EP3678790B1 - Irradiation tunnel for containers, and method for irradiating containers - Google Patents

Irradiation tunnel for containers, and method for irradiating containers Download PDF

Info

Publication number
EP3678790B1
EP3678790B1 EP18735261.2A EP18735261A EP3678790B1 EP 3678790 B1 EP3678790 B1 EP 3678790B1 EP 18735261 A EP18735261 A EP 18735261A EP 3678790 B1 EP3678790 B1 EP 3678790B1
Authority
EP
European Patent Office
Prior art keywords
containers
lamps
irradiation
irradiation tunnel
heat sinks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18735261.2A
Other languages
German (de)
French (fr)
Other versions
EP3678790A1 (en
Inventor
Wolfgang Mayer
August Peutl
Roland Laumer
Valentin BECHER
Andreas NIEMCZYK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krones AG
Original Assignee
Krones AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krones AG filed Critical Krones AG
Publication of EP3678790A1 publication Critical patent/EP3678790A1/en
Application granted granted Critical
Publication of EP3678790B1 publication Critical patent/EP3678790B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F23/00Devices for treating the surfaces of sheets, webs, or other articles in connection with printing
    • B41F23/005Devices for treating the surfaces of sheets, webs, or other articles in connection with printing of non-flat articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F23/00Devices for treating the surfaces of sheets, webs, or other articles in connection with printing
    • B41F23/04Devices for treating the surfaces of sheets, webs, or other articles in connection with printing by heat drying, by cooling, by applying powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F23/00Devices for treating the surfaces of sheets, webs, or other articles in connection with printing
    • B41F23/04Devices for treating the surfaces of sheets, webs, or other articles in connection with printing by heat drying, by cooling, by applying powders
    • B41F23/0476Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/0015Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form for treating before, during or after printing or for uniform coating or laminating the copy material before or after printing
    • B41J11/002Curing or drying the ink on the copy materials, e.g. by heating or irradiating
    • B41J11/0021Curing or drying the ink on the copy materials, e.g. by heating or irradiating using irradiation
    • B41J11/00214Curing or drying the ink on the copy materials, e.g. by heating or irradiating using irradiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/407Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material
    • B41J3/4073Printing on three-dimensional objects not being in sheet or web form, e.g. spherical or cubic objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/407Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material
    • B41J3/4073Printing on three-dimensional objects not being in sheet or web form, e.g. spherical or cubic objects
    • B41J3/40733Printing on cylindrical or rotationally symmetrical objects, e. g. on bottles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B15/00Machines or apparatus for drying objects with progressive movement; Machines or apparatus with progressive movement for drying batches of material in compact form
    • F26B15/10Machines or apparatus for drying objects with progressive movement; Machines or apparatus with progressive movement for drying batches of material in compact form with movement in a path composed of one or more straight lines, e.g. compound, the movement being in alternate horizontal and vertical directions
    • F26B15/12Machines or apparatus for drying objects with progressive movement; Machines or apparatus with progressive movement for drying batches of material in compact form with movement in a path composed of one or more straight lines, e.g. compound, the movement being in alternate horizontal and vertical directions the lines being all horizontal or slightly inclined
    • F26B15/18Machines or apparatus for drying objects with progressive movement; Machines or apparatus with progressive movement for drying batches of material in compact form with movement in a path composed of one or more straight lines, e.g. compound, the movement being in alternate horizontal and vertical directions the lines being all horizontal or slightly inclined the objects or batches of materials being carried by endless belts

