EP3698872B1 - Mikrofluidischer detektions-chip zur mehrkanal-schnelldetektion - Google Patents

Mikrofluidischer detektions-chip zur mehrkanal-schnelldetektion Download PDF

Info

Publication number
EP3698872B1
EP3698872B1 EP19819952.3A EP19819952A EP3698872B1 EP 3698872 B1 EP3698872 B1 EP 3698872B1 EP 19819952 A EP19819952 A EP 19819952A EP 3698872 B1 EP3698872 B1 EP 3698872B1
Authority
EP
European Patent Office
Prior art keywords
microfluidic
detection
channel
chip
bottom plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19819952.3A
Other languages
English (en)
French (fr)
Other versions
EP3698872A1 (de
EP3698872A4 (de
Inventor
Xingshang XU
Jeffery Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Lanyu Biological Technology Co Ltd
Original Assignee
Nanjing Lanyu Biological Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Lanyu Biological Technology Co Ltd filed Critical Nanjing Lanyu Biological Technology Co Ltd
Publication of EP3698872A1 publication Critical patent/EP3698872A1/de
Publication of EP3698872A4 publication Critical patent/EP3698872A4/de
Application granted granted Critical
Publication of EP3698872B1 publication Critical patent/EP3698872B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502723Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by venting arrangements

