EP3697936B1 - Procédé de fabrication d'un élément en acier pourvu d'un revêtement métallique anticorrosion - Google Patents

Procédé de fabrication d'un élément en acier pourvu d'un revêtement métallique anticorrosion Download PDF

Info

Publication number
EP3697936B1
EP3697936B1 EP18804228.7A EP18804228A EP3697936B1 EP 3697936 B1 EP3697936 B1 EP 3697936B1 EP 18804228 A EP18804228 A EP 18804228A EP 3697936 B1 EP3697936 B1 EP 3697936B1
Authority
EP
European Patent Office
Prior art keywords
wop
wgb
furnace
coating
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18804228.7A
Other languages
German (de)
English (en)
Other versions
EP3697936A1 (fr
Inventor
Janko Banik
Maria KÖYER
Dirk Rosenstock
Manuela Ruthenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
ThyssenKrupp AG
Original Assignee
ThyssenKrupp Steel Europe AG
ThyssenKrupp AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG, ThyssenKrupp AG filed Critical ThyssenKrupp Steel Europe AG
Priority to EP23165955.8A priority Critical patent/EP4223889A3/fr
Publication of EP3697936A1 publication Critical patent/EP3697936A1/fr
Application granted granted Critical
Publication of EP3697936B1 publication Critical patent/EP3697936B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/208Deep-drawing by heating the blank or deep-drawing associated with heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working

