EP3701100A1 - Composite isolant destinée à l'isolation de bâtiments - Google Patents

Composite isolant destinée à l'isolation de bâtiments

Info

Publication number
EP3701100A1
EP3701100A1 EP18870940.6A EP18870940A EP3701100A1 EP 3701100 A1 EP3701100 A1 EP 3701100A1 EP 18870940 A EP18870940 A EP 18870940A EP 3701100 A1 EP3701100 A1 EP 3701100A1
Authority
EP
European Patent Office
Prior art keywords
layer
insulation material
wall
composite
diffusion open
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18870940.6A
Other languages
German (de)
English (en)
Other versions
EP3701100A4 (fr
Inventor
Elith Gorm Hilding Rasmussen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
H+H Nordics AS
Original Assignee
H+H Danmark AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by H+H Danmark AS filed Critical H+H Danmark AS
Priority claimed from PCT/DK2018/050264 external-priority patent/WO2019080978A1/fr
Publication of EP3701100A1 publication Critical patent/EP3701100A1/fr
Publication of EP3701100A4 publication Critical patent/EP3701100A4/fr
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • E04C2/284Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
    • E04C2/288Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating composed of insulating material and concrete, stone or stone-like material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B13/00Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material
    • B32B13/04Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material comprising such water setting substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B13/045Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material comprising such water setting substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B13/00Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material
    • B32B13/14Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • B32B5/20Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material foamed in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/245Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J125/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Adhesives based on derivatives of such polymers
    • C09J125/02Homopolymers or copolymers of hydrocarbons
    • C09J125/04Homopolymers or copolymers of styrene
    • C09J125/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/08Homopolymers or copolymers of acrylic acid esters
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/762Exterior insulation of exterior walls
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C1/00Building elements of block or other shape for the construction of parts of buildings
    • E04C1/40Building elements of block or other shape for the construction of parts of buildings built-up from parts of different materials, e.g. composed of layers of different materials or stones with filling material or with insulating inserts
    • E04C1/41Building elements of block or other shape for the construction of parts of buildings built-up from parts of different materials, e.g. composed of layers of different materials or stones with filling material or with insulating inserts composed of insulating material and load-bearing concrete, stone or stone-like material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/049Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres completely or partially of insulating material, e.g. cellular concrete or foamed plaster
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/044 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0285Condensation resins of aldehydes, e.g. with phenols, ureas, melamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/08Closed cell foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • B32B2307/102Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • B32B2419/04Tiles for floors or walls
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • C08J2203/142Halogenated saturated hydrocarbons, e.g. H3C-CF3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/18Binary blends of expanding agents
    • C08J2203/182Binary blends of expanding agents of physical blowing agents, e.g. acetone and butane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/10Rigid foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08J2361/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with monohydric phenols
    • C08J2361/10Phenol-formaldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0028Use of organic additives containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • C08J9/145Halogen containing compounds containing carbon, halogen and hydrogen only only chlorine as halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/149Mixtures of blowing agents covered by more than one of the groups C08J9/141 - C08J9/143

