EP3678803B1 - Method for producing a cast workpiece - Google Patents

Method for producing a cast workpiece Download PDF

Info

Publication number
EP3678803B1
EP3678803B1 EP18785245.4A EP18785245A EP3678803B1 EP 3678803 B1 EP3678803 B1 EP 3678803B1 EP 18785245 A EP18785245 A EP 18785245A EP 3678803 B1 EP3678803 B1 EP 3678803B1
Authority
EP
European Patent Office
Prior art keywords
workpiece
energy transmission
transmission surface
mold core
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18785245.4A
Other languages
German (de)
French (fr)
Other versions
EP3678803A1 (en
Inventor
Alois Boindecker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fill GmbH
Original Assignee
Fill GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fill GmbH filed Critical Fill GmbH
Publication of EP3678803A1 publication Critical patent/EP3678803A1/en
Application granted granted Critical
Publication of EP3678803B1 publication Critical patent/EP3678803B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D29/00Removing castings from moulds, not restricted to casting processes covered by a single main group; Removing cores; Handling ingots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D29/00Removing castings from moulds, not restricted to casting processes covered by a single main group; Removing cores; Handling ingots
    • B22D29/001Removing cores
    • B22D29/005Removing cores by vibrating or hammering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D31/00Cutting-off surplus material, e.g. gates; Cleaning and working on castings
    • B22D31/002Cleaning, working on castings

Definitions

  • the invention relates to a method for producing a cast workpiece.
  • a molten metal for example a molten aluminum
  • the term metal melt is understood to mean not only liquid but also thixotropic metal melts.
  • the present invention is based on the object of creating a method in which the economy in the production of cast workpieces is increased and the workpiece is not damaged.
  • a hammer head is placed on a defined energy transfer surface of the workpiece and the hammer head acts on the energy transfer surface, in particular hammered in.
  • the method according to the invention has the surprising advantage that the shattering of the mold core can take place at an increased process temperature and thus the process can be further optimized.
  • an energy transfer surface of the workpiece, on which a hammer head is applied to smash the mold core is defined in advance.
  • the energy transfer surface can thus be designed in such a way that it has a higher strength than the other surfaces or that any deformations on the energy transfer surface can be removed again in subsequent processing steps.
  • Which surface of the workpiece serves as the energy transfer surface can already be determined during the construction of the workpiece or during the simulation of the casting process.
  • tests are carried out to determine which area is best suited as an energy transfer area. It is advantageous if it is specified in a work instruction which surface of the workpiece can or may serve as an energy transfer surface.
  • a surface of the workpiece serves as the energy transfer surface, which surface is processed mechanically, in particular by cutting, in subsequent production steps.
  • the advantage here is that any damage or plastic deformations of the energy transfer surface which are introduced into it during the process of shattering can be removed again in subsequent process steps.
  • a surface of the workpiece which has the greatest surface strength at the time of the shattering of the mold core serves as the energy transfer surface.
  • a surface of the workpiece serves as the energy transfer surface which was arranged during the casting process, in particular during the gravity casting process, in the area of a lower part of the casting mold, in particular in relation to the casting layer on an underside of the workpiece.
  • the energy transfer surface is where the melt is first calmed down.
  • An embodiment is also advantageous, according to which it can be provided that the workpiece is turned through 180 ° after it has been removed from the mold, so that the energy transfer surface lies on the upper side of the workpiece and the workpiece rests on a support table on a support side opposite to the energy transfer surface.
  • the hammer head of the coring hammer can act on the workpiece in the vertical direction from above.
  • the workpiece can be placed on the support table.
  • the workpiece is designed as a cylinder head blank for further processing into a cylinder head for an internal combustion engine, an engine block connection surface of the cylinder head blank serving as the energy transfer surface.
  • an engine block connection surface of the cylinder head blank serving as the energy transfer surface.
  • coring at high temperatures is associated with great economic advantages.
  • Defining the engine block connection surface as an energy transfer surface has the advantage that, on the one hand, the engine block connection surface can be at the bottom during the casting process and, on the other hand, is still milled off in subsequent processing steps.
  • the deformations on the engine block connection surface during the shattering of the core can be kept as low as possible.
  • the introduced deformations can be removed again in subsequent processing steps, so that there are no longer any traces of action on the finished cylinder head.
  • the engine block connection surface of the cylinder head has to be machined anyway in order to obtain a flat surface.
  • Another advantage of using the engine block connection surface as an energy transfer surface is that it is a surface that is flat and has a large surface area. In this way, the force applied can be distributed over a large area, which means that the surface pressure can be kept as low as possible.
  • the energy transfer surface is designed as a flat surface.
  • the advantage here is that the hammer head can also have a flat surface and can therefore rest over the entire surface of the energy transfer surface of the workpiece.
  • an area of an effective area of the hammer head or the load sharing plate, which rests on the energy transfer surface when the mold core is smashed is between 150% and 10%, in particular between 110% and 50%, preferably between 100% and 80% Area of the energy transfer surface is.
  • the advantage here is that the lowest possible surface pressure can be achieved through this surface dimensioning.
  • the workpiece is removed from the mold when the surface temperature of the energy transfer surface is between 440 ° Celsius and 360 ° Celsius.
  • the advantage here is that the workpiece already has sufficient strength at this temperature to be manipulated.
  • the workpiece cools down further during the feeding of the workpiece to a hammer head for smashing the mold core until the energy transfer surface has a surface temperature between 300 ° Celsius and 400 ° Celsius.
  • a workpiece that has a temperature in the specified range on the energy transfer surface already has sufficient strength to be able to act on the energy transfer surface by means of the hammer head.
  • the shattering of the mold core by means of the hammer head takes place at a surface temperature of the energy transfer surface between 300 ° Celsius and 400 ° Celsius, with at least external parts of the mold core being shattered.
  • this processing step only external parts or parts of the mold core close to the edge are shattered, in particular cracked through, and thus fall off the workpiece.
  • the outer surface of the workpiece can be freed from the mold cores, so that the workpiece can cool down more quickly. Even if the external mold cores are not completely removed or knocked off from the workpiece, but only detach themselves from the workpiece surface, the cooling effect can be improved.
  • the hammer head impacts the workpiece for between 1 seconds and 20 seconds.
  • the workpiece is further cooled until the energy transfer surface has a surface temperature between 100 ° Celsius and 200 ° Celsius, in particular between 150 ° Celsius and 200 ° Celsius, and that the workpiece is then again a Hammer head is supplied for smashing the mold core, with the remaining parts of the mold core also being smashed, in particular parts inside the workpiece.
  • a Hammer head is supplied for smashing the mold core, with the remaining parts of the mold core also being smashed, in particular parts inside the workpiece.
  • the workpiece is clamped in a vibrating device and the workpiece is rotated about at least one horizontal axis of rotation while vibrating at the same time.
  • the advantage here is that the mold core can be smashed further by this measure or that the shattered mold core parts can be removed from the workpiece in this process step.
  • a load sharing plate is inserted between the hammer head and the energy transfer surface.
  • the advantage here is that the surface pressure on the energy transfer surface can be kept as low as possible by means of the load sharing plate.
  • a cooling channel is formed in the casting mold, at least in that area in which the energy transfer surface of the workpiece is formed, the workpiece being cooled by means of the cooling channel in the area of the energy transfer surface.
  • the energy transfer surface can be locally cooled after the workpiece has been removed from the casting mold, for example by dipping the energy transfer surface of the workpiece in a cooling liquid.
  • the energy transfer surface can have a high level of strength, and the rest of the workpiece can be kept at a high temperature level.
  • a coring hammer carrier for shattering the mold core of a cast workpiece, the coring hammer carrier having at least one coring hammer with a hammer head. Furthermore, a load sharing plate is provided which can be brought between the hammer head and the workpiece. The advantage here is that the load sharing plate can be used to avoid introducing a high surface pressure on the workpiece.
  • the load sharing plate is coupled to at least two hammer heads of two de-core hammers.
  • the advantage here is that the hammer heads of the two core hammers are coupled to one another by this measure.
  • the load sharing plate is coupled to the hammer heads of the coring hammers in a separable manner.
  • different load sharing plates can be provided for different workpieces, it being possible for the load sharing plates to be selectively exchanged.
  • the contour of the load sharing plate is adapted to the surface contour of the energy transfer surface of the workpiece.
  • the load sharing plate has a flexible surface quality in the area in which it rests on the energy transfer surface of the workpiece. As a result, the load sharing plate can be flexibly adapted to the energy transfer surface of the workpiece.
  • the feeder of the workpiece has the energy transfer surface.
  • this measure can be useful if a sand mold is used as the casting mold.
  • the mold has an insulating effect, so that the workpiece cannot cool down. If the energy transfer surface is selected on the feeder, the sand casting mold can be knocked off the workpiece in order to facilitate the cooling of the workpiece.
  • the hammer head is pressed against the energy transfer surface during the process of smashing the mandrel in such a way that it is constantly in contact with the workpiece even if the energy transfer surface is shifted. In other words, this prevents the hammer head from lifting off the energy transfer surface of the workpiece during the process of shattering the mold core. This can prevent a blow from being exerted on the energy transfer surface of the workpiece and damaging it.
  • the position of the energy transfer surface is shifted in particular when the workpiece is placed on the support table in such a way that an external mold core, which is smashed, rests on the support table. The position of the workpiece is shifted as a result of the shattering of the external mold core.
  • the coring hammer is designed as a hydraulic hammer.
  • the advantage here is that a hydraulic hammer can be controlled in such a way that the hammer head is constantly in contact with the energy transfer surface of the workpiece and there is no impact on the workpiece.
  • the hammer head is constantly pressed against the energy transfer surface of the workpiece with a contact pressure between 100N and 2000N, in particular between 200N and 700N, while the mold core is being smashed.
  • the workpiece is designed as a hollow cylindrical electric motor housing blank for further processing into an electric motor housing, an end face of the hollow cylindrical electric motor housing blank serving as the energy transfer surface.
  • the advantage here is that the end face of the hollow cylindrical electric motor housing blank is subsequently mechanically reworked.
  • the end face can have a comparatively high strength, since it can solidify earlier.
  • the mold core is preferably a structure that is formed from sand and after its removal from the workpiece, cavities or recesses can be formed in the workpiece.
  • the sand of the mold core is given its dimensional stability by means of a binder.
  • the mold core can consist of several parts which can be connected to one another or which can be arranged independently of one another at different points in the casting mold.
  • the mold core is also partially arranged on the outside of the workpiece, or that the mold core partially protrudes outwardly beyond the workpiece.
  • Such an external mold core can be arranged, for example, in the area of the feeder or the sprue.
  • the process step “shattering the mold core” is understood to mean a process step in which the mold core breaks at least partially. This process step does not include removing the mandrel from the workpiece.
  • a cylinder head blank is a cast workpiece from which a cylinder head for an internal combustion engine is manufactured through mechanical post-processing, such as milling.
  • the finished cylinder head is placed on an engine block of the internal combustion engine.
  • the cylinder head therefore has an engine block connection surface which, when installed, optionally rests against the cylinder block with the interposition of the cylinder head gasket.
  • the surface that is used on the cylinder head blank as a raw surface for the engine block connection surface of the cylinder head is referred to as the engine block connection surface of the cylinder head blank.
  • the cylinder head blank thus also has, by definition, an engine block connection surface, this first having to be mechanically processed in order to actually be brought into contact with the engine block.
  • the casting position of the workpiece is understood to mean that spatial orientation or position in which the workpiece lies as long as it is received in the casting mold. This applies to gravity casting processes in which the mold is not moved. In the case of tilt casting or rotation casting, the casting position is understood to be the end position of the casting mold.
  • a molten metal 2 is introduced into a casting mold 3, for example a mold.
  • the casting mold 3 is designed as a two-part casting mold 3 with a lower part 4 and an upper part 5, which are detachably connected to one another.
  • the mold 3 can also have more than two parts.
  • a cooling channel 15 is formed in the casting mold 3, in particular in the lower part 4 or in the upper part 5, in which a cooling liquid is guided.
  • the cooling channel 15 is formed at least in that region of the casting mold 3 in which an energy transfer surface 12 is to be provided on the workpiece 1.
  • a mold core 7 is inserted into the casting mold 3 and, together with the inner walls of the lower part 4 and the upper part 5, delimits a mold cavity 6.
  • the metal melt 2, which is particularly preferably an aluminum melt, is introduced into the mold cavity 6.
  • all known casting methods can be used as the method for introducing the molten metal.
  • the process steps according to the invention have proven themselves in gravity die casting.
  • the workpiece 1 After the workpiece 1 has solidified, it can be removed from the casting mold 3.
  • the lower part 4 and the upper part 5 can be moved apart and then the hot workpiece 1 can be removed from the casting mold 3.
  • the casting mold 3 consists of several parts.
  • the mold core 7 is still in a cavity of the workpiece 1, or the mold core 7 can be arranged on an outer surface of the workpiece 1, or can extend to an outer surface of the workpiece.
  • the hot workpiece 1 is removed from the casting mold 3 at a surface temperature which is above 150 ° C.
  • a surface temperature when the workpiece 1 is removed from the casting mold 3 can be over 300 ° C., in particular between 360 ° and 440 ° C.
  • the workpiece 1 can be removed from the casting mold 3, for example, by means of an automated gripping unit 8.
  • the hot workpiece 1 removed from the casting mold 3 can optionally be cooled in a further step to a surface temperature which, depending on the removal temperature, is between 150 and 400 ° C.
  • a mist 9 composed of water droplets can be used to cool the workpiece 1.
  • the water droplets evaporate as soon as they strike a hot surface of the workpiece 1. Since the workpiece 1 is cooled in this step to a temperature which is well above the evaporation temperature of water, it is ensured that no water droplets can penetrate the mold core 7.
  • the workpiece 1 can also be immersed in an immersion bath to cool down.
  • the surface temperature of the workpiece 1 in the casting mold can be determined, for example, by means of temperature sensors fitted in or on the casting mold 3 and outside of the casting mold 3 also in a contactless manner by means of infrared sensors.
  • other sensors and methods known to the person skilled in the art for determining the temperature can of course also be used.
  • the surface temperature of the workpiece 1 can also be calculated as a mathematical model and calculated over the course of time.
  • the optional additional cooling of the workpiece 1 outside the casting mold 3 only takes place until it has reached the desired temperature in a range between 300 ° and 400 ° C.
  • the mold core 7 can be shattered.
  • a hammer head 10 of a coring hammer 11 is applied to an energy transfer surface 12 of the workpiece 1.
  • an effective surface 14 of the hammer head 10 rests against the energy transfer surface 12 of the workpiece 1.
  • coring hammer 11 The possible structure of a coring hammer 11 is shown in AT 513442 A1 described, wherein the coring hammer 11 is referred to in this document as a vibrating hammer.
  • the strength of the workpiece 1 has not yet been fully achieved at this point in time.
  • the energy transfer surface 12 of the workpiece 1 is therefore subject to special requirements. In particular, it is necessary that the traces of action on the energy transfer surface 12 by the hammer head 10 are only so small that the finished workpiece 1 has no functional losses and / or no optical impairments. Several measures can be taken to achieve this.
  • the energy transfer surface 12 used is a surface of the workpiece 1 which has a lower surface temperature than the remaining surfaces of the workpiece 1.
  • the energy transfer surface 12 can have a higher strength than the remaining surfaces of the workpiece 1.
  • the lower temperature of the energy transfer surface 12 can be achieved, for example, in that the energy transfer surface 12 is arranged in the cast position on an underside 19 of the workpiece 1. This results from the fact that, due to gravity, the molten metal 2 hits the bottom of the casting mold 3 first and, in conventional casting processes in which the molten metal 2 is poured into the casting mold from above, is also heated less strongly by the newly poured molten metal 2. This area can thus cool down first and form the energy transfer surface 12.
  • the workpiece 1 in order to smash the mold core 7, the workpiece 1 is turned upside down in comparison to the cast position, so that the workpiece 1 rests with one support side 20 on the support table 21.
  • the support side 20 is formed opposite the energy transfer surface 12.
  • the workpiece 1 is clamped in a vibrating device 13 and is set to vibrate, with the mold core 7 finally being smashed and removed from the workpiece 1. It can be provided here that the workpiece 1 is rotated in the vibrating device 13 about at least one horizontal axis of rotation 16 while vibrating at the same time. As a result, the broken individual parts of the mandrel 7 can be shaken out of the workpiece 1. In other words, this measure cores the workpiece 1.
  • the treatment of the workpiece 1 by means of the coring hammer 11 can precede the treatment of the workpiece 1 by means of the vibrating device 13, whereby the mold core 7 can initially be broken by means of the coring hammer 11 and broken into small pieces by means of the vibrating device 13, which are also in the Vibrating device 13 can be conveyed out of the workpiece 1.
  • a temperature which has proven to be particularly advantageous for the temperature at which the core of the workpiece 1 can be removed is a temperature which, with a deviation of +/- 30%, corresponds to a temperature at which precipitation hardening of a material of the workpiece 1 begins.
  • the workpiece 1 After the workpiece 1 has been cored, it can be immersed in a basin 18 filled with a cooling liquid 17 for further cooling.
  • the workpiece 1 is then mechanically processed in the area of the energy transfer surface 12.
  • a cutting tool 22 for example a milling cutter, can be used to remove a layer of the energy transfer surface 12 and thus to generate a functional surface.
  • a load sharing plate 23 is inserted between the hammer head 10 and the workpiece 1, by means of which the force applied by the hammer head 10 can be applied evenly to the energy transfer surface 12.
  • the surface pressure on the energy transfer surface 12 can be kept as low as possible, so that the workpiece 1 is not destroyed by the action of the coring hammer 11.
  • two or more coring hammers 11 act on the load sharing plate 23.
  • the load sharing plate 23 is coupled directly to the hammer heads 10 of the individual coring hammers 11 and therefore does not have to be manipulated separately. This is particularly advantageous for series components.
  • Fig. 3 shows a schematic representation of a cylinder head blank 24 and a cylinder head 25 which is manufactured from the cylinder head blank 24 by mechanical processing.
  • an engine block connection surface 26 of the cylinder head blank 24 is visible.
  • the engine block connection surface 26 faces the engine block of the internal combustion engine and in particular rests against the engine block of the internal combustion engine.
  • Fig. 4 shows a perspective view of a coring hammer carrier 27.
  • the coring hammer carrier 27 can serve in particular for receiving or for the automated movement of one or more coring hammers 11.
  • the coring hammers 11 are arranged on an upper slide 28 which can be displaced in the vertical direction, whereby the coring hammers 11 can be placed against the cylinder head blank 24.
  • the coring hammer carrier 27 has a support table 21 on which the cylinder head blank 24 is placed.
  • a buffer element 29, which is arranged between the cylinder head blank 24 and the support table 21, is arranged under the workpiece 1, in particular the cylinder head blank 24.
  • the buffer element 29 can, as shown, be designed in the form of a strip. As an alternative to this, the buffer element 29 can also have a flat design, with recesses also being able to be provided in the buffer element 29, which are permeable to the broken mold core 7.
  • the load sharing plate 23 is coupled to two hammer heads 10 of two stripping hammers 11.
  • a plurality of coring hammers 11 can also be provided to which the load sharing plate 23 is coupled.
  • the coupling of the load sharing plate 23 to the hammer heads 10 of the coring hammers 11 can be done, for example, via a releasable coupling.
  • the engine block connection surface 26 of the cylinder head blank 24 serves as an energy transfer surface 12.
  • the cylinder head blank 24 can be arranged in the casting mold 3 in such a way that the engine block connection surface 26 is arranged in the cast position on the underside 19 of the cylinder head blank 24.
  • FIG. 4 shows a flow diagram of a further possible method sequence for producing a cast workpiece 1.
  • Fig. 5 As can be seen, it can be provided that the workpiece 1 is cast after the casting mold 3 has been prepared.
  • the workpiece 1 can then be removed from the casting mold 3, in particular by means of the gripping unit 8.
  • the removal from the casting mold 3 can take place as soon as the workpiece 1 has a surface temperature in the range of 430 ° C. on the energy transfer surface 12.
  • the surface temperature on the energy transfer surface 12 at the end of the handling process is approximately 400 ° C. or below.
  • the hammer head 10 of the coring hammer 11 can be placed on the energy transfer surface 12 and hammered onto it. After a period of 1 to 20 seconds. at least the outer parts of the mold core 7 break off, so that the surface of the workpiece 1 is exposed and the workpiece 1 can now cool down more quickly.
  • the workpiece 1, in particular the energy transfer surface 12 of the workpiece 1, can be immersed in an immersion bath in order to quench it and cool it down further.
  • the workpiece 1 can be stored in a refrigerated shelf until the surface temperature of the energy transfer surface 12 of the workpiece 1 is between 150.degree. C. and 200.degree.
  • the workpiece 1 can again be applied to the energy transfer surface by the hammer head 10 of a coring hammer 11 in order to smash the remaining parts of the mold core 7.
  • the workpiece 1 can then be clamped in the vibrating device 13 in order to further shatter the mold core 7 and thereby remove it from the workpiece 1.
  • the workpiece 1 can then optionally be further cooled and mechanically processed.
  • Fig. 6 shows a further embodiment of a workpiece 1, which is designed as a hollow cylindrical electric motor housing blank 30 for further processing into an electric motor housing for an electric motor.
  • the energy transfer surface 12 is formed on an end surface 31 of the hollow-cylindrical electric motor housing blank 30.
  • the mold core 7 is partially designed as an external core.
  • the mold core 7 can form the cavity of the electric motor housing blank 30.
  • an internal mold core 7 is formed in the wall of the electric motor housing blank 30, which is used to form cooling water channels in the electric motor housing.
  • the electric motor housing blank 30 is designed as an essentially rotationally symmetrical hollow body.
  • the end face 31 of the hollow cylindrical electric motor housing blank 30 is machined in a further work step.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Golf Clubs (AREA)
  • Arc Welding In General (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines gegossenen Werkstückes.The invention relates to a method for producing a cast workpiece.

