, coated using the methods mentioned and then connected to the base body. The coating with the materials mentioned provides particularly good results with regard to impermeability and also shows excellent adhesion properties to the materials used in insulating glazing for the outer seal.
  • the dimensions of the spacer depend on the dimensions of the insulating glazing.
  • the width of such a spacer can be, for example, in the range from 10 to 50 mm, preferably 20 to 36 mm.
  • the height can be in the range from 5 to 15 mm, preferably 5 to 10 mm, for example.
  • the first and the second disk are attached to the disk contact surfaces preferably via a sealing means which is attached between the first disk contact surface and the first disk and / or the second disk contact surface and the second disk.
  • the sealant preferably contains butyl rubber, polyisobutylene, polyethylene vinyl alcohol, ethylene vinyl acetate, polyolefin rubber, copolymers and / or mixtures thereof.
  • the sealant is preferably introduced into the gap between spacer and panes with a thickness of 0.1 mm to 0.8 mm, particularly preferably 0.2 mm to 0.4 mm.
  • the outer space between the panes of the insulating glazing is preferably filled with an outer seal.
  • This outer seal is primarily used to bond the two panes and thus the mechanical stability of the insulating glazing.
  • the outer seal preferably contains polysulfides, silicones, silicone rubber, polyurethanes, polyacrylates, copolymers and / or mixtures thereof. Such substances adhere very well to glass, so that the outer seal ensures that the panes are securely bonded.
  • the thickness of the outer seal is preferably 2 mm to 30 mm, particularly preferably 5 mm to 10 mm.
  • the panes of the insulating glazing can be made of organic glass or, preferably, of inorganic glass.
  • the panes can be made of flat glass, float glass, soda-lime glass, quartz glass or borosilicate glass, independently of one another.
  • the thickness of each disk can vary and thus be adapted to the requirements of the individual case. Discs with standard thicknesses of 1 mm to 19 mm and preferably of 2 mm to 8 mm are preferably used.
  • the discs can be colorless or colored.
  • the insulating glazing preferably comprises at least one pane, more preferably at least two panes, which are or are, independently of one another, a float glass pane, a laminated pane, structured glass or a colored or satined glass. At least one pane is more preferably a float glass pane.
  • the first and second glazing interiors can be filled with air or another gas, particularly a noble gas such as e.g. Argon or krypton.
  • a noble gas such as e.g. Argon or krypton.
  • the glazing interior surface of the spacer faces the glazing interior.
  • the outer space between the panes is also formed by the first pane, the second pane, the spacer and the sealant placed between panes and pane contact surfaces and is located opposite the glazing interior in the outer edge region of the insulating glazing.
  • the outer space between the panes is open on the side opposite the spacer.
  • the outer surface of the spacer faces the outer space between the panes.
  • the spacer is generally arranged circumferentially on the panes.
  • the first and second busbars run in the first glazing interior preferably parallel to the spacer, preferably on two opposite pane edges of the first pane.
  • the spacer is generally designed in the form of a rectangle in plan view. Usually the spacer is symmetrical, i. it has the same distance to the edge of the insulating glass on all sides of the insulating glass.
  • two busbars are arranged on opposite sides of the insulating glazing in the first glazing interior.
  • the busbars are preferably arranged such that they are arranged horizontally when the insulating glazing is installed. But it is also possible for them to be arranged vertically when installed.
  • the insulating glazing according to the invention is particularly suitable as building exterior glazing or facade glazing.
  • the invention therefore also relates to the use of the insulating glazing according to the invention as exterior building glazing or facade glazing.
  • the first pane is directed towards the building surroundings in the installed state.
  • Figure 1a shows an insulating glazing according to the invention I as triple glazing with an electrochromic functional element 1 on a first pane 19, an infrared-reflecting coating 16 on a second pane 20 and a spacer 15 for triple glazing.
  • the spacer 15 is attached circumferentially between the first disk 19 and the second disk 20 via a sealing means 4.
  • the sealing means 4 connects the disk contact surfaces 7.1 and 7.2 of the spacer 15 with the disks 19 and 20.
  • the spacer 15 is designed as a polymeric base body 5 with a first hollow chamber 10.1 and a second hollow chamber 10.2.
  • the spacer 15 is made of styrene-acrylonitrile (SAN), which is opaque.
  • SAN styrene-acrylonitrile
  • the first hollow chamber 10.1 between the groove 17 and the first disc contact surface 7.1 and the second hollow chamber 10.2 is located between the groove 17 and the second disc contact surface 7.2.
  • the hollow chambers 10 contain a desiccant 11 which can absorb residual moisture from the glazing interiors 3 via openings 12 in the glazing interior surface 8.
  • the side flanks of the groove 17 are formed by the walls of the two hollow chambers 10.1 and 10.2, while the bottom surface of the groove 17 is directly adjacent to the outer surface 9.
  • the groove 17 runs parallel to the disk contact surfaces 7.
  • a third disk 21 with a thickness of 2.0 mm is inserted into the groove 17 of the spacer 15.
  • the glazing interior 3 adjoining the glazing interior surface 8 of the spacer 15 is defined as the space delimited by the panes 19, 20 and the spacer 15.
  • the third pane 21 divides the glazing interior 3 into a first glazing interior 3.1 above the first hollow chamber 10.1 and a second glazing interior 3.2 above the second hollow chamber 10.2.
  • the groove contains an insert 24 which surrounds the edge of the third disk 21 and fits flush into the groove 17.
  • the insert 24 consists of ethylene-propylene-diene rubber and has at least one recess all the way around, which enables pressure equalization between the glazing interiors 3.1 and 3.2.
  • the insert 24 fixes the third pane 21 without tension.
  • the insert 24 prevents the development of noise due to the third pane 21 slipping Another side is limited by the spacer 15 and the fourth edge is open.
  • the glazing interior 3 is filled with argon.
  • the sealant 4 is polyisobutylene.
  • an outer seal 6 is attached in the outer space 13 between the panes, which is used to bond the first pane 19 and the second pane 20.
  • the outer seal 6 is made of silicone. The outer seal 6 terminates flush with the pane edges of the first pane 19 and the second pane 20.
  • the second pane 20 has a thickness of 4.0 mm and has a pane surface facing the second glazing interior 3.2 infrared reflective coating 16.
  • the electrochromic functional element 1 which is equipped with a bus bar 22 for making electrical contact with the functional element 1, is applied to the pane surface of the first pane 19 directed towards the first glazing interior 3.1.
  • the electrical supply line 14 of the functional element 1 runs within the first hollow chamber 10.1 of the spacer 15 and emerges from the spacer 15 at the glazing interior surface 8 of the first hollow chamber 10.1. Within the first glazing interior 3.1, the electrical supply line is electrically conductively contacted via a contact element 2 on the busbar 22.
  • the contact element 2 is a so-called crimp connector, the connection between the electrical lead 14 and the contact element 2 being made by squeezing the lead into the crimp connector and the opposite end of the crimp connector being soldered to the bus bar 22.
  • the electrical lead 14 is led out of the first hollow chamber 10.1 at another point and connected to an external voltage source.
  • the points of the spacer 15 at which the electrical supply line 14 passes through the wall of the spacer 15 are preferably sealed with sealant 4.
  • the first pane 19 has a thickness of 2.0 mm and is laminated to a further pane 23 with a thickness of 2.0 mm via a thermoplastic composite film 25 made of 0.76 mm PVB.
  • the composite pane of first pane 19 and further pane 23 represents the outer pane of building glazing, while the second pane 20 is the inner pane.
  • the busbar 22 was produced by printing a conductive paste and electrically contacted on the electrochromic functional element 1.
  • the conductive paste also known as silver paste, contains silver particles and glass frits.
  • the busbar 22 runs on the first pane 19 in the glazing interior 3 and parallel to the glazing interior surface 8 of the spacer 15.
  • a gas- and water-tight barrier film (not shown) is applied to the outer surface 9 of the spacer 15.
  • the routing of the electrical lead 14 can alternatively to that in Figure 1a shown also according to Figure 1b respectively.
  • the insulating glazing I according to the invention has good heat dissipation of the electrochromic functional element 1, good thermal insulation of the building interior through the infrared-reflecting coating 16 and improved stability of the edge bond through the use of a double spacer to accommodate three panes of the insulating glazing I.
  • the weight of the insulating glazing I can be reduced compared to insulating glazing with two individual spacers, since a pane of small thickness can also be fitted into the groove 17 of the spacer I.
  • polymer spacers have a lower thermal conductivity than metallic spacers.
  • FIG 1b shows a further embodiment of the insulating glazing according to the invention.
  • the insulating glazing I the Figure 1b corresponds essentially to the embodiment of FIG Figure 1a so that only the differences are discussed here.
  • the infrared-reflecting coating 16 is provided on the surface of the third pane 21, which delimits the first glazing interior 3.1.
  • the waste heat from the electrochromic functional element 1 located on the first pane 19 does not extend to the entire glazing.
  • the waste heat generated by the electrochromic functional element 1 and the heating of the infrared reflective coating 16 when exposed to sunlight is limited only to the first glazing interior 3.1 and is emitted very well to the building environment via the outer pane of the glazing.
  • the tension-free fixing of the third pane 21 in the groove 17 is particularly advantageous.
  • the electrical lead 14 is, as already in Figure 1a described, contacted with the bus bar 22. According to Figure 1b However, the cable is not fed through the spacer 15, but rather through the sealing means 4 between the first disk contact surface 7.1 and the first disk 19. On the outer surface 9 of the Spacer 15, the electrical supply line is continued in the form of a flat ribbon cable that is cohesively connected to the outer surface 9.
  • the routing of the electrical lead 14 can alternatively to that in Figure 1b shown also according to Figure 1a respectively.
  • Figure 2 shows a cross section of the insulating glazing I according to Figure 1a along the section line AA 'with a view of the first disk 19.
  • the second disk 20 and the third disk 21 are not shown in this view.
  • the described contacting of an electrical lead 14 running in the spacer 15 with the busbar 22 of the electrically switchable functional element 1 takes place on two opposite edges of the insulating glazing I. At both edges, the electrical supply line 14 enters the glazing interior 3 from the hollow body 10 and is electrically conductively contacted with the busbar 22 via a contact element 2.
  • the spacer 15 is bent at the corners of the insulating glazing I so that the hollow chambers 10 are also continuous at the corners of the glazing.
  • Both electrical leads 14 are routed inside the base body 5 to a point where the leads 14 enter the outer pane space 13 from the hollow chamber 10 and from there to a voltage source 18, here a DC voltage source for operating the electrochromic functional element 1, outside the glazing are connected.
  • the supply lines 14 are connected to different poles of the voltage source 18, so that a potential difference arises between the two opposite busbars 22.
  • the voltage applied to the busbars 22 causes ion migration within the active layer of the electrochromic functional element 1, which influences its transmission.
  • the openings of the spacer 15, at which supply lines 14 pass through the walls, are sealed with the sealant 4.
  • the electrical leads 14 can run through the base body 5 partially or along its entire circumference.
  • the feed lines 14 can be introduced manually or a spacer 15 can be used which has already been extruded with an integrated electrical feed line 14.

Abstract

Isolierverglasung (I) mit elektrochromem Funktionselement (1) mindestens umfassend eine erste Scheibe (19), eine zweite Scheibe (20), eine dritte Scheibe (21), einen Abstandhalter (15) mit polymerem Grundkörper (5), einen ersten Verglasungsinnenraum (3.1) zwischen erster Scheibe (19) und dritter Scheibe (21) und einen zweiten Verglasungsinnenraum (3.2) zwischen dritter Scheibe (21) und zweiter Scheibe (20), wobei die erste Scheibe (19) an einer ersten Scheibenkontaktfläche (7.1) des Abstandhalters (15) angebracht ist, die zweite Scheibe (20) an einer zweiten Scheibenkontaktfläche (7.2) des Abstandhalters (15) angebracht ist und die dritte Scheibe (21) in eine Nut (17) des Abstandhalters (15) eingesetzt ist, die zwischen erster Scheibenkontaktfläche (7.1) und zweiter Scheibenkontaktfläche (7.2) verläuft undwobei- das elektrochrome Funktionselement (1) auf der ersten Scheibe (19) innerhalb des ersten Verglasungsinnenraums (3.1) aufgebracht ist,- die zweite Scheibe (20) und/oder die dritte Scheibe (21) mindestens eine infrarotreflektierende Beschichtung (16) umfassen, die sich innerhalb des ersten Verglasungsinnenraums (3.1) und/oder des zweiten Verglasungsinnenraums (3.2) befinden und- die erste Scheibe (19) eine zur Gebäudeumgebung gerichtete Außenscheibe der Isolierverglasung (I) und die zweite Scheibe (20) eine Innenscheibe der Isolierverglasung (I) darstellt.Insulating glazing (I) with electrochromic functional element (1) at least comprising a first pane (19), a second pane (20), a third pane (21), a spacer (15) with a polymer base body (5), a first glazing interior (3.1 ) between the first pane (19) and the third pane (21) and a second glazing interior (3.2) between the third pane (21) and the second pane (20), the first pane (19) on a first pane contact surface (7.1) of the spacer ( 15) is attached, the second disk (20) is attached to a second disk contact surface (7.2) of the spacer (15) and the third disk (21) is inserted into a groove (17) of the spacer (15) between the first disk contact surface (7.1) and second pane contact surface (7.2) runs and where- the electrochromic functional element (1) is applied to the first pane (19) within the first glazing interior (3.1), - the second pane (20) and / or the third e pane (21) comprise at least one infrared-reflecting coating (16) which are located within the first glazing interior (3.1) and / or the second glazing interior (3.2) and - the first pane (19) has an outer pane of the insulating glazing (I ) and the second pane (20) represents an inner pane of the insulating glazing (I).

Description

Die Erfindung betrifft eine Isolierverglasung mit elektrochromem Funktionselement und infrarotreflektierender Beschichtung, ein Verfahren zu dessen Herstellung sowie dessen Verwendung.The invention relates to insulating glazing with an electrochromic functional element and an infrared-reflecting coating, a method for its production and its use.

Isolierverglasungen sind vor allem im Zuge immer strengerer Umweltschutzauflagen nicht mehr aus dem Gebäudebau wegzudenken. Diese werden dabei aus mindestens zwei Scheiben gefertigt, die über mindestens einen umlaufenden Abstandshalter miteinander verbunden sind. Je nach Ausführungsform ist der als Verglasungsinnenraum bezeichnete Zwischenraum der beiden Scheiben luft- oder gasgefüllt, in jedem Fall jedoch frei von Feuchtigkeit. Ein zu hoher Gehalt an Feuchtigkeit im Verglasungszwischenraum führt besonders bei kalten Außentemperaturen zur Kondensation von Wassertropfen im Scheibenzwischenraum, was unbedingt zu vermeiden ist. Zur Aufnahme der nach der Montage im System verbleibenden Restfeuchtigkeit können beispielsweise mit einem Trockenmittel gefüllte Hohlkörperabstandshalter verwendet werden. Da die Aufnahmekapazität des Trockenmittels jedoch begrenzt ist, ist auch in diesem Fall die Abdichtung des Systems von enormer Wichtigkeit um das Eindringen weiterer Feuchtigkeit zu vermeiden.Insulating glazing has become an indispensable part of building construction, especially in the wake of ever stricter environmental protection regulations. These are made from at least two panes that are connected to one another via at least one circumferential spacer. Depending on the embodiment, the space between the two panes, referred to as the glazing interior, is filled with air or gas, but in any case free of moisture. If the moisture content in the space between the glazing is too high, this leads to condensation of water droplets in the space between the panes, which must be avoided at all costs. Hollow body spacers filled with a desiccant, for example, can be used to absorb the residual moisture remaining in the system after assembly. However, since the absorption capacity of the desiccant is limited, the sealing of the system is also of enormous importance in this case in order to prevent further moisture from penetrating.