Definitions

  • the invention relates to an irradiation tunnel according to the preamble of claim 1 and as known from DE 33 22 401 C1 and a method for irradiating containers in the irradiation tunnel.
  • containers are increasingly printed directly using UV-reactive inks.
  • the finished but not yet sufficiently cured print images are preferably post-treated with broadband UV radiation in the UVC, UVB and UVA ranges and the inks are thus cured quickly and completely.
  • Mercury vapor lamps for example, can be used for this purpose.
  • the lamps are arranged one behind the other in an irradiation tunnel along a transport means in the transport direction in order to irradiate the containers from the side and to cure UV-curing printing inks (inks) present thereon.
  • the irradiation levels required for curing cause considerable heating of the irradiation tunnel, which has hitherto been counteracted by suction of the air present in the irradiation tunnel and subsequent flows of cooler ambient air through the container inlet and outlet.
  • air cooling inside the irradiation tunnel has two fundamental disadvantages.
  • the heat exchange is so severely limited by the range of practicable volume flows on the affected surfaces that lamps can only be arranged on one side of the means of transport and cooling zones without lamps are required on the other side.
  • the containers must be irradiated on both sides, at least two zones, each with one-sided irradiation and associated cooling zones, must be set up one behind the other along the means of transport. This leads to an undesirably elongated design of the irradiation tunnel.
  • the air cooling is based on the intake of comparatively large amounts of room air through the container inlet and the container outlet. Since the air sucked in in this way can hardly be filtered, dust is introduced into the irradiation tunnel with the room air. This causes undesired contamination of the irradiation tunnel and possibly also of the container.
  • the irradiation tunnel comprises a means of transport for containers, lamps arranged along the means of transport for UV irradiation of the containers, and a cooling device for cooling the interior of the irradiation tunnel.
  • the cooling device comprises liquid-cooled heat sinks which extend into the irradiation areas of the lamps. According to the invention, the heat sinks are coated and/or anodized to absorb UV light.
  • the heat sinks are at least partially irradiated by opposite lamps.
  • the liquid-cooled heat sinks enable a more compact design of the irradiation tunnel, since both the heat sinks and the lamps can be arranged directly next to each other and on both sides of the means of transport. In addition, there is no need for supply air through the container inlet and/or the container outlet of the irradiation tunnel. Thus, contamination of the irradiation tunnel and the container with dust from the ambient air can be avoided.
  • Interior cooling of the irradiation tunnel means that the heat sinks are designed to dissipate energy that was introduced into the irradiation tunnel by the lamps as radiant energy and is absorbed by its inner walls, components and the air present inside.
  • the interior cooling plays no or only a minor role for the cooling of the lamps themselves.
  • the lamps are cooled using cooling systems known per se, for example using separate air or water cooling circuits for the individual lamps.
  • the heat sinks have no radiation function in the sense of reflecting and/or scattering the UV light and/or emitting thermal radiation after light absorption. Instead, the light energy absorbed by it and the thermal energy absorbed from the interior air via convection should be transferred as comprehensively as possible to the coolant flowing through the heat sink.
  • the irradiation areas are areas that are directly irradiated by the lamps, possibly also only intermittently through the transport gaps between the moving containers.
  • the lamps are preferably arranged on both sides of the means of transport, and the heat sinks are formed at least between the lamps, in particular around the lamps, viewed transversely to the direction of transport.
  • the area of the lamps on the side of the means of transport can also be used for effective cooling of interior air and for the absorption of radiant energy. This enables a particularly compact irradiation tunnel.
  • liquid-cooled heat sinks are preferably formed above the means of transport.
  • the heat sinks can then be designed essentially in the form of a ceiling of the irradiation tunnel in order to absorb scattered radiation and to cool interior air rising upwards.
  • These heat sinks are usually located outside of the irradiation areas.
  • the liquid-cooled heat sinks can, for example, have a total area of at least 0.5 m 2 and in particular at least 1 m 2 , the total cooling area being a cooling area that is in contact with the interior air.
  • the heat sinks preferably comprise hollow plates made from metal, in particular from an aluminum alloy.
  • hollow plates allow an equally mechanically stable enclosing of the transport route for the containers as well as an effective heat transfer to the cooling liquid, which is in particular cooling water.
  • the hollow plates have cooling channels that can be flexibly connected in parallel and/or in series between the flow and return in order to optimize the cooling capacity in individual areas of the irradiation tunnel.
  • Aluminum alloys are particularly suitable for the production of hollow panels and can be easily anodized, for example.