Definitions

  • the present invention relates to the technical field of medical devices, and in particular, to a microfluidic detection chip for multi-channel rapid detection.
  • Microfluidics is a technology applied across a variety of disciplines including engineering, physics, chemistry, microtechnology, and biotechnology. Microfluidics involves the study of trace fluids and the study of how to manipulate, control, and use such small amounts of fluids in various microfluidic systems and devices such as microfluidic chips.
  • microfluidic biochips referred to as "lab-on-chips" are used to integrate test operations in the field of molecular biology for purposes such as analyzing enzymes and DNA, detecting biochemical toxins and pathogens, and diagnosing diseases.
  • the microfluidic chip is a hot area in the development of current miniaturized total analysis systems.
  • Microfluidic chip analysis takes a chip as an operating platform, analytical chemistry as the basis, micro-electromechanical processing technology as the support, a micro-pipeline network as a structural feature, and life sciences as the main application object at present, and is the focus of the development of the current miniaturized total analysis system field.
  • the microfluidic chip analysis aims at integrating the functions of the entire laboratory, including sampling, dilution, reagent addition, reaction, separation, detection, etc. on the microchip.
  • the microfluidic chip is the main platform for microfluidic technology implementation.
  • Device features of the microfluidic chip are mainly that the effective structures (channels, detection chambers and some other functional components) containing fluids are micron-scale-sized in at least one dimension. Due to the micron-scale structure, the fluid shows and produces special performance different from the macro-scale. As a result, unique analytical performance has been developed. Characteristics and development advantages of the microfluidic chip: the microfluidic chip has the characteristics of controllable liquid flow, minimal consumption of samples and reagents, and ten to hundreds of times improvement in analysis speeds. Simultaneous analysis of hundreds of samples can be performed in minutes or even less, and the entire process of sample pretreatment and analysis can be realized online. The application purpose of the microfluidic chip is to realize the ultimate goal of the miniaturized total analysis systems, i.e., the lab-on-chip. The key application field of current work development is the field of life sciences.
  • Cidadic chip comprising a glass substrate layer, an intermediate layer, and an upper cover layer sequentially stacked from bottom to top.
  • the glass substrate layer, the intermediate layer, and the upper cover layer cooperate to define a closed annular microfluidic channel and detection chambers.
  • the microfluidic channel is located outside the detection chambers and communicated with the detection chambers.
  • a fluid injection port communicated with the microfluidic channel is formed on one side of the upper cover layer.
  • a plurality of exhaust holes are formed on the upper cover layer at the other end of the microfluidic channel.
  • US patent application US2008297169 describes a device, test cards, methods and kits which are useful for determining the particle fraction and rate of viscosity of a fluid sample, the presence of an analyte in a fluid sample, or the aggregation of particles in a fluid sample to detect an analyte or as an immunologic assay.
  • US Patent application US2007158246 describes a coagulation detecting apparatus having a structure defining a container for a fluid, and containing particles for movement through the container under the influence of a magnetic field.
  • a magnetic arrangement provides sequential magnetic fields to the container such as to cause the particles to move.
  • a light source illuminates the container and a detector detects optical radiation of the light source after passing through the container, the detector being arranged for optically detecting at least one of presence of the particles at a predetermined location in the fluid and movement of the particles through a predetermined location in the fluid.
  • the technical problem to be solved by the present invention is to provide a microfluidic detection chip for multi-channel rapid detection with a reasonably designed sample inlet to avoid sample contamination, large detection throughout, and high detection efficiency and accuracy.
  • a microfluidic detection chip for multi-channel rapid detection comprising a chip body, a chip sampling port, a plurality of independent detection chambers, and a microfluidic channel being disposed on the chip body.
  • the chip sampling port is communicated with the detection chambers by means of the microfluidic channel.
  • the chip body further comprises an electrode.
  • the detection chambers are connected to the electrode.
  • the microfluidic channel comprises a main flow channel and a plurality of branch microfluidic channels, a tail end of the main flow channel is divided into the plurality of branch microfluidic channels, and the plurality of branch microfluidic channels are communicated with the plurality of independent detection chambers in a one-to-one correspondence manner.