Isolierverglasungen können über ihre grundsätzliche Funktion hinausgehend auch weitere Elemente in Form von Einbauten oder Scheiben mit steuerbaren Zusatzfunktionen enthalten. Eine Art von modernen, aktiven Verglasungen sind Verglasungen mit schaltbaren oder regelbaren optischen Eigenschaften. Bei solchen Verglasungen kann beispielsweise die Transmission von Licht in Abhängigkeit einer angelegten elektrischen Spannung aktiv beeinflusst werden. Der Benutzer kann beispielsweise von einen transparenten in einen nicht transparenten Zustand der Verglasung schalten, um den Einblick in einen Raum von außen zu verhindern. Bei anderen Verglasungen kann die Transmission stufenlos geregelt werden, beispielsweise um den Eintrag von Sonnenenergie in einem Raum zu regulieren. Dadurch wird eine unerwünschte Erwärmung von Gebäuden oder Fahrzeuginnenräumen vermieden und der durch Klimaanlagen verursachte Energieverbrauch bzw. CO2-Ausstoß reduziert. Aktive Verglasungen dienen folglich nicht nur der optisch ansprechenden Gestaltung von Fassaden und einer angenehmen Lichtgestaltung in Innenräumen, sondern sind auch unter energetischen und ökologischen Gesichtspunkten vorteilhaft.In addition to their basic function, insulating glazing can also contain other elements in the form of fixtures or panes with controllable additional functions. One type of modern, active glazing is glazing with switchable or controllable optical properties. In the case of such glazings, for example, the transmission of light can be actively influenced as a function of an applied electrical voltage. The user can, for example, switch from a transparent to a non-transparent state of the glazing in order to prevent a view into a room from outside. With other types of glazing, the transmission can be regulated continuously, for example to regulate the entry of solar energy into a room. This will cause unwanted heating of buildings or Avoid vehicle interiors and reduce the energy consumption and CO 2 emissions caused by air conditioning. Active glazing is therefore not only used for the visually appealing design of facades and pleasant lighting design in interiors, but is also advantageous from an energetic and ecological point of view.

Aktive Verglasungen enthalten ein Funktionselement, welches typischerweise eine aktive Schicht zwischen zwei Flächenelektroden enthält. Die optischen Eigenschaften der aktiven Schicht können durch eine an die Flächenelektroden angelegte Spannung verändert werden. Ein Beispiel hierfür sind elektrochrome Funktionselemente, die beispielsweise aus US 20120026573 A1 und WO 2012007334 A1 bekannt sind. Diese werden im Gebäudebau insbesondere verwendet um große Glasflächen abzuschatten und ein Blenden der im Gebäudeinneren befindlichen Personen durch Sonneneinstrahlung zu vermeiden. Durch eine an dem Funktionselement angelegte Spannung lässt sich die Transmission von sichtbarem Licht durch das elektrochrome Funktionselement steuern. Die Spannungszufuhr erfolgt über sogenannte Sammelleiter (bus bars), die in der Regel auf den Flächenelektroden aufgebracht sind und über geeignete Verbindungskabel mit einer Spannungsquelle verbunden sind.Active glazings contain a functional element which typically contains an active layer between two surface electrodes. The optical properties of the active layer can be changed by a voltage applied to the surface electrodes. An example of this are electrochromic functional elements, for example from US 20120026573 A1 and WO 2012007334 A1 are known. These are used in building construction in particular to shade large areas of glass and to avoid dazzling people inside the building from solar radiation. The transmission of visible light through the electrochromic functional element can be controlled by a voltage applied to the functional element. The voltage is supplied via so-called bus bars, which are usually attached to the surface electrodes and are connected to a voltage source via suitable connecting cables.

Wird eine elektrochrome Verglasung in einer Isolierverglasung integriert, so tritt bei Betrieb der elektrochromen Schicht eine Erwärmung der Verglasung ein. Ein Übergang dieser Abwärme in den Gebäudeinnenraum ist jedoch unerwünscht. Darüber hinaus führt eine Erwärmung einzelner Scheiben der Isolierverglasung zu Spannungen im Randverbund der Verglasung. Insbesondere bei Isolierverglasungen mit elektrochromen Funktionselementen ist somit auf die Stabilität des Randverbundes bei Erwärmung und die Wärmeableitung der Scheibe mit elektrochromem Schichtsystem zu achten.If electrochromic glazing is integrated in insulating glazing, then when the electrochromic layer is in operation, the glazing is heated. A transfer of this waste heat into the building interior is undesirable. In addition, heating of individual panes of the insulating glazing leads to tension in the edge seal of the glazing. Particularly in the case of insulating glazing with electrochromic functional elements, attention must be paid to the stability of the edge bond when heated and the heat dissipation of the pane with the electrochromic layer system.

Aufgabe der vorliegenden Erfindung ist es, eine Isolierverglasungen mit elektrochromem Funktionselement und verbesserter Wärmeableitung und Stabilität des Randverbunds, sowie ein wirtschaftliches Verfahren zur Herstellung der Isolierverglasung bereitzustellen.The object of the present invention is to provide insulating glazing with an electrochromic functional element and improved heat dissipation and stability of the edge bond, as well as an economical method for producing the insulating glazing.

Die Aufgabe der vorliegenden Erfindung wird erfindungsgemäß durch eine Isolierverglasung mit elektrochromem Funktionselement und Doppelabstandhalter, ein Verfahren zu deren Herstellung und deren Verwendung nach den unabhängigen Ansprüchen 1 und 14 gelöst. Bevorzugte Ausführungen der Erfindung gehen aus den Unteransprüchen hervor.The object of the present invention is achieved according to the invention by insulating glazing with an electrochromic functional element and double spacer, a method for its production and its use according to independent claims 1 and 14. Preferred embodiments of the invention emerge from the subclaims.

Die erfindungsgemäße Isolierverglasung mit elektrochromem Funktionselement umfasst mindestens eine erste Scheibe, eine zweite Scheibe, eine dritte Scheibe und einen Abstandhalter mit polymerem Grundkörper. Der polymere Grundkörper weist eine erste Scheibenkontaktfläche und eine parallel dazu verlaufende zweite Scheibenkontaktfläche, eine erste Verglasungsinnenraumfläche, eine zweite Verglasungsinnenraumfläche und eine Außenfläche auf. An der ersten Scheibenkontaktfläche ist die erste Scheibe angebracht und an der zweiten Scheibenkontaktfläche ist die zweite Scheibe der Isolierverglasung angebracht. In den polymeren Grundkörper sind eine erste Hohlkammer und eine zweite Hohlkammer sowie eine Nut eingebracht. Die Nut verläuft dabei parallel zur ersten Scheibenkontaktfläche und zweiten Scheibenkontaktfläche und dient der Aufnahme der dritten Scheibe. Die erste Hohlkammer grenzt an die erste Verglasungsinnenraumfläche, während die zweite Hohlkammer an die zweite Verglasungsinnenraumfläche angrenzt, wobei die Verglasungsinnenraumflächen sich oberhalb der Hohlkammern im Innenraum der Isolierverglasung befinden und die Außenfläche sich unterhalb der Hohlkammern an der der Umgebung zugewandten Oberfläche befindet. Oberhalb ist in diesem Zusammenhang als dem Scheibeninnenraum einer Isolierverglasung zugewandt und unterhalb als dem Scheibeninnenraum abgewandt definiert. Da die Nut zwischen der ersten Verglasungsinnenraumfläche und zweiten Verglasungsinnenraumfläche verläuft, begrenzt sie diese seitlich und trennt die erste Hohlkammer und die zweite Hohlkammer voneinander. Die Seitenflanken der Nut werden dabei von den Wänden der ersten Hohlkammer und der zweiten Hohlkammer gebildet. Die Nut bildet dabei eine Vertiefung, die geeignet ist die mittlere Scheibe (dritte Scheibe) der Isolierverglasung aufzunehmen. Dadurch wird die Position der dritten Scheibe über zwei Seitenflanken der Nut sowie die Bodenfläche der Nut fixiert. Das elektrochrome Funktionselement der Isolierverglasung ist auf der Oberfläche der ersten Scheibe aufgebracht, die innerhalb des ersten Verglasungsinnenraums liegt. Ferner umfasst die erfindungsgemäße Verglasung mindestens eine infrarotreflektierende Beschichtung, die sich auf der zweiten Scheibe und/oder der dritten Scheibe innerhalb des ersten Verglasungsinnenraums und/oder des zweiten Verglasungsinnenraums befindet. Im Einbauzustand der Isolierverglasung stellt die erste Scheibe die zur Gebäudeumgebung gerichtete Außenscheibe dar, während die zweite Scheibe die zum Innenraum weisende Innenscheibe ist.The insulating glazing according to the invention with an electrochromic functional element comprises at least a first pane, a second pane, a third pane and a spacer with a polymer base body. The polymer base body has a first pane contact surface and a second pane contact surface running parallel thereto, a first glazing interior surface, a second glazing interior surface and an outer surface. The first pane is attached to the first pane contact surface and the second pane of the insulating glazing is attached to the second pane contact surface. A first hollow chamber and a second hollow chamber as well as a groove are introduced into the polymeric base body. The groove runs parallel to the first disk contact surface and the second disk contact surface and is used to accommodate the third disk. The first hollow chamber adjoins the first glazing interior surface, while the second hollow chamber adjoins the second glazing interior surface, the glazing interior surfaces being located above the hollow chambers in the interior of the insulating glazing and the outer surface being located below the hollow chambers on the surface facing the environment. In this context, above is defined as facing the pane interior of insulating glazing and below as facing away from the pane interior. Since the groove runs between the first interior glazing surface and the second interior glazing surface, it delimits it laterally and separates the first hollow chamber and the second hollow chamber from one another. The side flanks of the groove are formed by the walls of the first hollow chamber and the second hollow chamber. The groove forms a recess that is suitable for receiving the middle pane (third pane) of the insulating glazing. As a result, the position of the third disc is fixed via two side flanks of the groove and the bottom surface of the groove. The electrochromic functional element of the insulating glazing is on the surface of the first pane applied, which lies within the first glazing interior. Furthermore, the glazing according to the invention comprises at least one infrared-reflecting coating which is located on the second pane and / or the third pane within the first glazing interior and / or the second glazing interior. When the insulating glazing is installed, the first pane represents the outer pane facing the building environment, while the second pane is the inner pane facing the interior.

In der erfindungsgemäßen Isolierverglasung wird somit ein einteiliger doppelter Abstandhalter ("Doppelspacer") verwendet, an dem alle drei Scheiben einer Dreifachverglasung fixiert werden können. Der verwendete einteilige Abstandhalter ermöglicht eine vereinfachte und dennoch passgenaue Montage der Dreifachverglasung. Ein Verrutschen zweier einzelner Abstandhalter, wie auch aus dem Stand der Technik bekannt, ist dabei unmöglich. Dies ist insbesondere in Kombination mit Funktionselementen vorteilhaft, da bei Verwendung von Funktionselementen eine wesentlich präzisere Platzierung der Elemente notwendig ist um eine Kollision mit elektrischen Anschlusskabeln und Sammelleitern zur elektrischen Kontaktierung des Funktionselementes zu vermeiden. Eine solche fehlerhafte Platzierung führt bei Isolierverglasungen ohne Funktionselemente lediglich zu einem optischen Mangel, während eine unkorrekte Platzierung bei Isolierverglasungen mit Funktionselementen auch zu einer unvorteilhaften Überlappung von Sammelleitern und Abstandhalter führen kann. Dabei kollidiert der Abstandhalter beispielsweise mit auf den Sammelleiter aufgebrachten Anschlusskabeln. Durch diese Kollision ist es auch möglich, dass der Abstandhalter weiter verrutscht und ein gasdichtes Verpressen nicht möglich ist. Dadurch können Undichtigkeit der Isolierverglasung auftreten. Dies kann durch die präzisere Montage der erfindungsgemäßen Isolierverglasung unter Verwendung eines einteiligen Abstandhalters mit Nut vermieden werden. Darüber hinaus wird ein zwischen der ersten Scheibe, der zweiten Scheibe und der Außenfläche des Abstandhalters liegender äußerer Scheibenzwischenraum nicht durch die dritte Scheibe unterbrochen. Dieser durchgehende Randbereich, der für eine vollflächige Verfüllung mit einer Abdichtung zur Verfügung steht, ist vorteilhaft für die Stabilität und damit einhergehend auch die Dichtigkeit der Verglasung. Diese Aspekte sind insbesondere wichtig in Verbindung mit Funktionselementen und anderen Beschichtungen, die eine Erwärmung der Verglasung bewirken und dadurch thermische Spannungen induzieren. Thermische Spannungen der Glasscheiben stellen auch immer eine Belastung des Randverbundes dar, so dass in diesem Fällen besonders auf die Stabilität und Dichtigkeit des Randverbundes zu achten ist.In the insulating glazing according to the invention, a one-piece double spacer is thus used, to which all three panes of a triple glazing can be fixed. The one-piece spacer used enables the triple glazing to be installed in a simplified, yet precisely fitting manner. It is impossible for two individual spacers to slip, as is also known from the prior art. This is particularly advantageous in combination with functional elements, since when functional elements are used, the elements must be placed much more precisely in order to avoid a collision with electrical connection cables and bus bars for making electrical contact with the functional element. In the case of insulating glazing without functional elements, such incorrect placement only leads to an optical defect, while incorrect placement in insulating glazing with functional elements can also lead to an unfavorable overlap of busbars and spacers. In this case, the spacer collides, for example, with connection cables attached to the busbar. As a result of this collision, it is also possible for the spacer to slip further and for gas-tight pressing to be impossible. This can lead to leaks in the insulating glazing. This can be avoided by the more precise assembly of the insulating glazing according to the invention using a one-piece spacer with a groove. In addition, an outer space between the panes located between the first pane, the second pane and the outer surface of the spacer is not interrupted by the third pane. This continuous edge area, which is available for full-surface filling with a seal, is advantageous for the stability and, as a result, also for the tightness of the glazing. These aspects are particular important in connection with functional elements and other coatings that cause the glazing to heat up and thereby induce thermal stresses. Thermal stresses in the glass panes always put stress on the edge seal, so that in this case particular attention must be paid to the stability and tightness of the edge seal.

Wie bereits erwähnt, besteht eine Problematik bei Isolierverglasungen mit elektrochromen Funktionselementen in der Erwärmung dieser Funktionselemente im Betriebszustand. Das elektrochrome Funktionselement ist auf der im ersten Verglasungsinnenraum befindlichen Oberfläche der ersten Scheibe angebracht. Das Funktionselement ist durch die Wahl einer innenliegenden Oberfläche vor Umgebungseinflüssen geschützt. Darüber hinaus findet eine verbesserte Wärmeabfuhr statt. Die Abwärme eines elektrochromen Funktionselementes auf einer innenständigen Scheibe (dritte Scheibe) der Isolierverglasung ist im Vergleich dazu wesentlich schlechter, weshalb erfindungsgemäß die außenständige erste Scheibe gewählt wird. Somit wird ein Wärmestau innerhalb der Isolierverglasung vermieden und die Wärme kann unmittelbar an die Umgebung abgegeben werden. Bei Einbau der Isolierverglasung in einem Fensterrahmen wird die erste Scheibe als Außenscheibe der Isolierverglasung in Richtung der Gebäudeumgebung orientiert. Dadurch wird zum einen die Wärmeableitung an die äußere Umgebung anstelle des Gebäudeinnenraums sichergestellt. Zum anderen erfolgt die Verschattung durch das elektrochrome Funktionselement unmittelbar an der Außenfläche der Isolierverglasung, so dass eine zusätzliche Erwärmung der Verglasung durch in die Verglasung einfallende Sonnenstrahlung vermieden wird.As already mentioned, there is a problem with insulating glazing with electrochromic functional elements in the heating of these functional elements in the operating state. The electrochromic functional element is attached to the surface of the first pane located in the first glazing interior. The functional element is protected from environmental influences by the choice of an internal surface. In addition, there is improved heat dissipation. The waste heat from an electrochromic functional element on an inner pane (third pane) of the insulating glazing is significantly worse in comparison, which is why the outer first pane is selected according to the invention. This avoids a build-up of heat inside the insulating glazing and the heat can be given off directly to the environment. When installing the insulating glazing in a window frame, the first pane is oriented as the outer pane of the insulating glazing in the direction of the building environment. On the one hand, this ensures that heat is dissipated to the outside environment instead of the interior of the building. On the other hand, shading by the electrochromic functional element takes place directly on the outer surface of the insulating glazing, so that additional heating of the glazing due to solar radiation falling into the glazing is avoided.