  • the heat sinks have a light-absorbing coating and/or anodized with an average absorptance ⁇ of at least 0.5 in the spectral range from 200 to 450 nm.
  • the irradiation tunnel preferably also comprises at least one ventilation duct for blowing in supply air.
  • a controlled supply of supply air convection can be forced in the irradiation tunnel to promote constant heat exchange from the indoor air and the heat sinks.
  • Supply air of a suitable quality can be supplied in a targeted manner via the ventilation duct.
  • the transport means is a conveyor belt for transporting the containers in an upright position, and the ventilation duct opens into the irradiation tunnel below the conveyor belt. This ensures sufficient air exchange in the area below the conveyor belt.
  • the irradiation tunnel also comprises a blower supplying the ventilation duct and a suction device for exhaust air from the irradiation tunnel, the blower being designed at least to completely replace the extracted exhaust air. This makes it possible to avoid additional ambient air being sucked in through the container inlet and/or container outlet of the irradiation tunnel.
  • the incoming air that is blown in could have a larger volume flow than the extracted air, so that excess incoming air flows out through the container inlet and/or container outlet. An entry of dust from the ambient air into the irradiation tunnel can thus be counteracted even more effectively.
  • the lamps are separately cooled UV lamps for curing UV-curing inks on the containers.
  • the lamps therefore have sufficient radiation power for curing the printing inks.
  • the UV lamps do not significantly affect the interior of the irradiation tunnel due to their independent cooling with electrical power loss.
  • a direct printing machine for containers which comprises printing units for printing UV-curing printing ink (ink) onto the containers and an irradiation tunnel arranged downstream of the printing units for UV-curing the printing ink, in accordance with at least one of the embodiments described above.
  • UV-curable printing inks can thus be cured to an extent that is at least suitable for further processing and handling over a comparatively short transport distance.
  • the containers are then preferably transported at a clear distance from one another which is at least twice as large as the largest dimension of the containers in the direction of transport.
  • radiation emitted obliquely by the lamps can fall to a sufficient extent on wall sections which are aligned in (or approximately in) the transport direction or in the opposite direction.
  • a complete curing of UV-reactive printing colors (inks) or the like is possible.
  • Air in the irradiation tunnel preferably sweeps along the heat sinks, in particular as a result of forced air convection, and in the process gives off thermal energy to a cooling liquid flowing through the heat sinks.
  • the air convection can be forced, for example, by controlled supply air and/or the transport movement of the containers.
  • the thermal energy absorbed by the heat sinks in this way is transported away effectively and controllably by the coolant.
  • the liquid-cooled heat sinks preferably absorb treatment radiation.
  • the treatment radiation falls, for example, through the transport gaps between the containers in the transport direction, onto the heat sink.
  • the cooling bodies also absorb directed and/or diffuse reflections, for example after reflection on the containers. The energy dissipated by light absorption is withdrawn directly from the irradiation tunnel and can therefore no longer contribute to heating the indoor air in the irradiation tunnel. This leads to a particularly efficient interior cooling of the irradiation tunnel.
  • the irradiation tunnel 1 for containers 2 includes a housing 1a and a transport means 3, which is designed, for example, as a conveyor belt for upright containers 2.
  • Lamps 4 for UV irradiation of UV-reactive printing inks (inks) 2a are arranged on the containers 2 on both sides of the means of transport 3 .
  • the lamps 4 can be arranged directly opposite one another, as well as overlapping in the transport direction 3a or without a lamp 4 directly opposite each other.
  • the latter is in FIG 1 shown for an input-side and an output-side lamp 4.
  • the middle lamps 4 are arranged directly opposite one another. Overlapping irradiation areas 4a with UV radiation are preferably formed in front of the lamps 4 .
  • First liquid-cooled heat sinks 5 extending at least into the irradiation regions 4a of the lamps 4 are designed as the cooling device for cooling the interior of the irradiation tunnel 1 .
  • the first heat sinks 5 extend in the form of a side wall between the lamps 4.
  • the first heat sinks 5 are preferably also formed above and below the lamps 4.
  • second liquid-cooled heat sinks 6 in the form of a lateral enclosure of the means of transport 3 .
  • These heat sinks 6 can also be located at least partially in the irradiation areas 4a of the lamps 4.
  • the first heat sinks 5 preferably frame the lamps 4 completely. Recesses 5a for the lamps 4 are then formed in the first heat sinks 5 .
  • the first heat sink 5 can be composed of intersecting columns 5b and longitudinal bars 5c in segments around the recesses 5a, as is illustrated only on the right-hand side of FIG 1 is shown. In principle, a segment-like construction would also be conceivable for the second and third heat sinks 6 , 7 .