Definitions

  • the present invention relates to insulation components for buildings, and methods for preparation of the insulation components, and uses of said insulation components.
  • insulation components comprising an insulation material and a hydrothermal hardened calcium silicate hydrate material, and methods for preparation of the insulation components.
  • the purpose is to mitigate the increasing average temperatures and consequences of the climate change caused by e.g. increased concentration of CO 2 in the air.
  • the buildings today are insulated to avoid loss of heat through the walls.
  • the objective problem of the invention is to provide a material for insulation of buildings whereby the heat loss and installation costs are lowered, while the fabrication process of the materials is not more expensive than materials of prior art.
  • the layers are attached to each other by an adhesive diffusion open third layer as in claim 2, or by the adhesive character of the first layer as in claim 20.
  • diffusion open insulation material which may be a rigid phenol foam
  • hydrothermal hardened calcium silicate hydrate layer which may be an aircrete layer
  • the attachment is facilitated by an adhesive layer as in claim 3, or, preferably, by the adhesive character of the diffusion open insulation material as in claim 21 .
  • a phenolic foam layer as the insulation layer provides a fire protection, which is highly improved compared to traditional methods for insulation as the second layer cannot burn and the first layer according to fire tests is much more resistant than other insulation materials to fire.
  • An anticipated embodiment of the invention as in claim 4 is where the phenolic foam is formed from a liquid resole resin, calcium carbonate, using a catalyst and a blowing agent.
  • the adhesive third layer is a layer of a glue as anticipated in claim 5.
  • the adhesive layer may be a glue e.g. a thin layer mortar as claimed.
  • the layer of glue is anticipated to be a Kunststoffharzdispersion (synthetic aqueous copolymer dispersion) which as claimed in claim 6 is an air-hardening moistens fast synthetic aqueous copolymer dispersion which in the present case is based on styrene and an acrylic acid ester with a solid content of 20-80%, preferably 50% +/- 1 %.
  • the invention further provides in claim 12 a board comprising at least a composite insulation material according to claim 1 1 wherein the board further comprises fixing means for attaching the board to a wall.
  • a wall made from any of the boards of claim 1 1 or 12 is claimed in claim 13.
  • An anticipated embodiment of such a wall is where the boards of insulating composites are of different thicknesses, claim 14.
  • An embodiment of a wall where the board are mechanically fixed are anticipated in claim 15, and optionally as in claim 16 combined with glue.
  • Methods for preparing a composite of the invention where the layers are glued together by a layer of glue are claimed in claim 17 to 18.
  • the diffusion open insulation material is a phenolic foam resin as claimed in claim 19.
  • claims 19 to 21 are claims on a board or a wall comprising the
  • An anticipated method thus comprises to prepare the composite by
  • the aircrete may deviate in its composition for the example as follows.
  • a composite insulation material according to claim 1 wherein the layers of the composite are attached to each other by the adhesive force of the first layer is claimed in claim 21 .
  • An embodiment of a composite insulation material according to claim 20, is wherein the first layer, 1 , is a rigid phenolic foam with closed cells though still diffusion open, and wherein the second layer, 2, is a diffusion open autoclaved aerated concrete layer, as anticipated in claim 22.
  • An embodiment of a composite insulation material as claimed in claim 23 is where the rigid phenolic foam is formed from a liquid resole resin, calcium carbonate, using a catalyst and a blowing agent.
  • a wall comprising at least one board of claim 27 or 28 is claimed in claim 29.
  • a wall comprising at least one board of claim 27 or 28 of one thickness and at least one and different other board of claim 27 or 28 of a different thickness is claimed in claim 30.
  • the diffusive rigid open insulation material is a rigid phenolic foam with a major part such as 90% closed cells though still diffusion open.
  • the rigid phenolic foam layer is prepared first.
  • the resin mixture for the foam layer is prepared as in claim 34 and poored onto the diffusion open load bearing hydrothermal hardened calcium silicate hydrate layer, which should have a temperature of e.g. 60 °C to 70 °C prior to curing the composite by the remaining heat.
  • the diffusion open load bearing hydrothermal hardened calcium silicate hydrate layer, 2 has initially the temperature of 180°C of the autoclaving process but the heat may be applied in the above method prior to applying the resin mixtureThe process for making the composite this takes advantage of the adhesive character of the formed foam.
  • Fig. 1 shows a composite insulation board according to the invention for plastering a wall.
  • the foam layer, 1 is attached to an aircrete layer, 2. Either, the foam layer is sticking to the aircrete layer, or an adhesive layer (not shown) joins the foam and aircrete layer together.
  • Fig. 2 shows a composite insulation board according to the invention for rendering a wall for paint.
  • the foam layer, 1 is attached to an aircrete layer, 2. Either, the foam layer is sticking to the aircrete layer, or an adhesive layer (not shown) joins the foam and aircrete layer together. The edges are chamfered.
  • Fig. 3 shows a cross section of the board in Fig. 1 which has a plaster layer, 3, on the outside.
