EP3695620B1 - Improved sound transducer - Google Patents

Improved sound transducer Download PDF

Info

Publication number
EP3695620B1
EP3695620B1 EP17797442.5A EP17797442A EP3695620B1 EP 3695620 B1 EP3695620 B1 EP 3695620B1 EP 17797442 A EP17797442 A EP 17797442A EP 3695620 B1 EP3695620 B1 EP 3695620B1
Authority
EP
European Patent Office
Prior art keywords
sound
sound field
signal
impedance
acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17797442.5A
Other languages
German (de)
French (fr)
Other versions
EP3695620A1 (en
Inventor
Roman Stumpner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut fuer Rundfunktechnik GmbH
Original Assignee
Institut fuer Rundfunktechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut fuer Rundfunktechnik GmbH filed Critical Institut fuer Rundfunktechnik GmbH
Publication of EP3695620A1 publication Critical patent/EP3695620A1/en
Application granted granted Critical
Publication of EP3695620B1 publication Critical patent/EP3695620B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2869Reduction of undesired resonances, i.e. standing waves within enclosure, or of undesired vibrations, i.e. of the enclosure itself
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1091Details not provided for in groups H04R1/1008 - H04R1/1083
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/033Headphones for stereophonic communication

Definitions

  • the present document relates to a device, a method, a signal processing unit, data for acoustic reproduction, a sound transducer, in particular headphones or earphones, and a software product for improving sound reproduction.
  • the present invention is therefore based on the object of eliminating or at least reducing the above problems in order to achieve improved sound reproduction.
  • a non-claimed device for acoustic reproduction wherein the device is provided with a first electro-acoustic sound transducer for generating a sound field and wherein the first electro-acoustic sound transducer has an input for receiving an electrical signal for generating the corresponding sound field, the device thereby characterized in that a device is also provided which is set up to enter into an acoustic interaction with the sound field generated by the first electroacoustic sound transducer in order to generate a modified To generate a sound field and it is provided that the modified sound field has a predetermined acoustic impedance value.
  • the device can be at least one acoustic resonator and/or at least one further electroacoustic sound transducer.
  • An electroacoustic sound transducer is therefore proposed either in cooperation with at least one further electroacoustic sound transducer or in cooperation with at least one resonator.
  • an acoustic interaction is aimed at generating a modified sound field, so that the modified sound field has a predetermined acoustic impedance value.
  • both of the aforementioned variants are set up to set different impedance values or variable impedance values for the modified sound field.
  • the first electroacoustic sound transducer and/or the further electroacoustic sound transducer can be set up to receive an electrical signal as a function of impedance information and to convert it into an acoustic signal so that the modified sound field has a predetermined acoustic impedance value as a result of the corresponding acoustic interaction.
  • the acoustic resonator can be designed as a recess, a hole or as a Helmholtz resonator, with this being implemented in particular on the housing of the device, in particular in the inner and/or outer housing area.
  • the first electroacoustic sound converter and/or the further electroacoustic sound converter and/or the acoustic resonator can be controllable by means of a corresponding electrical signal in order to set different acoustic impedance values in the modified sound field.
  • the control can take place either directly via the electrical audio signal to be fed in and/or via a separate signalling.
  • the device having a measuring unit, in particular a microphone for measuring a sound field parameter in order to be able to derive a given impedance value in the sound field in order to enable a subsequent electrical adaptation signal to be generated.
  • a measuring unit in particular a microphone for measuring a sound field parameter in order to be able to derive a given impedance value in the sound field in order to enable a subsequent electrical adaptation signal to be generated.
  • one or more of the embodiments proposed according to the invention are set up to actively carry out a measurement via a control loop in order to measure a current impedance value in the sound field in order to subsequently implement readjustment by generating a suitable signal.
  • the device is designed as a headphone or earphone.
  • a corresponding housing for accommodating the device can be provided and designed as a helmet.
  • a device in which the position and/or the alignment of the first electroacoustic sound transducer and/or the further electroacoustic sound transducer and/or the acoustic resonator is designed to be changeable and can be changed and adjusted as required, in particular by means of a suitable electrical signal.
  • the frequency response and/or the oscillating mass can be designed to be controllable.
  • a signal processing unit for processing signals for acoustic reproduction which is set up to process a further signal for acoustic interaction with the first sound field as a function of a first signal which is provided for generating a first sound field in order to to generate a modified sound field, it being provided that the modified sound field has a predetermined acoustic impedance value.
  • a signal processing unit is proposed, the signal processing unit providing a factor depending on at least one sound pressure signal and/or a sound velocity of the first signal in order to generate a modified sound field, it being provided that the modified sound field has a predetermined acoustic impedance value.
  • a signal processing unit is proposed, the sound pressure signal and/or the sound velocity being derived by means of a measurement, in particular by means of at least one microphone.
  • a signal processing unit is proposed, the signal processing unit being set up to process an impedance signal so that the impedance signal can be provided to a sound transducer.
  • the modified sound field having a temporally predetermined variable acoustic impedance value.
  • a signal processing unit is also proposed, the signal processing unit being set up to process further relevant acoustic parameters, in particular geometric parameters of a headphone or an earphone, in order to set the predetermined acoustic impedance value for the modified sound field.
  • data for acoustic reproduction are proposed which have data elements for acoustic interaction with a first sound field, the data elements being set up to generate a modified sound field, it being provided that the modified sound field has a predetermined acoustic impedance value.
  • data are proposed, the data elements being set up and designed in such a way that they can be converted into a corresponding electrical signal in order to be reproduced in a later step by an acoustic resonator and/or by at least one electroacoustic sound transducer.
  • the data elements can have impedance information.
  • data are proposed, the data containing control data for controlling the acoustic resonator and/or the at least one electro-acoustic sound transducer.
  • a processing device for processing and/or reproducing the data is proposed, the data corresponding to one of the above data variants and the processing device being in particular a smartphone, notebook, laptop, tablet PC, personal computer, wireless transmitter or server.
  • a sound converter is proposed, the sound converter being set up for playing back a generated signal by means of one of the signal processing units proposed above and/or data proposed from above.
  • a software product which is stored on a storage medium and can be processed by an electronic data processing unit, is adapted to implement one of the signal processing units presented above and/or to generate or reproduce data presented above.
  • a method for acoustic reproduction is proposed, the method having the following steps: generating a first sound field and generating a second signal for acoustic interaction with the first sound field in order to generate a modified sound field, it being provided that the modified sound field has a predetermined has acoustic impedance value.
  • the invention is characterized in particular by the fact that a headphone or earphone as part of a system according to the invention not only simulates the sound pressure signal, but also the sound field impedance generated by a distant sound source at the ear in order to improve negative phenomena such as IKL or SLD or entirely to avoid.
  • the headphones ideally do not receive a sound pressure signal that contains head-related sound pressure frequency responses, since these are self-adjusting if the sound field impedance is set correctly in the headphones.
  • the so-called outer ear transfer function (HRTF) only describes the relationship between the two ears. In the following, the procedure is described as to how the sound field impedance considered relevant for hearing is defined and how this can be measured.
  • a measurement method is required that indicates whether a headphone generates a sound field impedance that is relevant in terms of avoiding IKL and SLD. This is indicated when the measurement method with headphones provides the same result as with loudspeakers.
  • the proposed measurement method expands the known method for determining the head-related sound pressure transfer function (outer ear transfer function, HRTF) by a second transfer function that contains information about the sound field impedance.
  • a measurement test bench can be set up that can be used both for Loudspeaker as well as headphone sound reinforcement is suitable to determine a signal S p dependent on the sound pressure and a signal Sz dependent on the sound pressure and the sound field impedance ( figure 1 ).
  • the signals S p and Sz result at the outputs of the microphones for the left and right ear. These signals depend on the frequency and the angle of incidence of the sound. If the artificial head is now exposed to the same signals via headphones (with possible signal processing), the signals S' p and S' Z are measured.
  • test bench for the headphones does not have to be an artificial head.
  • a comparable measurement method which is however limited to the sound pressure, has long been used in binaural technology to generate spatially perceptible sound fields in headphones.
  • H p describes the change in sound pressure caused by the presence of a human head (body) and the relationship between the ears.
  • this function also known as the outer ear transfer function (or HRTF) in current binaural technology, must be corrected for the sound pressure generated by this field impedance itself in a new headphone that simulates the sound field impedance.
  • HRTF outer ear transfer function
  • the signal Sz is new and, compared to the pure sound pressure signal S p , provides additional information about the sound field in front of the ear. It describes the acoustic resistance at the ear entrance of a human head, which a force source Q located in the ear canal feels when it exerts a force F Q against an external sound field.
  • the force F Q is derived from the pressure in the ear canal by means of a suitable mechanism (a microphone that is not described in detail) and acts back on the sound field in phase with the pressure. For this reason the signal Sz is also dependent on the sound pressure.
  • the force source Q is itself exposed to the force F F of the external sound field.
  • an impedance transfer function Hz can be determined from the signal v Q by relating v Q to the signal of a free-field measurement without a head:
  • H Z v Q ⁇ Ear / v Q ⁇ free field
  • Hz thus represents an extension of the previous head-related properties and can be used to characterize the properties of headphones with regard to the acoustic sound field impedance in front of the ear.
  • an impedance microphone The application of the method described for measuring the signal Sz combined with a pressure sensor is referred to here as an impedance microphone. It is able to deliver both a sound pressure signal and a signal dependent on the sound field impedance.
  • the sound field conditions in front of the ear of a human head when exposed to sound from a distant sound source are modeled for a headphone or earphone that is characterized by an improvement in the localization in the median plane, in particular with regard to the forward localization.
  • a head-related impedance signal and a frequency-independent sound pressure signal are transmitted to the headphones.
  • a vibration transducer impresses a proportional velocity signal into the headphone chamber and generates the corresponding head-related sound pressure at the specified sound field impedance.
  • simplified systems can also be useful, in which the most important properties of the real sound field impedance at the ear are transferred to headphones.
  • a modeling of the sound field impedance is realized with the help of sound transducer pairs.
  • a specific sound field impedance is achieved through the use of two sound transducers in a headphone capsule.
  • the desired sound field impedance can be influenced in the arranged direction.
  • the sound pressures p 1 , p 2 and the sound velocities v 1 , v 2 of the individual sound transducers are first determined using a suitable impedance measurement method (2-microphone method) or by previously determined sound pressures and sound velocities based on geometry-related values.
  • a factor k F can then be calculated from this, which describes the signal difference between the two sound transducers.
  • FIG. 8 shows a simple principle with signal processing that calculates the signal K 2 for the second loudspeaker as a function of the value of the sound field impedance present at the input.
  • Signal conditioning can also be part of a computer simulation when Z Fx changes over time, as with moving sound sources or when using head trackers.
  • p 1 , p 2 and v 1 , v 2 are determined from individual measurements of the sound transducers Lsp1,2 using the 2-microphone method.
  • S p is the sound pressure signal and Z Fx is the impedance information.
  • FIG 3 a modeling of the sound field impedance with passive acoustic resonators is proposed.
  • the resonator consists of a tube with any cross-sectional area, one opening of which is in the volume between the ear and the sound transducer protrudes. Other resonators can also be used here.
  • the accelerated air in the tube represents a mass, which together with the rigidity of the air volume forms a resonance system.
  • the mass character of the sound field occurs above the resonance frequency.
  • the bandwidth and the quality of the system can also be influenced with a flow resistance.
  • a combination of several resonators can also be implemented.
  • a modeling of the sound field impedance with active electroacoustic systems is proposed.
  • Acoustic impedances can be specifically modeled with a system consisting of a microphone, sound transducer, amplifier and a simulation function.
  • Simple analog realizable examples are masses, springs, flow resistances or resonators.
  • Digital networks are considerably more versatile, but require very low latency times. The principle is based on modeling the relationship between pressure and velocity in the KH pressure chamber. The pressure-signal proportionality of the microphone M and the signal-diaphragm velocity proportionality of the converter W Z are important for the correct function.
  • the emulation function reacts to the pressure signal at the input with a speed signal at the output. This signal controls the transducer W Z , whose membrane executes a proportional speed. If the amount of air moved is large enough, it determines the sound field in the headphones.
  • the replica can also have another input that can be used to control the shape of this transfer function.
  • a function for analog simulation of sound field impedances in headphones is shown.
  • the sound field at the ear of the human head in the free sound field and at low frequencies can be described in a first approximation as a plane wave and a scattered wave, which is reflected by a sphere considered to be "breathing".
  • the following example shows what an analog replica of 1/Z F can look like.
  • the example shows an additional simulation 2 of an interference that leads to a minimum in the sound pressure.
  • the active electro-acoustic systems to influence the Sound field impedance interesting.
  • the shape of the earphones is important here, as two sound transducers and a microphone can be accommodated in such a space-saving manner that they can still be worn comfortably by the listener. Further in figure 6 various arrangements of the sound transducers in an earphone are specified.