  • the heat sinks 5-7 are preferably double-walled, ie, for example, designed as hollow plates 8 with a front side 8a facing the containers 2, a rear side 8b facing away from the containers, and connecting webs 8c formed in between. Between these, a multiplicity of cooling channels 8d are provided, which can be connected in any manner in series or in parallel to a supply 9a and a return 9b for cooling liquid 9. Water provided under conventional line pressure is suitable as the cooling liquid 9 .
  • the lamps 4 are cooled separately, for example by means of closed air cooling circuits 10 (only indicated schematically on the right). These carry away the electrical power loss of the lamps 4 and possibly also ozone or the like occurring directly in front of the lamps 4 .
  • the first heat sinks 5 are of little or no importance for the loss-related cooling of the lamps 4 .
  • the heat sinks 5-7 serve to cool the interior of the irradiation tunnel 1 by means of, in particular, forced air convection 11 on the heat sinks 5-7.
  • the air convection 11 is in the 2 indicated by flow arrows as an example.
  • a ventilation duct 12 is also shown schematically, which supplies the irradiation tunnel 1 with the aid of a blower 13 with supply air 14 .
  • the supply air 14 forces at least part of the air convection 11 in the irradiation tunnel 1, so that there is a constant exchange of air at the heat sinks 5-7.
  • the heat sinks 5-7 thus constantly absorb thermal energy from the interior air flowing past them and transfer this to the coolant 9 . Thermal energy is thus continuously withdrawn from the interior of the irradiation tunnel 1 during operation.
  • the volume flow of the supply air 14 is at least as large as the volume flow of the exhaust air 16 in order to prevent ambient air from being sucked in through the container inlet 17 and/or container outlet 18 of the irradiation tunnel 1 .
  • the volume flow of the supply air 14 is preferably slightly smaller than the volume flow of the exhaust air 16, for example by at most 5%, so that a small amount of air flows through the container inlet 17 and the container outlet 18 into the irradiation tunnel 1. An entry of dust from the ambient air can thus be reliably avoided and at the same time an escape of ozone from the irradiation tunnel 1. Escaped ozone leads to unpleasant odors, even if the occupational limit concentration has not yet been reached.
  • the ventilation duct 12 preferably opens into the irradiation tunnel 1 below the transport means 3.
  • the air convection 11 in the irradiation tunnel 1 can also be forced to a significant extent by means of the transport movement of the containers 2 . This is particularly advantageous since the first and second heat sinks 5, 6 extend into the irradiation areas 4a or into the immediate vicinity of the means of transport 3 and the container 2, so that the heat transfer there can be improved by the air convection 11 forced in this way.
  • visual protection locks 19 connected to the container inlet 17 and the container outlet 18 for shielding the UV radiation emitted by the lamps 4 are also shown.
  • the transport direction of the containers 2 preferably changes in such a way that the UV radiation cannot penetrate directly from the lamps 4 to the outside.
  • beam traps 20 in the form of absorbing slats or the like can be arranged in the privacy locks 19 .
  • the privacy locks 19 are used for occupational safety and in particular to avoid impermissible levels of UV radiation outside of the irradiation tunnel 1.
  • a combination of the interior cooling described with the privacy locks 19 is also particularly advantageous because the installation space required for the privacy locks 19 can be provided by the compact arrangement of the lamps 4 and the liquid-cooled heat sink 5-7.
  • the irradiation tunnel 1 is therefore also suitable for improved occupational safety with regard to the permissible immission of UV radiation.
  • the containers 2 are preferably transported at a clear distance 21 from one another, which is at least twice as large as the largest dimension 22 of the container 2 in the transport direction 3a. This creates sufficiently large gaps between the containers 2 for obliquely incident UV radiation for irradiating the container 2 in side wall areas which are aligned approximately in the transport direction 3a or opposite thereto. Thus, a complete curing of UV-reactive printing inks (inks) 2a is possible even when the container 2 is in a fixed rotational position on the transport means 3 .
  • the containers 2 are conveyed continuously through the irradiation tunnel 1, with the lamps 4 preferably emitting continuously, ie in the continuous wave method. In doing so, through the gaps between the containers 2 directly onto the first and second UV radiation incident on cooling bodies 5, 6 can already be largely absorbed there, depending on the degree of absorption ⁇ , in order to minimize the energy input into the irradiation tunnel 1. This also applies to radiation reflected on the containers 2 and/or on components in the irradiation tunnel 1 .
  • the interior air flows constantly along the liquid-cooled heat sinks 5-7, in particular due to forced air convection 11, and in the process emits heat energy to them.
  • the flow temperature and volume flow of the cooling liquid 9 can be adapted in a known simple manner to the waste heat to be removed from the irradiation tunnel 1 .
  • the irradiation tunnel 1 is preferably part of a direct printing machine (not shown) with printing units known per se for printing the UV-curing printing ink (ink) 2a onto the containers 2.
  • the UV-curing printing ink (ink) 2a can then immediately subsequently be placed in the irradiation tunnel 1 be fully cured with the help of lamps 4 for further processing/handling of the container 2.