Bei der Herstellung von Werkstücken durch Gießverfahren wird üblicherweise eine Metallschmelze, beispielsweise eine Aluminiumschmelze, in Formen eingebracht. Unter dem Begriff Metallschmelze werden in diesem Dokument nicht nur flüssige, sondern auch thixotrope Metallschmelzen verstanden. Nach einem Erstarren und Abkühlen der Metallschmelze wird das Werkstück entformt und ein in dem Werkstück befindlicher Formkern zertrümmert. Bei den herkömmlichen Verfahren ist es üblich, die Werkstücke auf eine Temperatur von ca. 80° C abzukühlen, bevor diese entkernt werden. Das Entkernen erfolgt bei einer relativ niedrigen Temperatur, da zu diesem Zeitpunkt die Gefügestruktur des Werkstückes im Wesentlichen keinen Änderungen mehr unterliegt.In the production of workpieces by casting processes, a molten metal, for example a molten aluminum, is usually introduced into molds. In this document, the term metal melt is understood to mean not only liquid but also thixotropic metal melts. After the molten metal has solidified and cooled, the workpiece is removed from the mold and a mold core located in the workpiece is smashed. With conventional methods, it is usual to cool the workpieces to a temperature of approx. 80 ° C before they are cored. The core is removed at a relatively low temperature, since at this point in time the structure of the workpiece is essentially no longer subject to any changes.

Aus der WO 2016/201474 A1 , sowie aus der EP 1 721 689 A1 sind Verfahren bekannt, bei denen der Entkernvorgang bei einer erhöhten Temperatur durchgeführt wird. Hierbei kann das Werkstück jedoch beschädigt werden, da das erhitzte Materialgefüge des Werkstückes eine noch geringe Festigkeit aufweist.From the WO 2016/201474 A1 , as well as from the EP 1 721 689 A1 methods are known in which the coring process is carried out at an elevated temperature. In this case, however, the workpiece can be damaged because the heated material structure of the workpiece is still weak.

Aus der FR 2 954 195 A1 , der GB 2 348 839 A und der DE 36 37 367 A1 sind weitere Entkernmaschinen bekannt.From the FR 2 954 195 A1 , the GB 2 348 839 A and the DE 36 37 367 A1 other coring machines are known.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde ein Verfahren zu schaffen, bei dem die Wirtschaftlichkeit bei der Herstellung von gegossenen Werkstücken erhöht wird und das Werkstück nicht beschädigt wird.The present invention is based on the object of creating a method in which the economy in the production of cast workpieces is increased and the workpiece is not damaged.

Diese Aufgabe wird durch ein Verfahren gemäß den Ansprüchen gelöst.This object is achieved by a method according to the claims.

Erfindungsgemäß ist ein Verfahren zur Herstellung eines gegossenen Werkstückes vorgesehen, wobei das Verfahren die folgenden Verfahrensschritte umfasst:

  • Bereitstellen einer Gussform mit zumindest einem in der Gussform angeordneten Formkern;
  • Einbringen einer Metallschmelze in die Gussform;
  • Warten einer Zeitdauer, bis zumindest die Außenkontur der Metallschmelze erstarrt ist und aus der Metallschmelze das Werkstück geformt ist;
  • Entfernen des Werkstücks aus der Gussform;
  • Zertrümmern des Formkernes, wobei dieser Verfahrensschritt durchgeführt wird, noch bevor das Werkstück vom Gussvorgang vollständig abgekühlt ist.
According to the invention, a method for producing a cast workpiece is provided, the method comprising the following method steps:
  • Providing a casting mold with at least one mold core arranged in the casting mold;
  • Introducing a molten metal into the casting mold;
  • Waiting for a period of time until at least the outer contour of the molten metal has solidified and the workpiece has been formed from the molten metal;
  • Removing the workpiece from the mold;
  • Smashing the mold core, this process step being carried out before the workpiece has completely cooled down from the casting process.

Zum Zertrümmern des Formkerns wird ein Hammerkopf an eine festgelegte Energieübertragungsfläche des Werkstücks angelegt und mittels dem Hammerkopf auf die Energieübertragungsfläche eingewirkt, insbesondere eingeschlagen.To smash the mold core, a hammer head is placed on a defined energy transfer surface of the workpiece and the hammer head acts on the energy transfer surface, in particular hammered in.