Description

Die vorliegende Schrift betrifft eine Vorrichtung, ein Verfahren, eine Signalaufbereitungseinheit, Daten zur akustischen Wiedergabe, ein Schallwandler, insbesondere ein Kopfhörer oder ein Ohrhörer, und ein Softwareprodukt zur Verbesserung einer Schallwiedergabe.The present document relates to a device, a method, a signal processing unit, data for acoustic reproduction, a sound transducer, in particular headphones or earphones, and a software product for improving sound reproduction.

Aus der Druckschrift US 2007/154049 A1 ist eine Vorrichtung gemäß dem Oberbegriff von Anspruch 1 bekannt. Weiterer Stand der Technik kann der Druckschrift WO 2014/138735 A1 und der Druckschrift US 2008/107287 A1 entnommen werden.From the pamphlet U.S. 2007/154049 A1 a device according to the preamble of claim 1 is known. Further prior art can be found in the publication WO 2014/138735 A1 and the print U.S. 2008/107287 A1 be removed.

Aus dem Stand der Technik sind Probleme bei der Wiedergabe von Schallsignalen über Kopfhörer bekannt, sodass wenn Schallereignisse über Kopfhörer abgestrahlt werden, diese Schallereignisse vom menschlichen Gehör unter bestimmten Bedingungen deutlich anders wahrgenommen als bei vom Ohr entfernten Schallquellen wie z.B. Lautsprecher. Trotz Anwendung von Außenohrübertragungsfunktionen kann es zu räumlichen Abbildungsfehlern (Elevationswinkel) kommen, wenn sich die Schallquelle in der Medianebene (gedachte Ebene senkrecht zwischen den Ohren) des Hörers befindet. Bei solchen korrelierten Signalen fehlen dann interaurale Pegel und Laufzeitunterschiede. Insbesondere bei vorne befindlichen Schallquellen werden die Schallsignale oft im Kopf oder sehr nah am Kopf wahrgenommen (sogenannte Im-Kopf- Lokalisation). Die IKL tritt häufig in Verbindung mit einer störenden Elevation auf (Lokalisation oben im Kopf). Nur durch technisch aufwendige optische Unterstützung oder durch Headtracking können diese Probleme bisher verbessert werden. Weitere Abbildungsfehler betreffen die wahrgenommene Lautstärke von Schallsignalen, die über Kopfhörer abgestrahlt werden. Gegenüber entfernten Schallquellen werden Kopfhörer unter Umständen als leiser wahrgenommen, obwohl der Schalldruckpegel gleich ist. Es hat sich gezeigt, dass dieser sogenannte SLD-Effekt (Sound Pressure Loudness Divergenz) stets zusammen mit der Im-Kopf-Lokalisation auftritt.Problems with the reproduction of sound signals via headphones are known from the prior art, so that when sound events are emitted via headphones, these sound events are perceived by the human ear significantly differently under certain conditions than with sound sources that are distant from the ear, such as loudspeakers. Despite the use of transfer functions in the outer ear, spatial imaging errors (elevation angle) can occur if the sound source is in the median plane (imaginary plane perpendicular between the ears) of the listener. With such correlated signals, interaural levels and transit time differences are then missing. In the case of sound sources in front, in particular, the sound signals are often perceived in the head or very close to the head (so-called in-head localization). The ICS often occurs in connection with a disturbing elevation (location at the top of the head). So far, these problems can only be improved by technically complex optical support or by head tracking. Other aberrations relate to the perceived volume of sound signals emitted via headphones. Compared to distant sound sources, headphones may be perceived as quieter, even though the sound pressure level is the same. It has been shown that this so-called SLD effect (Sound Pressure Loudness Divergence) always occurs together with the localization in the head.

Somit liegt der vorliegenden Erfindung die Aufgabe zugrunde die obigen Probleme zu beheben oder zumindest zu verringern, um eine verbesserte Schallwiedergabe zu realisieren.The present invention is therefore based on the object of eliminating or at least reducing the above problems in order to achieve improved sound reproduction.