  • the other end of the main flow channel is communicated with the chip sampling port.
  • the microfluidic chip has the characteristics of high accuracy, fast speed, and low detection cost in detection, and thus is suitable for detection in the link of precision medicine.
  • the main flow channel and the plurality of branch microfluidic channels in a specific structural form to guide the flow of blood samples, one sample chamber can simultaneously inject samples into a plurality of reaction chambers without contaminating the samples, and it is easy to inject samples.
  • the samples After sampled by the chip sampling port, the samples simultaneously flow through the main flow channel to the plurality of branch microfluidic channels, and then flow into the plurality of independent detection chambers, where detection reagents are embedded in advance, so that the plurality of samples can be simultaneously detected, and the multi-channel effect is achieved.
  • the chip is simple in structure and convenient in operation, thereby improving the detection efficiency, greatly reducing the consumption of resources, realizing rapid detection, and lowering the cost.
  • the chip body comprises a bottom plate layer, an intermediate layer, and an upper cover layer in sequence from bottom to top.
  • the bottom plate layer, the intermediate layer, and the upper cover layer cooperate to define a closed microfluidic channel and a plurality of independent detection chambers.
  • the microfluidic channel and the detection chambers are located in the intermediate layer.
  • a liquid injection port and a plurality of exhaust holes are formed on the upper cover layer, the plurality of exhaust holes are provided on one side of the upper cover layer corresponding to the tail end of the microfluidic channel, and the liquid injection port is communicated with a front end of the microfluidic channel.
  • An electrode is provided on the bottom plate layer, and the detection chambers are connected to the electrode.
  • the chip with a three-layer structure of the bottom plate layer, the intermediate layer and the upper cover layer has a reasonable design, a simple and compact structure, and reduced cost, and has a chip sampling port for easy injection of samples.
  • a plurality of exhaust holes are formed on the upper cover, so that the flow resistance of the fluid to be detected is reduced, and the flow is faster, thereby realizing rapid filling of the detection chambers.
  • the provision of the exhaust holes facilitates the flow of the samples and thus the sample injection. If there is no exhaust hole, the sample cannot flow into the detection chamber for reaction.
  • the detection reagents are embedded in the detection chambers of the chip in advance.
  • the plurality of independent detection chambers are distributed in a fan shape, and the tail end of the main flow channel is divided into a plurality of branch microfluidic channels, and the plurality of branch microfluidic channels are then communicated with the plurality of independent detection chambers.
  • a notch is formed on one side of a lower end of the bottom plate layer.
  • the liquid injection port, the funnel region, and the notch are respectively formed at corresponding positions on the upper cover layer, the intermediate layer, and the bottom plate layer and have different sizes.
  • the chip sampling port is formed by the liquid injection port, the funnel region, and the notch and is connected to the bottom of the detection chambers by means of the microfluidic channel.
  • the chip sampling port is set to a funnel shape with a large bottom plate area, a small upper cover area and a funneled intermediate layer. This structure is reasonable and simple, making the sample easily flow in without being contaminated and improving the detection efficiency.
  • a further improvement of the present invention is that: the liquid injection port, the funnel region, and the notch are all arc-shaped and have different radians; the liquid injection port and the funnel region are semicircular arc-shaped, and the radius of the funnel region is not less than the arc radius of the liquid injection port; a curved main flow channel in the funnel region is divided into a plurality of branch microfluidic channels which are communicated with the plurality of independent detection chambers in a one-to-one correspondence manner; the area of the notch is smaller than the area of the funnel region; or the main flow channel is a funnel region, the liquid injection port is arc-shaped and overlaps with a part of the funnel region, the funnel region is converged inward from an opening to form a horn shape, and the funnel region is inwardly divided into a plurality of branch microfluidic channels at the tail end thereof, and the plurality of branch microfluidic channels are connected to the plurality of independent detection chambers in a one-to-one correspondence manner.
  • the liquid injection port is semicircular arc-shaped. Under the condition of the same area, such a structure provides the largest number of injected samples, and the radius of the funnel region is not less than the arc radius of the liquid injection port, so that the funnel region can fully accommodate the sample liquid injected from the liquid injection port, without sample loss.