Erfindungsgemäß weist die Isolierverglasung zusätzlich zu dem elektrochromen Funktionselement eine infrarotreflektierende Beschichtung auf. Diese ist auf der mittleren dritten Scheibe oder auf der Innenseite der zweiten Scheibe aufgebracht. In dieser Position ist die infrarotreflektierende Beschichtung vor Umwelteinflüssen geschützt. Die infrarotreflektierende Beschichtung vermindert den Wärmedurchgang durch die Isolierverglasung, so dass im Winter ein Verlust von Wärme vermieden werden kann. Im Sommer verhindert die infrarotreflektierende Beschichtung hingegen die Aufheizung des Innenraumes durch eintreffende Sonnenstrahlung. Insbesondere in Kombination mit dem elektrochromen Funktionselement ist die Verwendung einer infrarotreflektierenden Beschichtung vorteilhaft, da so auch der Wärmedurchgang der Abwärme des Funktionselementes vermieden wird. Da die infrarotreflektierende Beschichtung jedoch eine vermehrte Wärmeausdehnung der Scheibe bedingt, ist insbesondere bei der Kombination elektrochromer Funktionselemente und infrarotreflektierender Beschichtungen auf die Stabilität des Randverbundes zu achten. Diese erforderliche Stabilität wird durch die Verwendung eines einteiligen Abstandhalters mit Nut erreicht.According to the invention, the insulating glazing has, in addition to the electrochromic functional element, an infrared-reflecting coating. This is applied to the middle third pane or on the inside of the second pane. In this position the infrared reflective coating is protected from environmental influences. The infrared-reflecting coating reduces the heat transfer through the double glazing, so that a loss of heat can be avoided in winter. In summer, on the other hand, the infrared-reflecting coating prevents the interior from being heated up by incident solar radiation. In particular In combination with the electrochromic functional element, the use of an infrared-reflecting coating is advantageous, since this also avoids the heat transfer of the waste heat from the functional element. However, since the infrared-reflecting coating causes increased thermal expansion of the pane, the stability of the edge seal is particularly important when combining electrochromic functional elements and infrared-reflecting coatings. This required stability is achieved by using a one-piece spacer with a groove.

In einer bevorzugten Ausführungsform ist die infrarotreflektierende Beschichtung auf der dritten Scheibe angeordnet und befindet sich innerhalb des ersten Verglasungsinnenraums auf der dem elektrochromen Funktionselement zugewandten Oberfläche der dritten Scheibe. Dadurch wird die Abwärme des elektrochromen Funktionselementes daran gehindert in den zweiten Verglasungsinnenraum der Isolierverglasung einzutreten. Die Erwärmung wird demnach auf den ersten Verglasungsinnenraum beschränkt und der zweite, dem Gebäudeinnenraum zugewandte, Verglasungsinnenraum erfährt keine oder nur eine geringfügige Erwärmung. Die erfindungsgemäße Verwendung eines einteiligen Abstandhalters mit Nut ist auch zur Realisierung dieser Ausführungsform besonders vorteilhaft, da die dritte Scheibe spannungsfrei in der Nut fixiert werden kann. Dadurch können die mit der Erwärmung der dritten Scheibe einhergehenden Spannungen vorteilhaft kompensiert werden. Auf ein zusätzliches thermisches oder chemisches Vorspannen der dritten Scheibe zur Spannungskompensation kann dabei verzichtet werden. Somit entfällt der Vorspannprozess, wodurch eine Kostenreduzierung erreicht werden kann.In a preferred embodiment, the infrared-reflecting coating is arranged on the third pane and is located within the first glazing interior on the surface of the third pane facing the electrochromic functional element. As a result, the waste heat of the electrochromic functional element is prevented from entering the second glazing interior of the insulating glazing. The heating is accordingly limited to the first glazing interior and the second glazing interior facing the building interior experiences no or only slight heating. The use according to the invention of a one-piece spacer with a groove is also particularly advantageous for realizing this embodiment, since the third disk can be fixed in the groove without tension. As a result, the stresses associated with the heating of the third pane can be advantageously compensated for. An additional thermal or chemical pretensioning of the third pane for stress compensation can be dispensed with. This eliminates the pre-tensioning process, which means that costs can be reduced.

In einer anderen bevorzugten Ausführungsform ist die infrarotreflektierende Beschichtung auf der zweiten Scheibe innerhalb des zweiten Verglasungsinnenraums angeordnet. Diese Ausführungsform ist hinsichtlich der thermischen Isolation des Gebäudeinnenraums optimiert. Der Wärmeverlust wird minimiert, indem die infrarotreflektierende Beschichtung unmittelbar auf der Innenscheibe der Isolierverglasung angeordnet ist.In another preferred embodiment, the infrared-reflecting coating is arranged on the second pane within the second glazing interior. This embodiment is optimized with regard to the thermal insulation of the building interior. Heat loss is minimized by arranging the infrared-reflecting coating directly on the inner pane of the double glazing.

Die infrarotreflektierende Beschichtung ist bevorzugt für sichtbares Licht im Wellenlängenbereich von 390 nm bis 780 nm durchlässig. "Durchlässig" bedeutet, dass die Gesamttransmission der Scheibe insbesondere für sichtbares Licht bevorzugt >70% und insbesondere >75% durchlässig ist. Dadurch werden der optische Eindruck der Verglasung sowie die Durchsicht nicht beeinträchtigt.The infrared reflective coating is preferably transparent to visible light in the wavelength range from 390 nm to 780 nm. “Transparent” means that the total transmission of the pane is especially preferably> 70% and especially> 75% transparent to visible light. This does not affect the visual impression of the glazing or the view through.

Die infrarotreflektierende Beschichtung dient der Sonnenschutzwirkung und weist dazu reflektierende Eigenschaften im infraroten Bereich des Lichtspektrums auf. Die infrarotreflektierende Beschichtung weist besonders niedrige Emissivitäten (Low-E) aufweisen. Dadurch wird ein Aufheizen des Innenraums eines Gebäudes infolge von Sonnenstrahlung vorteilhaft vermindert. Scheiben, die mit einer solchen infrarotreflektierenden Beschichtung versehen sind, sind handelsüblich und werden als Low-E-Glas (Low-Emissivity-Glas) bezeichnet.The infrared-reflective coating serves to protect the sun and has reflective properties in the infrared range of the light spectrum. The infrared-reflecting coating has particularly low emissivities (Low-E). This advantageously reduces heating of the interior of a building as a result of solar radiation. Panes that are provided with such an infrared-reflecting coating are commercially available and are referred to as low-E glass (low-emissivity glass).

Low-E-Beschichtungen enthalten üblicherweise eine Diffusionssperre, einen metall- oder metalloxidhaltigen Multilayer und eine Sperrschicht. Die Diffusionssperre wird direkt auf die Glasoberfläche aufgebracht und verhindert eine Verfärbung durch Diffusion von Metallatomen ins Glas. Häufig werden Doppelsilberschichten oder Dreifachsilberschichten als Multilayer eingesetzt. Die verschiedensten Low-E-Beschichtungen sind beispielsweise bekannt aus DE 10 2009 006 062 A1 , WO 2007/101964 A1 , EP 0 912 455 B1 , DE 199 27 683 C1 , EP 1 218 307 B1 und EP 1 917 222 B1 .Low-E coatings usually contain a diffusion barrier, a metal or metal oxide-containing multilayer and a barrier layer. The diffusion barrier is applied directly to the glass surface and prevents discoloration due to the diffusion of metal atoms into the glass. Often double silver layers or triple silver layers are used as multilayers. A wide variety of Low-E coatings are known from, for example DE 10 2009 006 062 A1 , WO 2007/101964 A1 , EP 0 912 455 B1 , DE 199 27 683 C1 , EP 1 218 307 B1 and EP 1 917 222 B1 .

Die Abscheidung von Low-E-Beschichtungen erfolgt bevorzugt über das an sich bekannte Verfahren der magnetfeldunterstützte Kathodenzerstäubung. Durch magnetfeldunterstützte Kathodenzerstäubung abgeschiedene Schichten weisen eine amorphe Struktur auf und bewirken eine Trübung von durchsichtigen Substraten wie Glas oder transparenten Polymeren. Eine Temperaturbehandlung der amorphen Schichten bewirkt eine Kristallstrukturänderung hin zu einer kristallinen Schicht mit verbesserter Transmission. Der Temperatureintrag in die Beschichtung kann über eine Flammenbehandlung, einen Plasmabrenner, Infrarotstrahlung oder eine Laserbehandlung erfolgen.The deposition of low-E coatings is preferably carried out using the known method of magnetic field-assisted cathode sputtering. Layers deposited by magnetic field-assisted cathode sputtering have an amorphous structure and cause opacity of transparent substrates such as glass or transparent polymers. A temperature treatment of the amorphous layers causes a crystal structure change to a crystalline layer with improved transmission. The temperature input into the coating can take place via a flame treatment, a plasma torch, infrared radiation or a laser treatment.

Solche Beschichtungen enthalten typischerweise zumindest ein Metall, insbesondere Silber oder eine silberhaltige Legierung. Die infrarotreflektierende Beschichtung kann eine Abfolge mehrerer Einzelschichten umfassen, insbesondere zumindest eine metallische Schicht und dielektrische Schichten, die beispielsweise zumindest ein Metalloxid enthalten. Das Metalloxid enthält bevorzugt Zinkoxid, Zinnoxid, Indiumoxid, Titanoxid, Siliziumoxid, Aluminiumoxid oder dergleichen sowie Kombinationen von einem oder mehreren daraus. Das dielektrische Material kann auch Siliziumnitrid, Siliziumcarbid oder Aluminiumnitrid enthalten.Such coatings typically contain at least one metal, in particular silver or an alloy containing silver. The infrared-reflecting coating can comprise a sequence of a plurality of individual layers, in particular at least one metallic layer and dielectric layers that contain, for example, at least one metal oxide. The metal oxide preferably contains zinc oxide, tin oxide, indium oxide, titanium oxide, silicon oxide, aluminum oxide or the like and combinations of one or more thereof. The dielectric material can also contain silicon nitride, silicon carbide or aluminum nitride.

Besonders geeignete transparente, infrarotreflektierende Beschichtungen enthalten mindestens ein Metall, bevorzugt Silber, Nickel, Chrom, Niob, Zinn, Titan, Kupfer, Palladium, Zink, Gold, Cadmium, Aluminium, Silizium, Wolfram oder Legierungen daraus, und/oder mindestens eine Metalloxidschicht, bevorzugt Zinn-dotiertes Indiumoxid (ITO), Aluminium-dotiertes Zinkoxid (AZO), Fluor-dotiertes Zinnoxid (FTO, SnO2:F), Antimon-dotiertes Zinnoxid (ATO, SnO2:Sb), und/oder Kohlenstoffnanoröhrchen und/oder optisch transparente, elektrisch leitfähige Polymere, bevorzugt Poly(3,4-ethylenedioxythiophene), Polystyrensulfonat, Poly(4,4-dioctylcylopentadithiophen), 2,3-Dichloro-5,6-dicyano-1,4-benzochinon, Gemische und/oder Copolymere davonParticularly suitable transparent, infrared-reflecting coatings contain at least one metal, preferably silver, nickel, chromium, niobium, tin, titanium, copper, palladium, zinc, gold, cadmium, aluminum, silicon, tungsten or alloys thereof, and / or at least one metal oxide layer, preferably tin-doped indium oxide (ITO), aluminum-doped zinc oxide (AZO), fluorine-doped tin oxide (FTO, SnO 2 : F), antimony-doped tin oxide (ATO, SnO 2 : Sb), and / or carbon nanotubes and / or optically transparent, electrically conductive polymers, preferably poly (3,4-ethylenedioxythiophenes), polystyrene sulfonate, poly (4,4-dioctylcylopentadithiophene), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, mixtures and / or Copolymers thereof

Die infrarotreflektierende Beschichtung weist bevorzugt eine Schichtdicke von 10 nm bis 5 µm und besonders bevorzugt von 30 nm bis 1 µm auf. Der Flächenwiderstand der infrarotreflektierenden Beschichtung beträgt z.B. 0,35 Ohm/Quadrat bis 200 Ohm/Quadrat, bevorzugt 0,6 Ohm/Quadrat bis 30 Ohm/Quadrat und insbesondere von 2 Ohm/Quadrat bis 20 Ohm/Quadrat.The infrared-reflecting coating preferably has a layer thickness of 10 nm to 5 μm and particularly preferably 30 nm to 1 μm. The sheet resistance of the infrared reflective coating is e.g. 0.35 ohms / square to 200 ohms / square, preferably 0.6 ohms / square to 30 ohms / square, and especially from 2 ohms / square to 20 ohms / square.

In einem möglichen Ausführungsbeispiel wird als infrarotreflektierende Beschichtung eine Silberschicht mit einer Dicke von 6 nm bis 15 nm umgeben von zwei Sperrschichten mit einer Dicke von 0,5 nm bis 2 nm enthaltend Nickel-Chrom und/oder Titan eingesetzt. Zwischen einer Sperrschicht und der Glasoberfläche ist bevorzugt eine Diffusionssperre mit einer Dicke von 25 nm bis 35 nm enthaltend Si3N4, TiO2, SnZnO und/oder ZnO aufgebracht. Auf die obere Sperrschicht ist der Umgebung zugewandt bevorzugt eine Diffusionssperre mit einer Dicke von 35 nm bis 45 nm enthaltend ZnO und/oder Si3N4 aufgetragen. Diese obere Diffusionssperre ist optional mit einer Schutzschicht mit einer Dicke von 1 nm bis 5 nm umfassend TiO2 und/oder SnZnO2 ausgestattet. Die Gesamtdicke aller Schichten beträgt bevorzugt 67,5 nm bis 102 nm.In one possible embodiment, a silver layer with a thickness of 6 nm to 15 nm surrounded by two barrier layers with a thickness of 0.5 nm to 2 nm containing nickel-chromium and / or titanium is used as the infrared-reflecting coating. A diffusion barrier with a thickness of 25 nm to 35 nm containing Si 3 N 4 , TiO 2 , SnZnO and / or ZnO is preferably applied between a barrier layer and the glass surface. A diffusion barrier with a thickness of 35 nm to 45 nm is preferably facing the surroundings on the upper barrier layer containing ZnO and / or Si 3 N 4 applied. This upper diffusion barrier is optionally equipped with a protective layer with a thickness of 1 nm to 5 nm comprising TiO 2 and / or SnZnO 2 . The total thickness of all layers is preferably 67.5 nm to 102 nm.