Definitions

  • the present invention relates to a method for producing a steel component comprising a substrate and a coating, a corresponding steel component and its use in the automotive sector.
  • components that are hot-formed from high-strength steels are used today in those areas of the body that can be exposed to particularly high loads in the event of a crash.
  • hot forming also known as hot press hardening
  • steel blanks which have previously been cut off from cold or hot-rolled steel strip, are heated to a deformation temperature that is generally above the austenitization temperature of the steel in question, and placed in the hot state in the tool of a forming press.
  • the sheet metal blank or the component formed from it experiences rapid cooling through contact with the cool tool.
  • the cooling rates are set in such a way that a hardened structure results in the component.
  • WO 2015/036151 A1 discloses a method for producing a steel component provided with a metallic anti-corrosion coating and a corresponding steel component.
  • the method according to this document comprises coating a steel flat product with an alloy of aluminium, zinc, magnesium and optionally silicon and iron, cutting a blank from the steel flat product, heating the blank and forming the blank to obtain the desired steel component.
  • DE 699 07 816 T2 discloses a method for producing a coated hot and cold rolled steel sheet with very high strength after thermal treatment.
  • a flat steel product is provided with a coating and thermally treated.
  • the workpiece is heated to a temperature of over 750 °C.
  • EP 2 993 248 A1 discloses a flat steel product with an aluminum-containing coating, this coating containing 0.005 to 0.7% by weight of at least one alkali and/or alkaline earth metal, and a method for its production. In this process, the coated flat steel product is heated to a temperature of 700 to 900 °C for 360 s, 600 s or 800 s and then formed.
  • the EP 2 993 248 A1 discloses flat steel products with low levels of diffusible hydrogen.
  • the WO 2018/234102 A1 discloses a method for producing a steel component, comprising a substrate and a coating, a corresponding steel component and its use in the automotive sector.
  • the sheet metal blanks consisting of a steel substrate and an aluminium-based, metallic anti-corrosion coating
  • hydrogen diffuses through the metallic coating into the steel substrate as a result of the surface reaction of the moisture present in the furnace with the aluminum coating.
  • the metallic coating represents a barrier for the diffusible hydrogen H diff at room temperature.
  • the H diff content reduces the stresses that the steel can withstand over time and spontaneous "hydrogen-induced" fractures can occur in the presence of tensile stresses in the sheet.
  • the content of diffusible hydrogen should be below a component-specific value.
  • the degree of rolling This value depends, among other things, on the complexity of the hot forming operation, the post-processing by laser cutting, punching, mechanical cutting or hot trimming, for example, and the installation situation and joining concept and thus the stress state in the body.
  • the remaining quantity H diff should preferably be ⁇ 0.4 ppm (parts per million) before critical shell construction processes.
  • the ratio of the reduction in thickness due to rolling to the starting thickness is called the degree of rolling.
  • the degree of rolling applies only to a rolling process in which the coating is already present on the substrate.
  • the rolled areas with a smaller sheet thickness compared to the sheet thickness present before the rolling was carried out have a significantly higher defect density in the steel substrate as a result of the rolling.
  • diffusible hydrogen can accumulate better in the rolled areas than in the non-rolled areas, so that there is a higher diffusible hydrogen content after hot forming and press hardening.
  • hydrogen-induced cracking can occur much more quickly after hot forming and press hardening in material rolled after coating.
  • a known method of lowering the content of diffusible hydrogen in the component is to lower the dew point in the furnace in which the steel sheet is heated before forming, in order to prevent the formation of diffusible hydrogen from the moisture present in the substrate during oxidation To reduce the furnace atmosphere and thereby also lower the H diff absorption of the steel component.
  • lowering the dew point is all the more complex the lower the dew point has to be set. It is therefore desirable not to influence the dew point as far as possible and, if necessary, not to lower it too much.
  • the present invention is therefore based on the object of providing a method for producing steel components, comprising a substrate and a coating, with which corresponding steel components can be obtained which have the lowest possible H diff content in order to reduce the risk of hydrogen-induced Minimize cracking after hot forming and subsequent use. Furthermore, it is an object of the present invention to provide a method with which it is possible to achieve a specific H diff content in a hot-formed component by selecting different furnace parameters not to be exceeded depending on the degree of rolling and the sheet thickness of the steel flat product used.
  • a corresponding steel component and by using the steel component according to the invention in the automotive sector, in particular as a bumper support/reinforcement, door reinforcement, B-pillar reinforcement, A-pillar reinforcement, roof frame or rocker panel.
  • the method according to the invention serves to produce a steel component with a content of diffusible hydrogen H diff of up to 0.4 ppm, preferably 0.01 to 0.4 ppm, particularly preferably 0.05 to 0.4 ppm, for example 0.1, 0 ,2, 0.3, or 0.4 ppm, each to be produced in the material after hot forming.
  • H diff describes the amount of hydrogen atoms that are present in dissolved form in the steel substrate after hot forming.
  • Methods for determining the H diff content are known per se to those skilled in the art, for example thermal desorption mass spectrometry (TDMS) using heated samples.
  • Step (A) of the method according to the invention comprises providing a flat steel product with a coating containing (all figures in % by weight) 3 to 15 Si, 1 to 3.5 Fe, 0.05 to 5.0 alkali metals and/or alkaline earth metals , balance Al and unavoidable impurities, which has a rolling degree sheet thickness ratio of greater than 0.8 to 200.
  • unavoidable impurities in the substrate are, for example, Cu, Mo, V, Ni and/or Sn.