Die hier gestellte Aufgabe wird erfindungsgemäß durch den Gegenstand von Anspruch 1 gelöst.The object set here is achieved according to the invention by the subject matter of claim 1 .

Im Folgenden wird eine nicht beanspruchte Vorrichtung zur akustischen Wiedergabe vorgeschlagen, wobei die Vorrichtung versehen ist mit einem ersten elektroakustischen Schallwandler zum Erzeugen eines Schallfeldes und wobei der erste elektroakustische Schallwandler einen Eingang zum Empfangen eines elektrischen Signals zum Erzeugen des entsprechenden Schallfeldes aufweist, wobei die Vorrichtung dadurch gekennzeichnet ist, dass weiter eine Einrichtung vorgesehen ist, welche eingerichtet ist eine akustische Wechselwirkung mit dem erzeugten Schallfeld des ersten elektroakustischen Schallwandlers einzugehen, um ein modifiziertes Schallfeld zu erzeugen und wobei vorgesehen ist, dass das modifizierte Schallfeld einen vorbestimmten akustischen Impedanzwert aufweist.In the following, a non-claimed device for acoustic reproduction is proposed, wherein the device is provided with a first electro-acoustic sound transducer for generating a sound field and wherein the first electro-acoustic sound transducer has an input for receiving an electrical signal for generating the corresponding sound field, the device thereby characterized in that a device is also provided which is set up to enter into an acoustic interaction with the sound field generated by the first electroacoustic sound transducer in order to generate a modified To generate a sound field and it is provided that the modified sound field has a predetermined acoustic impedance value.

Die Einrichtung kann zumindest ein akustischer Resonator und/oder zumindest ein weiterer elektroakustischer Schallwandler sein. Somit wird ein elektroakustischer Schallwandler entweder in Zusammenarbeit mit zumindest einem weiteren elektroakustischen Schallwandler oder in Zusammenarbeit mit zumindest einem Resonator vorgeschlagen. Hierbei gilt für beide der vorgenannten Varianten, dass eine akustische Wechselwirkung darauf gerichtet ist, ein modifiziertes Schallfeld zu erzeugen, sodass das modifizierte Schallfeld einen vorbestimmten akustischen Impedanzwert aufweist. Alternativ ist vorgesehen, dass beide der vorgenannten Varianten eingerichtet sind, unterschiedliche Impedanzwerte bzw. variable Impedanzwerte für das modifizierte Schallfeld einzustellen.The device can be at least one acoustic resonator and/or at least one further electroacoustic sound transducer. An electroacoustic sound transducer is therefore proposed either in cooperation with at least one further electroacoustic sound transducer or in cooperation with at least one resonator. In this case, for both of the aforementioned variants, it applies that an acoustic interaction is aimed at generating a modified sound field, so that the modified sound field has a predetermined acoustic impedance value. Alternatively, it is provided that both of the aforementioned variants are set up to set different impedance values or variable impedance values for the modified sound field.

Der erste elektroakustischer Schallwandler und/oder der weitere elektroakustische Schallwandler kann eingerichtet sein, ein elektrisches Signal in Abhängigkeit einer Impedanzinformation zu empfangen und in ein akustisches Signal umzusetzen damit durch die entsprechende akustische Wechselwirkung das modifizierte Schallfeld einen vorbestimmten akustischen Impedanzwert aufweist.The first electroacoustic sound transducer and/or the further electroacoustic sound transducer can be set up to receive an electrical signal as a function of impedance information and to convert it into an acoustic signal so that the modified sound field has a predetermined acoustic impedance value as a result of the corresponding acoustic interaction.

Der akustische Resonator kann als Ausnehmung, Loch oder als Helmholtzresonator ausgeführt sein, wobei diese insbesondere am Gehäuse der Vorrichtung, insbesondere im inneren und/oder äußeren Gehäusebereich realisiert ist.The acoustic resonator can be designed as a recess, a hole or as a Helmholtz resonator, with this being implemented in particular on the housing of the device, in particular in the inner and/or outer housing area.

Der erste elektroakustische Schallwandler und/oder der weitere elektroakustische Schallwandler und/oder der akustische Resonator kann mittels eines entsprechenden elektrischen Signals steuerbar sein, um unterschiedliche akustische Impedanzwerte im modifizierten Schallfeld einzustellen. Hierbei kann die Steuerung entweder direkt über das einzuspeisende elektrische Audiosignal und/oder über eine gesonderte Signalisierung erfolgen.The first electroacoustic sound converter and/or the further electroacoustic sound converter and/or the acoustic resonator can be controllable by means of a corresponding electrical signal in order to set different acoustic impedance values in the modified sound field. In this case, the control can take place either directly via the electrical audio signal to be fed in and/or via a separate signalling.

Ferner wird eine der Vorrichtungen der obigen Art vorgeschlagen, wobei die Vorrichtung eine Messeinheit, insbesondere ein Mikrofon zum Messen eines Schallfeldparameters aufweist, um daraus einen gegebenen Impedanzwert im Schallfeld ableiten zu können, um ein Erzeugen eines anschließenden elektrischen Anpassungssignals zu ermöglichen. Hierbei wird ausdrücklich darauf hingewiesen, dass eine oder mehrere der erfindungsgemäß vorgeschlagenen Ausführungsformen eingerichtet sind, über eine Regelschleife aktiv eine Messung vorzunehmen, um einen aktuellen Impedanzwert im Schallfeld zu messen, um eine anschließend Nachregelung durch Generieren eines geeigneten Signals zu realisieren.Furthermore, one of the devices of the above type is proposed, the device having a measuring unit, in particular a microphone for measuring a sound field parameter in order to be able to derive a given impedance value in the sound field in order to enable a subsequent electrical adaptation signal to be generated. It is expressly pointed out here that one or more of the embodiments proposed according to the invention are set up to actively carry out a measurement via a control loop in order to measure a current impedance value in the sound field in order to subsequently implement readjustment by generating a suitable signal.

Die Vorrichtung ist als Kopfhörer oder als Ohrhörer ausgeführt. Insbesondere kann ein entsprechendes Gehäuse zum Aufnehmen der Vorrichtung vorgesehen, sowie als Helm ausgeführt sein.The device is designed as a headphone or earphone. In particular, a corresponding housing for accommodating the device can be provided and designed as a helmet.

Des Weiteren wird eine Vorrichtung vorgeschlagen wobei die Position und/oder die Ausrichtung des ersten elektroakustischer Schallwandlers und/oder des weiteren elektroakustischen Schallwandlers und/oder des akustischen Resonators veränderbar ausgeführt ist und insbesondere mittels eines geeigneten elektrischen Signals verändert und bedarfsweise eingestellt werden kann. Hierbei ist insbesondere eine Variabilität in der Position und/oder Ausrichtung eines Schallwandlers oder Resonator zu verstehen. Weiter kann im Falle eines Resonators der Frequenzgang und/oder die Schwingmasse steuerbar ausgestaltet sein.Furthermore, a device is proposed in which the position and/or the alignment of the first electroacoustic sound transducer and/or the further electroacoustic sound transducer and/or the acoustic resonator is designed to be changeable and can be changed and adjusted as required, in particular by means of a suitable electrical signal. This means in particular a variability in the position and/or orientation of a sound transducer or resonator. Furthermore, in the case of a resonator, the frequency response and/or the oscillating mass can be designed to be controllable.

Gemäß einem weiteren Aspekt wird eine Signalaufbereitungseinheit zum Aufbereiten von Signalen zur akustischen Wiedergabe vorgeschlagen, welche dazu eingerichtet ist, in Abhängigkeit eines ersten Signals, welches zum Erzeugen eines ersten Schallfeldes vorgesehen ist, ein weiteres Signal zur akustischen Wechselwirkung mit dem ersten Schallfeld aufzubereiten, um ein modifiziertes Schallfeld zu erzeugen, wobei vorgesehen ist, dass das modifizierte Schallfeld einen vorbestimmten akustischen Impedanzwert aufweist.According to a further aspect, a signal processing unit for processing signals for acoustic reproduction is proposed, which is set up to process a further signal for acoustic interaction with the first sound field as a function of a first signal which is provided for generating a first sound field in order to to generate a modified sound field, it being provided that the modified sound field has a predetermined acoustic impedance value.