Das erfindungsgemäße Verfahren bringt den überraschenden Vorteil mit sich, dass das Zertrümmern des Formkerns bei einer erhöhten Prozesstemperatur erfolgen kann und somit der Prozess weiter optimiert werden kann. Im Gegensatz zum Stand der Technik ist eine Energieübertragungsfläche des Werkstückes, an welcher ein Hammerkopf zum Zertrümmern des Formkerns angelegt wird, vorab festgelegt. Somit kann die Energieübertragungsfläche derart ausgebildet sein, dass sie eine höhere Festigkeit aufweist als die anderen Flächen bzw. dass etwaige Verformungen an der Energieübertragungsfläche in nachfolgenden Bearbeitungsschritten wieder entfernt werden können. Dadurch ist es möglich, den Formkern bei einer höheren Kerntemperatur zu zertrümmern als dies bei aus dem Stand der Technik bekannten Verfahren möglich ist. Welche Fläche des Werkstückes als Energieübertragungsfläche dient, kann schon bei der Konstruktion des Werkstückes bzw. bei der Simulation des Gießprozesses festgelegt werden. Weiters ist es auch denkbar, dass in Versuchen ermittelt wird, welche Fläche sich am besten als Energieübertragungsfläche eignet. Von Vorteil ist es, wenn in einer Arbeitsanweisung festgelegt wird, welche Fläche des Werkstücks als Energieübertragungsfläche dienen kann bzw. dienen darf.The method according to the invention has the surprising advantage that the shattering of the mold core can take place at an increased process temperature and thus the process can be further optimized. In contrast to the prior art, an energy transfer surface of the workpiece, on which a hammer head is applied to smash the mold core, is defined in advance. The energy transfer surface can thus be designed in such a way that it has a higher strength than the other surfaces or that any deformations on the energy transfer surface can be removed again in subsequent processing steps. This makes it possible to shatter the mold core at a higher core temperature than is possible with methods known from the prior art. Which surface of the workpiece serves as the energy transfer surface can already be determined during the construction of the workpiece or during the simulation of the casting process. Furthermore, it is also conceivable that tests are carried out to determine which area is best suited as an energy transfer area. It is advantageous if it is specified in a work instruction which surface of the workpiece can or may serve as an energy transfer surface.

Weiters kann es zweckmäßig sein, wenn als Energieübertragungsfläche eine Fläche des Werkstücks dient, welche in nachfolgenden Fertigungsschritten mechanisch, insbesondere spanabhebend, bearbeitet wird. Von Vorteil ist hierbei, dass etwaige Beschädigungen bzw. plastischen Verformungen der Energieübertragungsfläche, welche während dem Vorgang des Zertrümmerns in diese eingebracht werden in anschließenden Verfahrens schritten wieder entfernt werden können.Furthermore, it can be expedient if a surface of the workpiece serves as the energy transfer surface, which surface is processed mechanically, in particular by cutting, in subsequent production steps. The advantage here is that any damage or plastic deformations of the energy transfer surface which are introduced into it during the process of shattering can be removed again in subsequent process steps.

Ferner kann vorgesehen sein, dass als Energieübertragungsfläche eine Fläche des Werkstücks dient, welche zum Zeitpunkt des Zertrümmerns des Formkerns die größte Oberflächenfestigkeit aufweist. Von Vorteil ist hierbei, dass durch diese Maßnahme die Verformungen des Werkstücks während dem Vorgang des Zertrümmerns des Formkerns möglichst geringgehalten werden können.Furthermore, it can be provided that a surface of the workpiece which has the greatest surface strength at the time of the shattering of the mold core serves as the energy transfer surface. The advantage here is that this measure reduces the deformation of the Workpiece can be kept as low as possible during the process of shattering the mold core.

Darüber hinaus kann vorgesehen sein, dass als Energieübertragungsfläche eine Fläche des Werkstücks dient, welche während dem Gießvorgang, insbesondere beim Schwerkraftgießvorgang, im Bereich eines Unterteils der Gussform, insbesondere bezogen auf die Gusslage an einer Unterseite des Werkstücks angeordnet war. Von Vorteil ist hierbei, dass bezogen auf die Gusslage der untere Bereich des Werkstückes zuerst erstarrt und somit die größte Oberflächenfestigkeit aufweist. Dies resultiert daraus, dass die in die Gussform eingebrachte Schmelze in diesem Bereich zuerst beruhigt wird und zuerst mit der kühlenden Gussform in Kontakt kommt.In addition, it can be provided that a surface of the workpiece serves as the energy transfer surface which was arranged during the casting process, in particular during the gravity casting process, in the area of a lower part of the casting mold, in particular in relation to the casting layer on an underside of the workpiece. The advantage here is that, in relation to the cast layer, the lower area of the workpiece solidifies first and thus has the greatest surface strength. This results from the fact that the melt introduced into the casting mold is first calmed in this area and first comes into contact with the cooling casting mold.

Insbesondere ist es zweckdienlich, dass die Energieübertragungsfläche dort liegt, wo die Schmelze als erster beruhigt wird.In particular, it is useful that the energy transfer surface is where the melt is first calmed down.

Vorteilhaft ist auch eine Ausprägung, gemäß welcher vorgesehen sein kann, dass das Werkstück nach dem Entfernen aus der Gussform um 180° gewendet wird, sodass die Energieübertragungsfläche an der Oberseite des Werkstückes liegt und das Werkstück an einer zur Energieübertragungsfläche gegenüberliegenden Auflageseite an einem Auflagetisch aufliegt. Durch diese Maßnahme kann der Hammerkopf des Entkernhammers in vertikaler Richtung von oben auf das Werkstück einwirken. Dabei kann das Werkstück am Auflagetisch abgelegt werden.An embodiment is also advantageous, according to which it can be provided that the workpiece is turned through 180 ° after it has been removed from the mold, so that the energy transfer surface lies on the upper side of the workpiece and the workpiece rests on a support table on a support side opposite to the energy transfer surface. As a result of this measure, the hammer head of the coring hammer can act on the workpiece in the vertical direction from above. The workpiece can be placed on the support table.

Gemäß einer Weiterbildung ist es möglich, dass das Werkstück als Zylinderkopfrohling zum Weiterverarbeiten zu einem Zylinderkopf für einen Verbrennungsmotor ausgebildet ist, wobei als Energieübertragungsfläche eine Motorblockanschlussfläche des Zylinderkopfrohlings dient. Besonders bei Zylinderköpfen ist das Entkernen bei hohen Temperaturen mit großen wirtschaftlichen Vorteilen verbunden. Das Festlegen der Motorblockanschlussfläche als Energieübertragungsfläche bringt den Vorteil mit sich, dass die Motorblockanschlussfläche zum einen während dem Gießvorgang unten liegen kann und zum anderen in nachfolgenden Bearbeitungsschritten noch abgefräst wird. Somit können zum einen die Verformungen an der Motorblockanschlussfläche während des Zertrümmerns des Kerns möglichst geringgehalten werden. Zum anderen können die eingebrachten Verformungen in nachfolgenden Bearbeitungsschritten wieder entfernt werden, sodass am fertig bearbeiteten Zylinderkopf keine Einwirkspuren mehr vorhanden sind. Besonders vorteilhaft ist hierbei, dass die Motorblockanschlussfläche des Zylinderkopfes ohnehin bearbeitet werden muss, um eine plane Fläche zu erhalten. Ein weiterer Vorteil bei der Verwendung der Motorblockanschlussfläche als Energieübertragungsfläche liegt darin, dass es sich hierbei um eine Fläche handelt, welche eben ausgebildet ist und einen großen Flächeninhalt aufweist. Somit kann die eingebrachte Kraft auf eine große Fläche aufgeteilt werden, wodurch die Flächenpressung möglichst geringgehalten werden kann.According to a further development, it is possible that the workpiece is designed as a cylinder head blank for further processing into a cylinder head for an internal combustion engine, an engine block connection surface of the cylinder head blank serving as the energy transfer surface. In the case of cylinder heads in particular, coring at high temperatures is associated with great economic advantages. Defining the engine block connection surface as an energy transfer surface has the advantage that, on the one hand, the engine block connection surface can be at the bottom during the casting process and, on the other hand, is still milled off in subsequent processing steps. Thus, on the one hand, the deformations on the engine block connection surface during the shattering of the core can be kept as low as possible. On the other hand, the introduced deformations can be removed again in subsequent processing steps, so that there are no longer any traces of action on the finished cylinder head. It is particularly advantageous here that the engine block connection surface of the cylinder head has to be machined anyway in order to obtain a flat surface. Another advantage of using the engine block connection surface as an energy transfer surface is that it is a surface that is flat and has a large surface area. In this way, the force applied can be distributed over a large area, which means that the surface pressure can be kept as low as possible.

Ferner kann es zweckmäßig sein, wenn die Energieübertragungsfläche als ebene Fläche ausgebildet ist. Von Vorteil ist hierbei, dass der Hammerkopf ebenfalls eine ebene Fläche aufweisen kann und somit vollflächig von der Energieübertragungsfläche des Werkstückes aufliegen kann.Furthermore, it can be expedient if the energy transfer surface is designed as a flat surface. The advantage here is that the hammer head can also have a flat surface and can therefore rest over the entire surface of the energy transfer surface of the workpiece.

Darüber hinaus kann vorgesehen sein, dass ein Flächeninhalt einer Einwirkfläche des Hammerkopfes oder der Lastaufteilungsplatte, welche beim Zertrümmern des Formkerns an der Energieübertragungsfläche anliegt, zwischen 150% und 10%, insbesondere zwischen 110% und 50%, bevorzugt zwischen 100% und 80% eines Flächeninhaltes der Energieübertragungsfläche beträgt. Von Vorteil ist hierbei, dass durch diese Flächendimensionierung eine möglichst geringe Flächenpressung erreicht werden kann.In addition, it can be provided that an area of an effective area of the hammer head or the load sharing plate, which rests on the energy transfer surface when the mold core is smashed, is between 150% and 10%, in particular between 110% and 50%, preferably between 100% and 80% Area of the energy transfer surface is. The advantage here is that the lowest possible surface pressure can be achieved through this surface dimensioning.

Weiters kann vorgesehen sein, dass das Werkstück bei einer Oberflächentemperatur der Energieübertragungsfläche zwischen 440° Celsius und 360° Celsius aus der Gussform entnommen wird. Von Vorteil ist hierbei, dass das Werkstück bei dieser Temperatur schon eine ausreichende Festigkeit aufweist, um manipuliert zu werden.Furthermore, it can be provided that the workpiece is removed from the mold when the surface temperature of the energy transfer surface is between 440 ° Celsius and 360 ° Celsius. The advantage here is that the workpiece already has sufficient strength at this temperature to be manipulated.

Außerdem kann vorgesehen sein, dass das Werkstück während dem Zuführen des Werkstücks zu einem Hammerkopf zum Zertrümmern des Formkerns an der Umgebung weiter abkühlt bis die Energieübertragungsfläche eine Oberflächentemperatur zwischen 300° Celsius und 400° Celsius aufweist. Ein Werkstück das an der Energieübertragungsfläche eine Temperatur im angegebenen Bereich aufweist, weist bereits eine ausreichende Festigkeit auf, um mittels dem Hammerkopf auf die Energieübertragungsfläche einwirken zu können.In addition, it can be provided that the workpiece cools down further during the feeding of the workpiece to a hammer head for smashing the mold core until the energy transfer surface has a surface temperature between 300 ° Celsius and 400 ° Celsius. A workpiece that has a temperature in the specified range on the energy transfer surface already has sufficient strength to be able to act on the energy transfer surface by means of the hammer head.

Weiters kann vorgesehen sein, dass das Zertrümmern des Formkerns mittels dem Hammerkopf bei einer Oberflächentemperatur der Energieübertragungsfläche zwischen 300° Celsius und 400° Celsius erfolgt, wobei zumindest außenliegende Teile des Formkerns zertrümmert werden. Insbesondere kann vorgesehen sein, dass in diesem Bearbeitungsschritt nur außenliegende Teile oder randnahe Teile des Formkerns zertrümmert, insbesondere rissdurchsetzt werden und somit vom Werkstück abfallen. Dadurch kann die Außenoberfläche des Werkstücks von den Formkernen befreit werden, sodass das Werkstück schneller abkühlen kann. Auch wenn die außenliegenden Formkerne nicht vollständig vom Werkstück entfernt bzw. abgeschlagen werden, sondern sich nur von der Werkstückoberfläche lösen, kann die Kühlwirkung verbessert werden.Furthermore, it can be provided that the shattering of the mold core by means of the hammer head takes place at a surface temperature of the energy transfer surface between 300 ° Celsius and 400 ° Celsius, with at least external parts of the mold core being shattered. In particular, it can be provided that in this processing step only external parts or parts of the mold core close to the edge are shattered, in particular cracked through, and thus fall off the workpiece. As a result, the outer surface of the workpiece can be freed from the mold cores, so that the workpiece can cool down more quickly. Even if the external mold cores are not completely removed or knocked off from the workpiece, but only detach themselves from the workpiece surface, the cooling effect can be improved.

Außerdem kann vorgesehen sein, dass beim obig beschriebenen Verfahrensschritt der Hammerkopf zwischen 1 Sekunden und 20 Sekunden schlagend auf das Werkstück einwirkt.In addition, it can be provided that in the method step described above, the hammer head impacts the workpiece for between 1 seconds and 20 seconds.