  • the flat steel product used is preferably a strip, in particular a hot strip or a cold strip, a sheet, i. H. a piece of hot strip or cold strip, or a blank from hot strip or a blank from cold strip.
  • the present invention preferably relates to the method according to the invention, the flat steel product being a blank made from a hot strip or a blank made from a cold strip.
  • the steel substrate used according to the invention preferably has a hardness structure, for example at least 80% martensite, the remainder being bainite, ferrite and retained austenite.
  • the flat steel product produced according to the invention is provided with a coating, the coating preferably containing 3 to 15, particularly preferably 7 to 12, very particularly preferably 9 to 10 Si, 1 to 3.5, preferably 2 to 3.5 Fe, 0.05 to 5.0, preferably 0.05 to 1.5, particularly preferably 0.11 to 0.6, alkali and/or alkaline earth metals, remainder Al and unavoidable impurities (all data in wt. %).
  • alkali and/or alkaline earth metals are preferably magnesium, calcium and/or lithium, particularly preferably magnesium.
  • the coating can be carried out by hot-dip coating, electrolytic coating or by means of a piece coating process.
  • the present invention therefore preferably relates to the method according to the invention, in which case the coating is carried out by hot-dip coating, electrolytic coating or by means of a piece coating process.
  • the aluminum-silicon-iron alloy is preferably applied by means of a continuous hot-dip coating process.
  • the temperature of the molten aluminum bath during the coating is preferably between 660.degree. C. and 720.degree.
  • Silicon in the coating acts as a diffusion blocker and serves to calm the molten bath when applying the coating formed from the aluminum alloy using hot-dip coating.
  • the thickness of the coating is preferably 5 to 60 ⁇ m, preferably 10 to 40 ⁇ m.
  • the present invention therefore preferably relates to the method according to the invention, the application weight of the coating on both sides being 20 to 240 g/m 2 .
  • the coating can be present on one side of the flat steel product or on both sides of the flat steel product.
  • the present invention therefore preferably relates to the method according to the invention, the coating being present on one side of the flat steel product or on both sides of the flat steel product.
  • the flat steel product provided in step (A) of the method according to the invention has a rolling degree/plate thickness ratio of 0.8 to 200, preferably greater than 0.8 to 180, particularly preferably greater than 0.8 to 150.
  • the flat steel product provided according to the invention preferably has a degree of rolling of 0.5 to 75%, particularly preferably 2.5 to 60%.
  • the degree of rolling is given in %.
  • a flat steel product is used in step (A) which has areas which are rolled to a smaller sheet thickness than other areas.
  • the greatest existing degree of rolling is taken as a basis for the respective component.
  • the flat steel products used in step (A) of the method according to the invention are preferably present in a sheet thickness (final thickness h 1 ) of 0.5 to 6 mm, particularly preferably 0.8 to 3 mm.
  • the coated flat steel product from step (A), after process step (B) has been carried out is transferred directly to process step (C) according to the invention.
  • steps (A) and (B) or (C) for example separating off areas, in particular sheets or blanks, of the flat steel product, for example by shear cutting or laser cutting, making holes by laser processing or stamping, and/or prior heat treatments to alter the properties of the coating or substrate.
  • Step (B) of the method according to the invention comprises the determination of a WOP value as a function of the degree of rolling degree/plate thickness ratio WGB within an area spanned by straight connecting sections between the points P11 (WGB 0.8, WOP 100) and P13 (WGB 0, 8, WOP 800), P13 (WGB 0.8, WOP 800) and P21 (WGB 26, WOP 650), P21 (WGB 26, WOP 650) and P41 (WGB 74, WOP 590), P41 (WGB 74, WOP 590) and P53 (WGB 150, WOP 520), P53 (WGB 150, WOP 520) and P51 (WGB 150, WOP 100) and P51 (WGB 150, WOP 100) and P11 (WGB 0.8, WOP 100) in a coordinate system in which the WOP value is plotted on the y-axis and the degree of rolling ratio is plotted on the x-axis, as preferred in figure 1 shown.
  • a suitable WOP value range is thus determined, from which a WOP value can then in turn be selected. According to the invention, however, all WOP values lying in the specific WOP value range meet the condition that a steel component with a content of diffusible hydrogen of at most 0.4 ppm is obtained.
  • Step (B) of the method according to the invention serves to determine a WOP value as a function of the rolling degree/sheet thickness ratio of the flat steel product used, WOP meaning “hydrogen-related furnace parameter” and having no units.
  • the WOP value then provides information about the process parameters the heat treatment in step (C) is to be carried out so that steel components with a maximum content of diffusible hydrogen of 0.4 ppm are obtained.
  • a range for suitable WOP values is determined via the ratio of the reduction ratio.
  • a WOP value can then preferably be selected from this range, which is then used to determine the corresponding value for T oven , t oven and T dew point with the equation of the general formula (I).
  • all values present in the correspondingly determined range of the WOP values are suitable for being used in the equation of the general formula (I) in order to determine corresponding values for T oven , t oven and T dew point .
  • Step (B) of the method according to the invention is preferably carried out in that the WOP value within an area spanned by straight connecting sections between the points P11 (WGB 0.8, WOP 100) and P13 (WGB 0.8, WOP 800), P13 ( WGB 0.8, WOP 800) and P21 (WGB 26, WOP 650), P21 (WGB 26, WOP 650) and P41 (WGB 74, WOP 590), P41 (WGB 74, WOP 590) and P53 (WGB 150, WOP 520), P53 (WGB 150, WOP 520) and P51 (WGB 150, WOP 100) as well as P51 (WGB 150, WOP 100) and P11 (WGB 0.8, WOP 100) in a coordinate system in which the WOP value are plotted on the y-axis and the rolling degree-plate thickness ratio is plotted on the x-axis is graphically determined at a predetermined rolling degree-plate thickness ratio (area A).
  • the corresponding diagram is in figure
  • the WOP value is determined according to step (B) of the method according to the invention within an area spanned by straight connecting sections between the points P12 (WGB 0.8, WOP 300) and P13 (WGB 0.8, WOP 800), P13 (WGB 0.8, WOP 800) and P21 (WGB 26, WOP 650), P21 (WGB 26, WOP 650) and P41 (WGB 74, WOP 590), P41 (WGB 74, WOP 590) and P53 (WGB 150, WOP 520), P53 (WGB 150, WOP 520) and P52 (WGB 150, WOP 200), P52 (WGB 150, WOP 200) and P32 (WGB 50, WOP 200), P32 (WGB 50, WOP 200) and P33 (WGB 50, WOP 300) and P33 (WGB 50, WOP 300) and P12 (WGB 0.8, WOP 300) in a coordinate system where the WOP value is on the