  • the curved flow channel is provided so that the samples slowly flow into the detection chambers, without causing a sudden increase in the atmospheric pressure of the detection chambers.
  • the liquid injection port is set to an arc shape, and overlaps with a part of the funnel region; the funnel region is converged inward from an opening to form a horn shape, so that samples gradually flow inward without stopping at the opening, thereby avoiding sample loss.
  • the speed at which blood samples flow to the sampling port in the funnel region is about 1 second, which realizes rapid suction of the blood samples into the sampling port.
  • the notch is provided for fitting the finger pads to facilitate sampling.
  • a further improvement of the present invention is that: the bottom plate layer, the intermediate layer, and the upper cover layer are integrally bonded by means of double-sided gluing of the intermediate layer.
  • the intermediate layer is a pressure-sensitive adhesive tape
  • the material of the upper cover layer and/or the bottom plate layer is any one of PMMA, PP, PE and PET
  • the surfaces of the upper cover layer and the bottom plate layer each has a hydrophilic membrane, so that the samples flow rapidly through the chip sampling port into the main flow channel, and then are distributed to each branch microfluidic channel.
  • the depth and size of the microfluidic channel can be accurately controlled, and it is also convenient to control the depth of the detection chambers, so that the thickness deviation of the detection chambers of the microfluidic chip is small, the consistency is high, and the accuracy of detection is improved.
  • a hydrophilic membrane is disposed on the surfaces of the upper cover layer and the bottom plate layer, so that the samples flow through the chip sampling port into the main flow channel more rapidly, and are distributed to each branch microfluidic channel, which speeds up the flow rate and improves the detection efficiency.
  • the thickness of the intermediate layer is 0.1-1.0 mm
  • the surface of the bottom plate layer is flat
  • the depth of the closed microfluidic channel defined by the bottom plate layer, the intermediate layer, and the upper cover layer that cooperate with each other is 0.1-1.0 mm
  • the width of the detection chambers defined is 1.0-2.0 mm.
  • a nozzle is disposed at the junction of each of the branch microfluidic channels and the corresponding detection chamber, and each of the branch microfluidic channels has a corresponding electrode.
  • Each electrode comprises an input high-side electrode and an input low-side electrode, and the thickness of the electrode is 50 ⁇ m.
  • the electrode is provided for applying a pulse voltage while receiving a signal generated by the blood reaction in the detection chambers.
  • An electrode tip is inserted into a detection instrument, and a detection result is obtained by detecting an electrochemical signal generated by the reaction in cooperation with the supporting detection instrument.
  • the electrode tip is a part of the integrally bonded bottom plate layer, intermediate layer and upper cover layer that is exposed outside relative to the upper cover layer and the intermediate layer, so that the electrode tip can be inserted into the detection instrument more easily and conveniently.
  • the microfluidic detection chip for multi-channel rapid detection is designed with a main flow channel and a plurality of branch microfluidic channels in a specific structural form to guide the flow of blood samples, so that one sample chamber can simultaneously inject samples into a plurality of reaction chambers without contaminating the samples, and it is easy to inject samples.
  • the samples After sampled by the chip sampling port, the samples simultaneously flow through the main flow channel to the plurality of branch microfluidic channels, and then flow into the plurality of independent detection chambers. In this way, the plurality of samples can be simultaneously detected, and the multi-channel effect is achieved.
  • the chip is simple in structure and convenient in operation, thereby improving the detection efficiency and accuracy, greatly reducing the consumption of resources, realizing rapid detection, and lowering the cost.
  • Samples are injected into the chip sampling port 7, and simultaneously flow through the main flow channel 501 to the plurality of branch microfluidic channels 502, and then flow into the plurality of independent detection chambers 8.
  • the samples are reacted with the detection reagents pre-embedded in the detection chambers 8, and the microfluidic detection chip for multi-channel rapid detection is inserted into the detection instrument by means of the electrode tip 401.
  • the detection result is obtained by detecting the electrochemical signal generated by the reaction in cooperation with the supporting detection instrument. In this way, the plurality of samples can be simultaneously detected, and the multi-channel effect is achieved, thereby improving the detection efficiency.