Ferner kann vorgesehen sein, dass das Werkstück nach dem Zertrümmern zumindest von Teilen des Formkerns weiter abgekühlt wird bis die Energieübertragungsfläche eine Oberflächentemperatur zwischen 100° Celsius und 200° Celsius, insbesondere zwischen 150° Celsius und 200° Celsius aufweist und dass das Werkstück anschließend abermals einem Hammerkopf zum Zertrümmern des Formkerns zugeführt wird, wobei hierbei auch die restlichen Teile, insbesondere im Werkstück innenliegende Teile, des Formkerns zertrümmert werden. Von Vorteil ist hierbei, dass in diesem Verfahrensschritt auch jene Teile des Formkerns zertrümmert werden können, welche innerhalb des Werkstücks angeordnet sind.Furthermore, it can be provided that after at least parts of the mold core have been smashed, the workpiece is further cooled until the energy transfer surface has a surface temperature between 100 ° Celsius and 200 ° Celsius, in particular between 150 ° Celsius and 200 ° Celsius, and that the workpiece is then again a Hammer head is supplied for smashing the mold core, with the remaining parts of the mold core also being smashed, in particular parts inside the workpiece. The advantage here is that in this process step, those parts of the mold core can also be smashed which are arranged within the workpiece.

Gemäß einer besonderen Ausprägung ist es möglich, dass das Werkstück nach dem Zertrümmern des Formkerns in einer Rüttelvorrichtung gespannt wird und das Werkstück unter gleichzeitigem Rütteln um zumindest eine horizontale Drehachse gedreht wird. Von Vorteil ist hierbei, dass durch diese Maßnahme der Formkern weiter zertrümmert werden kann bzw. dass in diesem Verfahrensschritt die zertrümmerten Formkernteile aus dem Werkstück entfernt werden können.According to a particular embodiment, it is possible that after the shattering of the mold core, the workpiece is clamped in a vibrating device and the workpiece is rotated about at least one horizontal axis of rotation while vibrating at the same time. The advantage here is that the mold core can be smashed further by this measure or that the shattered mold core parts can be removed from the workpiece in this process step.

Entsprechend einer vorteilhaften Weiterbildung kann vorgesehen sein, dass beim Zertrümmern des Formkerns mehrere Hammerköpfe gleichzeitig auf die Energieübertragungsfläche einwirken. Von Vorteil ist hierbei, dass die notwendige Energie von mehreren Hammerköpfen gleichzeitig in das Werkstück eingebracht werden kann.According to an advantageous further development, it can be provided that when the mold core is smashed, several hammer heads are simultaneously applied to the energy transfer surface act. The advantage here is that the necessary energy can be introduced into the workpiece by several hammer heads at the same time.

Insbesondere kann es vorteilhaft sein, wenn zwischen dem Hammerkopf und der Energieübertragungsfläche eine Lastaufteilungsplatte eingelegt wird. Von Vorteil ist hierbei, dass durch die Lastaufteilungsplatte die Flächenpressung an der Energieübertragungsfläche möglichst gering gehalten werden kann.In particular, it can be advantageous if a load sharing plate is inserted between the hammer head and the energy transfer surface. The advantage here is that the surface pressure on the energy transfer surface can be kept as low as possible by means of the load sharing plate.

Ferner kann vorgesehen sein, dass in der Gussform, zumindest in jenem Bereich in dem die Energieübertragungsfläche des Werkstückes ausgebildet wird, ein Kühlkanal ausgebildet ist, wobei das Werkstück mittels dem Kühlkanal im Bereich der Energieübertragungsfläche gekühlt wird. Von Vorteil ist hierbei, dass die Energieübertragungsfläche mittels dem Kühlkanal gekühlt werden kann und diese somit eine vergleichsweise zum restlichen Werkstück hohe Oberflächenfestigkeit aufweisen kann.Furthermore, it can be provided that a cooling channel is formed in the casting mold, at least in that area in which the energy transfer surface of the workpiece is formed, the workpiece being cooled by means of the cooling channel in the area of the energy transfer surface. The advantage here is that the energy transfer surface can be cooled by means of the cooling channel and that it can therefore have a high surface strength compared to the rest of the workpiece.

Darüber hinaus kann vorgesehen sein, dass die Energieübertragungsfläche nach dem Entfernen des Werkstücks aus der Gussform lokal abgekühlt wird, beispielsweise indem die Energieübertragungsfläche des Werkstücks in eine Kühlflüssigkeit getaucht wird. Dadurch kann die Energieübertragungsfläche eine hohe Festigkeit aufweisen, wobei der Rest des Werkstücks auf einem hohen Temperaturniveau gehalten werden kann.In addition, provision can be made for the energy transfer surface to be locally cooled after the workpiece has been removed from the casting mold, for example by dipping the energy transfer surface of the workpiece in a cooling liquid. As a result, the energy transfer surface can have a high level of strength, and the rest of the workpiece can be kept at a high temperature level.

Erfindungsgemäß ist ein Entkernhammerträger zum Zertrümmern des Formkernes eines gegossenen Werkstückes vorgesehen, wobei der Entkernhammerträger zumindest einen Entkernhammer mit einem Hammerkopf aufweist. Weiters ist eine Lastaufteilungsplatte vorgesehen, welche zwischen dem Hammerkopf und das Werkstück bringbar ist. Von Vorteil ist hierbei, dass die Lastaufteilungsplatte dazu dienen kann, um am Werkstück keine hohe Flächenpressung einzuleiten.According to the invention, a coring hammer carrier is provided for shattering the mold core of a cast workpiece, the coring hammer carrier having at least one coring hammer with a hammer head. Furthermore, a load sharing plate is provided which can be brought between the hammer head and the workpiece. The advantage here is that the load sharing plate can be used to avoid introducing a high surface pressure on the workpiece.

Außerdem kann vorgesehen sein, dass die Lastaufteilungsplatte mit zumindest zwei Hammerköpfen von zwei Entkernhämmern gekoppelt ist. Von Vorteil ist hierbei, dass die Hammerköpfe der beiden Entkernhämmer durch diese Maßnahme miteinander gekoppelt werden.In addition, it can be provided that the load sharing plate is coupled to at least two hammer heads of two de-core hammers. The advantage here is that the hammer heads of the two core hammers are coupled to one another by this measure.

Weiters kann vorgesehen sein, dass die Lastaufteilungsplatte trennbar mit den Hammerköpfen der Entkernhämmer gekoppelt ist. Dadurch können verschiedene Lastaufteilungsplatten für verschiedene Werkstücke vorgesehen sein, wobei die Lastaufteilungsplatten selektiv ausgetauscht werden können.Furthermore, it can be provided that the load sharing plate is coupled to the hammer heads of the coring hammers in a separable manner. As a result, different load sharing plates can be provided for different workpieces, it being possible for the load sharing plates to be selectively exchanged.

Insbesondere kann vorgesehen sein, dass die Kontur der Lastaufteilungsplatte an die Oberflächenkontur der Energieübertragungsfläche des Werkstückes angepasst ist.In particular, it can be provided that the contour of the load sharing plate is adapted to the surface contour of the energy transfer surface of the workpiece.

Darüber hinaus kann vorgesehen sein, dass die Lastaufteilungsplatte in jenem Bereich in dem sie an der Energieübertragungsfläche des Werkstückes anliegt eine flexible Oberflächenbeschaffenheit aufweist. Dadurch sich die Lastaufteilungsplatte flexibel an die Energieübertragungsfläche des Werkstückes anpassen.In addition, it can be provided that the load sharing plate has a flexible surface quality in the area in which it rests on the energy transfer surface of the workpiece. As a result, the load sharing plate can be flexibly adapted to the energy transfer surface of the workpiece.

Weiters kann vorgesehen sein, dass der Speiser des Werkstückes die Energieübertragungsfläche aufweist. Insbesondere kann diese Maßnahme zweckdienlich sein, wenn als Gussform eine Sandform dient. Die Gussform wirkt hierbei isolierend, sodass das Werkstück nicht auskühlen kann. Wenn die Energieübertragungsfläche am Speiser gewählt wird, kann die Sandgussform vom Werkstück abgeschlagen werden, um das Auskühlen des Werkstücks zu erleichtern.Furthermore, it can be provided that the feeder of the workpiece has the energy transfer surface. In particular, this measure can be useful if a sand mold is used as the casting mold. The mold has an insulating effect, so that the workpiece cannot cool down. If the energy transfer surface is selected on the feeder, the sand casting mold can be knocked off the workpiece in order to facilitate the cooling of the workpiece.

Weiters ist es auch denkbar, dass beim Zertrümmern des Formkerns nicht nur der Formkern bzw. außenliegende Formkernteile vom Werkstück entfernt wird, sondern dass auch in den Formkern bzw. in die Gussform eingebrachte Elemente, wie etwa Kühleisen entfernt werden.Furthermore, it is also conceivable that when the mold core is smashed, not only the mold core or external mold core parts are removed from the workpiece, but that elements introduced into the mold core or into the casting mold, such as cooling irons, are also removed.

Weiters kann vorgesehen sein, dass der Hammerkopf während dem Vorgang des Zertrümmerns des Formkerns derart an die Energieübertragungsfläche angedrückt wird, dass er auch bei einer Positionsverschiebung der Energieübertragungsfläche des Werkstücks ständig an dieser anliegt. Mit anderen Worten ausgedrückt wird dadurch vermieden, dass der Hammerkopf während dem Vorgang des Zertrümmerns des Formkerns von der Energieübertragungsfläche des Werkstücks abhebt. Dadurch kann vermieden werden, dass ein Schlag auf die Energieübertragungsfläche des Werkstücks ausgeübt wird und diese beschädigt wird. Zur Positionsverschiebung der Energieübertragungsfläche kommt es insbesondere dann, wenn das Werkstück derart am Auflagetisch aufgelegt ist, dass ein außenliegender Formkern, welcher zertrümmert wird, am Auflagetisch aufliegt. Durch das Zertrümmern des außenliegenden Formkerns kommt es zur Positionsverschiebung des Werkstücks.Furthermore, it can be provided that the hammer head is pressed against the energy transfer surface during the process of smashing the mandrel in such a way that it is constantly in contact with the workpiece even if the energy transfer surface is shifted. In other words, this prevents the hammer head from lifting off the energy transfer surface of the workpiece during the process of shattering the mold core. This can prevent a blow from being exerted on the energy transfer surface of the workpiece and damaging it. The position of the energy transfer surface is shifted in particular when the workpiece is placed on the support table in such a way that an external mold core, which is smashed, rests on the support table. The position of the workpiece is shifted as a result of the shattering of the external mold core.

Ferner kann es zweckmäßig sein, wenn der Entkernhammer als Hydraulikhammer ausgeführt ist. Von Vorteil ist hierbei, dass ein Hydraulikhammer derart gesteuert werden kann, dass der Hammerkopf ständig an der Energieübertragungsfläche des Werkstücks anliegt, und es nicht zu einem Schlagen auf das Werkstück kommt.It can also be useful if the coring hammer is designed as a hydraulic hammer. The advantage here is that a hydraulic hammer can be controlled in such a way that the hammer head is constantly in contact with the energy transfer surface of the workpiece and there is no impact on the workpiece.

Weiters kann vorgesehen sein, dass der Hammerkopf während des Zertrümmern des Formkerns ständig mit einer Anpresskraft zwischen 100N und 2.000N, insbesondere zwischen 200N und 700N gegen die Energieübertragungsfläche des Werkstücks gedrückt wird.Furthermore, it can be provided that the hammer head is constantly pressed against the energy transfer surface of the workpiece with a contact pressure between 100N and 2000N, in particular between 200N and 700N, while the mold core is being smashed.

Weiters kann vorgesehen sein, dass das Werkstück als hohlzylindrischer Elektromotorengehäuserohling zum Weiterverarbeiten zu einem Elektromotorengehäuse ausgebildet ist, wobei als Energieübertragungsfläche eine Stirnfläche des hohlzylindrischen Elektromotorengehäuserohlings dient. Von Vorteil ist hierbei, dass die Stirnfläche des hohlzylindrischen Elektromotorengehäuserohlings in weiterer Folge mechanisch nachbearbeitet wird. Außerdem kann die Stirnfläche eine vergleichsweise hohe Festigkeit aufweisen, da sie früher erstarren kann.Furthermore, it can be provided that the workpiece is designed as a hollow cylindrical electric motor housing blank for further processing into an electric motor housing, an end face of the hollow cylindrical electric motor housing blank serving as the energy transfer surface. The advantage here is that the end face of the hollow cylindrical electric motor housing blank is subsequently mechanically reworked. In addition, the end face can have a comparatively high strength, since it can solidify earlier.