Das elektrochrome Funktionselement umfasst mindestens eine elektrochemisch aktive Schicht, die in der Lage ist, reversibel Ladungen einzulagern. Die Oxidationszustände im eingelagerten und ausgelagerten Zustand unterscheiden sich dabei in ihrer Farbgebung, wobei einer dieser Zustände transparent ist. Die Einlagerungsreaktion ist über die von außen angelegte Potentialdifferenz steuerbar. Der Grundaufbau des elektrochromen Funktionselementes umfasst somit mindestens ein elektrochromes Material, wie Wolframoxid, das sowohl mit einer Flächenelektrode, als auch einer Ladungsquelle, wie einem ionenleitfähigen Elektrolyten, in Kontakt steht. Darüber hinaus enthält der elektrochrome Schichtaufbau eine Gegenelektrode, die ebenfalls in der Lage ist reversibel Kationen einzulagern, und mit dem ionenleitfähigen Elektrolyten in Berührung steht, sowie eine weitere Flächenelektrode, die sich an die Gegenelektrode anschließt. Die Flächenelektroden sind mit einer externen Spannungsquelle verbunden, wodurch die an die aktive Schicht angelegte Spannung reguliert werden kann. Die Flächenelektroden sind meist dünne Schichten elektrisch leitfähigen Materials, häufig Indium-Zinnoxid (ITO). Häufig ist zumindest eine der Flächenelektroden direkt auf die Oberfläche der ersten Scheibe aufgebracht, beispielsweise mittels Kathodenzerstäubung (Sputtern).The electrochromic functional element comprises at least one electrochemically active layer which is capable of reversibly storing charges. The oxidation states in the stored and removed state differ in their coloring, one of these states being transparent. The storage reaction can be controlled via the externally applied potential difference. The basic structure of the electrochromic functional element thus comprises at least one electrochromic material, such as tungsten oxide, which is in contact with both a flat electrode and a charge source such as an ion-conductive electrolyte. In addition, the electrochromic layer structure contains a counter-electrode, which is also capable of reversibly storing cations and is in contact with the ion-conductive electrolyte, as well as a further surface electrode that connects to the counter-electrode. The surface electrodes are connected to an external voltage source, whereby the voltage applied to the active layer can be regulated. The surface electrodes are usually thin layers of electrically conductive material, often indium tin oxide (ITO). Often at least one of the flat electrodes is applied directly to the surface of the first pane, for example by means of cathode atomization (sputtering).

Die Flächenelektroden des Funktionselements werden bevorzugt über sogenannte Sammelleiter elektrisch leitend kontaktiert und über die Sammelleiter mit einer elektrischen Zuleitung verbunden, die an eine externe Spannungsquelle angeschlossen ist. Als Sammelleiter können beispielsweise Streifen eines elektrisch leitfähigen Materials oder elektrisch leitfähige Aufdrucke verwendet werden mit denen die Flächenelektroden verbunden werden. Die Sammelleiter, auch als bus bars bezeichnet, dienen der Übertragung elektrischer Leistung und ermöglichen eine homogene Spannungsverteilung. Die Sammelleiter werden vorteilhaft durch Aufdrucken einer leitfähigen Paste hergestellt. Die leitfähige Paste enthält bevorzugt Silber-Partikel und Glasfritten. Die Schichtdicke der leitfähigen Paste beträgt bevorzugt von 5 µm bis 20 µm.The flat electrodes of the functional element are preferably electrically conductively contacted via so-called bus bars and connected via the bus bars to an electrical supply line that is connected to an external voltage source. For example, strips of an electrically conductive material or electrically conductive imprints can be used as busbars, with which the surface electrodes are connected. The bus bars, also known as bus bars, are used to transmit electrical power and enable homogeneous voltage distribution. The bus bars are advantageously manufactured by printing a conductive paste. The conductive paste preferably contains Silver particles and glass frits. The layer thickness of the conductive paste is preferably from 5 μm to 20 μm.

In einer alternativen Ausgestaltung werden dünne und schmale Metallfolienstreifen oder Metalldrähte als Sammelleiter verwendet, die bevorzugt Kupfer und/oder Aluminium enthalten, insbesondere werden Kupferfolienstreifen mit einer Dicke von beispielsweise etwa 50 µm verwendet. Die Breite der Kupferfolienstreifen beträgt bevorzugt 1 mm bis 10 mm. Der elektrische Kontakt zwischen einer als Flächenelektrode dienenden elektrisch leitfähigen Schicht des Funktionselements und dem Sammelleiter kann beispielsweise durch Auflöten oder Kleben mit einem elektrisch leitfähigen Kleber hergestellt werden.In an alternative embodiment, thin and narrow metal foil strips or metal wires are used as busbars, which preferably contain copper and / or aluminum, in particular copper foil strips with a thickness of, for example, about 50 μm are used. The width of the copper foil strips is preferably 1 mm to 10 mm. The electrical contact between an electrically conductive layer of the functional element, which serves as a surface electrode, and the busbar can be established, for example, by soldering or gluing with an electrically conductive adhesive.

Die elektrische Zuleitung, die der Kontaktierung der Sammelleiter mit einer externen Spannungsquelle dient, ist ein elektrischer Leiter, bevorzugt enthaltend Kupfer. Es können auch andere elektrisch leitende Materialien verwendet werden. Beispiele hierfür sind Aluminium, Gold, Silber oder Zinn und Legierungen davon. Die elektrische Zuleitung kann sowohl als Flachleiter als auch als Rundleiter ausgestaltet sein, sowie in beiden Fällen als eindrähtiger oder mehrdrähtiger Leiter (Litze).The electrical supply line, which is used to contact the busbars with an external voltage source, is an electrical conductor, preferably containing copper. Other electrically conductive materials can also be used. Examples are aluminum, gold, silver or tin and alloys thereof. The electrical supply line can be designed both as a flat conductor and as a round conductor, and in both cases as a single-wire or multi-wire conductor (stranded wire).

Die elektrische Zuleitung besitzt bevorzugt einen Leitungsquerschnitt von 0,08 mm2 bis 2,5 mm2.The electrical supply line preferably has a line cross section of 0.08 mm 2 to 2.5 mm 2 .

Als Zuleitung können auch Folienleiter verwendet werden. Beispiele für Folienleiter werden in DE 42 35 063 A1 , DE 20 2004 019 286 U1 und DE 93 13 394 U1 beschrieben.Foil conductors can also be used as supply lines. Examples of foil conductors are given in DE 42 35 063 A1 , DE 20 2004 019 286 U1 and DE 93 13 394 U1 described.

Flexible Folienleiter, mitunter auch Flachleiter oder Flachbandleiter genannt, bestehen bevorzugt aus einem verzinnten Kupferband mit einer Dicke von 0,03 mm bis 0,1 mm und einer Breite von 2 mm bis 16 mm. Kupfer hat sich für solche Leiterbahnen bewährt, da es eine gute elektrische Leitfähigkeit sowie eine gute Verarbeitbarkeit zu Folien besitzt. Gleichzeitig sind die Materialkosten niedrig.
Die elektrischen Zuleitungen des elektrochromen Funktionselementes werden im Randverbund der Isolierverglasung geführt und können beispielsweise innerhalb des Abstandhalters, an der Außenfläche des Abstandhalters oder auch lose im Randverbund geführt sein.
Flexible foil conductors, sometimes also called flat conductors or ribbon conductors, preferably consist of a tinned copper strip with a thickness of 0.03 mm to 0.1 mm and a width of 2 mm to 16 mm. Copper has proven itself for such conductor tracks because it has good electrical conductivity and can be easily processed into foils. At the same time, the material costs are low.
The electrical leads of the electrochromic functional element are guided in the edge bond of the insulating glazing and can, for example, within the Spacer, be guided on the outer surface of the spacer or loosely in the edge bond.

Die elektrischen Zuleitungen können unmittelbar mit den Sammelleitern verbunden sein, beispielsweise durch Auflöten der Zuleitung auf den Sammelleiter oder durch Verkleben mittels eines leitfähigen Klebstoffs. Zur elektrischen Verbindung der Sammelleiter mit den Zuleitungen sind auch elektrische Kontaktelemente verwendbar. Derartige Kontaktelemente sind dem Fachmann geläufig, beispielsweise in Form von Steckkontakten oder Crimpverbindungen.The electrical leads can be connected directly to the busbars, for example by soldering the lead onto the busbar or by gluing using a conductive adhesive. Electrical contact elements can also be used to electrically connect the busbars to the supply lines. Such contact elements are familiar to the person skilled in the art, for example in the form of plug contacts or crimp connections.

In einer bevorzugten Ausführungsform ist die Scheibe der Isolierverglasung, die das elektrochrome Funktionselement aufweist, mit einer weiteren Scheibe über eine thermoplastische Verbundfolie zu einer Verbundscheibe laminiert. Die Verbundscheibe weist eine verbesserte Widerstandsfähigkeit und Stabilität auf. Die an die erste Scheibe anlaminierte weitere Scheibe erschwert zudem die Durchbiegung und thermische Ausdehnung der ersten Scheibe. Ferner weist eine Verbundscheibe eine verbesserte Durchbruchhemmung auf. Dies ist insbesondere vorteilhaft um das elektrochrome Funktionselement zu schützen.In a preferred embodiment, the pane of the insulating glazing which has the electrochromic functional element is laminated with another pane via a thermoplastic composite film to form a composite pane. The composite pane has improved resistance and stability. The additional pane laminated to the first pane also makes it more difficult for the first pane to bend and thermally expand. Furthermore, a composite pane has improved penetration resistance. This is particularly advantageous in order to protect the electrochromic functional element.

Geeignete thermoplastische Verbundfolien sind dem Fachmann bekannt. Die thermoplastischen Verbundfolien enthalten zumindest ein thermoplastisches Polymer, bevorzugt Ethylenvinylacetat (EVA), Polyvinylbutyral (PVB) oder Polyurethan (PU) oder Gemische oder Copolymere oder Derivate davon. Die Dicke der thermoplastischen Verbundfolien beträgt bevorzugt von 0,2 mm bis 2 mm, besonders bevorzugt von 0,3 mm bis 1,5 mm. Besonders bevorzugt wird zur Lamination zweier Glasscheiben Polyvinylbutyral in einer Dicke von beispielsweise 0,38 mm oder 0,76 mm eingesetzt.Suitable thermoplastic composite films are known to the person skilled in the art. The thermoplastic composite films contain at least one thermoplastic polymer, preferably ethylene vinyl acetate (EVA), polyvinyl butyral (PVB) or polyurethane (PU) or mixtures or copolymers or derivatives thereof. The thickness of the thermoplastic composite films is preferably from 0.2 mm to 2 mm, particularly preferably from 0.3 mm to 1.5 mm. Polyvinyl butyral with a thickness of, for example, 0.38 mm or 0.76 mm is particularly preferably used for laminating two panes of glass.

Bevorzugt sind der erste Verglasungsinnenraum und der zweite Verglasungsinnenraum so miteinander verbunden, dass ein Druckausgleich zwischen den Verglasungsinnenräumen möglich ist. Dies ist beispielsweise möglich, indem in mindestens einem Teilbereich der Nut auf eine Einlage verzichtet wird. Über diesen Abschnitt der Nut kann ein Luftaustausch erfolgen. Kommunizierende Scheibenzwischenräume sind vorteilhaft um die mit Druckunterschieden der Verglasungsinnenräume einhergehenden Belastungen des Randbereichs zu vermeiden. Insbesondere bei der erfindungsgemäßen Isolierverglasung ist diese Maßnahme zur Entlastung des Randverbunds sinnvoll, da bei der Erwärmung der ersten Scheibe durch das Funktionselement zwangsläufig eine Druckänderung in dem benachbarten ersten Verglasungsinnenraum stattfindet.The first glazing interior and the second glazing interior are preferably connected to one another in such a way that pressure equalization between the glazing interiors is possible. This is possible, for example, by dispensing with an insert in at least a partial area of the groove. An exchange of air can take place via this section of the groove. Communicating Gaps between panes are advantageous in order to avoid the stresses on the edge area associated with pressure differences between the glazing interiors. In particular with the insulating glazing according to the invention, this measure is useful to relieve the edge bond, since when the first pane is heated by the functional element, a pressure change inevitably takes place in the adjacent first glazing interior.

Die Isolierverglasung umfasst mindestens drei Scheiben, die durch einen Abstandhalter auf Abstand zueinander gehalten werden. Die Isolierverglasung kann auch eine vierte oder weitere Scheiben umfassen. Diese können beispielsweise über eine weitere Nut in den Abstandhalter eingesetzt sein. Alternativ können weitere Scheiben auch über einen weiteren Abstandhalter an der ersten Scheibe oder zweiten Scheibe angesetzt sein. Die Isolierverglasung umfasst bevorzugt drei oder vier Scheiben.The insulating glazing comprises at least three panes which are kept at a distance from one another by a spacer. The insulating glazing can also comprise a fourth or additional pane. These can for example be inserted into the spacer via a further groove. Alternatively, additional panes can also be attached to the first pane or second pane via a further spacer. The insulating glazing preferably comprises three or four panes.

Die Außenfläche des Abstandhalters ist in einer bevorzugten Ausführungsform über Verbindungsflächen mit den beiden Scheibenkontaktflächen verbunden, d.h. über eine Verbindungsfläche mit einer Scheibenkontaktfläche und/oder über eine andere Verbindungsfläche mit der anderen Scheibenkontaktfläche, wobei bevorzugt beide Scheibenkontaktflächen über solche Verbindungsflächen mit der Außenfläche verbunden sind. Die Verbindungsfläche kann zum Beispiel in einem Winkel im Bereich von 30° bis 60° zu der Außenfläche stehen. Die beiden Scheibenkontaktflächen stehen in der Regel etwa senkrecht bzw. senkrecht zur Ebene, in der sich die Außenfläche befindet, und/oder zur Ebene, in der sich die Verglasungsinnenraumfläche befindet. In der Regel verlaufen Außenfläche und Verglasungsinnenraumfläche parallel zueinander. Die Verglasungsinnenraumfläche ist in der Regel direkt mit den beiden Scheibenkontaktflächen verbunden sein. Die Verglasungsinnenraumfläche kann aber gegebenenfalls auch über Verbindungsflächen mit den Scheibenkontaktflächen verbunden sein.In a preferred embodiment, the outer surface of the spacer is connected to the two disc contact surfaces via connecting surfaces, i. via a connection surface with a disk contact surface and / or via another connection surface with the other disk contact surface, wherein preferably both disk contact surfaces are connected to the outer surface via such connection surfaces. For example, the connection surface can be at an angle in the range from 30 ° to 60 ° to the outer surface. The two pane contact surfaces are generally approximately perpendicular or perpendicular to the plane in which the outer surface is located and / or to the plane in which the glazing interior surface is located. As a rule, the outer surface and the interior surface of the glazing run parallel to one another. The glazing interior surface is usually directly connected to the two pane contact surfaces. The glazing interior surface can, however, optionally also be connected to the pane contact surfaces via connection surfaces.