  • step (B) of the method according to the invention it can then be determined according to the invention at which dew point temperature of the furnace atmosphere T dew point , at which mean furnace temperature T furnace and for which duration t furnace step (C) of the method according to the invention is carried out.
  • Step (C) of the method according to the invention comprises treating the flat steel product at a mean furnace temperature T furnace (in K) for a duration t furnace (in h), the dew point temperature of the furnace atmosphere T dew point (in K), the mean furnace temperature T furnace ( in K) and the duration t oven (in h) according to the following equation of the general formula (1)
  • WOP T Oven K ⁇ log t Oven H + 1:15 + T dew point K ⁇ 243.15 1.6 can be set so that the WOP value is in the using Figure 1 specified interval between the minimum and maximum WOP values.
  • T oven (in K) is the temperature that prevails on average in the oven in step (C) of the process according to the invention.
  • T oven can take any value that a person skilled in the art considers appropriate.
  • T furnace AC1 is preferably up to 1373 K, preferably in the range from 1113 to 1253 K, particularly preferably in the range from 1133 to 1223 K, very particularly preferably in the range from 1153 to 1193 K.
  • AC1 means the first austenitizing temperature, which depends on the alloy composition.
  • the duration t oven (in h) is the time over which the said oven temperature T oven prevails in step (C).
  • t oven can take on any value that a person skilled in the art deems appropriate.
  • t furnace describes in particular the period of time in which the flat steel product is moved through a continuous furnace or remains in a stationary furnace.
  • t oven is preferably from 0.05 to 0.5 h, preferably from 0.067 to 0.25 h, particularly preferably from 0.067 to 0.4 h.
  • furnace temperature T furnace is used to calculate and then adjust the dew point temperature of the furnace atmosphere of the furnace T dew point using equation (1).
  • the dew point temperature of the oven T dew point (in K) is, for example, 243.15 to 333.15 K, preferably 253.15 to 303.15 K, particularly preferably 263.15 to 293.15 K.
  • the dew point temperature of the furnace atmosphere of the furnace T dew point , duration t furnace and WOP value are used to calculate the furnace temperature T furnace using equation (1) and then set it.
  • the dew point temperature of the furnace atmosphere of the furnace T dew point , furnace temperature T furnace and WOP value are used to calculate the duration t furnace using equation (1) and then set it.
  • Step (C) of the process according to the invention can generally be carried out in any furnace known to those skilled in the art, for example roller hearth furnaces, chamber furnaces, multi-layer chamber furnaces, walking beam furnaces.
  • Step (D) of the method according to the invention comprises forming the heated flat steel product from step (C) in a forming tool with simultaneous cooling in order to obtain the steel component.
  • step (D) of the method according to the invention all methods for hot forming known to those skilled in the art can be used, for example described in Hot forming in automotive engineering - processes, materials, surfaces, Landsberg/Lech: Verl. Modern Industry, 2012, The Library of Technology .
  • step (D) of the method according to the invention the desired steel component is obtained from the flat steel product from step (C) by forming.
  • the steel component In order for the steel component to develop the desired hardness structure, for example at least 80% martensite, the remainder being bainite, ferrite and retained austenite, forming is carried out with simultaneous cooling.
  • the cooling in step (C) of the process according to the invention preferably takes place at a rate of 27 to 1000 K/s, particularly preferably 50 to 500 K/s.
  • the present invention therefore preferably relates to the process according to the invention, the cooling in step (D) taking place at a cooling rate of from 27 to 500 K/s.
  • the steel component according to the invention preferably has a thoroughly alloyed alloy layer between the steel substrate and the Al-based coating.
  • the steel component according to the invention preferably has a thoroughly alloyed alloy layer with a thickness of 5 to 60 ⁇ m, preferably 10 to 45 ⁇ m.
  • the thickness of the alloy layer can be measured using methods known to those skilled in the art (e.g. according to DIN EN ISO 1463).
  • the present invention also relates to the use of a coated steel component according to the invention in the automotive sector, in particular as a bumper support/reinforcement, door reinforcement, B-pillar reinforcement, A-pillar reinforcement, roof frame or rocker panel.
  • the flat steel products used have a coating containing 9 to 10% by weight Si, 2 to 3.5% by weight iron, the remainder aluminum and the amount of Mg specified in Table 2. Coating weight, sheet thickness and degree of rolling of the flat steel products used also mentioned in Table 2.
  • the diagram according to figure 1 the corresponding WOP value is determined and then T oven , t oven and T dew point of the oven atmosphere are determined and set using formula (1).
  • the flat steel product heated in this way is then removed from the furnace and, after a transport time of 6 seconds, placed in a mold. After being placed in the mold, it immediately moves together and remains closed for about 20 seconds in order to cool the component to ⁇ 80°C through contact with the cooled molds.
  • Samples are taken from the manufactured steel components, which are analyzed using desorption mass spectrometry with heated samples (Thermal Desorption Mass Spectrometry (TDMS)) with regard to the amount of diffusible hydrogen contained ( H diff ).
  • TDMS Thermal Desorption Mass Spectrometry
  • a WOP value of 300 to 630 can be used for the WGB value of 41.8 figure 1 read off or calculate using the specified points.
  • the steel component produced according to the invention has a low tendency to hydrogen-induced fractures under load stresses and can therefore be used advantageously in the automotive sector, aircraft construction or rail vehicle construction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrochemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Laminated Bodies (AREA)
  • Heat Treatment Of Steel (AREA)
  • Rod-Shaped Construction Members (AREA)