Beim Formkern handelt es sich vorzugsweise um ein Gebilde, das aus Sand geformt ist und nach dessen Entfernung vom Werkstück Hohlräume bzw. Aussparungen im Werkstück ausgebildet werden können. Insbesondere kann vorgesehen sein, dass der Sand des Formkerns mittels einem Binder seine Formstabilität erhält. Der Formkern kann aus mehreren Teilen bestehen, die miteinander verbunden sein können oder die unabhängig voneinander an verschiedenen Stellen in der Gussform angeordnet werden können. Weiters kann vorgesehen sein, dass der Formkern auch teilweise an der Außenseite des Werkstücks angeordnet ist, bzw. dass der Formkern das Werkstück teilweise nach außen überragt. Ein derartiger außenliegender Formkern kann beispielsweise im Bereich des Speiser oder des Angusses angeordnet sein.The mold core is preferably a structure that is formed from sand and after its removal from the workpiece, cavities or recesses can be formed in the workpiece. In particular, it can be provided that the sand of the mold core is given its dimensional stability by means of a binder. The mold core can consist of several parts which can be connected to one another or which can be arranged independently of one another at different points in the casting mold. Furthermore, it can be provided that the mold core is also partially arranged on the outside of the workpiece, or that the mold core partially protrudes outwardly beyond the workpiece. Such an external mold core can be arranged, for example, in the area of the feeder or the sprue.

Unter dem Verfahrensschritt "Zertrümmern des Formkerns" versteht man einen Verfahrensschritt in welchem der Formkern zumindest teilweise zerbricht. Dieser Verfahrensschritt beinhaltet nicht das Entfernen des Formkerns aus dem Werkstück.The process step “shattering the mold core” is understood to mean a process step in which the mold core breaks at least partially. This process step does not include removing the mandrel from the workpiece.

Ein Zylinderkopfrohling ist ein gegossenes Werkstück aus dem durch mechanische Nachbearbeitung, wie etwa fräsen, ein Zylinderkopf für einen Verbrennungsmotor gefertigt wird. Der fertig bearbeitete Zylinderkopf wird auf einen Motorblock des Verbrennungsmotors aufgesetzt. Der Zylinderkopf weist daher eine Motorblockanschlussfläche auf, die im verbauten Zustand optional unter Zwischenschaltung der Zylinderkopfdichtung am Zylinderblock anliegt. Jene Fläche, die am Zylinderkopfrohling als Rohfläche für die Motorblockanschlussfläche des Zylinderkopfes dient wird als Motorblockanschlussfläche des Zylinderkopfrohlings bezeichnet. Der Zylinderkopfrohling weist somit per Definition ebenfalls eine Motorblockanschlussfläche auf, wobei diese erst mechanisch bearbeitet werden muss, um tatsächlich mit dem Motorblock zur Anlage gebracht zu werden.A cylinder head blank is a cast workpiece from which a cylinder head for an internal combustion engine is manufactured through mechanical post-processing, such as milling. The finished cylinder head is placed on an engine block of the internal combustion engine. The cylinder head therefore has an engine block connection surface which, when installed, optionally rests against the cylinder block with the interposition of the cylinder head gasket. The surface that is used on the cylinder head blank as a raw surface for the engine block connection surface of the cylinder head is referred to as the engine block connection surface of the cylinder head blank. The cylinder head blank thus also has, by definition, an engine block connection surface, this first having to be mechanically processed in order to actually be brought into contact with the engine block.

Als Gusslage des Werkstücks wird jene räumliche Orientierung bzw. Lage verstanden, in der das Werkstück liegt, solange es in der Gussform aufgenommen ist. Dies gilt für Schwerkraftgießverfahren, bei denen die Gussform nicht bewegt wird. Bei Kippgießverfahren oder Rotationsgießverfahren wird als Gusslage die Endlage der Gussform verstanden.The casting position of the workpiece is understood to mean that spatial orientation or position in which the workpiece lies as long as it is received in the casting mold. This applies to gravity casting processes in which the mold is not moved. In the case of tilt casting or rotation casting, the casting position is understood to be the end position of the casting mold.

Zum besseren Verständnis der Erfindung wird diese anhand der nachfolgenden Figuren näher erläutert.For a better understanding of the invention, it is explained in more detail with reference to the following figures.

Es zeigen jeweils in stark vereinfachter, schematischer Darstellung:

Fig. 1
ein Flussdiagramm eines Ausführungsbeispiels des Verfahrens zum Herstellen eines gegossenen Werkstücks;
Fig. 2
eine schematische Darstellung eines gegossenen Werkstücks mit Entkernhammer und Lastaufteilungsplatte;
Fig. 3
eine schematische Darstellung eines Zylinderkopfrohlings und eines Zylinderkopfes;
Fig. 4
ein Zylinderkopfrohling in einer Vorrichtung zum Entkernen;
Fig. 5
ein Flussdiagramm eines weiteren Ausführungsbeispiels des Verfahrens zum Herstellen eines gegossenen Werkstücks;
Fig. 6
ein weiteres Ausführungsbeispiel eines Werkstücks, welches als Gehäuse für einen Elektromotor ausgebildet ist.
They each show in a greatly simplified, schematic representation:
Fig. 1
a flow diagram of an embodiment of the method for producing a cast workpiece;
Fig. 2
a schematic representation of a cast workpiece with a coring hammer and load sharing plate;
Fig. 3
a schematic representation of a cylinder head blank and a cylinder head;
Fig. 4
a cylinder head blank in a coring apparatus;
Fig. 5
a flow chart of a further embodiment of the method for producing a cast workpiece;
Fig. 6
a further embodiment of a workpiece which is designed as a housing for an electric motor.

Einführend sei festgehalten, dass in den unterschiedlich beschriebenen Ausführungsformen gleiche Teile mit gleichen Bezugszeichen bzw. gleichen Bauteilbezeichnungen versehen werden, wobei die in der gesamten Beschreibung enthaltenen Offenbarungen sinngemäß auf gleiche Teile mit gleichen Bezugszeichen bzw. gleichen Bauteilbezeichnungen übertragen werden können. Auch sind die in der Beschreibung gewählten Lageangaben, wie z.B. oben, unten, seitlich usw. auf die unmittelbar beschriebene sowie dargestellte Figur bezogen und sind diese Lageangaben bei einer Lageänderung sinngemäß auf die neue Lage zu übertragen.By way of introduction, it should be noted that in the differently described embodiments, the same parts are provided with the same reference symbols or the same component designations, it being possible for the disclosures contained in the entire description to be transferred accordingly to the same parts with the same reference symbols or the same component designations. The position details selected in the description, such as above, below, to the side, etc., also relate to the figure immediately described and shown and these position details are to be transferred accordingly to the new position in the event of a change in position.

Gemäß Fig. 1 wird bei einem erfindungsgemäßen Verfahren zur Herstellung eines gegossenen Werkstückes 1 eine Metallschmelze 2 in eine Gussform 3, beispielsweise eine Kokille, eingebracht. Die Gussform 3 ist in dem dargestellten Ausführungsbeispiel als zweiteilige Gussform 3 mit einem Unterteil 4 und einem Oberteil 5 ausgebildet, die lösbar miteinander verbunden sind. Natürlich kann die Gussform 3 auch mehr als zwei Teile aufweisen.According to Fig. 1 In a method according to the invention for producing a cast workpiece 1, a molten metal 2 is introduced into a casting mold 3, for example a mold. In the exemplary embodiment shown, the casting mold 3 is designed as a two-part casting mold 3 with a lower part 4 and an upper part 5, which are detachably connected to one another. Of course, the mold 3 can also have more than two parts.

Weiters kann vorgesehen sein, dass in der Gussform 3, insbesondere im Unterteil 4 oder im Oberteil 5 ein Kühlkanal 15 ausgebildet ist, in welchem eine Kühlflüssigkeit geführt ist. Dadurch kann das Werkstück 1 schon in der Gussform 3 gekühlt werden, um den Erstarrvorgang zu beschleunigen. Insbesondere kann vorgesehen sein, dass der Kühlkanal 15 zumindest in jenem Bereich der Gussform 3 ausgebildet ist, in dem eine Energieübertragungsfläche 12 am Werkstück 1 bereitgestellt werden soll.Furthermore, it can be provided that a cooling channel 15 is formed in the casting mold 3, in particular in the lower part 4 or in the upper part 5, in which a cooling liquid is guided. As a result, the workpiece 1 can already be cooled in the casting mold 3 in order to accelerate the solidification process. In particular, it can be provided that the cooling channel 15 is formed at least in that region of the casting mold 3 in which an energy transfer surface 12 is to be provided on the workpiece 1.

In die Gussform 3 ist ein Formkern 7 eingelegt, der gemeinsam mit den Innenwandungen des Unterteils 4 und des Oberteils 5 einen Formhohlraum 6 begrenzt. In den Formhohlraum 6 wird die Metallschmelze 2, bei welcher es sich besonders bevorzugt um eine Aluminiumschmelze handelt, eingebracht. Als Verfahren zum Einbringen der Metallschmelze können grundsätzlich alle bekannten Gießverfahren zum Einsatz kommen. Als besonders vorteilhaft haben sich die erfindungsgemäßen Verfahrensschritte beim Schwerkraft-Kokillengießen erwiesen.A mold core 7 is inserted into the casting mold 3 and, together with the inner walls of the lower part 4 and the upper part 5, delimits a mold cavity 6. The metal melt 2, which is particularly preferably an aluminum melt, is introduced into the mold cavity 6. In principle, all known casting methods can be used as the method for introducing the molten metal. As particularly beneficial the process steps according to the invention have proven themselves in gravity die casting.

Nach einem Erstarren des Werkstückes 1 kann dieses aus der Gussform 3 entnommen werden. Hierzu können der Unterteil 4 und der Oberteil 5 auseinander gefahren werden und anschließend das heiße Werkstück 1 aus der Gussform 3 entnommen werden.After the workpiece 1 has solidified, it can be removed from the casting mold 3. For this purpose, the lower part 4 and the upper part 5 can be moved apart and then the hot workpiece 1 can be removed from the casting mold 3.

Bei hinterschnittigen bzw. komplexen Werkstücken 1 kann auch vorgesehen sein, dass die Gussform 3 aus mehreren Teilen besteht.In the case of undercut or complex workpieces 1, it can also be provided that the casting mold 3 consists of several parts.

Zu diesem Zeitpunkt befindet sich der Formkern 7 noch in einem Hohlraum des Werkstückes 1, bzw. kann der Formkern 7 an einer Außenfläche des Werkstückes 1 angeordnet sein, bzw. sich bis an eine Außenfläche des Werkstückes erstrecken. Das heiße Werkstück 1 wird bei einer Oberflächentemperatur aus der Gussform 3 entnommen, die über 150° C beträgt. Insbesondere kann eine Oberflächentemperatur bei Entnahme des Werkstückes 1 aus der Gussform 3 bei über 300° C, insbesondere zwischen 360° und 440° C liegen. Die Entnahme des Werkstückes 1 aus der Gussform 3 kann beispielsweise mittels einer automatisierten Greifeinheit 8 erfolgen.At this point in time, the mold core 7 is still in a cavity of the workpiece 1, or the mold core 7 can be arranged on an outer surface of the workpiece 1, or can extend to an outer surface of the workpiece. The hot workpiece 1 is removed from the casting mold 3 at a surface temperature which is above 150 ° C. In particular, a surface temperature when the workpiece 1 is removed from the casting mold 3 can be over 300 ° C., in particular between 360 ° and 440 ° C. The workpiece 1 can be removed from the casting mold 3, for example, by means of an automated gripping unit 8.

Das heiße, aus der Gussform 3 entnommene Werkstück 1 kann optional in einem weiteren Schritt auf eine Oberflächentemperatur abgekühlt werden, die abhängig von der Entnahmetemperatur zwischen 150 und 400° C liegt. Zum Abkühlen des Werkstückes 1 kann ein Nebel 9 aus Wassertropfen verwendet werden. Die Wassertropfen verdampfen hierbei, sobald sie auf eine heiße Oberfläche des Werkstückes 1 auftreffen. Da das Werkstück 1 in diesem Schritt auf eine Temperatur abgekühlt wird, die deutlich über der Verdampfungstemperatur von Wasser liegt, ist gewährleistet, dass keine Wassertropfen in den Formkern 7 eindringen können.The hot workpiece 1 removed from the casting mold 3 can optionally be cooled in a further step to a surface temperature which, depending on the removal temperature, is between 150 and 400 ° C. A mist 9 composed of water droplets can be used to cool the workpiece 1. The water droplets evaporate as soon as they strike a hot surface of the workpiece 1. Since the workpiece 1 is cooled in this step to a temperature which is well above the evaporation temperature of water, it is ensured that no water droplets can penetrate the mold core 7.

Anstatt des Nebels 9 aus Wassertropfen kann das Werkstück 1 zum Abkühlen auch in Tauchbad getaucht werden.Instead of the mist 9 of water droplets, the workpiece 1 can also be immersed in an immersion bath to cool down.

An dieser Stelle sei nochmals darauf hingewiesen, dass die in diesem Dokument angegebenen Temperaturen sich auf Oberflächentemperaturen des Werkstückes 1 beziehen.At this point it should be pointed out again that the temperatures specified in this document relate to the surface temperatures of the workpiece 1.

Eine Ermittlung der Oberflächentemperatur des Werkstückes 1 in der Gussform kann beispielsweise mittels in oder an der Gussform 3 angebrachter Temperaturfühler und außerhalb der Gussform 3 auch berührungslos mittels Infrarotsensoren erfolgen. Darüber hinaus können natürlich auch andere dem Fachmann bekannte Sensoren und Verfahren zur Ermittlung der Temperatur zum Einsatz kommen. Alternativ dazu kann die Oberflächentemperatur des Werkstückes 1 auch als mathematisches Modell berechnet werden und über den Zeitlichen Ablauf berechnet werden.The surface temperature of the workpiece 1 in the casting mold can be determined, for example, by means of temperature sensors fitted in or on the casting mold 3 and outside of the casting mold 3 also in a contactless manner by means of infrared sensors. In addition, other sensors and methods known to the person skilled in the art for determining the temperature can of course also be used. Alternatively, the surface temperature of the workpiece 1 can also be calculated as a mathematical model and calculated over the course of time.