Der polymere Grundkörper enthält bevorzugt Polyethylen (PE), Polycarbonate (PC), Polypropylen (PP), Polystyrol, Polybutadien, Polynitrile, Polyester, Polyurethane, Polymethylmetacrylate, Polyacrylate, Polyamide, Polyethylenterephthalat (PET), Polybutylenterephthalat (PBT), bevorzugt Acrylnitril-Butadien-Styrol (ABS), Acrylester-Styrol-Acrylnitril (ASA), Acrylnitril-Butadien-Styrol/Polycarbonat (ABS/PC), Styrol-Acrylnitril (SAN), PET/PC, PBT/PC und/oder Copolymere oder Gemische davon. Mit diesen Materialien werden besonders gute Ergebnisse erzielt.
Bevorzugt ist der polymere Grundkörper glasfaserverstärkt. Durch die Wahl des Glasfaseranteils im Grundkörper kann der Wärmeausdehnungskoeffizient des Grundkörpers variiert und angepasst werden. Durch Anpassung des Wärmeausdehnungskoeffizienten des polymeren Grundkörpers und der Barrierefolie oder -beschichtung lassen sich temperaturbedingte Spannungen zwischen den unterschiedlichen Materialien und ein Abplatzen der Barrierefolie oder -beschichtung vermeiden. Der Grundkörper weist bevorzugt einen Glasfaseranteil von 20 % bis 50 %, besonders bevorzugt von 30 % bis 40 % auf. Der Glasfaseranteil im polymeren Grundkörper verbessert gleichzeitig die Festigkeit und Stabilität.
The polymer base body preferably contains polyethylene (PE), polycarbonate (PC), polypropylene (PP), polystyrene, polybutadiene, polynitrile, polyester, polyurethane, polymethyl methacrylate, polyacrylate, polyamide, polyethylene terephthalate (PET), Polybutylene terephthalate (PBT), preferably acrylonitrile-butadiene-styrene (ABS), acrylic ester-styrene-acrylonitrile (ASA), acrylonitrile-butadiene-styrene / polycarbonate (ABS / PC), styrene-acrylonitrile (SAN), PET / PC, PBT / PC and / or copolymers or mixtures thereof. Particularly good results are achieved with these materials.
The polymer base body is preferably reinforced with glass fibers. By choosing the proportion of glass fiber in the base body, the coefficient of thermal expansion of the base body can be varied and adapted. By adapting the coefficient of thermal expansion of the polymer base body and the barrier film or coating, temperature-related stresses between the different materials and flaking of the barrier film or coating can be avoided. The base body preferably has a glass fiber content of 20% to 50%, particularly preferably 30% to 40%. The glass fiber content in the polymer base body improves strength and stability at the same time.

In einer weiteren bevorzugten Ausführungsform ist der polymere Grundkörper gefüllt durch Glashohlkugeln oder Glasblasen. Diese Glashohlkugeln haben einen Durchmesser von 10 µm bis 20 µm und verbessern die Stabilität des polymeren Hohlprofils. Geeignete Glaskugeln sind unter dem Namen "3M™ Glass Bubbles" käuflich erhältlich. Besonders bevorzugt enthält der polymere Grundkörper Polymere, Glasfasern und Glaskugeln. Eine Beimischung von Glaskugeln führt zu einer Verbesserung der thermischen Eigenschaften des Hohlprofils.In a further preferred embodiment, the polymeric base body is filled with hollow glass spheres or glass bubbles. These hollow glass spheres have a diameter of 10 µm to 20 µm and improve the stability of the polymeric hollow profile. Suitable glass spheres are commercially available under the name "3M ™ Glass Bubbles". The polymer base body particularly preferably contains polymers, glass fibers and glass spheres. An admixture of glass spheres leads to an improvement in the thermal properties of the hollow profile.

In einer bevorzugten Ausführungsform enthält der Abstandhalter ein Trockenmittel, bevorzugt Kieselgele, Molekularsiebe, CaCl2, Na2SO4, Aktivkohle, Silikate, Bentonite, Zeolithe und/oder Gemische davon.In a preferred embodiment, the spacer contains a drying agent, preferably silica gels, molecular sieves, CaCl 2 , Na 2 SO 4 , activated carbon, silicates, bentonites, zeolites and / or mixtures thereof.

Der Abstandhalter kann gegebenenfalls im Inneren zwei oder mehr Hohlkammern aufweisen, bevorzugt zwei Hohlkammern, die durch die Nut voneinander getrennt sind. In den Hohlkammern ist bevorzugt das Trockenmittel enthalten. Die Verglasungsinnenraumflächen weisen dabei bevorzugt Öffnungen auf, um die Aufnahme von Luftfeuchtigkeit durch das im Abstandhalter vorhandene Trockenmittel zu erleichtern. Die Gesamtzahl der Öffnungen hängt dabei von der Größe der Isolierverglasung ab. Die Öffnungen verbinden die Hohlkammer mit dem inneren Scheibenzwischenraum, wodurch ein Gasaustausch zwischen diesen möglich wird. Dadurch wird eine Aufnahme von Luftfeuchtigkeit durch das in der Hohlkammer befindliche Trockenmittel erlaubt und somit ein Beschlagen der Scheiben verhindert. Die Öffnungen sind bevorzugt als Schlitze ausgeführt, besonders bevorzugt als Schlitze mit einer Breite von 0,2 mm und einer Länge von 2 mm. Die Schlitze gewährleisten einen optimalen Luftaustausch ohne dass Trockenmittel aus der Hohlkammer in den Verglasungsinnenraum eindringen kann.The spacer can optionally have two or more hollow chambers inside, preferably two hollow chambers, which are separated from one another by the groove. The desiccant is preferably contained in the hollow chambers. The interior surfaces of the glazing preferably have openings in order to facilitate the absorption of humidity by the desiccant present in the spacer. The total number of openings depends on the size of the double glazing. The openings connect the hollow chamber with the inner one Space between the panes, which enables gas exchange between them. This allows air humidity to be absorbed by the desiccant located in the hollow chamber and prevents the windows from fogging up. The openings are preferably designed as slots, particularly preferably as slots with a width of 0.2 mm and a length of 2 mm. The slots ensure an optimal exchange of air without desiccant penetrating from the hollow chamber into the interior of the glazing.

Bevorzugt ist mindestens auf der Außenfläche des polymeren Grundkörpers, bevorzugt auf der Außenfläche und auf einem Teil der Scheibenkontaktflächen, eine gas- und dampfdichte Barriere aufgebracht ist. Die gas- und dampfdichte Barriere verbessert die Dichtigkeit des Abstandhalters gegen Gasverlust und Eindringen von Feuchtigkeit. Bevorzugt ist die Barriere auf etwa der Hälfte bis zwei Drittel der Scheibenkontaktflächen aufgebracht. Ein geeigneter Abstandhalter mit polymerem Grundkörper ist beispielsweise in WO 2013/104507 A1 offenbart.A gas-tight and vapor-tight barrier is preferably applied at least on the outer surface of the polymeric base body, preferably on the outer surface and on some of the pane contact surfaces. The gas- and vapor-tight barrier improves the tightness of the spacer against gas loss and the ingress of moisture. The barrier is preferably applied to approximately one-half to two-thirds of the pane contact areas. A suitable spacer with a polymer base body is for example in WO 2013/104507 A1 disclosed.

In einer bevorzugten Ausführungsform ist die gas- und dampfdichte Barriere auf der Außenfläche eines polymeren Abstandhalters als Folie ausgeführt. Diese Barrierefolie enthält mindestens eine polymere Schicht sowie eine metallische Schicht oder eine keramische Schicht. Dabei beträgt die Schichtdicke der polymeren Schicht zwischen 5 µm und 80 µm, während metallische Schichten und/oder keramische Schichten mit einer Dicke von 10 nm bis 200 nm eingesetzt werden. Innerhalb der genannten Schichtdicken wird eine besonders gute Dichtigkeit der Barrierefolie erreicht. Die Barrierefolie kann auf dem polymeren Grundkörper aufgebracht werden, beispielsweise geklebt werden. Alternativ kann die Folie mit dem Grundkörper zusammen co-extrudiert werden.In a preferred embodiment, the gas- and vapor-tight barrier is designed as a film on the outer surface of a polymeric spacer. This barrier film contains at least one polymer layer and a metallic layer or a ceramic layer. The layer thickness of the polymeric layer is between 5 μm and 80 μm, while metallic layers and / or ceramic layers with a thickness of 10 nm to 200 nm are used. A particularly good tightness of the barrier film is achieved within the specified layer thicknesses. The barrier film can be applied, for example glued, to the polymeric base body. Alternatively, the film can be co-extruded together with the base body.

Besonders bevorzugt enthält die Barrierefolie mindestens zwei metallische Schichten und/oder keramische Schichten, die alternierend mit mindestens einer polymeren Schicht angeordnet sind. Die Schichtdicken der einzelnen Schichten sind bevorzugt wie im vorhergehenden Absatz beschrieben. Bevorzugt werden die außenliegenden Schichten dabei von polymeren Schichten gebildet. In dieser Anordnung sind die metallischen Schichten besonders gut vor Beschädigung geschützt. Die alternierenden Schichten der Barrierefolie können auf die verschiedensten nach dem Stand der Technik bekannten Methoden verbunden bzw. aufeinander aufgetragen werden. Methoden zur Abscheidung metallischer oder keramischer Schichten sind dem Fachmann hinlänglich bekannt. Die Verwendung einer Barrierefolie mit alternierender Schichtenabfolge ist besonders vorteilhaft im Hinblick auf die Dichtigkeit des Systems. Ein Fehler in einer der Schichten führt dabei nicht zu einem Funktionsverlust der Barrierefolie. Im Vergleich dazu kann bei einer Einzelschicht bereits ein kleiner Defekt zu einem vollständigen Versagen führen. Des Weiteren ist die Auftragung mehrerer dünner Schichten im Vergleich zu einer dicken Schicht vorteilhaft, da mit steigender Schichtdicke die Gefahr interner Haftungsprobleme ansteigt. Ferner verfügen dickere Schichten über eine höhere Leitfähigkeit, so dass eine derartige Folie thermodynamisch weniger geeignet ist.The barrier film particularly preferably contains at least two metallic layers and / or ceramic layers which are arranged alternately with at least one polymer layer. The layer thicknesses of the individual layers are preferably as described in the previous paragraph. The outer layers are preferably formed by polymer layers. In this arrangement, the metallic layers are particularly well protected from damage. The Alternating layers of the barrier film can be connected or applied to one another using the most varied of methods known from the prior art. Methods for depositing metallic or ceramic layers are well known to the person skilled in the art. The use of a barrier film with an alternating sequence of layers is particularly advantageous with regard to the tightness of the system. A fault in one of the layers does not lead to a loss of function of the barrier film. In comparison, even a small defect in a single layer can lead to complete failure. Furthermore, the application of several thin layers is advantageous compared to one thick layer, since the greater the layer thickness, the greater the risk of internal adhesion problems. Furthermore, thicker layers have a higher conductivity, so that such a film is less suitable thermodynamically.

Die polymere Schicht der Folie umfasst bevorzugt Polyethylenterephthalat, Ethylenvinylalkohol, Polyvinylidenchlorid, Polyamide, Polyethylen, Polypropylen, Silikone, Acrylonitrile, Polyacrylate, Polymethylacrylate und/oder Copolymere oder Gemische davon. Die metallische Schicht enthält bevorzugt Eisen, Aluminium, Silber, Kupfer, Gold, Chrom und/oder Legierungen oder Oxide davon. Die keramische Schicht der Folie enthält bevorzugt Siliziumoxide und/oder Siliziumnitride. Die metallischen oder keramischen Schichten sind bevorzugt über ein PVD-Verfahren (physikalische Gasphasenabscheidung) auf der polymeren Schicht aufgebracht. Die polymere Schicht kann dabei beispielsweise in Folienform bereitgestellt, mit den genannten Verfahren beschichtet und danach mit dem Grundkörper verbunden werden. Die Beschichtung mit den genannten Materialien liefert besonders gute Ergebnisse im Hinblick auf Dichtigkeit und zeigt zusätzlich exzellente Haftungseigenschaften zu den in Isolierverglasungen verwendeten Materialien der äußeren Versiegelung.The polymeric layer of the film preferably comprises polyethylene terephthalate, ethylene vinyl alcohol, polyvinylidene chloride, polyamides, polyethylene, polypropylene, silicones, acrylonitriles, polyacrylates, polymethyl acrylates and / or copolymers or mixtures thereof. The metallic layer preferably contains iron, aluminum, silver, copper, gold, chromium and / or alloys or oxides thereof. The ceramic layer of the film preferably contains silicon oxides and / or silicon nitrides. The metallic or ceramic layers are preferably applied to the polymer layer via a PVD process (physical vapor deposition). The polymeric layer can be provided, for example, in film form, coated using the methods mentioned and then connected to the base body. The coating with the materials mentioned provides particularly good results with regard to impermeability and also shows excellent adhesion properties to the materials used in insulating glazing for the outer seal.

Es versteht sich, dass die Abmessungen des Abstandhalters von den Abmessungen der Isolierverglasung abhängen. Die Breite eines solchen Abstandhalters kann z.B. im Bereich von 10 bis 50 mm, bevorzugt 20 bis 36 mm, liegen. Die Höhe kann z.B. im Bereich von 5 bis 15 mm, bevorzugt 5 bis 10 mm, liegen.It goes without saying that the dimensions of the spacer depend on the dimensions of the insulating glazing. The width of such a spacer can be, for example, in the range from 10 to 50 mm, preferably 20 to 36 mm. The height can be in the range from 5 to 15 mm, preferably 5 to 10 mm, for example.

Die erste und die zweite Scheibe sind an den Scheibenkontaktflächen bevorzugt über ein Dichtmittel angebracht, das zwischen der ersten Scheibenkontaktfläche und der ersten Scheibe und/oder der zweiten Scheibenkontaktfläche und der zweiten Scheibe angebracht ist.The first and the second disk are attached to the disk contact surfaces preferably via a sealing means which is attached between the first disk contact surface and the first disk and / or the second disk contact surface and the second disk.

Das Dichtmittel enthält bevorzugt Butylkautschuk, Polyisobutylen, Polyethylenvinylalkohol, Ethylenvinylacetat, Polyolefin-Kautschuk, Copolymere und/oder Gemische davon.The sealant preferably contains butyl rubber, polyisobutylene, polyethylene vinyl alcohol, ethylene vinyl acetate, polyolefin rubber, copolymers and / or mixtures thereof.

Das Dichtmittel ist bevorzugt in mit einer Dicke von 0,1 mm bis 0,8 mm, besonders bevorzugt 0,2 mm bis 0,4 mm in den Spalt zwischen Abstandhalter und Scheiben eingebracht.The sealant is preferably introduced into the gap between spacer and panes with a thickness of 0.1 mm to 0.8 mm, particularly preferably 0.2 mm to 0.4 mm.

Der äußere Scheibenzwischenraum der Isolierverglasung ist bevorzugt mit einer äußeren Abdichtung verfüllt. Diese äußere Abdichtung dient vor allem der Verklebung der beiden Scheiben und somit der mechanischen Stabilität der Isolierverglasung.The outer space between the panes of the insulating glazing is preferably filled with an outer seal. This outer seal is primarily used to bond the two panes and thus the mechanical stability of the insulating glazing.

Die äußere Abdichtung enthält bevorzugt Polysulfide, Silikone, Silikonkautschuk, Polyurethane, Polyacrylate, Copolymere und/oder Gemische davon. Derartige Stoffe haben eine sehr gute Haftung auf Glas, so dass die äußere Abdichtung eine sichere Verklebung der Scheiben gewährleistet. Die Dicke der äußeren Abdichtung beträgt bevorzugt 2 mm bis 30 mm, besonders bevorzugt 5 mm bis 10 mm.The outer seal preferably contains polysulfides, silicones, silicone rubber, polyurethanes, polyacrylates, copolymers and / or mixtures thereof. Such substances adhere very well to glass, so that the outer seal ensures that the panes are securely bonded. The thickness of the outer seal is preferably 2 mm to 30 mm, particularly preferably 5 mm to 10 mm.