Claims (12)

  1. Procédé, destiné à fabriquer une pièce en acier d'une teneur en hydrogène diffusible Hdiff de jusqu'à 0,4 ppm, comprenant au moins les étapes consistant à :
    (A) mettre à disposition un produit en acier plat, contenant (toutes les mentions sont exprimées en % en poids) :
    de 0,06 à 0,50 de C,
    de 0,50 à 3,0 de Mn,
    de 0,10 à 0,50 de Si,
    de 0,01 à 1,00 de Cr,
    jusqu'à 0,20 de Ti,
    jusqu'à 0,10 d'Al,
    jusqu'à 0,10 de P,
    jusqu'à 0,1 de Nb,
    jusqu'à 0,01 de N,
    jusqu'à 0,05 de S et
    jusqu'à 0,1 de B,
    un reste de Fe et des impuretés inévitables,
    pourvue d'un revêtement contenant (toutes les mentions sont exprimées en % en poids) de 3 à 15 de Si, de 1 à 3,5 de Fe, de 0,05 à 5,0 de métaux alcalins et / ou alcalino-terreux, un reste d'Al et des impuretés inévitables, lequel présente un rapport degré de laminage / épaisseur de tôle (WGB) supérieur à de 0,8 à 200, WGB étant une valeur dimensionnelle qui est déterminée par WGB = 1,5 . 1 + d e g r é de laminage 100 1 2 . 1 + é paisseur de la t ô le / mm
    Figure imgb0012
    l'épaisseur de tôle étant mise en équation en mm et étant identique à h 1, l'épaisseur finale du produit en acier plat après le laminage,
    (B) déterminer une valeur WOP (valeur de paramètre du four liée l'hydrogène), en fonction du rapport degré de laminage / épaisseur de tôle WGB, à l'intérieur d'une surface définie par des trajets de liaison rectilignes entre les points P11 (WGB 0,8, WOP 100) et P13 (WGB 0,8, WOP 800), P13 (WGB 0,8, WOP 800) et P21 (WGB 26, WOP 650), P21 (WGB 26, WOP 650) et P41 (WGB 74, WOP 590), P41 (WGB 74, WOP 590) et P53 (WGB 150, WOP 520), P53 (WGB 150, WOP 520) et P51 (WGB 150, WOP 100), ainsi que P51 (WGB 150, WOP 100) et P11 (WGB 0,8, WOP 100) dans un système de coordonnées, dans lequel la valeur WOP est reportée sur l'axe y et le rapport degré de laminage / épaisseur de tôle est reporté sur l'axe x.
    (C) traiter le produit en acier plat à une température moyenne du four Tfour (en K) pour une durée tfour (en h), la température du point de rosée Tpoint de rosée (en K) de l'atmosphère dans le four, la température moyenne du four Tfour (en K) et la durée tfour (en h) étant réglées selon l'équation suivante d'après la formule générale (1) WOP = Tfour K . log tfour h + 1,15 + Tpoint de r o s é e K 243,15 1,6
    Figure imgb0013
    et
    (D) transformer le produit en acier plat chauffé à l'étape (B) dans un outil de moulage, en le refroidissant simultanément, pour obtenir la pièce en acier.
  2. Procédé selon la revendication 1, caractérisé en ce que la détermination de la valeur WOP selon l'étape (B) s'effectue à l'intérieur d'une surface définie par des trajets de liaison rectilignes entre les points P12 (WGB 0,8, WOP 300) et P13 (WGB 0,8, WOP 800), P13 (WGB 0,8, WOP 800) et P21 (WGB 26, WOP 650), P21 (WGB 26, WOP 650) et P41 (WGB 74, WOP 590), P41 (WGB 74, WOP 590) et P53 (WGB 150, WOP 520), P53 (WGB 150, WOP 520) et P52 (WGB 150, WOP 200), P52 (WGB 150, WOP 200) et P32 (WGB 50, WOP 200), P32 (WGB 50, WOP 200) et P33 (WGB 50, WOP 300), ainsi que P33 (WGB 50, WOP 300) et P12 (WGB 0,8, WOP 300) dans un système de coordonnées, dans lequel la valeur WOP est reportée sur l'axe y et le rapport degré de laminage / épaisseur de tôle est reporté sur l'axe x.
  3. Procédé selon l'une quelconque des revendications 1 à 2, caractérisé en ce que tfour s'élève à de 0,05 à 0,5 h, de préférence à de 0,060 à 0,4 h, de manière particulièrement préférentielle, à de 0,067 à 0,25 h.