Das optionale zusätzliche Abkühlen des Werkstückes 1 außerhalb der Gussform 3 erfolgt nur so lange bis dieses die gewünschte Temperatur in einem Bereich zwischen 300° und 400°C erreicht hat.The optional additional cooling of the workpiece 1 outside the casting mold 3 only takes place until it has reached the desired temperature in a range between 300 ° and 400 ° C.

Anschließend an die Entnahme des Werkstückes 1 aus der Gussform 3 oder auch anschließend an das optionale zusätzliche Abkühlen des Werkstückes 1 außerhalb der Gussform 3 kann der Formkern 7 zertrümmert werden. Hierbei wird ein Hammerkopf 10 eines Entkernhammers 11 an eine Energieübertragungsfläche 12 des Werkstückes 1 angelegt. Insbesondere liegt hierbei eine Einwirkfläche 14 des Hammerkopfes 10 an der Energieübertragungsfläche 12 des Werkstückes 1 an. Beim Zertrümmern wird der Formkern 7 gebrochen, bzw. zumindest mit Rissen versehen.Subsequent to the removal of the workpiece 1 from the casting mold 3 or also subsequent to the optional additional cooling of the workpiece 1 outside the casting mold 3, the mold core 7 can be shattered. Here, a hammer head 10 of a coring hammer 11 is applied to an energy transfer surface 12 of the workpiece 1. In particular, an effective surface 14 of the hammer head 10 rests against the energy transfer surface 12 of the workpiece 1. When shattered, the mold core 7 is broken, or at least provided with cracks.

Der mögliche Aufbau eines Entkernhammers 11 ist in der AT 513442 A1 beschrieben, wobei der Entkernhammer 11 in dieser Schrift als Rüttelhammer bezeichnet wird.The possible structure of a coring hammer 11 is shown in AT 513442 A1 described, wherein the coring hammer 11 is referred to in this document as a vibrating hammer.

Wie aus Fig. 1 gut ersichtlich liegt beim Zertrümmern des Formkerns 7 der Hammerkopf 10 des Entkernhammers 11 an der Energieübertragungsfläche 12 des Werkstückes 1 an. Dadurch wird die vom Hammerkopf 10 des Entkernhammers 11 aufgebrachte Energie in die Energieübertragungsfläche 12 des Werkstückes 1 eingebracht, wodurch das Werkstück 1 in Schwingung versetzt wird und dadurch der Formkern 7 zertrümmert wird.How out Fig. 1 It is clearly evident that when the mold core 7 is smashed, the hammer head 10 of the coring hammer 11 rests on the energy transfer surface 12 of the workpiece 1. As a result, the energy applied by the hammer head 10 of the coring hammer 11 is introduced into the energy transfer surface 12 of the workpiece 1, causing the workpiece 1 to vibrate and the mold core 7 to be shattered.

Da das Werkstück 1 während diesem Vorgang eine hohe Oberflächentemperatur aufweist ist die Festigkeit des Werkstückes 1 zu diesem Zeitpunkt noch nicht zur Gänze erreicht. An die Energieübertragungsfläche 12 des Werkstückes 1 werden daher besondere Anforderungen gestellt. Insbesondere ist es notwendig, dass die Einwirkspuren an der Energieübertragungsfläche 12 durch den Hammerkopf 10 nur so gering sind, dass das fertig bearbeite Werkstück 1 keine Funktionsverluste und/oder keine optischen Beeinträchtigungen aufweist. Um dies zu erreichen können mehrere Maßnahmen gesetzt werden.Since the workpiece 1 has a high surface temperature during this process, the strength of the workpiece 1 has not yet been fully achieved at this point in time. To the The energy transfer surface 12 of the workpiece 1 is therefore subject to special requirements. In particular, it is necessary that the traces of action on the energy transfer surface 12 by the hammer head 10 are only so small that the finished workpiece 1 has no functional losses and / or no optical impairments. Several measures can be taken to achieve this.

Beispielsweise kann vorgesehen sein, dass als Energieübertragungsfläche 12 eine Fläche des Werkstückes 1 dient, welche eine niedrigere Oberflächentemperatur als die restlichen Flächen des Werkstückes 1 aufweist. Dadurch kann die Energieübertragungsfläche 12 eine höhere Festigkeit als die restlichen Flächen des Werkstückes 1 aufweisen.For example, it can be provided that the energy transfer surface 12 used is a surface of the workpiece 1 which has a lower surface temperature than the remaining surfaces of the workpiece 1. As a result, the energy transfer surface 12 can have a higher strength than the remaining surfaces of the workpiece 1.

Die niedrigere Temperatur der Energieübertragungsfläche 12 kann beispielsweise dadurch erreicht werden, dass die Energieübertragungsfläche 12 in Gusslage an einer Unterseite 19 des Werkstücks 1 angeordnet ist. Dies resultiert daraus, dass Schwerkraftbedingt die Metallschmelze 2 am Boden der Gussform 3 zuerst auftrifft und bei herkömmlichen Gießverfahren in denen die Metallschmelze 2 von oben in die Gussform eingegossen wird auch weniger stark durch die neue eingegossene Metallschmelze 2 erhitzt wird. Dieser Bereich kann somit als erster auskühlen und die Energieübertragungsfläche 12 bilden.The lower temperature of the energy transfer surface 12 can be achieved, for example, in that the energy transfer surface 12 is arranged in the cast position on an underside 19 of the workpiece 1. This results from the fact that, due to gravity, the molten metal 2 hits the bottom of the casting mold 3 first and, in conventional casting processes in which the molten metal 2 is poured into the casting mold from above, is also heated less strongly by the newly poured molten metal 2. This area can thus cool down first and form the energy transfer surface 12.

Weiters kann vorgesehen sein, dass zum Zertrümmern des Formkerns 7 das Werkstück 1 im Vergleich zur Gusslage auf den Kopf gestellt wird, sodass das Werkstück 1 mit einer Auflageseite 20 am Auflagetisch 21 aufliegt. Die Auflageseite 20 ist hierbei der Energieübertragungsfläche 12 gegenüberliegend ausgebildet.Furthermore, it can be provided that, in order to smash the mold core 7, the workpiece 1 is turned upside down in comparison to the cast position, so that the workpiece 1 rests with one support side 20 on the support table 21. The support side 20 is formed opposite the energy transfer surface 12.

In einem anschließenden Verfahrensschritt kann vorgesehen sein, dass das Werkstück 1 in einer Rüttelvorrichtung 13 gespannt wird und in Schwingungen versetzt wird, wobei der Formkern 7 endgültig zertrümmert und aus dem Werkstück 1 entfernt wird. Hierbei kann vorgesehen sein, dass das Werkstück 1 in der Rüttelvorrichtung 13 unter gleichzeitigem Rütteln um zumindest eine horizontale Drehachse 16 gedreht wird. Dadurch können die gebrochenen Einzelteile des Formkernes 7 aus dem Werkstück 1 herausgerüttelt werden. Mit anderen Worten ausgedrückt wird durch diese Maßnahme das Werkstück 1 entkernt.In a subsequent method step, it can be provided that the workpiece 1 is clamped in a vibrating device 13 and is set to vibrate, with the mold core 7 finally being smashed and removed from the workpiece 1. It can be provided here that the workpiece 1 is rotated in the vibrating device 13 about at least one horizontal axis of rotation 16 while vibrating at the same time. As a result, the broken individual parts of the mandrel 7 can be shaken out of the workpiece 1. In other words, this measure cores the workpiece 1.

Die Behandlung des Werkstückes 1 mittels dem Entkernhammer 11 kann der Behandlung des Werkstückes 1 mittels der Rüttelvorrichtung 13 vorgeschalten sein, wobei mittels dem Entkernhammer 11 der Formkern 7 initial gebrochen werden kann und mittels der Rüttelvorrichtung 13 in kleine Stücke zerbrochen werden kann, welche ebenfalls in der Rüttelvorrichtung 13 aus dem Werkstück 1 herausgefördert werden können.The treatment of the workpiece 1 by means of the coring hammer 11 can precede the treatment of the workpiece 1 by means of the vibrating device 13, whereby the mold core 7 can initially be broken by means of the coring hammer 11 and broken into small pieces by means of the vibrating device 13, which are also in the Vibrating device 13 can be conveyed out of the workpiece 1.

Als besonders vorteilhaft für die Temperatur, bei welcher ein Entkernen des Werkstückes 1 erfolgen kann, hat sich eine Temperatur bewährt, die mit einer Abweichung von +/- 30% einer Temperatur entspricht, bei welcher eine Ausscheidungshärtung eines Materials des Werkstückes 1 beginnt.A temperature which has proven to be particularly advantageous for the temperature at which the core of the workpiece 1 can be removed is a temperature which, with a deviation of +/- 30%, corresponds to a temperature at which precipitation hardening of a material of the workpiece 1 begins.

Nach dem Entkernen des Werkstückes 1 kann dieses zur weiteren Abkühlung in ein mit einer Kühlflüssigkeit 17 gefülltes Becken 18 getaucht werden.After the workpiece 1 has been cored, it can be immersed in a basin 18 filled with a cooling liquid 17 for further cooling.

Weiters kann vorgesehen sein, dass das Werkstück 1 im Bereich der Energieübertragungsfläche 12 anschließend mechanisch bearbeitet wird. Insbesondere kann hierbei ein spanabhebendes Werkzeug 22, beispielsweise ein Fräser, verwendet werden, um eine Schicht der Energieübertragungsfläche 12 abzutragen und somit eine Funktionsfläche zu erzeugen.Furthermore, it can be provided that the workpiece 1 is then mechanically processed in the area of the energy transfer surface 12. In particular, a cutting tool 22, for example a milling cutter, can be used to remove a layer of the energy transfer surface 12 and thus to generate a functional surface.

Wie aus Fig. 2 ersichtlich kann vorgesehen sein, dass zwischen dem Hammerkopf 10 und dem Werkstück 1 eine Lastaufteilungsplatte 23 eingelegt wird, mittels welcher die vom Hammerkopf 10 aufgebrachte Kraft gleichmäßig auf die Energieübertragungsfläche 12 aufgebracht werden kann. Durch diese Maßnahme kann die Flächenpressung an der Energieübertragungsfläche 12 möglichst geringgehalten werden, sodass das Werkstück 1 nicht durch das Einwirken des Entkernhammers 11 zerstört wird.How out Fig. 2 It can be seen that it can be provided that a load sharing plate 23 is inserted between the hammer head 10 and the workpiece 1, by means of which the force applied by the hammer head 10 can be applied evenly to the energy transfer surface 12. As a result of this measure, the surface pressure on the energy transfer surface 12 can be kept as low as possible, so that the workpiece 1 is not destroyed by the action of the coring hammer 11.

In einer Weiterbildung kann auch vorgesehen sein, dass auf die Lastaufteilungsplatte 23 zwei oder mehrere Entkernhammer 11 einwirken. Insbesondere kann vorgesehen sein, dass die Lastaufteilungsplatte 23 direkt mit den Hammerköpfen 10 der einzelnen Entkernhämmer 11 gekoppelt ist und somit nicht gesondert manipuliert werden muss. Dies ist insbesondere bei Serienbauteilen vorteilhaft.In a further development it can also be provided that two or more coring hammers 11 act on the load sharing plate 23. In particular, it can be provided that the load sharing plate 23 is coupled directly to the hammer heads 10 of the individual coring hammers 11 and therefore does not have to be manipulated separately. This is particularly advantageous for series components.

Fig. 3 zeigt eine schematische Darstellung eines Zylinderkopfrohlings 24 sowie eines Zylinderkopfes 25, der durch mechanische Bearbeitung aus dem Zylinderkopfrohling 24 gefertigt ist. Fig. 3 shows a schematic representation of a cylinder head blank 24 and a cylinder head 25 which is manufactured from the cylinder head blank 24 by mechanical processing.

In der Fig. 3 ist eine Motorblockanschlussfläche 26 des Zylinderkopfrohlings 24 sichtbar. Im verbauten Zustand des Zylinderkopfes 25 ist die Motorblockanschlussfläche 26 dem Motorblock des Verbrennungsmotors zugewandt und liegt insbesondere am Motorblock des Verbrennungsmotors an.In the Fig. 3 an engine block connection surface 26 of the cylinder head blank 24 is visible. In the installed state of the cylinder head 25, the engine block connection surface 26 faces the engine block of the internal combustion engine and in particular rests against the engine block of the internal combustion engine.