Claims (6)

  1. Mikrofluidischer Detektions-Chip zur Mehrkanal-Schnelldetektion umfassend einen Chipkörper, einen Chipprobeentnahmeport (7), eine Vielzahl unabhängiger Detektionskammern (8), und einen mikrofluidischen Kanal (5), der auf dem Chipkörper angeordnet ist, wobei der Chipprobeentnahmeport (7) mittels des mikrofluidischen Kanals (5) mit den Detektionskammern (8) in Verbindung steht, wobei der Chipkörper weiter eine Elektrode (4) umfasst; die Detektionskammer (8) mit der Elektrode (4) verbunden sind; der mikrofluidische Kanal (5) einen Strömungshauptkanal (501) und eine Vielzahl mikrofluidischer Zweigkanäle (502) umfasst, ein unteres Ende des Strömungshauptkanals (501) in eine Vielzahl mikrofluidischer Zweigkanäle (502) geteilt ist, und die Vielzahl mikrofluidischer Zweigkanäle (502) mit der Vielzahl unabhängiger Detektionskammern (8) in Eins-zu-eins-Korrespondenz in Verbindung steht; und das andere Ende des Strömungshauptkanals (5) mit dem Chipprobeentnahmeport (7) in Verbindung steht, wobei der Chipkörper der Reihe nach von unten nach oben eine Bodenplatteschicht (1), eine Zwischenschicht (2) und eine Oberdeckungsschicht (3) umfasst; die Bodenplatteschicht (1), die Zwischenschicht (2) und die Oberdeckungsschicht (3) zur Bestimmung eines geschlossenen mikrofluidischen Kanals (5) und der Vielzahl unabhängiger Detektionskammern (8) und eines Trichterbereichs (9) zusammenwirken; der mikrofluidische Kanal (5) und die Detektionskammern (8) sich in der Zwischenschicht (2) befinden, ein Flüssigkeitseinspritzungsport (701) und eine Vielzahl von Auslasslöchern (6) auf der Oberdeckungsschicht (3) gebildet sind, die Vielzahl Auslasslöchern (6) auf einer Seite der Oberdeckungsschicht (3), die dem unteren Ende des mikrofluidischen Kanals (5) entspricht, vorgesehen ist, und der Flüssigkeitseinspritzungsport (701) mit einem Vorderende des mikrofluidischen Kanals (5) in Verbindung steht; und die Elektrode (4) auf der Bodenplatteschicht (1) vorgesehen ist, wobei die Vielzahl unabhängiger Detektionskammern (8) fächerförmig verteilt ist, eine Kerbe (10) auf einer Seite des unteren Endes der Bodenplatteschicht (1)gebildet ist; der Flüssigkeitseinspritzungsport (701), der Trichterbereich (9) und die Kerbe (10) jeweils an entsprechenden Positionen auf der Oberdeckungsschicht (3), der Zwischenschicht (2) und der Bodenplatteschicht (1) gebildet sind und unterschiedliche Abmessungen aufweisen; und der Chipprobeentnahmeport (7) durch den Flüssigkeitseinspritzungsport (701), den Trichterbereich (9) und die Kerbe (10) gebildet ist und mit dem Boden der Detektionskammern (8) mittels des mikrofluidischen Kanals (5) verbunden ist, wobei der Chipprobeentnahmeport (7) trichterförmig mit einer großen Bodenplattenoberfläche, einer kleiner Oberdeckungsoberfläche und einer mit einem Trichter versehenen Zwischenschicht ausgebildet ist.
  2. Mikrofluidischer Detektions-Chip zur Mehrkanal-Schnelldetektion nach Anspruch 1, wobei der Flüssigkeitseinspritzungsport (701), der Trichterbereich (9) und die Kerbe (10) alle bogenförmig sind und verschiedene Radianten aufweisen; der Flüssigkeitseinspritzungsport (701) und der Trichterbereich (9) halbkreisbogenförmig sind und der Radius des Trichterbereichs (9) nicht niedriger als der Bogenradius des Flüssigkeitseinspritzungsports (701); ein gebogener Strömungshauptkanal (501) in dem Trichterbereich in eine Vielzahl microfluidischer Zweigkanäle geteilt ist, die in Verbindung mit der Vielzahl unabhängiger Detektionskammern (8) in Eins-zu-eins-Korrespondenz in Verbindung stehen; und die Oberfläche der Kerbe kleiner als die Oberfläche des Trichterbereichs ist;
    oder
    der Strömungshauptkanal ein Trichterbereich (501) ist; der Flüssigkeitseinspritzungsport (701) bogenförmig ist, und sich mit einem Teil des Trichterbereichs (501) überschneidet; der Trichterbereich (501) nach innen zur Bildung einer Hornform konvergiert ist; und der Trichterbereich (9) nach innen in eine Vielzahl mikrofluidischer Zweigkanäle am dessen unteren Ende geteilt ist.
  3. Mikrofluidischer Detektions-Chip zur Mehrkanal-Schnelldetektion nach Anspruch 1, wobei die Bodenplatteschicht (1), die Zwischenschicht (2) und die Oberdeckungsschicht (3) einstückig mittels einer beidseitigen Beleimung der Zwischenschicht geklebt sind.
  4. Mikrofluidischer Detektions-Chip zur Mehrkanal-Schnelldetektion nach einem der Ansprüche 1 bis 3, wobei die Zwischenschicht (2) ein druckempfindliches Klebeband ist; das Material der Oberdeckungsschicht (3) und/oder der Bodenplatteschicht (1) ein der Gruppe aus PMMA, PP, PE und PET ist; und die Oberflächen der Oberdeckungsschicht (3) und der Bodenplatteschicht (1) jede eine hydrophile Membran aufweisen.
  5. Mikrofluidischer Detektions-Chip zur Mehrkanal-Schnelldetektion nach Anspruch 4, wobei die Dicke der Zwischenschicht 0,1 -1,0 mm beträgt; die Oberfläche der Bodenplatteschicht flach ist; die Tiefe des geschlossenen mikrofluidischen Kanals bestimmt durch die Bodenplatteschicht, die Zwischenschicht und die Oberdeckungsschicht, die mit einander zusammenwirken, 0,1 - 1,0 mm beträgt und die Breite der bestimmten Detektionskammern 1,0 - 2,0 mm beträgt.
  6. Mikrofluidischer Detektions-Chip zur Mehrkanal-Schnelldetektion nach Anspruch 4, wobei eine Düse an der Verbindungsstelle jedes der mikrofluidischen Zweigkanäle und der entsprechenden Detektionskammer angeordnet ist, und jede der mikrofluidischen Zweigkanäle eine entsprechende Elektrode aufweist; jede Elektrode eine High-Side-Eingangselektrode und eine Low-Side-Eingangselektrode umfasst, und die Dicke der Elektrode 50 µm beträgt.
EP19819952.3A 2018-06-12 2019-01-24 Mikrofluidischer detektions-chip zur mehrkanal-schnelldetektion Active EP3698872B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810599700.5A CN108745429B (zh) 2018-06-12 2018-06-12 一种多通道快速检测微流体检测芯片
PCT/CN2019/073042 WO2019237742A1 (zh) 2018-06-12 2019-01-24 一种多通道快速检测微流体检测芯片