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le produit en acier plat est une platine en un feuillard laminé à chaud ou une platine en un feuillard laminé à froid.
  5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le revêtement s'effectue par un revêtement à chaud, par un revêtement électrolytique ou au moyen d'un processus de revêtement de pièces.
  6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le poids de charge du revêtement bilatéral s'élève à de 20 à 240 g /m2.
  7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le refroidissement dans l'étape (D) s'effectue à un taux de refroidissement de 10 à 500 K/s, de préférence supérieur à 27 K/s.
  8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la teneur en hydrogène diffusible Hdiff s'élève à 0,1, à 0,2, à 0,3 ou à 0,4 ppm dans la matière, après le façonnage à chaud.
  9. Pièce en acier comprenant un substrat contenant (toutes les mentions sont exprimées en % en poids)
    de 0,06 à 0,50 de C,
    de 0,50 à 3,0 de Mn,
    de 0,10 à 0,50 de Si,
    de 0,01 à 1,00 de Cr,
    jusqu'à 0,20 de Ti,
    jusqu'à 0,10, de préférence de 0,01 à 0,05, de manière particulièrement préférentielle, de 0,02 à 0,05 d'Al,
    jusqu'à 0,10, de préférence de 0,00 à 0,05, de manière particulièrement préférentielle, de 0,00 à 0,02 de P,
    jusqu'à 0,1, de préférence de 0,001 à 0,1 de Nb,
    jusqu'à 0,01 de N,
    jusqu'à 0,05, de préférence de 0,00 à 0,005, de manière particulièrement préférentielle, de 0,00 à 0,003 de S et
    jusqu'à 0,1, de préférence de 0,001 à 0,05, de manière particulièrement préférentielle, de 0,002 à 0,0035 de B,
    un reste de Fe et des impuretés inévitables,
    pourvue d'un revêtement contenant (toutes les mentions sont exprimées en % en poids)
    de 3 à 15 de Si,
    de 1 à 3,5 de Fe,
    de 0,05 à 5,0 de métaux alcalins et / ou alcalino-terreux,
    un reste d'Al et des impuretés inévitables,
    fabriquée à l'aide du procédé selon l'une quelconque des revendications 1 à 8,
    le degré de laminage étant applicable pour une opération de laminage lors duquel l'on obtient le revêtement sur le substrat et l'on lamine le produit en acier plat après l'avoir revêtu,
    et la pièce en acier fabriquée faisant preuve d'une teneur d'hydrogène diffusible Hdiff de jusqu'à 0,4 ppm.
  10. Pièce en acier selon la revendication 9, caractérisée en ce que le poids de charge du revêtement bilatéral s'élève à de 20 à 240 g/m2.
  11. Pièce en acier selon l'une quelconque des revendications 9 à 10, caractérisée en ce qu'il comporte une couche d'alliage claquée, sur une épaisseur de 5 à 60 µm, de préférence de 10 à 45 µm.
  12. Utilisation d'une pièce en acier revêtue selon l'une quelconque des revendications 9 à 11 dans le secteur de l'industrie automobile, notamment en tant que support / renfort de pare-chocs, en tant que renfort de portière, en tant que renfort du montant B, en tant que renfort du montant A, en tant que cadre de toit ou de seuil.
EP18804228.7A 2017-10-19 2018-10-11 Procédé de fabrication d'un élément en acier pourvu d'un revêtement métallique anticorrosion Active EP3697936B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP23165955.8A EP4223889A3 (fr) 2017-10-19 2018-10-11 Procédé de fabrication d'un composant en acier pourvu d'un revêtement métallique anticorrosion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017218704.2A DE102017218704A1 (de) 2017-10-19 2017-10-19 Verfahren zur Herstellung eines mit einem metallischen, vor Korrosion schützenden Überzug versehenen Stahlbauteils
PCT/EP2018/077692 WO2019076720A1 (fr) 2017-10-19 2018-10-11 Procédé de fabrication d'un élément en acier pourvu d'un revêtement métallique anticorrosion