Description

Die Erfindung betrifft einen Bestrahlungstunnel gemäß Oberbegriff des Anspruchs 1 und wie bekannt aus DE 33 22 401 C1 sowie ein Verfahren zur Bestrahlung von Behältern im Bestrahlungstunnel.The invention relates to an irradiation tunnel according to the preamble of claim 1 and as known from DE 33 22 401 C1 and a method for irradiating containers in the irradiation tunnel.

Behälter werden in Abfüllanlagen zunehmend mittels UV-reaktiven Tinten direkt bedruckt. Für die anschließende Weiterverarbeitung der Behälter werden die fertigen aber noch nicht ausreichend ausgehärteten Druckbilder vorzugsweise mit breitbandiger UV-Strahlung im UVC, UVB und UVA nachbehandelt und die Tinten dadurch zügig und vollständig ausgehärtet. Hierfür kommen beispielsweise Quecksilberdampflampen in Frage.In filling plants, containers are increasingly printed directly using UV-reactive inks. For the subsequent further processing of the containers, the finished but not yet sufficiently cured print images are preferably post-treated with broadband UV radiation in the UVC, UVB and UVA ranges and the inks are thus cured quickly and completely. Mercury vapor lamps, for example, can be used for this purpose.

Die Lampen werden in einem Bestrahlungstunnel entlang eines Transportmittels in Transportrichtung hintereinander liegend angeordnet, um die Behälter seitlich zu bestrahlen und daran vorhandene UV-härtende Druckfarben (Tinten) auszuhärten. Die für die Aushärtung benötigten Bestrahlungsstärken verursachen jedoch eine erhebliche Erwärmung des Bestrahlungstunnels, der bisher durch Absaugung der im Bestrahlungstunnel vorhandenen Luft und Nachströmen kühlerer Umgebungsluft durch den Behältereingang und den Behälterausgang entgegengewirkt wurde. Eine derartige Luftkühlung im Inneren des Bestrahlungstunnels hat jedoch zwei grundlegende Nachteile.The lamps are arranged one behind the other in an irradiation tunnel along a transport means in the transport direction in order to irradiate the containers from the side and to cure UV-curing printing inks (inks) present thereon. However, the irradiation levels required for curing cause considerable heating of the irradiation tunnel, which has hitherto been counteracted by suction of the air present in the irradiation tunnel and subsequent flows of cooler ambient air through the container inlet and outlet. However, such air cooling inside the irradiation tunnel has two fundamental disadvantages.