Fig. 4 zeigt eine perspektivische Ansicht eines Entkernhammerträgers 27. Der Entkernhammerträger 27 kann insbesondere zur Aufnahme bzw. zur automatisierten Bewegung eines oder mehrere Entkernhammer 11 dienen. Insbesondere kann vorgesehen sein, dass die Entkernhämmer 11 an einem Oberschlitten 28 angeordnet sind, welcher in vertikaler Richtung verschiebbar ist, wodurch die Entkernhämmer 11 an den Zylinderkopfrohling 24 anlegbar sind. Weiters kann vorgesehen sein, dass der Entkernhammerträger 27 einen Auflagetisch 21 aufweist, an welchem der Zylinderkopfrohling 24 platziert wird. Darüber hinaus kann vorgesehen sein, dass unter dem Werkstück 1, insbesondere dem Zylinderkopfrohling 24, ein Pufferelement 29 angeordnet ist, welches zwischen dem Zylinderkopfrohling 24 und dem Auflagetisch 21 angeordnet ist. Das Pufferelement 29 kann, wie dargestellt, streifenförmig ausgebildet sein. Alternativ dazu kann das Pufferelement 29 auch flächig ausgebildet sein, wobei auch Ausnehmungen im Pufferelement 29 vorgesehen sein können, welche durchlässig für den zerschlagenen Formkern 7 sind. Fig. 4 shows a perspective view of a coring hammer carrier 27. The coring hammer carrier 27 can serve in particular for receiving or for the automated movement of one or more coring hammers 11. In particular, it can be provided that the coring hammers 11 are arranged on an upper slide 28 which can be displaced in the vertical direction, whereby the coring hammers 11 can be placed against the cylinder head blank 24. Furthermore, it can be provided that the coring hammer carrier 27 has a support table 21 on which the cylinder head blank 24 is placed. In addition, it can be provided that a buffer element 29, which is arranged between the cylinder head blank 24 and the support table 21, is arranged under the workpiece 1, in particular the cylinder head blank 24. The buffer element 29 can, as shown, be designed in the form of a strip. As an alternative to this, the buffer element 29 can also have a flat design, with recesses also being able to be provided in the buffer element 29, which are permeable to the broken mold core 7.

Wie aus Fig. 4 weiters ersichtlich, kann vorgesehen sein, dass die Lastaufteilungsplatte 23 zwischen dem Hammerkopf 10 und das Werkstück 1 gebracht wird, um die Flächenpressung am Werkstück 1 zu vermindern.How out Fig. 4 Furthermore, it can be seen that the load distribution plate 23 is brought between the hammer head 10 and the workpiece 1 in order to reduce the surface pressure on the workpiece 1.

Insbesondere ist im Ausführungsbeispiel nach Fig. 4 vorgesehen, dass die Lastaufteilungsplatte 23 mit zwei Hammerköpfen 10 von zwei Entkernhämmern 11 gekoppelt ist. Natürlich können auch mehrere Entkernhämmer 11 vorgesehen sein, mit denen die Lastaufteilungsplatte 23 gekoppelt ist. Die Koppelung der Lastaufteilungsplatte 23 mit den Hammerköpfen 10 der Entkernhämmer 11 kann beispielsweise über eine lösbare Kupplung erfolgen.In particular, in the exemplary embodiment according to Fig. 4 it is provided that the load sharing plate 23 is coupled to two hammer heads 10 of two stripping hammers 11. Of course, a plurality of coring hammers 11 can also be provided to which the load sharing plate 23 is coupled. The coupling of the load sharing plate 23 to the hammer heads 10 of the coring hammers 11 can be done, for example, via a releasable coupling.

Wie aus einer Zusammenschau der Figuren 3 und 4 ersichtlich, kann vorgesehen sein, dass die Motorblockanschlussfläche 26 des Zylinderkopfrohlings 24 als Energieübertragungsfläche 12 dient. Der Zylinderkopfrohling 24 kann nach dem Gießvorgang derart in der Gussform 3 angeordnet sein, dass die Motorblockanschlussfläche 26 in Gusslage an der Unterseite 19 des Zylinderkopfrohlings 24 angeordnet ist.As if from a synopsis of the Figures 3 and 4th As can be seen, it can be provided that the engine block connection surface 26 of the cylinder head blank 24 serves as an energy transfer surface 12. After the casting process, the cylinder head blank 24 can be arranged in the casting mold 3 in such a way that the engine block connection surface 26 is arranged in the cast position on the underside 19 of the cylinder head blank 24.

Fig. 5 zeigt ein Flussdiagramm eines weiteren möglichen Verfahrensablaufes zum Herstellen eines gegossenen Werkstückes 1. Fig. 5 FIG. 4 shows a flow diagram of a further possible method sequence for producing a cast workpiece 1.

Wie aus Fig. 5 ersichtlich, kann vorgesehen sein, dass das Werkstück 1 nach Vorbereitung der Gussform 3 gegossen wird.How out Fig. 5 As can be seen, it can be provided that the workpiece 1 is cast after the casting mold 3 has been prepared.

Anschließend kann das Werkstück 1 insbesondere mittels der Greifeinheit 8 aus der Gussform 3 entnommen werden. Die Entnahme aus der Gussform 3 kann erfolgen, sobald das Werkstück 1 an der Energieübertragungsfläche 12 eine Oberflächentemperatur im Bereich von 430° C aufweist. Während der Manipulation des Werkstückes 1 kühlt dieses weiter ab, sodass die Oberflächentemperatur an der Energieübertragungsfläche 12 am Ende des Handlingvorganges in etwa 400°C oder darunter beträgt.The workpiece 1 can then be removed from the casting mold 3, in particular by means of the gripping unit 8. The removal from the casting mold 3 can take place as soon as the workpiece 1 has a surface temperature in the range of 430 ° C. on the energy transfer surface 12. During the manipulation of the workpiece 1, it cools down further, so that the surface temperature on the energy transfer surface 12 at the end of the handling process is approximately 400 ° C. or below.

Bei dieser Oberflächentemperatur von unter 400°C, insbesondere unter 360°C kann der Hammerkopf 10 des Entkernhammers 11 an die Energieübertragungsfläche 12 angelegt werden und auf diese eingehämmert werden. Nach einem Zeitraum von 1 bis 20 Sekunden. brechen zumindest die außenliegenden Teile des Formkerns 7 ab, sodass die Oberfläche des Werkstücks 1 frei liegt und das Werkstück 1 nun schneller abkühlen kann.At this surface temperature of below 400 ° C., in particular below 360 ° C., the hammer head 10 of the coring hammer 11 can be placed on the energy transfer surface 12 and hammered onto it. After a period of 1 to 20 seconds. at least the outer parts of the mold core 7 break off, so that the surface of the workpiece 1 is exposed and the workpiece 1 can now cool down more quickly.

In einem anschließenden optionalen Verfahrens schritt kann das Werkstück 1, insbesondere die Energieübertragungsfläche 12 des Werkstückes 1 in ein Tauchbad eingetaucht werden, um diese abzuschrecken und weiter abzukühlen.In a subsequent optional process step, the workpiece 1, in particular the energy transfer surface 12 of the workpiece 1, can be immersed in an immersion bath in order to quench it and cool it down further.

In einem anschließenden Verfahrensschritt kann das Werkstück 1 in einem Kühlregal solange gelagert werden, bis die Oberflächentemperatur der Energieübertragungsfläche 12 des Werkstückes 1 zwischen 150° C und 200° C beträgt.In a subsequent process step, the workpiece 1 can be stored in a refrigerated shelf until the surface temperature of the energy transfer surface 12 of the workpiece 1 is between 150.degree. C. and 200.degree.

Anschließend kann erneut das Werkstück 1 erneut der Hammerkopf 10 eines Entkernhammers 11 an die Energieübertragungsfläche angelegt werden, um die restlichen Teile des Formkerns 7 zu zertrümmern.Subsequently, the workpiece 1 can again be applied to the energy transfer surface by the hammer head 10 of a coring hammer 11 in order to smash the remaining parts of the mold core 7.

Anschließend kann das Werkstück 1 in der Rüttelvorrichtung 13 gespannt werden, um den Formkern 7 weiter zu zertrümmern und ihn dabei aus dem Werkstück 1 zu entfernen.The workpiece 1 can then be clamped in the vibrating device 13 in order to further shatter the mold core 7 and thereby remove it from the workpiece 1.

Anschließend kann das Werkstück 1 optional weiter abgekühlt und mechanisch bearbeitet werden.The workpiece 1 can then optionally be further cooled and mechanically processed.

Fig. 6 zeigt ein weiteres Ausführungsbeispiel eines Werkstücks 1, welches als hohlzylindrischer Elektromotorengehäuserohling 30 zum Weiterverarbeiten zu einem Elektromotorengehäuse für einen Elektromotor ausgebildet ist. Wie aus diesem Ausführungsbeispiel ersichtlich, kann vorgesehen sein, dass die Energieübertragungsfläche 12 an einer Stirnfläche 31 des hohlzylindrischen Elektromotorengehäuserohlings 30 ausgebildet ist. Fig. 6 shows a further embodiment of a workpiece 1, which is designed as a hollow cylindrical electric motor housing blank 30 for further processing into an electric motor housing for an electric motor. As can be seen from this exemplary embodiment, it can be provided that the energy transfer surface 12 is formed on an end surface 31 of the hollow-cylindrical electric motor housing blank 30.

Hierbei kann vorgesehen sein, dass der Formkern 7 teilweise als außenliegender Kern ausgebildet ist. Außerdem kann der Formkern 7 den Hohlraum des Elektromotorengehäuserohlings 30 bilden. Weiters kann vorgesehen sein, dass in der Wandung des Elektromotorengehäuserohlings 30 ein innenliegender Formkern 7 ausgebildet ist, welcher zum Ausbilden von Kühlwasserkanälen im Elektromotorengehäuse dient.It can be provided here that the mold core 7 is partially designed as an external core. In addition, the mold core 7 can form the cavity of the electric motor housing blank 30. Furthermore, it can be provided that an internal mold core 7 is formed in the wall of the electric motor housing blank 30, which is used to form cooling water channels in the electric motor housing.

Insbesondere kann vorgesehen sein, dass der Elektromotorengehäuserohling 30 als im Wesentlichen rotationssymmetrischer Hohlkörper ausgebildet ist. Außerdem kann vorgesehen sein, dass die Stirnfläche 31 des hohlzylindrischen Elektromotorengehäuserohlings 30 in einem weiteren Arbeitsschritt mechanisch bearbeitet wird.In particular, it can be provided that the electric motor housing blank 30 is designed as an essentially rotationally symmetrical hollow body. In addition, it can be provided that the end face 31 of the hollow cylindrical electric motor housing blank 30 is machined in a further work step.

Die Ausführungsbeispiele zeigen mögliche Ausführungsvarianten, wobei an dieser Stelle bemerkt sei, dass die Erfindung nicht auf die speziell dargestellten Ausführungsvarianten derselben eingeschränkt ist, sondern vielmehr auch diverse Kombinationen der einzelnen Ausführungsvarianten untereinander möglich sind und diese Variationsmöglichkeit aufgrund der Lehre zum technischen Handeln durch gegenständliche Erfindung im Können des auf diesem technischen Gebiet tätigen Fachmannes liegt.The exemplary embodiments show possible design variants, whereby it should be noted at this point that the invention is not limited to the specifically illustrated design variants of the same, but rather various combinations of the individual design variants with one another are possible and this possibility of variation is based on the teaching on technical action by the present invention Ability of the person skilled in this technical field.

Der Schutzbereich ist durch die Ansprüche bestimmt. Die Beschreibung und die Zeichnungen sind jedoch zur Auslegung der Ansprüche heranzuziehen. Einzelmerkmale oder Merkmalskombinationen aus den gezeigten und beschriebenen unterschiedlichen Ausführungsbeispielen können für sich eigenständige erfinderische Lösungen darstellen. Die den eigenständigen erfinderischen Lösungen zugrundeliegende Aufgabe kann der Beschreibung entnommen werden.The scope of protection is determined by the claims. However, the description and the drawings are to be used to interpret the claims. Individual features or combinations of features from the different exemplary embodiments shown and described can represent independent inventive solutions. The task on which the independent inventive solutions are based can be found in the description.

Sämtliche Angaben zu Wertebereichen in gegenständlicher Beschreibung sind so zu verstehen, dass diese beliebige und alle Teilbereiche daraus mitumfassen, z.B. ist die Angabe 1 bis 10 so zu verstehen, dass sämtliche Teilbereiche, ausgehend von der unteren Grenze 1 und der oberen Grenze 10 mit umfasst sind, d.h. sämtliche Teilbereiche beginnen mit einer unteren Grenze von 1 oder größer und enden bei einer oberen Grenze von 10 oder weniger, z.B. 1 bis 1,7, oder 3,2 bis 8,1, oder 5,5 bis 10.All information on value ranges in the present description are to be understood in such a way that they include any and all sub-areas thereof, e.g. the information 1 to 10 is to be understood in such a way that all sub-areas, starting from the lower limit 1 and the upper limit 10, are also included , ie all sub-ranges begin with a lower limit of 1 or greater and end at an upper limit of 10 or less, for example 1 to 1.7, or 3.2 to 8.1, or 5.5 to 10.

Der Ordnung halber sei abschließend darauf hingewiesen, dass zum besseren Verständnis des Aufbaus Elemente teilweise unmaßstäblich und/oder vergrößert und/oder verkleinert dargestellt wurden.For the sake of clarity, it should finally be pointed out that, for a better understanding of the structure, some elements have been shown not to scale and / or enlarged and / or reduced.