  • Fig. 4 shows a cross section of the board in Fig. 2.
  • the outmost layer is a layer of paint, 4.
  • the edges are chamfered and the joint sealed, 5.
  • the paint covers both the boards and the joint.
  • Fig. 5 shows an example of how composite insulations boards for plastering are installed.
  • Fig. 6 shows an example of how composite insulations boards for paint are installed.
  • Fig. 7 shows an example of a composite comprising in addition to an insulation layer, B, and an aircrete layer, D, also the support layers of e.g. diffusion open glass fibre layers, A.
  • B is the phenolic foam insulation layer
  • C the adhesive layer
  • D the aircrete layer.
  • phenolic foam needs a surface covering to prevent the foam from sticking to the production equipment but also a firm support layer or surface to form the foam. So, on the market such phenolic foam layers are sold sticking to a special glass surface with a releasable protective foil on the other surface.
  • the composite layer of the invention may or may not comprise this support layer.
  • other manufacturing methods for preparing a phenolic foam layer may not need a surface covering or a firm support layer.
  • Such another manufacturing method is the parallel vertical placement of two surfaces of any two of an aircrete wall or a firm support layer e.g. a glass plate and forming the foam layer in between this set of layers.
  • Fig. 1 to 7 show each at least one composite insulation board according to the invention for insulating a wall. It is anticipated that the foam layer may be made from a phenolic resin such as a resole resin.
  • the insulating phenolic resin is commercially available and may be converted into a thermoset modified resin according to the known method published in Kooltherm K5 from Kingspan.
  • the thermoset modified resin may also be performed according to the example below. It has a composition, if it includes a facing material, of:
  • thermoset modified resin is made from a liquid resole resin, calcium carbonate, additives and a blowing agent.
  • the foam is rigid and has 90 % closed cells. The cell structure is formed in the resin under the influence of heat generated by the chemical reaction.
  • An insulation composite for insulation of a building according to the invention is a composite comprising a diffusion open rigid phenol layer as the one above and a diffusion open calcium silicate hydrate layer, which has especially good properties. It is fire resistant, has low heat conductivity and is strong and not brittle.
  • a method for insulation of a building according to the invention is by insulation of the walls of the building where the method comprises applying a layer of a glue to the first layer of said insulation composite and attaching said composite to the wall or vice versa.
  • Another method for insulation of a building according to the invention is to insulate its walls where the method comprises providing an insulation composite which has a protective layer on top a layer of glue. The method comprises removing said protective layer and attaching the composite to the wall.
  • the boards are fixed to a wall either mechanically or with glue.
  • An advantage of the composite of the invention is the combination of properties to improve the thermal insulation properties while maintaining a low thermal conductivity.
  • the second layer, 2 reduces noise as the mineral layer has a high density compared to conventional insulation composites for walls of buildings.
  • the product is much more stable compared to traditional external thermal insulation composite systems (ETICS) against mechanical impacts.
  • ETICS external thermal insulation composite systems
  • the thickness of the second layer, 2 may also vary from board to board in order to obtain a variated design structured facade surface.
  • the composite of claim 1 and especially claim 2 and 3, is also very fire resistant and the composite cannot be modified by constructors making it very attractive for tall buildings from which it is difficult to escape in case of fire.
  • the insulation composite material of the invention provides a high heat capacity at the outside wall.
  • the thermal buffer keeps up the temperature during night whereby less condensed water is generated, making it easier to keep the surface clean.
  • Example A phenol layer may be prepared as follows:
  • a phenol resole resin composition comprising 240 g of the commercially available liquid phenol formaldehyde resin supplied by Sumikomo Bakelite, R330, having a viscosity of 8000-10000 cP at 25°C, weight average molecular weight 600-1200 and pH 5,3 to 6,3, containing from 2 to 4% free phenol and 3 to 4% free formaldehyde, with a phenol/formaldehyde molar ratio of 1 :2 and a water content of 1 1 to 13%, is mixed at 15°C with 12,0 g powdered urea and 6,0 g of a castor oil-ethylene oxide adduct as plasticiser and allowed to stand 14 hours.
  • a glass plate is not used.
  • the second layer of the composite i.e. for example an aircrete layer is serving as the support layer becoming part of the composite to be formed at the same time.
  • the heat of lower temperature from the preparation of e.g. an aircrete layer may be used for heating up and partly or fully curing the phenol resin.
  • a composite of the invention may be prepared applying the above inventive method taking advantage of the adhesive properties of the formed diffusive open rigid phenol foam of the composite.
  • the composite of the invention has superior properties in terms of low heat conductivity, high fire resistance, load bearing strength, and being not brittle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Building Environments (AREA)