Zum Einen ist der Wärmeaustausch durch den Bereich praktikabler Volumenströme an den betroffenen Oberflächen so stark eingeschränkt, dass Lampen stets nur auf einer Seite des Transportmittels angeordnet werden können und auf der jeweils anderen Seite Kühlzonen ohne Lampen benötigt werden. Da eine beidseitige Bestrahlung der Behälter jedoch meist erforderlich ist, müssen entlang des Transportmittels wenigstens zwei Zonen mit jeweils einseitiger Bestrahlung und zugeordneten Kühlzonen hintereinander eingerichtet werden. Dies führt zu einer unerwünscht langgestreckten Bauform des Bestrahlungstunnels.On the one hand, the heat exchange is so severely limited by the range of practicable volume flows on the affected surfaces that lamps can only be arranged on one side of the means of transport and cooling zones without lamps are required on the other side. However, since the containers must be irradiated on both sides, at least two zones, each with one-sided irradiation and associated cooling zones, must be set up one behind the other along the means of transport. This leads to an undesirably elongated design of the irradiation tunnel.

Zum Anderen beruht die Luftkühlung auf dem Ansaugen vergleichsweise großer Raumluftmengen durch den Behältereingang und den Behälterausgang. Da sich die derart angesaugte Luft kaum filtern lässt, wird Staub mit der Raumluft in den Bestrahlungstunnel eingebracht. Dies verursacht eine unerwünschte Verschmutzung des Bestrahlungstunnels und gegebenenfalls auch der Behälter.On the other hand, the air cooling is based on the intake of comparatively large amounts of room air through the container inlet and the container outlet. Since the air sucked in in this way can hardly be filtered, dust is introduced into the irradiation tunnel with the room air. This causes undesired contamination of the irradiation tunnel and possibly also of the container.

Es besteht daher der Bedarf für demgegenüber verbesserte Bestrahlungstunnel und Verfahren zur Bestrahlung der Behälter und insbesondere zur Aushärtung von Druckfarben mit UV-Strahlung.There is therefore a need for irradiation tunnels and methods for irradiating the containers and in particular for curing printing inks with UV radiation which are improved in comparison thereto.

Die gestellte Aufgabe wird mit einem Bestrahlungstunnel gemäß Anspruch 1 gelöst. Demnach umfasst der Bestrahlungstunnel ein Transportmittel für Behälter, entlang des Transportmittels angeordnete Lampen zur UV-Bestrahlung der Behälter und eine Kühleinrichtung zur Innenraumkühlung des Bestrahlungstunnels. Ferner umfasst die Kühleinrichtung flüssigkeitsgekühlte Kühlkörper, die sich in Bestrahlungsbereiche der Lampen erstrecken. Erfindungsgemäß sind die Kühlkörper UV-lichtabsorbierend beschichtet und/oder eloxiert.The task is solved with an irradiation tunnel according to claim 1. Accordingly, the irradiation tunnel comprises a means of transport for containers, lamps arranged along the means of transport for UV irradiation of the containers, and a cooling device for cooling the interior of the irradiation tunnel. Furthermore, the cooling device comprises liquid-cooled heat sinks which extend into the irradiation areas of the lamps. According to the invention, the heat sinks are coated and/or anodized to absorb UV light.

Die Kühlkörper werden von gegenüberliegenden Lampen zumindest teilweise bestrahlt.The heat sinks are at least partially irradiated by opposite lamps.