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP23165955.8A Division EP4223889A3 (fr) 2017-10-19 2018-10-11 Procédé de fabrication d'un composant en acier pourvu d'un revêtement métallique anticorrosion

Publications (2)

Publication Number Publication Date
EP3697936A1 EP3697936A1 (fr) 2020-08-26
EP3697936B1 true EP3697936B1 (fr) 2023-04-12

Family

ID=64332260

Family Applications (2)

Application Number Title Priority Date Filing Date
EP18804228.7A Active EP3697936B1 (fr) 2017-10-19 2018-10-11 Procédé de fabrication d'un élément en acier pourvu d'un revêtement métallique anticorrosion
EP23165955.8A Pending EP4223889A3 (fr) 2017-10-19 2018-10-11 Procédé de fabrication d'un composant en acier pourvu d'un revêtement métallique anticorrosion

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP23165955.8A Pending EP4223889A3 (fr) 2017-10-19 2018-10-11 Procédé de fabrication d'un composant en acier pourvu d'un revêtement métallique anticorrosion

Country Status (7)

Country Link
US (2) US11739393B2 (fr)
EP (2) EP3697936B1 (fr)
CN (1) CN110997951B (fr)
DE (1) DE102017218704A1 (fr)
ES (1) ES2948290T3 (fr)
PL (1) PL3697936T3 (fr)
WO (1) WO2019076720A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4092142A1 (fr) * 2019-06-03 2022-11-23 ThyssenKrupp Steel Europe AG Procédé de fabrication d'un composant en tôle à partir d'un produit plat en acier pourvu d'un revêtement anticorrosion
DE102020114053B4 (de) 2020-05-26 2022-07-14 Audi Aktiengesellschaft Prozessanordnung zur Herstellung eines warmumgeformten und pressgehärteten Stahlblechbauteils
EP3964602A1 (fr) * 2020-09-02 2022-03-09 ThyssenKrupp Steel Europe AG Procédé de fabrication d'un composant en tôle par formage à chaud d'un produit en acier plat pourvu d'un revêtement de protection contre la corrosion
EP4174207A1 (fr) * 2021-11-02 2023-05-03 ThyssenKrupp Steel Europe AG Produit plat en acier ayant des propriétés de traitement améliorées
MX2024008238A (es) * 2022-01-06 2024-07-19 Nippon Steel Corp Lamina de acero para estampado en caliente, metodo de fabricacion de lamina de acero para estampado en caliente, y cuerpo formado estampado en caliente.
KR20240117109A (ko) * 2022-01-06 2024-07-31 닛폰세이테츠 가부시키가이샤 핫 스탬프용 강판, 핫 스탬프용 강판의 제조 방법, 및 핫 스탬프 성형체
EP4283003A1 (fr) * 2022-05-24 2023-11-29 ThyssenKrupp Steel Europe AG Procédé de fabrication d'une pièce moulée en tôle

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2780984B1 (fr) 1998-07-09 2001-06-22 Lorraine Laminage Tole d'acier laminee a chaud et a froid revetue et comportant une tres haute resistance apres traitement thermique
JP2006051543A (ja) * 2004-07-15 2006-02-23 Nippon Steel Corp 冷延、熱延鋼板もしくはAl系、Zn系めっき鋼板を使用した高強度自動車部材の熱間プレス方法および熱間プレス部品
WO2007124781A1 (fr) * 2006-04-26 2007-11-08 Thyssenkrupp Steel Ag Procédé de revêtement par immersion en fusion d'un produit plat en acier hyperrésistant
KR101008042B1 (ko) * 2009-01-09 2011-01-13 주식회사 포스코 내식성이 우수한 알루미늄 도금강판, 이를 이용한 열간 프레스 성형 제품 및 그 제조방법
WO2010085983A1 (fr) * 2009-02-02 2010-08-05 Arcelormittal Investigacion Y Desarrollo S.L. Procédé de fabrication de pièces estampées revêtues et pièces préparées à partir de ce procédé
ES2899474T3 (es) * 2011-04-01 2022-03-11 Nippon Steel Corp Componente de alta resistencia moldeado por estampación en caliente que tiene excelente resistencia a la corrosión después del metalizado
RU2566131C1 (ru) * 2011-09-30 2015-10-20 Ниппон Стил Энд Сумитомо Метал Корпорейшн Гальванизированный горячим способом стальной лист и способ его изготовления
CA2865910C (fr) * 2012-03-07 2017-10-17 Nippon Steel & Sumitomo Metal Corporation Tole d'acier destinee a l'emboutissage a chaud, son procede de production et materiau en acier embouti a chaud
EP2848709B1 (fr) 2013-09-13 2020-03-04 ThyssenKrupp Steel Europe AG Procédé de fabrication d'un composant en acier revêtu d'une coiffe métallique protégeant de la corrosion et composant en acier
EP2924141B1 (fr) * 2014-03-25 2017-11-15 ThyssenKrupp Steel Europe AG Produit plat en acier laminé à froid et son procédé de fabrication
DE102014109943B3 (de) * 2014-07-16 2015-11-05 Thyssenkrupp Ag Stahlprodukt mit einer Korrosionsschutzbeschichtung aus einer Aluminiumlegierung sowie Verfahren zu dessen Herstellung
WO2016016676A1 (fr) * 2014-07-30 2016-02-04 ArcelorMittal Investigación y Desarrollo, S.L. Procédé de fabrication de tôles d'acier, pour durcissement sous presse, et pièces obtenues par ce procédé
EP2993248B1 (fr) * 2014-09-05 2020-06-24 ThyssenKrupp Steel Europe AG Produit plat en acier doté d'un revêtement Al, son procédé de fabrication, et procédé de fabrication d'un composant en acier formé à chaud
WO2016055227A1 (fr) * 2014-10-09 2016-04-14 Thyssenkrupp Steel Europe Ag Produit plat en acier laminé à froid et recuit avec recristallisation et procédé de production dudit produit
DE102017210201A1 (de) * 2017-06-19 2018-12-20 Thyssenkrupp Ag Verfahren zur Herstellung eines mit einem metallischen, vor Korrosion schützenden Überzug versehenen Stahlbauteils