Ferner wird eine Signalaufbereitungseinheit vorgeschlagen, wobei die Signalaufbereitungseinheit in Abhängigkeit von zumindest einem Schalldrucksignal und/oder einer Schallschnelle des ersten Signals einen Faktor bereitstellt, um ein modifiziertes Schallfeld zu erzeugen, wobei vorgesehen ist, dass das modifizierte Schallfeld einen vorbestimmten akustischen Impedanzwert aufweist.Furthermore, a signal processing unit is proposed, the signal processing unit providing a factor depending on at least one sound pressure signal and/or a sound velocity of the first signal in order to generate a modified sound field, it being provided that the modified sound field has a predetermined acoustic impedance value.

Ferner wird eine Signalaufbereitungseinheit vorgeschlagen, wobei das Schalldrucksignal und/oder die Schallschnelle mittels einer Messung, insbesondere mittels von zumindest einem Mikrofon abgeleitet wird.Furthermore, a signal processing unit is proposed, the sound pressure signal and/or the sound velocity being derived by means of a measurement, in particular by means of at least one microphone.

Ferner wird eine Signalaufbereitungseinheit vorgeschlagen, wobei die Signalaufbereitungseinheit eingerichtet ist, ein Impedanzsignal aufzubereiten, damit das Impedanzsignal einem Schallwandler bereitgestellt werden kann.Furthermore, a signal processing unit is proposed, the signal processing unit being set up to process an impedance signal so that the impedance signal can be provided to a sound transducer.

Ferner wird eine Signalaufbereitungseinheit vorgeschlagen, wobei das modifizierte Schallfeld einen zeitlich vorbestimmten variablen akustischen Impedanzwert aufweist.Furthermore, a signal processing unit is proposed, the modified sound field having a temporally predetermined variable acoustic impedance value.

Ferner wird eine Signalaufbereitungseinheit vorgeschlagen, wobei die Signalaufbereitungseinheit eingerichtet ist, weitere relevante akustische Parameter, insbesondere geometrische Parameter eines Kopfhörers oder eines Ohrhörers zu verarbeiten, um für das modifizierte Schallfeld den vorbestimmten akustischen Impedanzwert einzustellen. Ferner werden Daten zur akustischen Wiedergabe vorgeschlagen, welche Datenelemente zur akustischen Wechselwirkung mit einem ersten Schallfeld aufweisen, wobei die Datenelemente eingerichtet sind, ein modifiziertes Schallfeld zu erzeugen, wobei vorgesehen ist, dass das modifizierte Schallfeld einen vorbestimmten akustischen Impedanzwert aufweist.A signal processing unit is also proposed, the signal processing unit being set up to process further relevant acoustic parameters, in particular geometric parameters of a headphone or an earphone, in order to set the predetermined acoustic impedance value for the modified sound field. Furthermore, data for acoustic reproduction are proposed which have data elements for acoustic interaction with a first sound field, the data elements being set up to generate a modified sound field, it being provided that the modified sound field has a predetermined acoustic impedance value.

Ferner werden Daten vorgeschlagen, wobei die Datenelemente eingerichtet und derart ausgestaltet sind, in ein entsprechendes elektrisches Signal umgesetzt zu werden, um in einem späteren Schritt von einem akustischen Resonator und/oder von zumindest einem elektroakustischen Schallwandler wiedergegeben zu werden.Furthermore, data are proposed, the data elements being set up and designed in such a way that they can be converted into a corresponding electrical signal in order to be reproduced in a later step by an acoustic resonator and/or by at least one electroacoustic sound transducer.

Die Datenelemente können eine Impedanzinformation aufweisen.The data elements can have impedance information.

Ferner werden Daten vorgeschlagen, wobei die Daten Steuerdaten zum Steuern des akustischen Resonators und/oder des zumindest einem elektroakustischen Schallwandlers beinhalten.Furthermore, data are proposed, the data containing control data for controlling the acoustic resonator and/or the at least one electro-acoustic sound transducer.

Ferner werden Daten vorgeschlagen, wobei die Daten mittels einer der obigen Signalaufbereitungseinheiten erzeugt werden.Furthermore, data are proposed, with the data being generated using one of the above signal processing units.

Ferner wird eine Verarbeitungsvorrichtung zum Verarbeiten und/oder Wiedergeben der Daten vorgeschlagen, wobei die Daten einer der obigen Datenvarianten entsprechen und wobei die Verarbeitungsvorrichtung insbesondere ein Smartphone, Notebook, Laptop, Tablet-PC, Personal-Computer, Drahtlossender oder Server ist.Furthermore, a processing device for processing and/or reproducing the data is proposed, the data corresponding to one of the above data variants and the processing device being in particular a smartphone, notebook, laptop, tablet PC, personal computer, wireless transmitter or server.

Ferner wird ein Schallwandler vorgeschlagen, wobei der Schallwandler zur Wiedergabe eines erzeugten Signals mittels einer der oben vorgeschlagenen Signalaufbereitungseinheiten und/oder von oben vorgeschlagenen Daten eingerichtet ist.Furthermore, a sound converter is proposed, the sound converter being set up for playing back a generated signal by means of one of the signal processing units proposed above and/or data proposed from above.

Ferner wird ein Softwareprodukt, welches auf einem Speichermedium gespeichert und von einer elektronischen Datenverarbeitungseinheit verarbeitet werden kann zum Realisieren einer der oben vorgestellten Signalaufbereitungseinheiten und/oder zur Erzeugung oder zur Wiedergabe von oben vorgestellten Daten angepasst ist. Ferner wird ein Verfahren zur akustischen Wiedergabe vorgeschlagen, wobei das Verfahren folgende Schritte aufweist: Erzeugen eines ersten Schallfeldes und Erzeugen eines zweiten Signals zur akustischen Wechselwirkung mit dem ersten Schallfeldes, um ein modifiziertes Schallfeld zu erzeugen, wobei vorgesehen ist, dass das modifizierte Schallfeld einen vorbestimmten akustischen Impedanzwert aufweist.Furthermore, a software product, which is stored on a storage medium and can be processed by an electronic data processing unit, is adapted to implement one of the signal processing units presented above and/or to generate or reproduce data presented above. Furthermore, a method for acoustic reproduction is proposed, the method having the following steps: generating a first sound field and generating a second signal for acoustic interaction with the first sound field in order to generate a modified sound field, it being provided that the modified sound field has a predetermined has acoustic impedance value.

Somit ist vorgesehen, dass neben dem Schalldruck auch Informationen über die Schallfeldimpedanz am Ohreingang berücksichtigt werden, um auch bei korrelierten Signalen aus der Medianebene zuverlässig spektrale Informationen zur Schallquellen-Lokalisation zu erhalten. Solche Impedanzinformationen kann das Gehör jedoch nur aus der Position des Trommelfells am Ende des Gehörgangs durchführen.It is therefore provided that, in addition to the sound pressure, information about the sound field impedance at the ear entrance is also taken into account in order to obtain reliable spectral information on the sound source localization even with correlated signals from the median plane receive. However, the hearing can only carry out such impedance information from the position of the eardrum at the end of the auditory canal.

Die Erfindung zeichnet sich insbesondere dadurch aus, dass ein Kopfhörer oder Ohrhörer als Teil eines erfindungsgemäßen Systems nicht nur das Schalldrucksignal, sondern auch die durch eine entfernte Schallquelle am Ohr erzeugte Schallfeldimpedanz am Ohr nachbildet, um negative Phänomene wie die IKL oder SLD zu verbessern oder ganz zu vermeiden. Im Unterschied zu der gegenwärtigen Binauraltechnik erhält der Kopfhörer idealerweise damit kein Schalldrucksignal, das kopfbezogene Schalldruckfrequenzgänge enthält, da sich diese bei richtig eingestellter Schallfeldimpedanz im Kopfhörer von selbst einstellen. Die sogenannte Außenohrübertragungsfunktion (HRTF) beschreibt damit nur noch die Beziehung zwischen den beiden Ohren. Im Folgenden wird das Verfahren beschrieben, wie die für das Gehör als relevant angesehene Schallfeldimpedanz definiert ist und wie diese gemessen werden kann.The invention is characterized in particular by the fact that a headphone or earphone as part of a system according to the invention not only simulates the sound pressure signal, but also the sound field impedance generated by a distant sound source at the ear in order to improve negative phenomena such as IKL or SLD or entirely to avoid. In contrast to current binaural technology, the headphones ideally do not receive a sound pressure signal that contains head-related sound pressure frequency responses, since these are self-adjusting if the sound field impedance is set correctly in the headphones. The so-called outer ear transfer function (HRTF) only describes the relationship between the two ears. In the following, the procedure is described as to how the sound field impedance considered relevant for hearing is defined and how this can be measured.