Die Scheiben der Isolierverglasung können aus organischem Glas oder vorzugsweise aus anorganischem Glas sein. In einer vorteilhaften Ausgestaltung der erfindungsgemäßen Isolierverglasung können die Scheiben unabhängig voneinander aus Flachglas, Floatglas, Kalk-Natron-Glas, Quarzglas oder Borosilikatglas sein. Die Dicke jeder Scheibe kann variieren und so den Erfordernissen des Einzelfalls angepasst werden. Vorzugsweise werden Scheiben mit Standardstärken von 1 mm bis 19 mm und bevorzugt von 2 mm bis 8 mm verwendet. Die Scheiben können farblos oder gefärbt sein.The panes of the insulating glazing can be made of organic glass or, preferably, of inorganic glass. In an advantageous embodiment of the insulating glazing according to the invention, the panes can be made of flat glass, float glass, soda-lime glass, quartz glass or borosilicate glass, independently of one another. The thickness of each disk can vary and thus be adapted to the requirements of the individual case. Discs with standard thicknesses of 1 mm to 19 mm and preferably of 2 mm to 8 mm are preferably used. The discs can be colorless or colored.

Die Isolierverglasung umfasst bevorzugt mindestens eine Scheibe, bevorzugter mindestens zwei Scheiben, die unabhängig voneinander eine Floatglasscheibe, eine Verbundscheibe, Strukturglas oder ein gefärbtes oder satiniertes Glas ist bzw. sind. Bevorzugter ist mindestens eine Scheibe eine Floatglasscheibe.The insulating glazing preferably comprises at least one pane, more preferably at least two panes, which are or are, independently of one another, a float glass pane, a laminated pane, structured glass or a colored or satined glass. At least one pane is more preferably a float glass pane.

Der erste und der zweite Verglasungsinnenraum können mit Luft oder einem anderen Gas, insbesondere einem Edelgas, wie z.B. Argon oder Krypton, gefüllt sein. Die Verglasungsinnenraumfläche des Abstandhalters ist den Verglasungsinnenräumen zugewandt.The first and second glazing interiors can be filled with air or another gas, particularly a noble gas such as e.g. Argon or krypton. The glazing interior surface of the spacer faces the glazing interior.

Der äußere Scheibenzwischenraum wird ebenfalls durch die erste Scheibe, die zweite Scheibe, den Abstandhalter und das zwischen Scheiben und Scheibenkontaktflächen platzierte Dichtmittel gebildet und befindet sich gegenüber dem Verglasungsinnenraum im äußeren Randbereich der Isolierverglasung. Der äußere Scheibenzwischenraum ist auf der dem Abstandshalter gegenüberliegenden Seite offen. Die Außenfläche des Abstandhalters ist dem äußeren Scheibenzwischenraum zugewandt.The outer space between the panes is also formed by the first pane, the second pane, the spacer and the sealant placed between panes and pane contact surfaces and is located opposite the glazing interior in the outer edge region of the insulating glazing. The outer space between the panes is open on the side opposite the spacer. The outer surface of the spacer faces the outer space between the panes.

Der Abstandhalter ist im Allgemeinen umlaufend auf den Scheiben angeordnet. Der erste und der zweite Sammelleiter verlaufen im ersten Verglasungsinnenraum vorzugsweise parallel zum Abstandhalter, bevorzugt an zwei einander gegenüberliegenden Scheibenkanten der ersten Scheibe.The spacer is generally arranged circumferentially on the panes. The first and second busbars run in the first glazing interior preferably parallel to the spacer, preferably on two opposite pane edges of the first pane.

Der Abstandhalter ist in der Draufsicht in der Regel in Form eines Rechtecks ausgebildet. Normalerweise ist der Abstandshalter symmetrisch, d.h. er hat an allen Seiten der Isolierverglasung den gleichen Abstand zur Kante der Isolierverglasung.The spacer is generally designed in the form of a rectangle in plan view. Usually the spacer is symmetrical, i. it has the same distance to the edge of the insulating glass on all sides of the insulating glass.

In eine besonders bevorzugten Ausführungsform sind zwei Sammelleiter auf gegenüberliegenden Seiten der Isolierverglasung im ersten Verglasungsinnenraum angeordnet. Die Sammelleiter sind bevorzugt so angeordnet, dass sie im eingebauten Zustand der Isolierverglasung horizontal angeordnet sind. Es ist aber auch möglich, dass sie im eingebauten Zustand vertikal angeordnet sind.In a particularly preferred embodiment, two busbars are arranged on opposite sides of the insulating glazing in the first glazing interior. The busbars are preferably arranged such that they are arranged horizontally when the insulating glazing is installed. But it is also possible for them to be arranged vertically when installed.

Die erfindungsgemäße Isolierverglasung eignet sich insbesondere als Gebäudeaußenverglasung oder Fassadenverglasung. Die Erfindung betrifft daher auch die Verwendung der erfindungsgemäßen Isolierverglasung als Gebäudeaußenverglasung oder Fassadenverglasung. Insbesondere wird dabei die erste Scheibe im Einbauzustand zur Gebäudeumgebung gerichtet ist.The insulating glazing according to the invention is particularly suitable as building exterior glazing or facade glazing. The invention therefore also relates to the use of the insulating glazing according to the invention as exterior building glazing or facade glazing. In particular, the first pane is directed towards the building surroundings in the installed state.

Im Folgenden wird die Erfindung mittels Zeichnungen und Ausführungsbeispielen näher erläutert. Die Zeichnungen sind schematische Darstellungen und nicht maßstabsgetreu und schränken die Erfindung in keiner Weise ein.The invention is explained in more detail below by means of drawings and exemplary embodiments. The drawings are schematic representations and are not true to scale and in no way limit the invention.

Es zeigen:

Fig. 1a
eine Querschnittdarstellung einer erfindungsgemäßen Isolierverglasung mit einem elektrochromen Funktionselement auf der ersten Scheibe, einer infrarotreflektierenden Beschichtung auf der zweiten Scheibe und einem einteiligen Abstandhalter mit Nut zur Aufnahme einer dritten Scheibe,
Fig. 1b
eine Querschnittdarstellung einer erfindungsgemäßen Isolierverglasung mit einem elektrochromen Funktionselement auf der ersten Scheibe, einer infrarotreflektierenden Beschichtung auf der zweiten Scheibe und einem einteiligen Abstandhalter mit Nut zur Aufnahme einer dritten Scheibe,
Fig. 2
eine Querschnittdarstellung der Isolierverglasung gemäß Figur 1a.
Show it:
Fig. 1a
a cross-sectional representation of an insulating glazing according to the invention with an electrochromic functional element on the first pane, an infrared-reflecting coating on the second pane and a one-piece spacer with a groove for receiving a third pane,
Figure 1b
a cross-sectional representation of an insulating glazing according to the invention with an electrochromic functional element on the first pane, an infrared-reflecting coating on the second pane and a one-piece spacer with a groove for receiving a third pane,
Fig. 2
a cross-sectional view of the insulating glazing according to Figure 1a .

Figur 1a zeigt eine erfindungsgemäße Isolierverglasung I als Dreifachverglasung mit einem elektrochromen Funktionselement 1 auf einer ersten Scheibe 19, einer infrarotreflektierenden Beschichtung 16 auf einer zweiten Scheibe 20 und einem Abstandhalter 15 für Dreifachverglasungen. Zwischen der ersten Scheibe 19 und der zweiten Scheibe 20 ist über ein Dichtmittel 4 umlaufend der Abstandhalter 15 angebracht. Das Dichtmittel 4 verbindet dabei die Scheibenkontaktflächen 7.1 und 7.2 des Abstandhalters 15 mit den Scheiben 19 und 20. Der Abstandhalter 15 ist als polymerer Grundkörper 5 mit einer ersten Hohlkammer 10.1 und einer zweiten Hohlkammer 10.2 ausgebildet. Der Abstandhalter 15 ist aus Styrol-Acrylnitril (SAN) gebildet, welches undurchsichtig ist. Zwischen der ersten Scheibenkontaktfläche 7.1 und der zweiten Scheibenkontaktfläche 7.2 befindet sich eine Nut 17, wobei die erste Hohlkammer 10.1 zwischen der Nut 17 und der ersten Scheibenkontaktfläche 7.1 und die zweite Hohlkammer 10.2 zwischen der Nut 17 und der zweiten Scheibenkontaktfläche 7.2 liegt. Die Hohlkammern 10 enthalten ein Trockenmittel 11, das über Öffnungen 12 in der Verglasungsinnenraumfläche 8 Restfeuchte aus den Verglasungsinnenräumen 3 aufnehmen kann. Die Seitenflanken der Nut 17 werden dabei von den Wänden der beiden Hohlkammern 10.1 und 10.2 gebildet, während die Bodenfläche der Nut 17 direkt an die Außenfläche 9 grenzt. Die Nut 17 verläuft parallel zu den Scheibenkontaktflächen 7. In die Nut 17 des Abstandhalters 15 ist eine dritte Scheibe 21 mit einer Dicke von 2,0 mm eingesetzt. Der an die Verglasungsinnenraumfläche 8 des Abstandhalters 15 angrenzende Verglasungsinnenraum 3 wird als der von den Scheiben 19, 20 und dem Abstandhalter 15 begrenzte Raum definiert. Die dritte Scheibe 21 unterteilt den Verglasungsinnenraum 3 in einen ersten Verglasungsinnenraum 3.1 oberhalb der ersten Hohlkammer 10.1 und einen zweiten Verglasungsinnenraum 3.2 oberhalb der zweiten Hohlkammer 10.2. Die Nut enthält eine Einlage 24, die die Kante der dritten Scheibe 21 umschließt und sich bündig in die Nut 17 einpasst. Die Einlage 24 besteht aus Ethylen-Propylen-Dien-Kautschuk und weist umlaufend mindestens eine Aussparung auf, die einen Druckausgleich zwischen den Verglasungsinnenräumen 3.1 und 3.2 ermöglicht. Die Einlage 24 fixiert die dritte Scheibe 21 spannungsfrei. Des Weiteren verhindert die Einlage 24 eine Geräuschentwicklung durch Verrutschen der dritten Scheibe 21. Der an die Außenfläche 9 des Abstandhalters 15 angrenzende äußere Scheibenzwischenraum 13 ist ein streifenförmiger umlaufender Abschnitt der Verglasung, der von je einer Seite von den beiden Scheiben 19, 20 und auf einer weiteren Seite von dem Abstandhalter 15 begrenzt wird und dessen vierte Kante offen ist. Der Verglasungsinnenraum 3 ist mit Argon gefüllt. Zwischen jeweils einer Scheibenkontaktfläche 7.1 bzw. 7.2 und der benachbarten Scheibe 19 bzw. 20 ist ein Dichtmittel 4 eingebracht, das den Spalt zwischen Scheibe 19, 20 und Abstandhalter 15 abdichtet. Das Dichtmittel 4 ist Polyisobutylen. Auf der Außenfläche 9 ist eine äußere Abdichtung 6 im äußeren Scheibenzwischenraum 13 angebracht, die der Verklebung der ersten Scheibe 19 und der zweiten Scheibe 20 dient. Die äußere Abdichtung 6 besteht aus Silikon. Die äußere Abdichtung 6 schließt bündig mit den Scheibenkanten der ersten Scheibe 19 und der zweiten Scheibe 20 ab. Die zweite Scheibe 20 hat eine Dicke von 4,0 mm und weist an der zum zweiten Verglasungsinnenraum 3.2 gerichteten Scheibenoberfläche eine infrarotreflektierende Beschichtung 16 auf. Auf der zum ersten Verglasungsinnenraum 3.1 gerichteten Scheibenoberfläche der ersten Scheibe 19 ist das elektrochrome Funktionselement 1 aufgebracht, das mit einem Sammelleiter 22 zur elektrischen Kontaktierung des Funktionselements 1 ausgestattet ist. Die elektrische Zuleitung 14 des Funktionselementes 1 verläuft innerhalb der ersten Hohlkammer 10.1 des Abstandhalters 15 und tritt an der Verglasungsinnenraumfläche 8 der ersten Hohlkammer 10.1 aus dem Abstandhalter 15 aus. Innerhalb des ersten Verglasungsinnenraums 3.1 ist die elektrische Zuleitung über ein Kontaktelement 2 am Sammelleiter 22 elektrisch leitend kontaktiert. Das Kontaktelement 2 ist ein sogenannter Crimpverbinder, wobei die Anbindung zwischen elektrischer Zuleitung 14 und Kontaktelement 2 durch Quetschen der Zuleitung in den Crimpverbinder erfolgt und das entgegengesetzte Ende des Crimpverbinders auf den Sammelleiter 22 gelötet ist. Durch die Leitungsführung der elektrischen Zuleitung 14 in der Hohlkammer 10 ist der äußere Scheibenzwischenraum 13 größtenteils frei von Leitungen, so dass ein ungehindertes automatisiertes Verfüllen mit der äußeren Abdichtung 6 erfolgen kann. Die elektrische Zuleitung 14 wird an anderer Stelle aus der ersten Hohlkammer 10.1 herausgeführt und mit einer externen Spannungsquelle verbunden. Die Stellen des Abstandhalters 15, an denen die elektrische Zuleitung 14 die Wandung des Abstandhalters 15 durchtritt werden bevorzugt mit Dichtmittel 4 abgedichtet. Die erste Scheibe 19 weist eine Dicke von 2,0 mm auf und ist über eine thermoplastische Verbundfolie 25 aus 0,76 mm PVB mit einer weiteren Scheibe 23 mit einer Dicke von 2,0 mm laminiert. Die Verbundscheibe aus erster Scheibe 19 und weiterer Scheibe 23 stellt die Außenscheibe einer Gebäudeverglasung dar, während die zweite Scheibe 20 die Innenscheibe ist. Figure 1a shows an insulating glazing according to the invention I as triple glazing with an electrochromic functional element 1 on a first pane 19, an infrared-reflecting coating 16 on a second pane 20 and a spacer 15 for triple glazing. The spacer 15 is attached circumferentially between the first disk 19 and the second disk 20 via a sealing means 4. The sealing means 4 connects the disk contact surfaces 7.1 and 7.2 of the spacer 15 with the disks 19 and 20. The spacer 15 is designed as a polymeric base body 5 with a first hollow chamber 10.1 and a second hollow chamber 10.2. The spacer 15 is made of styrene-acrylonitrile (SAN), which is opaque. Between the first disc contact surface 7.1 and the second disc contact surface 7.2 there is a groove 17, the first hollow chamber 10.1 between the groove 17 and the first disc contact surface 7.1 and the second hollow chamber 10.2 is located between the groove 17 and the second disc contact surface 7.2. The hollow chambers 10 contain a desiccant 11 which can absorb residual moisture from the glazing interiors 3 via openings 12 in the glazing interior surface 8. The side flanks of the groove 17 are formed by the walls of the two hollow chambers 10.1 and 10.2, while the bottom surface of the groove 17 is directly adjacent to the outer surface 9. The groove 17 runs parallel to the disk contact surfaces 7. A third disk 21 with a thickness of 2.0 mm is inserted into the groove 17 of the spacer 15. The glazing interior 3 adjoining the glazing interior surface 8 of the spacer 15 is defined as the space delimited by the panes 19, 20 and the spacer 15. The third pane 21 divides the glazing interior 3 into a first glazing interior 3.1 above the first hollow chamber 10.1 and a second glazing interior 3.2 above the second hollow chamber 10.2. The groove contains an insert 24 which surrounds the edge of the third disk 21 and fits flush into the groove 17. The insert 24 consists of ethylene-propylene-diene rubber and has at least one recess all the way around, which enables pressure equalization between the glazing interiors 3.1 and 3.2. The insert 24 fixes the third pane 21 without tension. In addition, the insert 24 prevents the development of noise due to the third pane 21 slipping Another side is limited by the spacer 15 and the fourth edge is open. The glazing interior 3 is filled with argon. A sealing means 4, which seals the gap between the disk 19, 20 and the spacer 15, is introduced between a respective disk contact surface 7.1 or 7.2 and the adjacent disk 19 or 20. The sealant 4 is polyisobutylene. On the outer surface 9, an outer seal 6 is attached in the outer space 13 between the panes, which is used to bond the first pane 19 and the second pane 20. The outer seal 6 is made of silicone. The outer seal 6 terminates flush with the pane edges of the first pane 19 and the second pane 20. The second pane 20 has a thickness of 4.0 mm and has a pane surface facing the second glazing interior 3.2 infrared reflective coating 16. The electrochromic functional element 1, which is equipped with a bus bar 22 for making electrical contact with the functional element 1, is applied to the pane surface of the first pane 19 directed towards the first glazing interior 3.1. The electrical supply line 14 of the functional element 1 runs within the first hollow chamber 10.1 of the spacer 15 and emerges from the spacer 15 at the glazing interior surface 8 of the first hollow chamber 10.1. Within the first glazing interior 3.1, the electrical supply line is electrically conductively contacted via a contact element 2 on the busbar 22. The contact element 2 is a so-called crimp connector, the connection between the electrical lead 14 and the contact element 2 being made by squeezing the lead into the crimp connector and the opposite end of the crimp connector being soldered to the bus bar 22. As a result of the routing of the electrical supply line 14 in the hollow chamber 10, the outer space 13 between the panes is largely free of lines, so that an unimpeded automated filling with the outer seal 6 can take place. The electrical lead 14 is led out of the first hollow chamber 10.1 at another point and connected to an external voltage source. The points of the spacer 15 at which the electrical supply line 14 passes through the wall of the spacer 15 are preferably sealed with sealant 4. The first pane 19 has a thickness of 2.0 mm and is laminated to a further pane 23 with a thickness of 2.0 mm via a thermoplastic composite film 25 made of 0.76 mm PVB. The composite pane of first pane 19 and further pane 23 represents the outer pane of building glazing, while the second pane 20 is the inner pane.