BezugszeichenaufstellungList of reference symbols

11 Werkstückworkpiece 3131 StirnflächeFace 22 MetallschmelzeMolten metal 33 Gussformmold 44th UnterteilLower part 55 OberteilTop 66th Hohlraumcavity 77th FormkernMold core 88th GreifeinheitGripping unit 99 Nebelfog 1010 HammerkopfHammer head 1111 EntkernhammerCoring hammer 1212th EnergieübertragungsflächeEnergy transfer surface 1313th RüttelvorrichtungVibrator 1414th Einwirkfläche HammerkopfImpact area hammer head 1515th KühlkanalCooling duct 1616 DrehachseAxis of rotation 1717th KühlflüssigkeitCoolant 1818th Beckenpool 1919th Unterseitebottom 2020th AuflageseiteCirculation page 2121st AuflagetischSupport table 2222nd Spanabhebendes WerkzeugCutting tool 2323 LastaufteilungsplatteLoad sharing plate 2424 ZylinderkopfrohlingCylinder head blank 2525th ZylinderkopfCylinder head 2626th MotorblockanschlussflächeEngine block connection surface 2727 EntkernhammerträgerCoring hammer carrier 2828 OberschlittenTop slide 2929 PufferelementBuffer element 3030th ElektromotorengehäuserohlingElectric motor housing blank

Claims (21)

  1. A method for producing a cast workpiece (1), wherein the method comprises the following method steps:
    - providing a mold (3) having at least one mold core (7) arranged in the mold (3);
    - inserting a metal melt (2) into the mold (3);
    - waiting for a period of time until at least the outer contour of the metal melt (2) has solidified and the workpiece (1) has been formed from the metal melt (2);
    - removing the workpiece (1) from the mold (3);
    - shattering the mold core (7), wherein for shattering the mold core (7), a hammer head (10) is applied on a defined energy transmission surface (12) of the workpiece (1) and the energy transmission surface (12) is acted on by means of the hammer head (10), characterized in that
    shattering the mold core (7) by means of the hammer head (10) is carried out at a surface temperature of the energy transmission surface (12) of between 300° Celsius and 400° Celsius, wherein at least outward parts of the mold core (7) are shattered.
  2. The method according to claim 1, characterized in that the energy transmission surface (12) is a surface of the workpiece (1) which is mechanically processed, in particular chipped, in subsequent production steps.
  3. The method according to claim 1 or 2, characterized in that a surface of the workpiece (1) serves as the energy transmission surface (12) which has the largest surface solidity at the point in time at which the mold core (7) is shattered.
  4. The method according to one of the preceding claims, characterized in that a surface of the workpiece (1) serves as the energy transmission surface (12), which surface was arranged in the region of a lower part (4) of the mold (3), in particular at a bottom side (19) of the workpiece (1) with respect to the casting position, during the casting process.
  5. The method according to claim 4, characterized in that the workpiece (1) is turned by 180° after removal from the mold (3) such that the energy transmission surface (12) is located on the upper side of the workpiece (1) and the workpiece (1) rests on a support table (21) on a support side (20) opposite to the energy transmission surface (12).
  6. The method according to one of the preceding claims, characterized in that the workpiece (1) is designed as a cylinder head blank (24) for further processing into a cylinder head (25) for a combustion engine, wherein an engine block connecting surface (26) of the cylinder head blank (24) serves as the energy transmission surface (12).
  7. The method according to one of the preceding claims, characterized in that the energy transmission surface (12) is formed as a planar surface.
  8. The method according to one of the preceding claims, characterized in that a surface area of an application surface (14) of the hammer head (10) or of the load distribution plate (23), which rests against the energy transmission surface (12) during shattering of the mold core (7), amounts to between 150% and 10%, in particular between 110% and 50%, preferably between 100% and 80%, of a surface area of the energy transmission surface (12).
  9. The method according to one of the preceding claims, characterized in that the workpiece (1) is removed from the mold (3) at a surface temperature of the energy transmission surface (12) of between 440° Celsius and 360° Celsius.
  10. The method according to claim 9, characterized in that the workpiece (1) is further cooled down in the ambiance while the workpiece (1) is fed to a hammer head (10) for shattering the mold core (7) until the energy transmission surface (12) has a surface temperature of between 300° Celsius and 400° Celsius.
  11. The method according to one of the preceding claims, characterized in that the hammer head (10) acts on the workpiece (1) with a striking action for between 1 second and 20 seconds.
  12. The method according to one of the preceding claims, characterized in that after shattering at least of parts of the mold core (7), the workpiece (1) is further cooled down until the energy transmission surface (12) has a surface temperature of between 100° Celsius and 200° Celsius, in particular between 150° Celsius and 200° Celsius, and that the workpiece (1) is subsequently again fed to a hammer head (10) for shattering of the mold core (7), wherein in the course of this, the remaining parts, in particular the parts located on the inside of the workpiece (1), of the mold core (7) are shattered as well.
  13. The method according to one of the preceding claims, characterized in that the workpiece (1) is clamped in a vibrator device (13) after shattering of the mold core (7) and the workpiece (1) is rotated about at least one horizontal axis of rotation (16) during simultaneous vibration.
  14. The method according to one of the preceding claims, characterized in that during shattering of the mold core (7), multiple hammer heads (10) simultaneously act on the energy transmission surface (12).
  15. The method according to one of the preceding claims, characterized in that a load distribution plate (23) is inserted between the hammer head (10) and the energy transmission surface (12).
  16. The method according to one of the preceding claims, characterized in that a cooling channel (15) is formed in the mold (3), at least in the region in which the energy transmission surface (12) of the workpiece (1) is formed, wherein the workpiece (1) is cooled in the region of the energy transmission surface (12) by means of the cooling channel (15).
  17. The method according to one of the preceding claims, characterized in that the energy transmission surface (12) is locally cooled down after removal of the workpiece (1) from the mold (3), for example by the energy transmission surface (12) of the workpiece (1) being plunged into a coolant.
  18. The method according to one of the preceding claims, characterized in that the feeder of the workpiece (1) comprises the energy transmission surface (12).
  19. The method according to one of the preceding claims, characterized in that the hammer head (10) is pressed against the energy transmission surface (12) during the process of shattering the mold core (7) such that it continuously rests against the energy transmission surface (12) of the workpiece (1) also in case of a positional displacement.
  20. The method according to one of the preceding claims, characterized in that during shattering of the mold core (7), the hammer head (10) is constantly pressed against the energy transmission surface (12) of the workpiece (1) with a pressure force between 100N and 2,000N, in particular between 200N and 700N.
  21. The method according to one of the preceding claims, characterized in that the workpiece (1) is formed as a hollow-cylindrical electric motor housing blank (30) for further processing to an electric motor housing, wherein an end face (31) of the hollow-cylindrical electric motor housing blank (30) serves as the energy transmission surface (12).
EP18785245.4A 2017-09-07 2018-09-04 Method for producing a cast workpiece Active EP3678803B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50752/2017A AT520370B1 (en) 2017-09-07 2017-09-07 Process for the production of a cast workpiece
PCT/AT2018/060198 WO2019046874A1 (en) 2017-09-07 2018-09-04 Method for producing a cast workpiece

Publications (2)

Publication Number Publication Date
EP3678803A1 EP3678803A1 (en) 2020-07-15
EP3678803B1 true EP3678803B1 (en) 2021-07-28

Family

ID=63832156

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18785245.4A Active EP3678803B1 (en) 2017-09-07 2018-09-04 Method for producing a cast workpiece

Country Status (8)

Country Link
US (1) US11167344B2 (en)
EP (1) EP3678803B1 (en)
CN (1) CN111201097A (en)
AT (1) AT520370B1 (en)
BR (1) BR112020004618A2 (en)
MX (1) MX2020002535A (en)
RU (1) RU2020112294A (en)
WO (1) WO2019046874A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115365480A (en) * 2022-09-14 2022-11-22 江苏天宏机械工业有限公司 Automatic post-treatment equipment and method for aluminum alloy castings

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4643243A (en) * 1985-08-05 1987-02-17 Seaton-Ssk Engineering Co., Inc. Machine for impact cleaning casting
CH669343A5 (en) * 1985-12-19 1989-03-15 Werner Lueber
DE3728687A1 (en) * 1987-08-27 1989-03-09 Froelich & Kluepfel Druckluft METHOD AND DEVICE FOR COREING CASTING PIECES
JP3236998B2 (en) * 1999-04-17 2001-12-10 好高 青山 Casting sand remover
JP2902641B1 (en) * 1998-07-14 1999-06-07 菱栄エンジニアリング株式会社 Foundry sand removal equipment
JP3948490B2 (en) 2004-02-25 2007-07-25 新東工業株式会社 Casting manufacturing method
WO2006004756A2 (en) * 2004-06-28 2006-01-12 Consolidated Engineering Company, Inc. Method and apparatus for removal of flashing and blockages from a casting
FR2954196B1 (en) * 2009-12-21 2012-01-20 Essilor Int MACHINING METHOD FOR TURNING A FACE OF A GLASS OF GLASSES
FR2954195A1 (en) * 2009-12-23 2011-06-24 Fonderie Du Poitou Aluminium Hammering process for performing disintegration of molding insert to extract fixed part with frame, comprises hammering the part using a hammer, and controlling efficiency of hammering in function of a specified information
JP5641408B2 (en) * 2010-07-23 2014-12-17 株式会社ヨーマー Vibration hammering sand blasting machine and multiple installation vibration hammering sand blasting machine
DE102010054496B4 (en) * 2010-12-14 2020-06-18 Volkswagen Ag Casting-made electric motor housing part for an electric motor
CN203495196U (en) * 2013-10-09 2014-03-26 浙江瑞庆汽车零部件有限公司 Air cylinder cover blank shakeout machine
DE102014221897B4 (en) * 2014-10-28 2023-03-02 Bayerische Motoren Werke Aktiengesellschaft Device for monitoring an impulse-based removal of core structures from at least one casting
AT517384A1 (en) * 2015-06-15 2017-01-15 Fill Gmbh Method for producing a cast workpiece
EP3463717B1 (en) * 2016-05-30 2020-12-09 Fill Gesellschaft m.b.H. Method for the core removal of cast parts

Also Published As

Publication number Publication date
AT520370A1 (en) 2019-03-15
WO2019046874A1 (en) 2019-03-14
US11167344B2 (en) 2021-11-09
BR112020004618A2 (en) 2020-09-24
CN111201097A (en) 2020-05-26
MX2020002535A (en) 2020-07-20
US20210129215A1 (en) 2021-05-06
RU2020112294A (en) 2021-10-08
EP3678803A1 (en) 2020-07-15
AT520370B1 (en) 2020-08-15

Similar Documents

Publication Publication Date Title
DE2725704A1 (en) PRODUCTION OF CORUNDUM-CONTAINING GRINDING GRAINS, FOR EXAMPLE FROM ZIRCONIUM CORUNDUM
EP2844409B1 (en) Method for casting a cast part provided with at least one passage opening
DE102011101369A1 (en) Method of making, repairing or replacing a component
DE3327934A1 (en) METHOD AND DEVICE FOR PRODUCING AN OBJECT WITH A SPECIFIED CRYSTALLINE ORIENTATION
DE102006026805A1 (en) Machine for hot-forming semi-finished products to produce car components comprises mold and ram, between which holder and at least one cutter are mounted
EP3463717B1 (en) Method for the core removal of cast parts
EP3585537B1 (en) Apparatus and method for destroying a casting core
EP3678803B1 (en) Method for producing a cast workpiece
DE102006057660B4 (en) Method for die casting of components and use of a spray device of a die casting device
DE2454979A1 (en) METHOD OF MANUFACTURING STEEL CASTINGS NOT REQUIRING REPAIRING
EP3024607B1 (en) Casting device and casting method
EP0241426A1 (en) Process and plant for pressure casting
WO2007131368A1 (en) Mold device for producing cast parts
DE102014001958B3 (en) Apparatus and method for processing cast workpieces
CH690753A5 (en) Assembly for working thixotropic materials has a number of workstations with a conveyor system including an electromagnetic stirrer and an ejector for the metal portions
WO2016201474A1 (en) Method for producing a cast work piece
DE1758419A1 (en) Method and device for cleaning foundry cores
WO2018152559A1 (en) Apparatus and method for destroying a casting core
EP1097767A1 (en) Process and device for the manufacture of a mould consisting of two mould halves and the supply of molten metal into said mould
DE652824C (en) Process and devices for the production of cast blanks for further processing on drawing presses
DE2115669C3 (en) Process for producing hollow metal blocks by electroslag remelting and apparatus for carrying out this process
DE2652943A1 (en) PROCESS AND SYSTEM FOR THE PRODUCTION OF FLAT, HORIZONTAL LYING STEEL BLOCKS WITH LARGER WIDTH THAN HEIGHT
AT8677U1 (en) FORM FOR INJECTION MOLDING TOOLS
DE102006022291A1 (en) Method for pressure casting complex metal shapes especially cylinder blocks for IC engines has the water jacket mould partially removed from the casting after initial setting
DE102017129237A1 (en) Method and device for cutting a workpiece

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200403

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210325

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1414261

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018006367

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211028

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211129

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211028

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018006367

Country of ref document: DE

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210904

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210904

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220904

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230807

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230907

Year of fee payment: 6

Ref country code: DE

Payment date: 20230816

Year of fee payment: 6