Ferner wird ein Verfahren zur Messung kopfbezogener Schallfeldimpedanzen von Kopfhörern vorgeschlagen.Furthermore, a method for measuring head-related sound field impedances of headphones is proposed.

Für die Entwicklung eines Kopfhörers ist ein Messverfahren notwendig, das anzeigt, ob ein Kopfhörer eine hinsichtlich der Vermeidung von IKL und SLD relevante Schallfeldimpedanz erzeugt. Das ist dann angezeigt, wenn das Messverfahren bei Kopfhörerbeschallung das gleiche Ergebnis liefert wie bei Beschallung mit Lautsprecher. Das vorgeschlagene Messverfahren erweitert das bekannte Verfahren zur Bestimmung der kopfbezogenen Schalldruck-Übertragungsfunktion (Außenohrübertragungsfunktion, HRTF) um eine zweite Übertragungsfunktion, die eine Information über die Schallfeldimpedanz enthält. Mit Hilfe eines geeigneten Kunstkopfes an dessen Gehörgangenden sich je ein sogenanntes Impedanz-Mikrofon befindet, das in der Lage ist, sowohl ein Druck-Signal als auch ein Schnellesignal einer Kraftquelle zu liefern (siehe unten), kann ein Messprüfstand aufgebaut werden, der sowohl für Lautsprecher als auch Kopfhörerbeschallung geeignet ist, um ein vom Schalldruck abhängiges Signal Sp und ein vom Schalldruck und der Schallfeldimpedanz abhängiges Signal Sz zu bestimmen (Figur 1).For the development of a headphone, a measurement method is required that indicates whether a headphone generates a sound field impedance that is relevant in terms of avoiding IKL and SLD. This is indicated when the measurement method with headphones provides the same result as with loudspeakers. The proposed measurement method expands the known method for determining the head-related sound pressure transfer function (outer ear transfer function, HRTF) by a second transfer function that contains information about the sound field impedance. With the help of a suitable artificial head at the end of each ear canal there is a so-called impedance microphone, which is able to deliver both a pressure signal and a speed signal from a power source (see below), a measurement test bench can be set up that can be used both for Loudspeaker as well as headphone sound reinforcement is suitable to determine a signal S p dependent on the sound pressure and a signal Sz dependent on the sound pressure and the sound field impedance ( figure 1 ).

Bei Lautsprecherbeschallung des Kunstkopfes durch das Signal S ergeben sich die Signale Sp und Sz an den Ausgängen der Mikrofone für das linke und rechte Ohr. Diese Signale sind abhängig von der Frequenz und vom Schalleinfallswinkel. Wird der Kunstkopf nun mit den gleichen Signalen über einen Kopfhörer (mit evtl. Signalaufbereitung) beschallt, werden die Signale S'p und S'Z gemessen.When the artificial head is exposed to loudspeakers by the signal S, the signals S p and Sz result at the outputs of the microphones for the left and right ear. These signals depend on the frequency and the angle of incidence of the sound. If the artificial head is now exposed to the same signals via headphones (with possible signal processing), the signals S' p and S' Z are measured.

Für einen Kopfhörer, der ebenfalls mit dem Signal Sp versorgt wird und der am Ohr einem Lautsprecher vergleichbare Schallfeldverhältnisse nachzubilden, gilt: S p = k S p und S Z = k S Z .

Figure imgb0001
For headphones, which are also supplied with the signal S p and which simulate sound field conditions comparable to a loudspeaker, the following applies: S p = k S p and S Z = k S Z .
Figure imgb0001

Hierbei ist anzumerken, dass der Prüfstand für den Kopfhörer kein Kunstkopf sein muss. Ein vergleichbares Messverfahren, das sich jedoch nur auf den Schalldruck beschränkt, wird in der Binauraltechnik schon länger angewendet, um auch in Kopfhörern räumlich wahrnehmbare Schallfelder zu erzeugen. Aus dem gemessenen Signal Sp kann eine Schalldruck-Übertragungsfunktion Hp bestimmt werden, die nicht mehr den Lautsprecherfrequenzgang enthält, indem man die kopfbezogenen Signale auf die Drucksignale einer Freifeldmessung ohne Kopf bezieht: H p = p Ohr / p Freifeld

Figure imgb0002
It should be noted here that the test bench for the headphones does not have to be an artificial head. A comparable measurement method, which is however limited to the sound pressure, has long been used in binaural technology to generate spatially perceptible sound fields in headphones. A sound pressure transfer function H p can be determined from the measured signal S p that no longer contains the loudspeaker frequency response by relating the head-related signals to the pressure signals of a free-field measurement without a head: H p = p Ear / p free field
Figure imgb0002

Hp beschreibt die Schalldruckänderung durch Anwesenheit eines menschlichen Kopfes (Körper) und die Beziehung zwischen den Ohren. Diese in der gegenwärtigen Binauraltechnik auch als Außenohrübertragungsfunktion (oder HRTF) bezeichnete Funktion muss bei einem neuen Kopfhörer mit Nachbildung der Schallfeldimpedanz jedoch um den Schalldruck korrigiert werden, den diese Feldimpedanz selbst erzeugt. Im Idealfall enthält Hp dann nur noch interaurale Beziehungen.H p describes the change in sound pressure caused by the presence of a human head (body) and the relationship between the ears. However, this function, also known as the outer ear transfer function (or HRTF) in current binaural technology, must be corrected for the sound pressure generated by this field impedance itself in a new headphone that simulates the sound field impedance. In the ideal case, H p then only contains interaural relationships.

Das Signal Sz ist neu und stellt gegenüber dem reinen Schalldrucksignal Sp erweiterte Informationen zum Schallfeld vor dem Ohr zur Verfügung. Es beschreibt den akustischen Widerstand am Ohreingang eines menschlichen Kopfes, den eine im Ohrkanal befindliche Kraftquelle Q spürt, wenn diese gegen ein äußeres Schallfeld eine Kraft FQ ausübt. Die Kraft FQ wird mittels einer geeigneten Mechanik (ein nicht näher beschriebenes Mikrofon) aus dem Druck im Ohrkanal abgeleitet und wirkt phasengenau mit dem Druck auf das Schallfeld zurück. Aus diesem Grund ist das Signal Sz auch vom Schalldruck abhängig. Die Kraftquelle Q ist dabei selbst der Kraft FF des äußeren Schallfeldes ausgesetzt. Die Kraftquelle Q prägt somit eine Kraft DFQ=FQ- FF in das Schallfeld ein und reagiert mit der Schnelle vQ auf die Schallfeldimpedanz ZF. Somit ist vQ ganz allgemein eine Funktion vom Schalldruck p und von der Schallfeldimpedanz ZF: v Q = f p Z F

Figure imgb0003
The signal Sz is new and, compared to the pure sound pressure signal S p , provides additional information about the sound field in front of the ear. It describes the acoustic resistance at the ear entrance of a human head, which a force source Q located in the ear canal feels when it exerts a force F Q against an external sound field. The force F Q is derived from the pressure in the ear canal by means of a suitable mechanism (a microphone that is not described in detail) and acts back on the sound field in phase with the pressure. For this reason the signal Sz is also dependent on the sound pressure. The force source Q is itself exposed to the force F F of the external sound field. The force source Q thus impresses a force D FQ =F Q -F F into the sound field and reacts with the velocity v Q to the sound field impedance Z F . Thus v Q is generally a function of the sound pressure p and the sound field impedance Z F : v Q = f p Z f
Figure imgb0003

Ähnlich der kopfbezogenen Schalldruck-Übertragungsfunktion Hp kann aus dem Signal vQ eine Impedanz-Übertragungsfunktion Hz ermittelt werden, indem man vQ auf das Signal einer Freifeldmessung ohne Kopf bezieht: H Z = v Q Ohr / v Q Freifeld

Figure imgb0004
Similar to the head-related sound pressure transfer function H p , an impedance transfer function Hz can be determined from the signal v Q by relating v Q to the signal of a free-field measurement without a head: H Z = v Q Ear / v Q free field
Figure imgb0004

Hz stellt somit eine Erweiterung der bisherigen kopfbezogenen Eigenschaften dar und kann dazu benutzt werden die Eigenschaften von Kopfhörern bezüglich der akustischen Schallfeldimpedanz vor dem Ohr zu charakterisieren.Hz thus represents an extension of the previous head-related properties and can be used to characterize the properties of headphones with regard to the acoustic sound field impedance in front of the ear.