Der Sammelleiter 22 wurde durch Aufdrucken einer leitfähigen Paste hergestellt und auf dem elektrochromen Funktionselement 1 elektrisch kontaktiert. Die leitfähige Paste, auch als Silberpaste bezeichnet, enthält Silber-Partikel und Glasfritten. Der Sammelleiter 22 verläuft auf der ersten Scheibe 19 im Verglasungsinnenraum 3 und parallel zur Verglasungsinnenraumfläche 8 des Abstandhalters 15.The busbar 22 was produced by printing a conductive paste and electrically contacted on the electrochromic functional element 1. The conductive paste, also known as silver paste, contains silver particles and glass frits. The busbar 22 runs on the first pane 19 in the glazing interior 3 and parallel to the glazing interior surface 8 of the spacer 15.

Auf der Außenfläche 9 des Abstandhalters 15 ist eine gas- und wasserdichte Barrierefolie aufgebracht (nicht gezeigt).A gas- and water-tight barrier film (not shown) is applied to the outer surface 9 of the spacer 15.

Die Führung der elektrischen Zuleitung 14 kann alternativ zu dem in Figur 1a gezeigten auch gemäß Figur 1b erfolgen.The routing of the electrical lead 14 can alternatively to that in Figure 1a shown also according to Figure 1b respectively.

Die erfindungsgemäße Isolierverglasung I verfügt über eine gute Wärmeableitung des elektrochromen Funktionselementes 1, eine gute thermische Isolation des Gebäudeinnenraums durch die infrarotreflektierende Beschichtung 16 und eine verbesserte Stabilität des Randverbundes durch die Verwendung eines Doppelabstandhalters zur Aufnahme von drei Scheiben der Isolierverglasung I. Darüber hinaus kann das Gewicht der Isolierverglasung I im Vergleich zu Isolierverglasungen mit zwei einzelnen Abstandhaltern reduziert werden, da in die Nut 17 des Abstandhalters I auch eine Scheibe geringer Dicke eingepasst werden kann. Darüber hinaus verfügen polymere Abstandhalter über eine geringere Wärmeleitfähigkeit als metallische Abstandhalter.The insulating glazing I according to the invention has good heat dissipation of the electrochromic functional element 1, good thermal insulation of the building interior through the infrared-reflecting coating 16 and improved stability of the edge bond through the use of a double spacer to accommodate three panes of the insulating glazing I. In addition, the weight of the insulating glazing I can be reduced compared to insulating glazing with two individual spacers, since a pane of small thickness can also be fitted into the groove 17 of the spacer I. In addition, polymer spacers have a lower thermal conductivity than metallic spacers.

Figur 1b zeigt eine weitere Ausführungsform der erfindungsgemäßen Isolierverglasung. Die Isolierverglasung I der Figur 1b entspricht im Wesentlichen der Ausführungsform der Figur 1a, so dass hier nur auf die Unterschiede eingegangen wird. Gemäß Figur 1b ist die infrarotreflektierende Beschichtung 16 auf der Oberfläche der dritten Scheibe 21 vorgesehen, die den ersten Verglasungsinnenraum 3.1 begrenzt. Dadurch dehnt sich die Abwärme des auf der ersten Scheibe 19 befindlichen elektrochromen Funktionselementes 1 nicht auf die gesamte Verglasung aus. Die durch das elektrochrome Funktionselement 1 und die Erwärmung der infrarotreflektierenden Beschichtung 16 bei Sonneneinstrahlung erzeugte Abwärme beschränkt sich lediglich auf den ersten Verglasungsinnenraum 3.1 und wird sehr gut über die Außenscheibe der Verglasung an die Gebäudeumgebung abgegeben. Wenn die infrarotreflektierende Beschichtung 16 auf der dritten Scheibe 21 angebracht ist, ist die spannungsfreie Fixierung der dritten Scheibe 21 in der Nut 17 besonders vorteilhaft. Die elektrische Zuleitung 14 ist, wie bereits in Figur 1a beschrieben, mit dem Sammelleiter 22 kontaktiert. Gemäß Figur 1b erfolgt die Kabelzuführung jedoch nicht durch den Abstandhalter 15, sondern durch das Dichtmittel 4 zwischen erster Scheibenkontaktfläche 7.1 und erster Scheibe 19. An der Außenfläche 9 des Abstandhalters 15 wird die elektrische Zuleitung in Form eines stoffschlüssig mit der Außenfläche 9 verbundenen Flachbandkabels weitergeführt. Figure 1b shows a further embodiment of the insulating glazing according to the invention. The insulating glazing I the Figure 1b corresponds essentially to the embodiment of FIG Figure 1a so that only the differences are discussed here. According to Figure 1b the infrared-reflecting coating 16 is provided on the surface of the third pane 21, which delimits the first glazing interior 3.1. As a result, the waste heat from the electrochromic functional element 1 located on the first pane 19 does not extend to the entire glazing. The waste heat generated by the electrochromic functional element 1 and the heating of the infrared reflective coating 16 when exposed to sunlight is limited only to the first glazing interior 3.1 and is emitted very well to the building environment via the outer pane of the glazing. If the infrared-reflecting coating 16 is applied to the third pane 21, the tension-free fixing of the third pane 21 in the groove 17 is particularly advantageous. The electrical lead 14 is, as already in Figure 1a described, contacted with the bus bar 22. According to Figure 1b However, the cable is not fed through the spacer 15, but rather through the sealing means 4 between the first disk contact surface 7.1 and the first disk 19. On the outer surface 9 of the Spacer 15, the electrical supply line is continued in the form of a flat ribbon cable that is cohesively connected to the outer surface 9.

Die Führung der elektrischen Zuleitung 14 kann alternativ zu dem in Figur 1b gezeigten auch gemäß Figur 1a erfolgen.The routing of the electrical lead 14 can alternatively to that in Figure 1b shown also according to Figure 1a respectively.

Figur 2 zeigt einen Querschnitt der Isolierverglasung I gemäß Figur 1a entlang der Schnittlinie AA' mit Blick auf die erste Scheibe 19. Die zweite Scheibe 20 und die dritte Scheibe 21 sind in dieser Ansicht nicht gezeigt. Die in Figur 1a beschriebene Kontaktierung einer im Abstandhalter 15 verlaufenden elektrischen Zuleitung 14 mit dem Sammelleiter 22 des elektrisch schaltbaren Funktionselements 1 findet an zwei gegenüberliegenden Kanten der Isolierverglasung I statt. An beiden Kanten tritt die elektrische Zuleitung 14 aus dem Hohlkörper 10 in den Verglasungsinnenraum 3 ein und wird über ein Kontaktelement 2 elektrisch leitend mit dem Sammelleiter 22 kontaktiert. Der Abstandhalter 15 ist an den Ecken der Isolierverglasung I gebogen, so dass die Hohlkammern 10 auch an den Ecken der Verglasung durchgängig sind. Beide elektrische Zuleitungen 14 werden innerhalb des Grundkörpers 5 bis zu einer Stelle geführt, an der die Zuleitungen 14 aus der Hohlkammer 10 in den äußeren Scheibenzwischenraum 13 eintreten und von dort aus mit einer Spannungsquelle 18, hier einer Gleichspannungsquelle zum Betreib des elektrochromen Funktionselements 1, außerhalb der Verglasung verbunden werden. Die Zuleitungen 14 sind mit unterschiedlichen Polen der Spannungsquelle 18 verbunden, so dass zwischen den beiden gegenüberliegenden Sammelleitern 22 eine Potentialdifferenz entsteht. Die an den Sammelleitern 22 anliegende Spannung ruft eine Ionenwanderung innerhalb der aktiven Schicht des elektrochromen Funktionselements 1 hervor, wodurch dessen Transmission beeinflusst wird. Die Öffnungen des Abstandhalters 15, an denen Zuleitungen 14 durch die Wandungen hindurchtreten, sind mit dem Dichtmittel 4 abgedichtet. Die elektrischen Zuleitungen 14 können den Grundkörper 5 teilweise oder entlang seines gesamten Umfangs durchlaufen. Die Zuleitungen 14 können manuell eingebracht werden oder es kann ein Abstandhalter 15 verwendet werden, der bereits mit einer integrierten elektrischen Zuleitung 14 extrudiert wurde. Figure 2 shows a cross section of the insulating glazing I according to Figure 1a along the section line AA 'with a view of the first disk 19. The second disk 20 and the third disk 21 are not shown in this view. In the Figure 1a The described contacting of an electrical lead 14 running in the spacer 15 with the busbar 22 of the electrically switchable functional element 1 takes place on two opposite edges of the insulating glazing I. At both edges, the electrical supply line 14 enters the glazing interior 3 from the hollow body 10 and is electrically conductively contacted with the busbar 22 via a contact element 2. The spacer 15 is bent at the corners of the insulating glazing I so that the hollow chambers 10 are also continuous at the corners of the glazing. Both electrical leads 14 are routed inside the base body 5 to a point where the leads 14 enter the outer pane space 13 from the hollow chamber 10 and from there to a voltage source 18, here a DC voltage source for operating the electrochromic functional element 1, outside the glazing are connected. The supply lines 14 are connected to different poles of the voltage source 18, so that a potential difference arises between the two opposite busbars 22. The voltage applied to the busbars 22 causes ion migration within the active layer of the electrochromic functional element 1, which influences its transmission. The openings of the spacer 15, at which supply lines 14 pass through the walls, are sealed with the sealant 4. The electrical leads 14 can run through the base body 5 partially or along its entire circumference. The feed lines 14 can be introduced manually or a spacer 15 can be used which has already been extruded with an integrated electrical feed line 14.

BezugszeichenlisteList of reference symbols

II.
IsolierverglasungDouble glazing
11
elektrochromes Funktionselementelectrochromic functional element
22
KontaktelementContact element
33
VerglasungsinnenräumeGlazing interiors
3.13.1
erster Verglasungsinnenraumfirst glazing interior
3.23.2
zweiter Verglasungsinnenraumsecond glazing interior
44th
Dichtmittelsealant
55
polymerer Grundkörperpolymer base
66th
äußere Abdichtungouter sealing
77th
ScheibenkontaktflächenDisc contact surfaces
7.17.1
erste Scheibenkontaktflächefirst disc contact surface
7.27.2
zweite Scheibenkontaktflächesecond disc contact surface
88th
VerglasungsinnenraumflächeGlazing interior area
99
AußenflächeExterior surface
1010
HohlkammernHollow chambers
10.110.1
erste Hohlkammerfirst hollow chamber
10.210.2
zweite Hohlkammersecond hollow chamber
1111
TrockenmittelDesiccant
1212
Öffnungenopenings
1313
äußerer Scheibenzwischenraumouter space between the panes
1414th
elektrische ZuleitungElectrical supply
1515th
AbstandhalterSpacers
1616
infrarotreflektierende Beschichtunginfrared reflective coating
1717th
NutGroove
1818th
SpannungsquelleVoltage source
1919th
erste Scheibefirst slice
2020th
zweite Scheibesecond disc
2121st
dritte Scheibethird slice
2222nd
SammelleiterBusbar
2323
weitere Scheibeanother disc
2424
Einlageinlay
2525th
thermoplastische Verbundfoliethermoplastic composite film

Claims (14)