Publications (3)

Publication Number Publication Date
EP3698872A1 EP3698872A1 (de) 2020-08-26
EP3698872A4 EP3698872A4 (de) 2020-09-02
EP3698872B1 true EP3698872B1 (de) 2021-10-13

Family

ID=64021073

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19819952.3A Active EP3698872B1 (de) 2018-06-12 2019-01-24 Mikrofluidischer detektions-chip zur mehrkanal-schnelldetektion

Country Status (5)

Country Link
US (1) US11440006B2 (de)
EP (1) EP3698872B1 (de)
CN (1) CN108745429B (de)
SG (1) SG11202100097VA (de)
WO (1) WO2019237742A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108745429B (zh) * 2018-06-12 2023-11-24 南京岚煜生物科技有限公司 一种多通道快速检测微流体检测芯片
CN109709316A (zh) * 2018-12-27 2019-05-03 天津昌和生物医药技术有限公司 一种多靶项微流测试卡及制备方法
CN109682878A (zh) * 2019-03-01 2019-04-26 南京岚煜生物科技有限公司 一种具有五层结构的多通道微流体凝血检测芯片
CN209829010U (zh) * 2019-03-01 2019-12-24 南京岚煜生物科技有限公司 一种多通道微流体凝血检测芯片
CN112986553A (zh) * 2019-12-14 2021-06-18 南京岚煜生物科技有限公司 一种免疫电极的制备方法
CN113008952A (zh) * 2019-12-20 2021-06-22 利多(香港)有限公司 一种用于样品检测的生物传感器
CN113544515A (zh) * 2020-02-21 2021-10-22 京东方科技集团股份有限公司 微流控结构、微流控系统、微流控方法和制造微流控结构的方法
CN111777033A (zh) * 2020-05-27 2020-10-16 东南大学 一种亚纳米级流体通道及其制作方法
CN114308163B (zh) * 2021-12-31 2024-01-09 北京京东方技术开发有限公司 微流控芯片检测卡盒
CN114839241A (zh) * 2022-02-28 2022-08-02 京东方科技集团股份有限公司 检测基板及其检测方法、检测装置
CN115430469B (zh) * 2022-09-01 2023-08-04 中国科学院上海微系统与信息技术研究所 一种用于病原菌快速检测的滑动微流控芯片

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5902731A (en) * 1998-09-28 1999-05-11 Lifescan, Inc. Diagnostics based on tetrazolium compounds
CN1325658C (zh) * 2001-04-23 2007-07-11 三星电子株式会社 包含mosfet分子检测芯片和采用该芯片的分子检测装置以及使用该装置的分子检测方法
US7108775B2 (en) * 2002-11-08 2006-09-19 Applera Corporation Apparatus and method for confining eluted samples in electrophoresis systems
GB0324641D0 (en) * 2003-10-22 2003-11-26 Unipath Ltd Coagulation detection method
US20080297169A1 (en) * 2007-05-31 2008-12-04 Greenquist Alfred C Particle Fraction Determination of A Sample
CN102841213B (zh) * 2012-09-09 2014-06-04 浙江大学 无动力顺序进样的微流体自动进样装置及应用
US8961904B2 (en) * 2013-07-16 2015-02-24 Premium Genetics (Uk) Ltd. Microfluidic chip
CN104697987B (zh) * 2013-12-06 2019-01-22 中国科学院深圳先进技术研究院 一种微流控液体波导电化学发光检测装置
CN103755777B (zh) * 2014-01-16 2015-09-23 北京中科纳泰生物科技有限公司 一种气控固相多肽合成微流控芯片装置及其应用
CN203899622U (zh) * 2014-06-19 2014-10-29 博奥生物集团有限公司 一种微流控芯片
CN105289763B (zh) * 2015-09-24 2017-07-25 基蛋生物科技股份有限公司 一种定量分流的多指标检测微流控芯片
CN205361375U (zh) 2015-12-30 2016-07-06 深圳市合川科技有限公司 一种微流体芯片
CN206756858U (zh) * 2016-10-11 2017-12-15 赵天贤 一种液体样本导流装置、检测试条及检测仪器
CN106622408A (zh) * 2016-11-01 2017-05-10 南京邮电大学 一种基于mhd控制的微流控芯片
CN206701297U (zh) * 2017-03-10 2017-12-05 山东华芯电子有限公司 一种多指标检测微流控芯片
CN107855142A (zh) * 2017-11-01 2018-03-30 深圳市第二人民医院 一种基于微流控技术的检测芯片及检测设备
CN107942083B (zh) * 2017-11-14 2020-10-02 东南大学 用于秀丽线虫的微流控电阻抗检测分选芯片、系统及方法
CN108745429B (zh) * 2018-06-12 2023-11-24 南京岚煜生物科技有限公司 一种多通道快速检测微流体检测芯片
CN208554242U (zh) * 2018-06-12 2019-03-01 南京岚煜生物科技有限公司 一种多通道快速检测微流体检测芯片