Die Anwendung des beschriebenen Verfahrens zur Messung des Signals Sz kombiniert mit einem Drucksensor wird hier als Impedanz-Mikrofon bezeichnet. Es ist in der Lage sowohl ein Schalldrucksignal als auch ein von der Schallfeldimpedanz abhängiges Signal zu liefern.The application of the method described for measuring the signal Sz combined with a pressure sensor is referred to here as an impedance microphone. It is able to deliver both a sound pressure signal and a signal dependent on the sound field impedance.

Mit Hilfe der 2-Mikrofon-Methode werden Schallfeldimpedanz-Messungen am Außenohr einer Versuchsperson durchgeführt, um die Unterschiede bei der Beschallung mit Kopfhörern und Lautsprechern zu charakterisieren. Dabei werden außerdem Zusammenhänge zu den subjektiven Hörempfindungen IKL und SLD untersucht. Dabei hat sich herausgestellt, dass eine Messung der X-Komponente der Schallfeldimpedanz die Unterschiede recht gut abbildet und eine Vorstellung über die Größe und die Frequenz- und Winkelabhängig der Schallfeldimpedanz vermittelt.With the help of the 2-microphone method, sound field impedance measurements are carried out on the outer ear of a test subject in order to characterize the differences in sound exposure with headphones and loudspeakers. Connections to the subjective hearing sensations IKL and SLD are also examined. It turned out that a measurement of the X-component of the sound field impedance depicts the differences quite well and gives an idea of the size and the frequency and angle dependence of the sound field impedance.

Diese Impedanzmessungen sind nicht identisch mit jenen, die aus dem Ohrkanal heraus mit Impedanz-Mikrofonen und der oben beschriebenen Methode durchgeführt werden. Sie gelten nur für eine Komponente des Schallfeldes vor dem Ohr.These impedance measurements are not identical to those made from the ear canal using impedance microphones and the method described above. They only apply to one component of the sound field in front of the ear.

Es werden weitere folgende Methoden zur Beeinflussung der Schallfeldimpedanz vor dem Ohr in einem Kopfhörer oder Ohrhörer vorgestellt.Further following methods for influencing the sound field impedance in front of the ear in a headphone or earphone are presented.

Für einen Kopfhörer oder Ohrhörer, der sich durch Verbesserung der Lokalisation in der Medianebene auszeichnet, insbesondere betreffend die Vorneortung, sind die Schallfeldverhältnisse vor dem Ohr eines menschlichen Kopfes bei Beschallung durch eine entfernte Schallquelle modelliert werden. Im Idealfall werden an den Kopfhörer ein kopfbezogenes Impedanz-Signal und ein frequenzunabhängiges Schalldrucksignal übergeben. Ein Schwingungswandler prägt ein proportionales Schnellesignal in die Kopfhörerkammer ein und erzeugt an der vorgegebenen Schallfeldimpedanz den entsprechenden kopfbezogenen Schalldruck. Alternativ können auch vereinfachte Systeme sinnvoll sein, bei denen die wichtigsten Eigenschaften der realen Schallfeldimpedanz am Ohr auf einen Kopfhörer übertragen werden.The sound field conditions in front of the ear of a human head when exposed to sound from a distant sound source are modeled for a headphone or earphone that is characterized by an improvement in the localization in the median plane, in particular with regard to the forward localization. Ideally, a head-related impedance signal and a frequency-independent sound pressure signal are transmitted to the headphones. A vibration transducer impresses a proportional velocity signal into the headphone chamber and generates the corresponding head-related sound pressure at the specified sound field impedance. Alternatively, simplified systems can also be useful, in which the most important properties of the real sound field impedance at the ear are transferred to headphones.

Eine erfindungsgemäße Ausführungsform mit an die Realität angenäherte Modellierung zeichnet sich durch eine oder mehrere der folgenden Eigenschaften aus:

  1. a) die Schallfeldimpedanz vor dem Ohr soll einen überwiegend positiven Blindwiderstand im Frequenzbereich von ca. 100 Hz bis 2.5 kHz erhalten und/oder
  2. b) bei Beschallung durch eine entfernte Schallquelle aus der Vorne-Richtung entstehen am Ohr zwei typische Schalldruckminima. In der Regel befinden sie sich in schmalen Frequenzbereichen um ca. 1 kHz und ca.2.5 kHz, je nach Kopf- und Körpergeometrie. Diese entstehen durch Minima in der Schallfeldimpedanz als Folge von Interferenzen. Diese Schalldruckminima werden erfindungsgemäß an den Kopfhörer nicht als Schalldrucksignal übergeben, vielmehr muss der Kopfhörer die entsprechende Schallfeldimpedanz annehmen, sodass als Folge davon diese Schalldruckminima entstehen und/oder
  3. c) zur Realisierung von Richtungshören in der gesamten Medianebene werden die Minima in der Schallfeldimpedanz mit zunehmendem Schalleinfallswinkel zu tiefen Frequenzen verschoben, und zwar entsprechend dem Vorbild wie dies am Kopf durch Beschallung mit einer entfernten Schallquelle geschieht. Bei Schalleinfall von hinten sind die Minima in der Schallfeldimpedanz stark gedämpft oder verschwinden vollständig und/oder
  4. d) erfindungsgemäß wird insbesondere eine Kalibriermöglichkeit am Kopfhörer realisiert, um individuelle Unterschiede von Hörern optimal ausgleichen zu können. Das kann sowohl die Größenordnung der Schallfeldimpedanz als auch die Lage der charakteristischen Minima beinhalten.
An embodiment according to the invention with modeling that approximates reality is characterized by one or more of the following properties:
  1. a) the sound field impedance in front of the ear should have a predominantly positive reactance in the frequency range from approx. 100 Hz to 2.5 kHz and/or
  2. b) when exposed to sound from a distant sound source from the front direction, two typical sound pressure minima occur at the ear. They are usually found in narrow frequency ranges around 1 kHz and 2.5 kHz, depending on head and body geometry. These arise from minima in the sound field impedance as a result of interference. According to the invention, these sound pressure minima are not sent to the headphones as a sound pressure signal handed over, rather the headphones must accept the corresponding sound field impedance, so that as a result these sound pressure minima arise and/or
  3. c) In order to achieve directional hearing in the entire median plane, the minima in the sound field impedance are shifted to low frequencies as the angle of incidence of the sound increases, in accordance with the example of how this happens on the head when exposed to sound from a distant sound source. In the case of sound incidence from behind, the minima in the sound field impedance are strongly damped or disappear completely and/or
  4. d) according to the invention, in particular, a calibration option is implemented on the headphones in order to be able to optimally compensate for individual differences between listeners. This can include both the order of magnitude of the sound field impedance and the position of the characteristic minima.

Im Folgenden werden Vorrichtungen, Methoden und Verfahren vorgestellt, die in der Lage sind, die Schallfeldimpedanz eines Kopfhörers zu beeinflussen.Devices, methods and processes that are able to influence the sound field impedance of a headphone are presented below.

Gemäß Figur 2 wird eine Modellierung der Schallfeldimpedanz mit Hilfe von Schallwandler-Paaren realisiert. Hierzu wird neben dem Schalldruck am Ohr eine bestimmte Schallfeldimpedanz erreicht, und zwar durch den Einsatz von zwei Schallwandlern in einer Kopfhörerkapsel. Mit einer geeigneten Signalverarbeitung kann die gewünschte Schallfeldimpedanz in der angeordneten Richtung beeinflusst werden. Dazu werden mit einer geeigneten Impedanz-Messmethode (2-Mikrofon-Methode) zunächst die Schalldrücke p1, p2 und die Schallschnellen v1, v2 der einzelnen Schallwandler bestimmt oder durch vorher bestimmte Schalldrücke und Schallschnellen basierend auf geometriebezogenen Werten. Daraus kann dann ein Faktor kF berechnet werden, der den Signalunterschied beider Schallwandler beschreibt. Es können mehrere Richtungen beeinflusst werden, indem weitere Lautsprecherpaare in anderen Richtungen angeordnet werden. Figur 8 zeigt ein einfaches Prinzip mit einer Signalaufbereitung, die das Signal K2 für den zweiten Lautsprecher in Abhängigkeit des am Eingang vorliegenden Wertes der Schallfeldimpedanz berechnet. Die Signalaufbereitung kann auch Teil einer Computersimulation sein, wenn sich ZFx zeitlich ändert, wie bei bewegten Schallquellen oder bei Anwendung von Head-Trackern. p1, p2 und v1, v2 werden aus Einzelmessungen der Schallwandler Lsp1,2 mit Hilfe der 2-Mikrofon-Methode bestimmt. Sp ist das Schalldrucksignal und ZFx die Impedanz-Information.According to figure 2 a modeling of the sound field impedance is realized with the help of sound transducer pairs. For this purpose, in addition to the sound pressure at the ear, a specific sound field impedance is achieved through the use of two sound transducers in a headphone capsule. With suitable signal processing, the desired sound field impedance can be influenced in the arranged direction. For this purpose, the sound pressures p 1 , p 2 and the sound velocities v 1 , v 2 of the individual sound transducers are first determined using a suitable impedance measurement method (2-microphone method) or by previously determined sound pressures and sound velocities based on geometry-related values. A factor k F can then be calculated from this, which describes the signal difference between the two sound transducers. Multiple directions can be influenced by arranging additional pairs of speakers in other directions. FIG. 8 shows a simple principle with signal processing that calculates the signal K 2 for the second loudspeaker as a function of the value of the sound field impedance present at the input. Signal conditioning can also be part of a computer simulation when Z Fx changes over time, as with moving sound sources or when using head trackers. p 1 , p 2 and v 1 , v 2 are determined from individual measurements of the sound transducers Lsp1,2 using the 2-microphone method. S p is the sound pressure signal and Z Fx is the impedance information.