Abstract

L'invention concerne un produit destiné à l'isolation de bâtiments. Les panneaux de composite sont fixés aux parois. Le composite comprend par exemple une couche de mousse et une couche de béton cellulaire durci en autoclave. L'invention concerne également un procédé pour sa préparation. Les composites et panneaux sont résistants au feu, présentent une faible conductivité thermique, sont très porteurs et non cassants.
EP18870940.6A 2017-10-27 2018-10-22 Composite isolant destinée à l'isolation de bâtiments Pending EP3701100A4 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DKPA201770810 2017-10-27
DKPA201870315A DK201870315A1 (en) 2017-10-27 2018-05-28 Insulating composite for insulation of buildings
PCT/DK2018/050264 WO2019080978A1 (fr) 2017-10-27 2018-10-22 Composite isolant destinée à l'isolation de bâtiments

Publications (2)

Publication Number Publication Date
EP3701100A1 true EP3701100A1 (fr) 2020-09-02
EP3701100A4 EP3701100A4 (fr) 2021-08-11

Family

ID=69146875

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18870940.6A Pending EP3701100A4 (fr) 2017-10-27 2018-10-22 Composite isolant destinée à l'isolation de bâtiments

Country Status (2)

Country Link
EP (1) EP3701100A4 (fr)
DK (1) DK201870315A1 (fr)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205077710U (zh) * 2015-08-25 2016-03-09 吉林市恒业科技有限公司 一种墙体自保温砌块砖

Also Published As

Publication number Publication date
EP3701100A4 (fr) 2021-08-11
DK201870315A1 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
CN103174226B (zh) 全部用机械锚固加强筋无机改性不燃泡沫板的外保温墙体
US20160032584A1 (en) Aerogel composites and methods for making and using them
US20130196137A1 (en) Composite Aerogel Thermal Insulation System
CN102918217A (zh) 具有层状结构的绝缘材料
WO2019101277A1 (fr) Élément de paroi thermique composite
WO2019080978A1 (fr) Composite isolant destinée à l'isolation de bâtiments
CN204940729U (zh) 无机轻集料保温砂浆涂料饰面层
CN105735500A (zh) 一种无纺布硅铝气凝胶复合夹心保温防火板
EP0480070B1 (fr) Materiau thermoisolant et structure fabriquee a partir de ce materiau
EP3701100A1 (fr) Composite isolant destinée à l'isolation de bâtiments
KR101535351B1 (ko) 개질 폴리머를 이용한 유·무기 복합 방수제 조성물 및 그 제조방법
RU2704993C2 (ru) Энергоэффективная огнестойкая многослойная изолирующая панель
CN204826481U (zh) 无机轻集料保温砂浆面砖饰面层
KR102152373B1 (ko) 표면강화 피복 성능을 가지는 단열재용 접착제 조성물, 및 이를 이용한 경량 단열 흡음 패널
JP2017002668A (ja) 窓構造体及び防火扉構造体用の建材、該建材を含む窓構造体及び防火扉構造体
KR20140101034A (ko) 무기 발포 판재를 이용한 내단열 밀착 시공방법
RU2687816C1 (ru) Строительная плита (варианты)
WO2011105977A2 (fr) Matériau fluidique d'isolation thermique et sonore comprenant des billes de verre expansé et applicable sur des surfaces souhaitées
KR100344675B1 (ko) 스프레이형 내화피복재
CN204850226U (zh) 一种带有轻钢龙骨的水泥发泡板
DK180181B1 (en) Thermal composite wall element
JPH0217871Y2 (fr)
CN208473187U (zh) 一种a级保温装饰板系统
JPS6252187A (ja) 建材用組成物及び建材成形体
WO2021004555A1 (fr) Matériau isolant et son procédé de fabrication

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200423

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20210709

RIC1 Information provided on ipc code assigned before grant

Ipc: E04C 2/288 20060101AFI20210705BHEP

Ipc: B32B 5/22 20060101ALI20210705BHEP

Ipc: C08J 9/228 20060101ALI20210705BHEP

Ipc: C08L 33/08 20060101ALI20210705BHEP

Ipc: C09J 125/08 20060101ALI20210705BHEP

Ipc: C09J 133/08 20060101ALI20210705BHEP

Ipc: E04B 1/80 20060101ALI20210705BHEP

Ipc: E04C 1/41 20060101ALI20210705BHEP

Ipc: E04B 1/76 20060101ALI20210705BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240102