Also Published As

Publication number Publication date
PL3697936T3 (pl) 2023-08-14
CN110997951A (zh) 2020-04-10
EP3697936A1 (fr) 2020-08-26
US20230332262A1 (en) 2023-10-19
EP4223889A2 (fr) 2023-08-09
US11739393B2 (en) 2023-08-29
US20200216925A1 (en) 2020-07-09
CN110997951B (zh) 2021-08-24
DE102017218704A1 (de) 2019-04-25
EP4223889A3 (fr) 2024-08-21
WO2019076720A1 (fr) 2019-04-25
ES2948290T3 (es) 2023-09-07

Similar Documents

Publication Publication Date Title
EP3697936B1 (fr) Procédé de fabrication d'un élément en acier pourvu d'un revêtement métallique anticorrosion
EP2547800B1 (fr) Procédé de fabrication de pièces en acier léger de construction ayant des propriétés de matériau ajustables suivant l'épaisseur de paroi
EP3655560B1 (fr) Produit plat en acier possédant une bonne résistance au vieillissement et son procédé de fabrication
EP3642371B1 (fr) Procédé de fabrication d'un composant en acier pourvu d'un revêtement métallique anticorrosion
EP2553133B1 (fr) Acier, produit plat en acier, élément en acier et procédé de fabrication d'un élément en acier
EP3221484B1 (fr) Procédé de production d'une bande en acier polyphasé, durcissant à l'air, ayant une haute résistance et ayant d'excellentes propriétés de mise en oeuvre
EP3221478B1 (fr) Bande à chaud ou à froid d'un acier multiphasé à haute résistance durcissant à l'air qui présente d'excellentes propriétés de traitement et procédé de fabrication d'une bande à chaud ou à froid à partir de cet acier multiphasé à haute résistance durcissant à l'air
EP2684975A1 (fr) Produit plat en acier laminé à froid et son procédé de fabrication
DE102020131993A1 (de) Pressgehärteter hochleistungsstahl
EP1939308A1 (fr) Procédé de fabrication d'un composant par trempe de compression thermique et composant haute résistance présentant une amélioration de l'allongement de rupture
EP3692178B1 (fr) Procede de fabrication d'une bande d'acier a partir d'un acier multiphase a tres haute resistance
DE102020131989A1 (de) Pressgehärtete hochleistungsstahlanordnung
EP1865086B1 (fr) Utilisation d'un produit plat fabriqué à partir d'un acier au manganèse et au bore et procédé de sa fabrication
DE102018118015A1 (de) Verfahren zur Herstellung eines gehärteten Stahlprodukts
EP4038215B1 (fr) Procédé de fabrication d'une pièce en tôle d'acier trempée à la presse présentant un revêtement à base d'aluminium, ébauche de tôle initiale et pièce en tôle d'acier trempée à la presse fabriquée à partir de celle-ci
EP3415646B1 (fr) Tôle d'acier haute résistance à malléabilité améliorée
DE102020120580A1 (de) Verfahren zum herstellen von beschichtetem stahlband, und verfahren zum herstellen eines gehärteten stahlprodukts
DE102020204356A1 (de) Gehärtetes Blechbauteil, hergestellt durch Warmumformen eines Stahlflachprodukts und Verfahren zu dessen Herstellung
WO2019242818A1 (fr) Composant de véhicule automobile composé d'un acier de traitement
EP4283003A1 (fr) Procédé de fabrication d'une pièce moulée en tôle
WO2019011644A1 (fr) Procédé de fabrication d'un composant trempé à la presse
EP4093896A1 (fr) Composant en acier comprenant une couche anti-corrosion contenant du manganèse
DE102022130775A1 (de) Verfahren zum Warmpressformen mit verbessertem Prozessfenster
EP4092141A1 (fr) Produit plan en acier doté d'un revêtement al, son procédé de fabrication, composant en acier et son procédé de fabrication
DE202024001169U1 (de) Riss-behaftetes durch Hot Stamping gebildetes beschichtetes Stahlteil mit ausgezeichneter Punktschweißbarkeit und ausgezeichneter Lackhaftung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200519

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220510

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221219

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP AG

Owner name: THYSSENKRUPP STEEL EUROPE AG

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018011966

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1559820

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230515

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230412

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 41774

Country of ref document: SK

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2948290

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230814

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230812

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230713

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018011966

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20231005

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231227

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231009

Year of fee payment: 6

Ref country code: IT

Payment date: 20231026

Year of fee payment: 6

Ref country code: FR

Payment date: 20231026

Year of fee payment: 6

Ref country code: DE

Payment date: 20231020

Year of fee payment: 6

Ref country code: CZ

Payment date: 20231004

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231003

Year of fee payment: 6

26N No opposition filed

Effective date: 20240115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20231031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231011

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20231011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231011

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231011