Also Published As

Publication number Publication date
US11440006B2 (en) 2022-09-13
US20210086179A1 (en) 2021-03-25
WO2019237742A1 (zh) 2019-12-19
EP3698872A1 (de) 2020-08-26
CN108745429A (zh) 2018-11-06
CN108745429B (zh) 2023-11-24
SG11202100097VA (en) 2021-02-25
EP3698872A4 (de) 2020-09-02

Similar Documents

Publication Publication Date Title
EP3698872B1 (de) Mikrofluidischer detektions-chip zur mehrkanal-schnelldetektion
EP3995822A1 (de) Mehrkanaliger mikrofluidischer blutgerinnungsmesschip mit fünflagiger struktur
KR102168912B1 (ko) 통합형 전달 모듈을 구비한 테스트 카트리지
US9416343B2 (en) Instruments for biological sample-to-answer devices
DE60214851T2 (de) Mikrofluidische vorrichtung und verfahren für chemische versuche
EP3932554A1 (de) Mehrkanaliger mikrofluidischer blutgerinnungsmesschip
CN110045102B (zh) 试剂顺序加载装置、离心微流控装置及分析系统
US8968585B2 (en) Methods of fabrication of cartridges for biological analysis
US9518291B2 (en) Devices and methods for biological sample-to-answer and analysis
JP2005502062A (ja) 試料の容器
US9090890B2 (en) Devices and methods for biological sample preparation
US9090891B2 (en) Pen-shaped device for biological sample preparation and analysis
WO2006093845A2 (en) A micro-fluidic fluid separation device and method
WO2014071257A1 (en) Devices and methods for biological sample preparation
KR102381134B1 (ko) 유체 분석용 마이크로 칩 및 이를 이용한 유전자 증폭 방법
CN208554242U (zh) 一种多通道快速检测微流体检测芯片
CN113441194A (zh) 一种微流控检测芯片
WO2014071260A1 (en) Pen-shaped device for biological sample preparation and analysis
WO2014071259A1 (en) Methods of fabrication of cartridges for biological analysis
CN210079553U (zh) 试剂顺序加载结构、离心微流控装置及分析装置

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200520

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

A4 Supplementary search report drawn up and despatched

Effective date: 20200803

RIC1 Information provided on ipc code assigned before grant

Ipc: B01L 3/00 20060101AFI20200728BHEP

Ipc: G01N 35/10 20060101ALI20200728BHEP

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CHEN, JEFFERY

Inventor name: XU, XINGSHANG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20210630

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LANSION BIOTECHNOLOGY CO., LTD

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019008380

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1437774

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211115

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211013

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1437774

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220113

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220213

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220214

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220113

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220114

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019008380

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

26N No opposition filed

Effective date: 20220714

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220124

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20230119

Year of fee payment: 5

Ref country code: FR

Payment date: 20230119

Year of fee payment: 5

Ref country code: CZ

Payment date: 20230124

Year of fee payment: 5

Ref country code: CH

Payment date: 20230123

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230124

Year of fee payment: 5

Ref country code: DE

Payment date: 20230120

Year of fee payment: 5

Ref country code: IT

Payment date: 20230124

Year of fee payment: 5

Ref country code: GB

Payment date: 20230119

Year of fee payment: 5