Gemäß Figur 3 wird eine Modellierung der Schallfeldimpedanz mit passiven akustischen Resonatoren vorgeschlagen. Mit Hilfe von Helmholzresonatoren kann die Schallfeldimpedanz in einem Kopfhörer zu positiven Reaktanzen verändert werden. Der Resonator besteht aus einem Rohr mit beliebig geformter Querschnittsfläche, dessen eine Öffnung in das Volumen zwischen Ohr und dem Schallwandler ragt. Hierbei können auch andere Resonatoren zum Einsatz kommen. Die beschleunigte Luft im Rohr stellt eine Masse dar, die zusammen mit der Steifigkeit des Luftvolumens ein Resonanz- System bildet. Der Masse-Charakter des Schallfeldes stellt sich oberhalb der Resonanzfrequenz ein. Mit einem Strömungswiderstand kann außerdem die Bandbreite und die Güte des Systems beeinflusst werden. Es sind auch mehrere Resonatoren in Kombination realisierbar.According to figure 3 a modeling of the sound field impedance with passive acoustic resonators is proposed. With the help of Helmholz resonators, the sound field impedance in headphones can be changed to positive reactances. The resonator consists of a tube with any cross-sectional area, one opening of which is in the volume between the ear and the sound transducer protrudes. Other resonators can also be used here. The accelerated air in the tube represents a mass, which together with the rigidity of the air volume forms a resonance system. The mass character of the sound field occurs above the resonance frequency. The bandwidth and the quality of the system can also be influenced with a flow resistance. A combination of several resonators can also be implemented.

Gemäß einer erfindungsgemäßen Ausführungsform und unter Verweis auf Figur 4 wird eine Modellierung der Schallfeldimpedanz mit aktiven elektroakustischen Systemen vorgeschlagen. Mit einem aus Mikrofon, Schallwandler, Verstärker und einer Nachbildungsfunktion bestehenden System lassen sich gezielt akustische Impedanzen modellieren. Einfache analog realisierbare Beispiele sind Massen, Federn, Strömungswiderstände oder Resonatoren. Digitale Netzwerke sind erheblich vielseitiger, setzen jedoch sehr geringe Latenzzeiten voraus. Das Prinzip basiert auf der Modellierung des Verhältnisses von Druck und Schnelle in der KH-Druckkammer. Wichtig für die korrekte Funktion sind die Druck-Signal-Proportionalität des Mikrofons M und die Signal-Membranschnelle-Proportionalität des Wandlers WZ. Eine Nachbildungsfunktion beschreibt den Kehrwert der gewünschten akustischen Impedanz ZF in Form einer Übertragungsfunktion Ua/Ue=v/p=l/ZF. Die Nachbildungsfunktion reagiert auf das Drucksignal am Eingang mit einem Geschwindigkeitssignal am Ausgang. Dieses Signal steuert den Wandler WZ, dessen Membran eine proportionale Geschwindigkeit ausführt. Ist die bewegte Luftmenge groß genug, bestimmt er das Schallfeld im Kopfhörer. Die Nachbildung kann auch einen weiteren Eingang besitzen, mit dem die Form dieser Übertragungsfunktion gesteuert werden kann. Im Folgenden und unter Verweis auf Figur 5 wird eine Funktion zur analogen Nachbildung von Schallfeldimpedanzen im Kopfhörer aufgezeigt. Das Schallfeld am Ohr des menschlichen Kopfes im freien Schallfeld und bei tiefen Frequenzen kann man in einer ersten Näherung als ebene Welle und eine Streuwelle beschreiben, die von einer als "atmend" angesehenen Kugel reflektiert wird.According to an embodiment of the invention and with reference to FIG figure 4 a modeling of the sound field impedance with active electroacoustic systems is proposed. Acoustic impedances can be specifically modeled with a system consisting of a microphone, sound transducer, amplifier and a simulation function. Simple analog realizable examples are masses, springs, flow resistances or resonators. Digital networks are considerably more versatile, but require very low latency times. The principle is based on modeling the relationship between pressure and velocity in the KH pressure chamber. The pressure-signal proportionality of the microphone M and the signal-diaphragm velocity proportionality of the converter W Z are important for the correct function. A simulation function describes the reciprocal of the desired acoustic impedance Z F in the form of a transfer function Ua/Ue=v/p=l/Z F . The emulation function reacts to the pressure signal at the input with a speed signal at the output. This signal controls the transducer W Z , whose membrane executes a proportional speed. If the amount of air moved is large enough, it determines the sound field in the headphones. The replica can also have another input that can be used to control the shape of this transfer function. Below and with reference to figure 5 a function for analog simulation of sound field impedances in headphones is shown. The sound field at the ear of the human head in the free sound field and at low frequencies can be described in a first approximation as a plane wave and a scattered wave, which is reflected by a sphere considered to be "breathing".

An der Strahlungsimpedanz der "atmenden" Kugel entsteht ein Schalldruck, der sich mit der ebenen Welle überlagert. Die resultierende Schallfeldimpedanz ZF ist gleich: Z F = p v = Z 0 2 + 1 fk 0 a 1 + 1 fk 0 a

Figure imgb0005
A sound pressure is generated at the radiation impedance of the "breathing" sphere, which is superimposed on the plane wave. The resulting sound field impedance Z F is equal to: Z f = p v = Z 0 2 + 1 fk 0 a 1 + 1 fk 0 a
Figure imgb0005

In folgendem Beispiel sieht man wie eine analoge Nachbildung von 1/ZF aussehen kann. Das Beispiel zeigt eine zusätzliche Nachbildung 2 einer Interferenz, die zu einem Minimum im Schalldruck führt.The following example shows what an analog replica of 1/Z F can look like. The example shows an additional simulation 2 of an interference that leads to a minimum in the sound pressure.

Weiter gemäß Figur 6 wird ein Ohrhörer vorgeschlagen.Continue as per figure 6 an earphone is suggested.

Für Ohrhörer sind insbesondere die aktiven elektroakustischen Systeme zur Beeinflussung der Schallfeldimpedanz interessant. Wichtig ist hierbei die Formgebung der Ohrhörer, da zwei Schallwandler und ein Mikrofon so platzsparend unterzubringen sind, dass sie vom Hörer noch bequem getragen werden können. Weiter in Figur 6 sind verschiedene Anordnungen der Schallwandler in einem Ohrhörer angegeben.For earphones, in particular, the active electro-acoustic systems to influence the Sound field impedance interesting. The shape of the earphones is important here, as two sound transducers and a microphone can be accommodated in such a space-saving manner that they can still be worn comfortably by the listener. Further in figure 6 various arrangements of the sound transducers in an earphone are specified.