Isolierverglasung (I) mit elektrochromem Funktionselement (1) mindestens umfassend eine erste Scheibe (19), eine zweite Scheibe (20), eine dritte Scheibe (21), einen Abstandhalter (15) mit polymerem Grundkörper (5), einen ersten Verglasungsinnenraum (3.1) zwischen erster Scheibe (19) und dritter Scheibe (21) und einen zweiten Verglasungsinnenraum (3.2) zwischen dritter Scheibe (21) und zweiter Scheibe (20), wobei die erste Scheibe (19) an einer ersten Scheibenkontaktfläche (7.1) des Abstandhalters (15) angebracht ist, die zweite Scheibe (20) an einer zweiten Scheibenkontaktfläche (7.2) des Abstandhalters (15) angebracht ist und die dritte Scheibe (21) in eine Nut (17) des Abstandhalters (15) eingesetzt ist, die zwischen erster Scheibenkontaktfläche (7.1) und zweiter Scheibenkontaktfläche (7.2) verläuft und
wobei - das elektrochrome Funktionselement (1) auf der ersten Scheibe (19) innerhalb des ersten Verglasungsinnenraums (3.1) aufgebracht ist, - die zweite Scheibe (20) und/oder die dritte Scheibe (21) mindestens eine infrarotreflektierende Beschichtung (16) umfassen, die sich innerhalb des ersten Verglasungsinnenraums (3.1) und/oder des zweiten Verglasungsinnenraums (3.2) befinden und - die erste Scheibe (19) eine zur Gebäudeumgebung gerichtete Außenscheibe der Isolierverglasung (I) und die zweite Scheibe (20) eine Innenscheibe der Isolierverglasung (I) darstellt.
Insulating glazing (I) with electrochromic functional element (1) at least comprising a first pane (19), a second pane (20), a third pane (21), a spacer (15) with a polymer base body (5), a first glazing interior (3.1 ) between the first pane (19) and the third pane (21) and a second glazing interior (3.2) between the third pane (21) and the second pane (20), the first pane (19) on a first pane contact surface (7.1) of the spacer ( 15) is attached, the second disk (20) is attached to a second disk contact surface (7.2) of the spacer (15) and the third disk (21) is inserted into a groove (17) of the spacer (15) which is between the first disk contact surface (7.1) and the second disc contact surface (7.2) runs and
in which - the electrochromic functional element (1) is applied to the first pane (19) within the first glazing interior (3.1), - the second pane (20) and / or the third pane (21) comprise at least one infrared-reflecting coating (16) which are located within the first glazing interior (3.1) and / or the second glazing interior (3.2) and - The first pane (19) represents an outer pane of the insulating glazing (I) facing the building environment and the second pane (20) represents an inner pane of the insulating glazing (I).
Isolierverglasung (I) nach Anspruch 1, wobei die infrarotreflektierende Beschichtung (16) auf der dritten Scheibe (21) innerhalb des ersten Verglasungsinnenraums (3.1) angeordnet ist.Insulating glazing (I) according to Claim 1, the infrared-reflecting coating (16) being arranged on the third pane (21) within the first glazing interior (3.1). Isolierverglasung (I) nach Anspruch 1, wobei die infrarotreflektierende Beschichtung (16) auf der zweiten Scheibe (20) innerhalb des zweiten Verglasungsinnenraums (3.2) angeordnet ist.Insulating glazing (I) according to claim 1, the infrared-reflecting coating (16) being arranged on the second pane (20) within the second glazing interior (3.2). Isolierverglasung (I) nach einem der Ansprüche 1 bis 3, wobei die infrarotreflektierende Beschichtung (16) Metalle oder Metalloxide, bevorzugt Silber oder Indium-Zinn-Oxid umfasst.Insulating glazing (I) according to one of Claims 1 to 3, the infrared-reflecting coating (16) comprising metals or metal oxides, preferably silver or indium tin oxide. Isolierverglasung (I) nach einem der Ansprüche 1 bis 4, wobei das elektrochrome Funktionselement (1) eine elektrochemisch aktive Schicht zwischen einer ersten Flächenelektrode und einer zweiten Flächenelektrode umfasst.Insulating glazing (I) according to one of Claims 1 to 4, the electrochromic functional element (1) comprising an electrochemically active layer between a first surface electrode and a second surface electrode. Isolierverglasung (I) nach Anspruch 5, wobei die erste Flächenelektrode einen ersten Sammelleiter (22) aufweist und die zweite Flächenelektrode einen zweiten Sammelleiter (22) aufweist und der erste Sammelleiter (22) und der zweite Sammelleiter (22) über elektrische Zuleitungen (14) mit einer externen Stromversorgung (18) verbunden werden können.Insulating glazing (I) according to claim 5, wherein the first surface electrode has a first busbar (22) and the second surface electrode has a second busbar (22) and the first busbar (22) and the second busbar (22) via electrical leads (14) can be connected to an external power supply (18). Isolierverglasung (I) nach einem der Ansprüche 1 bis 6, wobei die erste Scheibe (19) mit mindestens einer weiteren Scheibe (23) und einer thermoplastischen Verbundfolie (25) zu einer Verbundscheibe laminiert ist.Insulating glazing (I) according to one of Claims 1 to 6, the first pane (19) being laminated with at least one further pane (23) and a thermoplastic composite film (25) to form a composite pane. Isolierverglasung (I) nach einem der Ansprüche 1 bis 7, wobei der erste Verglasungsinnenraum (3.1) und der zweite Verglasungsinnenraum (3.2) als kommunizierende Scheibenzwischenräume ausgeführt sind.Insulating glazing (I) according to one of Claims 1 to 7, the first glazing interior (3.1) and the second glazing interior (3.2) being designed as communicating spaces between panes. Isolierverglasung (I) nach einem der Ansprüche 1 bis 8, wobei der wobei der polymere Grundkörper (5) Polyethylen (PE), Polycarbonate (PC), Polypropylen (PP), Polystyrol, Polybutadien, Polynitrile, Polyester, Polyurethane, Polymethylmetacrylate, Polyacrylate, Polyamide, Polyethylenterephthalat (PET), Polybutylenterephthalat (PBT), bevorzugt Acrylnitril-Butadien-Styrol (ABS), Acrylester-Styrol-Acrylnitril (ASA), Acrylnitril-Butadien-Styrol/Polycarbonat (ABS/PC), Styrol-Acrylnitril (SAN), PET/PC, PBT/PC und/oder Copolymere oder Gemische davon enthält.Insulating glazing (I) according to one of claims 1 to 8, wherein the polymeric base body (5) is polyethylene (PE), polycarbonate (PC), polypropylene (PP), polystyrene, polybutadiene, polynitrile, polyester, polyurethane, polymethyl methacrylate, polyacrylate, Polyamides, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), preferably acrylonitrile-butadiene-styrene (ABS), acrylic ester-styrene-acrylonitrile (ASA), acrylonitrile-butadiene-styrene / polycarbonate (ABS / PC), styrene-acrylonitrile (SAN) , PET / PC, PBT / PC and / or copolymers or mixtures thereof. Isolierverglasung (I) nach einem der Ansprüche 1 bis 9, wobei der polymere Grundkörper (5) mindestens zwei Hohlkammern (10) aufweist, die ein Trockenmittel (11), bevorzugt Kieselgele, Molekularsiebe, CaCl2, Na2SO4, Aktivkohle, Silikate, Bentonite, Zeolithe und/oder Gemische davon, enthalten.Insulating glazing (I) according to one of claims 1 to 9, wherein the polymeric base body (5) has at least two hollow chambers (10) which have a Desiccants (11), preferably silica gels, molecular sieves, CaCl 2 , Na 2 SO 4 , activated carbon, silicates, bentonites, zeolites and / or mixtures thereof. Isolierverglasung (I) nach einem der Ansprüche 1 bis 10, wobei eine gas- und dampfdichte Barriere auf der Außenfläche (9) des polymeren Grundkörpers (5) aufgebracht ist, die mindestens eine polymere Schicht sowie eine metallische Schicht oder eine keramische Schicht, bevorzugt mindestens zwei metallische Schichten und/oder keramische Schichten, die alternierend mit mindestens einer polymeren Schicht angeordnet sind, umfasst.Insulating glazing (I) according to one of claims 1 to 10, wherein a gas- and vapor-tight barrier is applied to the outer surface (9) of the polymeric base body (5), the at least one polymeric layer and a metallic layer or a ceramic layer, preferably at least two metallic layers and / or ceramic layers, which are arranged alternately with at least one polymer layer, comprises. Isolierverglasung (I) nach einem der Ansprüche 1 bis 11, wobei zwischen der ersten Scheibe (19) und der ersten Scheibenkontaktfläche (7.1) und/oder der zweiten Scheibe (20) und der zweiten Scheibenkontaktfläche (7.2) eine Dichtung (4) angebracht ist und die Dichtung (4) bevorzugt ein Polymer oder silanmodifiziertes Polymer, besonders bevorzugt Butylkautschuk, Polyisobutylen (PIB), Polyethylenvinylalkohol, Ethylenvinylacetat, Polyolefin-Kautschuk, Copolymeren und/oder Gemischen davon, umfasst.Insulating glazing (I) according to one of Claims 1 to 11, a seal (4) being attached between the first pane (19) and the first pane contact surface (7.1) and / or the second pane (20) and the second pane contact surface (7.2) and the seal (4) preferably comprises a polymer or silane-modified polymer, particularly preferably butyl rubber, polyisobutylene (PIB), polyethylene vinyl alcohol, ethylene vinyl acetate, polyolefin rubber, copolymers and / or mixtures thereof. Isolierverglasung nach einem der Ansprüche 1 bis 12, wobei in den äußeren Scheibenzwischenraum (13) eine äußere Abdichtung (6), bevorzugt umfassend Polysulfide, Silikone, Silikonkautschuk, Polyurethane, Polyacrylate, Copolymere und/oder Gemische davon, eingebracht ist.Insulating glazing according to one of Claims 1 to 12, an outer seal (6), preferably comprising polysulfides, silicones, silicone rubber, polyurethanes, polyacrylates, copolymers and / or mixtures thereof, being introduced into the outer space between the panes (13). Verwendung einer Isolierverglasung (I) nach einem der Ansprüche 1 bis 13 als Gebäudeaußenverglasung oder Fassadenverglasung, wobei die erste Scheibe (19) mit elektrochromem Funktionselement (1) im Einbauzustand zur Gebäudeumgebung weist.Use of insulating glazing (I) according to one of Claims 1 to 13 as building exterior glazing or facade glazing, the first pane (19) with electrochromic functional element (1) facing the building environment when installed.
EP19159556.0A 2019-02-27 2019-02-27 Insulating glazing with electrochromic functional element and infrared-reflective coating Withdrawn EP3702572A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19159556.0A EP3702572A1 (en) 2019-02-27 2019-02-27 Insulating glazing with electrochromic functional element and infrared-reflective coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19159556.0A EP3702572A1 (en) 2019-02-27 2019-02-27 Insulating glazing with electrochromic functional element and infrared-reflective coating

Publications (1)

Publication Number Publication Date
EP3702572A1 true EP3702572A1 (en) 2020-09-02

Family

ID=65628597

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19159556.0A Withdrawn EP3702572A1 (en) 2019-02-27 2019-02-27 Insulating glazing with electrochromic functional element and infrared-reflective coating

Country Status (1)

Country Link
EP (1) EP3702572A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11346149B2 (en) * 2018-01-22 2022-05-31 Saint-Gobain Glass France Insulating glazing, window and production method
WO2022167264A1 (en) 2021-02-04 2022-08-11 Saint-Gobain Glass France Method for producing an electrochromic device, electrochromic device, and insulating glazing
WO2023144007A1 (en) 2022-01-31 2023-08-03 Saint-Gobain Glass France Composite glass sheet with a light source

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9313394U1 (en) 1992-10-17 1993-10-28 Ver Glaswerke Gmbh Car window pane made of laminated glass with wires embedded in the intermediate layer and a connection cable
DE4235063A1 (en) 1992-10-17 1994-04-21 Ver Glaswerke Gmbh Car glass made of laminated glass with wires embedded in the intermediate layer and a connection cable
DE19927683C1 (en) 1999-06-17 2001-01-25 Sekurit Saint Gobain Deutsch Laminated glass pane reflecting sun and heat rays
DE202004019286U1 (en) 2004-12-14 2006-04-20 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Flat, electrically conductive connector element for window panes incorporates a local wear resistant reinforcement which consists of a material capable of self-healing of surface damage
EP0912455B1 (en) 1996-06-21 2006-05-17 Cardinal CG Company Heat-resistant transparent coated glass article
WO2007101964A1 (en) 2006-03-06 2007-09-13 Saint-Gobain Glass France Substrate comprising a stack having thermal properties
EP1218307B1 (en) 1999-09-23 2008-07-02 Saint-Gobain Glass France Glazing provided with a stack of thin layers acting on solar radiation
EP1917222B1 (en) 2005-08-23 2009-03-11 Saint-Gobain Glass France Low emissivity (low-e) thin coating stacks with intermediate antidiffusion layers
DE102009006062A1 (en) 2009-01-24 2010-07-29 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Infrared-screening laminate, e.g. for car windscreens, comprises two clear, colorless layers and an interlayer which is transparent to visible light and opaque to infrared except for an IR-transparent optical window
WO2012007334A1 (en) 2010-07-13 2012-01-19 Saint-Gobain Glass France Electrochromic device
US20120026573A1 (en) 2010-11-08 2012-02-02 Soladigm, Inc. Electrochromic window fabrication methods
WO2013104507A1 (en) 2012-01-13 2013-07-18 Saint-Gobain Glass France Spacer for insulating glazing units
WO2016091647A1 (en) * 2014-12-08 2016-06-16 Saint-Gobain Glass France Spacer for insulated glazing
US20180088431A1 (en) * 2016-09-26 2018-03-29 Heliotrope Technologies, Inc. Electrochromic privacy window

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4235063A1 (en) 1992-10-17 1994-04-21 Ver Glaswerke Gmbh Car glass made of laminated glass with wires embedded in the intermediate layer and a connection cable
DE9313394U1 (en) 1992-10-17 1993-10-28 Ver Glaswerke Gmbh Car window pane made of laminated glass with wires embedded in the intermediate layer and a connection cable
EP0912455B1 (en) 1996-06-21 2006-05-17 Cardinal CG Company Heat-resistant transparent coated glass article
DE19927683C1 (en) 1999-06-17 2001-01-25 Sekurit Saint Gobain Deutsch Laminated glass pane reflecting sun and heat rays
EP1218307B1 (en) 1999-09-23 2008-07-02 Saint-Gobain Glass France Glazing provided with a stack of thin layers acting on solar radiation
DE202004019286U1 (en) 2004-12-14 2006-04-20 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Flat, electrically conductive connector element for window panes incorporates a local wear resistant reinforcement which consists of a material capable of self-healing of surface damage
EP1917222B1 (en) 2005-08-23 2009-03-11 Saint-Gobain Glass France Low emissivity (low-e) thin coating stacks with intermediate antidiffusion layers
WO2007101964A1 (en) 2006-03-06 2007-09-13 Saint-Gobain Glass France Substrate comprising a stack having thermal properties
DE102009006062A1 (en) 2009-01-24 2010-07-29 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Infrared-screening laminate, e.g. for car windscreens, comprises two clear, colorless layers and an interlayer which is transparent to visible light and opaque to infrared except for an IR-transparent optical window
WO2012007334A1 (en) 2010-07-13 2012-01-19 Saint-Gobain Glass France Electrochromic device
US20120026573A1 (en) 2010-11-08 2012-02-02 Soladigm, Inc. Electrochromic window fabrication methods
WO2013104507A1 (en) 2012-01-13 2013-07-18 Saint-Gobain Glass France Spacer for insulating glazing units
WO2016091647A1 (en) * 2014-12-08 2016-06-16 Saint-Gobain Glass France Spacer for insulated glazing
US20180088431A1 (en) * 2016-09-26 2018-03-29 Heliotrope Technologies, Inc. Electrochromic privacy window

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11346149B2 (en) * 2018-01-22 2022-05-31 Saint-Gobain Glass France Insulating glazing, window and production method
WO2022167264A1 (en) 2021-02-04 2022-08-11 Saint-Gobain Glass France Method for producing an electrochromic device, electrochromic device, and insulating glazing
WO2023144007A1 (en) 2022-01-31 2023-08-03 Saint-Gobain Glass France Composite glass sheet with a light source

Similar Documents

Publication Publication Date Title
EP3818232B1 (en) Cover element for busbar
EP3743584B1 (en) Spacer for insulated glazing units with integrated flat wire
EP3743583B1 (en) Spacer for insulated glazing units with electrical wire integrated in hollow chamber
EP2936926B1 (en) Glasspane with electrical heating layer
EP3676661B1 (en) Insulating glass with electric connection element
EP3365174B1 (en) Method for producing a composite pane having an infrared-reflecting coating on a carrier film
EP2931673B1 (en) Transparent pane with electrically conductive coating
EP3877619A1 (en) Insulating glazing with double spacer
EP3702572A1 (en) Insulating glazing with electrochromic functional element and infrared-reflective coating
EP3803017B1 (en) Corner joint for insulating glass with electric line
EP3250379A1 (en) Heatable laminated side pane
EP3613257A1 (en) Pane having heatable tco coating
EP2766774B1 (en) Electrochrome insulating glazing with capacitive sensor button
WO2012171844A1 (en) Insulating glazing with electrical connection element
EP3034295A1 (en) Laminated glazing with corrosion protected functional coating
WO2021156485A1 (en) Connection arrangement with a flexible flat cable
WO2022180032A1 (en) Connection element for insulated glazing units, comprising an electrically conductive coating and/or an electrically controllable functional element
DE202014010748U1 (en) Composite disc with corrosion-protected functional coating
WO2022063535A1 (en) Insulated glazing unit having an electrically conductive coating and/or an electrically controllable functional element
WO2022058109A1 (en) Pane with a functional element having electrically controllable optical properties and model for high-frequency transmission
EP3702571A1 (en) Insulating glazing with electrically conductive coating and/or electrically conductive functional element
DE202012012625U1 (en) Disc with electrical contact
WO2023072501A1 (en) Composite panel with heat resistance layer
WO2023285044A1 (en) Composite pane having opaque masking region and partially transparent reflective coating
WO2023072673A1 (en) Method for switching a composite pane comprising an electrochromic functional element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210301

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230628

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20231109