Claims (2)

  1. System for acoustic reproduction, comprising:
    headphones or earphones having a microphone (M) for measuring a sound field parameter, a first electroacoustic sound converter for generating a sound field and a second electroacoustic sound converter which is configured to enter upon acoustic interaction with the generated sound field of the first electroacoustic sound converter in order to generate a modified sound field; and
    a signal processing unit, wherein the signal processing unit is configured to control the first electroacoustic sound converter and the second electroacoustic sound converter by means of electrical signals;
    characterized in that
    the signal processing unit is furthermore configured to determine from the measured sound field parameter a given impedance value in the sound field and to derive therefrom an electrical adaptation signal and to control the second electroacoustic sound converter on the basis of the electrical adaptation signal in order set acoustic impedance values in the modified sound field according to an impedance signal (SZ).
  2. System for acoustic reproduction according to claim 1, wherein the position and/or the alignment of the first electroacoustic sound converter and/or of the second electroacoustic sound converter can be altered and, where required, set by means of a suitable electrical signal.
EP17797442.5A 2017-10-11 2017-10-11 Improved sound transducer Active EP3695620B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2017/056268 WO2019073283A1 (en) 2017-10-11 2017-10-11 Improved sound transducer

Publications (2)

Publication Number Publication Date
EP3695620A1 EP3695620A1 (en) 2020-08-19
EP3695620B1 true EP3695620B1 (en) 2023-07-05

Family

ID=60302425

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17797442.5A Active EP3695620B1 (en) 2017-10-11 2017-10-11 Improved sound transducer

Country Status (4)

Country Link
US (1) US11115752B2 (en)
EP (1) EP3695620B1 (en)
CN (1) CN111213390B (en)
WO (1) WO2019073283A1 (en)

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040017921A1 (en) * 2002-07-26 2004-01-29 Mantovani Jose Ricardo Baddini Electrical impedance based audio compensation in audio devices and methods therefor
WO2004092700A2 (en) * 2003-04-15 2004-10-28 Brüel & Kjær A method and device for determining acoustical transfer impedance
US20070154049A1 (en) * 2006-01-05 2007-07-05 Igor Levitsky Transducer, headphone and method for reducing noise
US8594351B2 (en) * 2006-06-30 2013-11-26 Bose Corporation Equalized earphones
US8027481B2 (en) * 2006-11-06 2011-09-27 Terry Beard Personal hearing control system and method
US20080170710A1 (en) * 2006-11-13 2008-07-17 Solteras, Inc. Headphone driver with improved frequency response
US8737664B2 (en) * 2008-06-18 2014-05-27 Apple Inc. In-the-ear porting structures for earbud
CH699322A1 (en) * 2008-08-14 2010-02-15 Alstom Technology Ltd METHOD FOR SETTING A Helmholtz resonator AND HELMHOLTZ RESONATOR FOR IMPLEMENTING THE PROCESS.
GB201021912D0 (en) * 2010-12-23 2011-02-02 Soundchip Sa Noise Reducing Earphone
CN103748903B (en) * 2011-06-01 2017-02-22 菲泰克系统有限公司 In-ear device incorporating active noise reduction
US9047855B2 (en) * 2012-06-08 2015-06-02 Bose Corporation Pressure-related feedback instability mitigation
US9173018B2 (en) * 2012-06-27 2015-10-27 Bose Corporation Acoustic filter
WO2014138735A1 (en) * 2013-03-08 2014-09-12 Gideon Duvall Selective ambient sound pass-through device for a user's ear canal and method of use therefore
DE102013205846A1 (en) * 2013-04-03 2014-10-09 Sennheiser Electronic Gmbh & Co. Kg Ear canal earpiece and earpiece unit for a listener
US8989427B2 (en) * 2013-06-06 2015-03-24 Bose Corporation Earphones
US20140363003A1 (en) * 2013-06-09 2014-12-11 DSP Group Indication of quality for placement of bone conduction transducers
CN104735569A (en) * 2013-12-19 2015-06-24 深圳富泰宏精密工业有限公司 Earphone device
US9301040B2 (en) * 2014-03-14 2016-03-29 Bose Corporation Pressure equalization in earphones
US9319780B2 (en) * 2014-04-10 2016-04-19 Nxp B.V. Smart passive speaker drive
US9578412B2 (en) * 2014-06-27 2017-02-21 Apple Inc. Mass loaded earbud with vent chamber
CN105323666B (en) * 2014-07-11 2018-05-22 中国科学院声学研究所 A kind of computational methods of external ear voice signal transmission function and application
TWM493215U (en) * 2014-08-06 2015-01-01 Jetvox Acoustic Corp Dual band coaxial earphone
US9621973B2 (en) * 2014-09-22 2017-04-11 Samsung Electronics Company, Ltd Wearable audio device
US9856030B2 (en) * 2014-11-26 2018-01-02 Rohr, Inc. Acoustic attenuation with adaptive impedance
GB2532794A (en) * 2014-11-28 2016-06-01 Digital Audio S A Versatile electroacoustic diffuser-absorber
US9615158B2 (en) * 2015-03-08 2017-04-04 Bose Corporation Earpiece
US9794694B2 (en) * 2015-03-11 2017-10-17 Turtle Beach Corporation Parametric in-ear impedance matching device
KR102445726B1 (en) * 2015-07-20 2022-09-21 삼성전자 주식회사 Method and apparatus for controlling output according to type of external output device
RU2750093C2 (en) * 2016-08-26 2021-06-22 Интеракустикс А/С On-site compensation during acoustic measurements
US10779078B2 (en) * 2016-09-22 2020-09-15 Steve SCHMIDT Acoustic enhancement apparatus for mobile devices
CN106303832B (en) * 2016-09-30 2019-12-27 歌尔科技有限公司 Loudspeaker, method for improving directivity, head-mounted equipment and method
US10206051B2 (en) * 2017-06-09 2019-02-12 Gn Hearing A/S Occlusion control system for a hearing instrument and a hearing instrument
EP3707919B1 (en) * 2017-08-31 2023-06-21 Sonova AG A hearing device adapted to perform a self-test and a method for testing a hearing device
US20210127199A1 (en) * 2019-10-28 2021-04-29 Mrspeakers, Llc Earphone with uniform acoustic impedance

Also Published As

Publication number Publication date
WO2019073283A1 (en) 2019-04-18
EP3695620A1 (en) 2020-08-19
US20200275195A1 (en) 2020-08-27
US11115752B2 (en) 2021-09-07
CN111213390A (en) 2020-05-29
CN111213390B (en) 2021-11-16

Similar Documents

Publication Publication Date Title
US10850060B2 (en) Tinnitus treatment system and method
Marrone et al. Tuning in the spatial dimension: Evidence from a masked speech identification task
EP3149969B1 (en) Determination and use of auditory-space-optimized transfer functions
EP1619928B1 (en) Hearing aid or communication system with virtual sources
EP1414268B1 (en) Method for adjusting and operating a hearing aid and a hearing aid
WO2019034656A1 (en) Loudspeaker assembly and headphones for spatially localizing a sound event
DE102011075006B3 (en) A method of operating a hearing aid with reduced comb filter perception and hearing aid with reduced comb filter perception
EP2503800A1 (en) Spatially constant surround sound
JP2012529843A (en) Method and apparatus for directional acoustic fitting of hearing aids
Trapeau et al. Fast and persistent adaptation to new spectral cues for sound localization suggests a many-to-one mapping mechanism
EP1471770B1 (en) Method for generating an approximated partial transfer function
DE112019001916T5 (en) AUDIO PROCESSING DEVICE, AUDIO PROCESSING METHOD AND PROGRAM
EP3695620B1 (en) Improved sound transducer
EP0484354B1 (en) Stereo headphone for the "in front" location of auditory events generated by stereo headphones
DE102013111295A1 (en) Device for comparison test of hearing aids
DE102021211278B3 (en) Procedure for determining an HRTF and hearing aid
DE10115430C1 (en) Automatic calibration method for hearing aid adjustment system uses feedback of reproduced tone sequence detected by hearing aid microphone for correction of transmission errors
DE102018210053A1 (en) Process for audio playback in a hearing aid
US20230418383A1 (en) Haptic system and method
US20230269536A1 (en) Optimal crosstalk cancellation filter sets generated by using an obstructed field model and methods of use
US20240031767A1 (en) Methods and Systems for Simulating Perception of a Sound Source
CH707585A2 (en) Method for measuring acoustic measurements on ear of individual, involves starting measurement sequence by actuating control element to measure in ear canal in operating conditions of hearing aid, and to transfer aid in second state
Diedesch Binaural-cue weighting in sound localization with open-fit hearing aids and in simulated reverberation
Lladó et al. The impact of head-worn devices in an auditory-aided visual search task
Stanley Toward adapting spatial audio displays for use with bone conduction: The cancellation of bone-conducted and air-conducted sound waves

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200504

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210601

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INSTITUT FUER RUNDFUNKTECHNIK GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230306

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1585915

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017015019

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231006

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231025

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231106

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231005

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231105

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231006

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231023

Year of fee payment: 7

Ref country code: DE

Payment date: 20231018

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705