Die flüssigkeitsgekühlten Kühlkörper ermöglichen eine kompaktere Bauweise des Bestrahlungstunnels, da sowohl die Kühlkörper als auch die Lampen unmittelbar nebeneinander und beidseitig des Transportmittels angeordnet werden können. Zudem wird Zuluft durch den Behältereingang und/oder den Behälterausgang des Bestrahlungstunnels entbehrlich. Somit kann eine Verschmutzung des Bestrahlungstunnels und der Behälter mit Staub aus der Umgebungsluft vermieden werden.The liquid-cooled heat sinks enable a more compact design of the irradiation tunnel, since both the heat sinks and the lamps can be arranged directly next to each other and on both sides of the means of transport. In addition, there is no need for supply air through the container inlet and/or the container outlet of the irradiation tunnel. Thus, contamination of the irradiation tunnel and the container with dust from the ambient air can be avoided.

Unter einer Innenraumkühlung des Bestrahlungstunnels ist zu verstehen, dass die Kühlkörper zum Abführen von Energie ausgebildet sind, die von den Lampen als Strahlungsenergie in den Bestrahlungstunnel eingebracht wurde und von dessen Innenwänden, Bauteilen und der im Inneren vorhandenen Luft aufgenommen wird.Interior cooling of the irradiation tunnel means that the heat sinks are designed to dissipate energy that was introduced into the irradiation tunnel by the lamps as radiant energy and is absorbed by its inner walls, components and the air present inside.

Demgegenüber spielt die Innenraumkühlung für die Kühlung der Lampen selbst keine oder nur eine untergeordnete Rolle. Die Kühlung der Lampen erfolgt über an sich bekannte Kühlsysteme, beispielsweise über separate Luft- oder Wasserkühlkreise für die einzelnen Lampen.In contrast, the interior cooling plays no or only a minor role for the cooling of the lamps themselves. The lamps are cooled using cooling systems known per se, for example using separate air or water cooling circuits for the individual lamps.

Die Kühlkörper haben keine Bestrahlungsfunktion im Sinne einer Reflexion und/oder Streuung des UV-Lichts und/oder einer Abgabe von Wärmestrahlung nach Lichtabsorption. Stattdessen soll die daran absorbierte Lichtenergie und die über Konvektion aus der Innenraumluft aufgenommene Wärmeenergie möglichst umfassend an die durch die Kühlkörper fließende Kühlflüssigkeit übertragen werden.The heat sinks have no radiation function in the sense of reflecting and/or scattering the UV light and/or emitting thermal radiation after light absorption. Instead, the light energy absorbed by it and the thermal energy absorbed from the interior air via convection should be transferred as comprehensively as possible to the coolant flowing through the heat sink.

Die Bestrahlungsbereiche sind per Definition Bereiche, die von den Lampen direkt bestrahlt werden, gegebenenfalls auch nur intermittierend durch die Transportlücken zwischen den sich bewegenden Behältern.By definition, the irradiation areas are areas that are directly irradiated by the lamps, possibly also only intermittently through the transport gaps between the moving containers.

Vorzugsweise sind die Lampen beidseitig des Transportmittels angeordnet, und die Kühlkörper sind, quer zur Transportrichtung gesehen, wenigstens zwischen den Lampen, insbesondere um die Lampen herum, ausgebildet. Somit kann auch der Bereich der Lampen seitlich des Transportmittels für eine effektive Kühlung von Innenraumluft und für die Absorption von Strahlungsenergie verwendet werden. Dies ermöglicht einen besonders kompakten Bestrahlungstunnel.The lamps are preferably arranged on both sides of the means of transport, and the heat sinks are formed at least between the lamps, in particular around the lamps, viewed transversely to the direction of transport. Thus, the area of the lamps on the side of the means of transport can also be used for effective cooling of interior air and for the absorption of radiant energy. This enables a particularly compact irradiation tunnel.

Vorzugsweise sind ferner flüssigkeitsgekühlte Kühlkörper über dem Transportmittel ausgebildet. Die Kühlkörper können dann im Wesentlichen in Form einer Decke des Bestrahlungstunnels ausgebildet sein, um Streustrahlung zu absorbieren und nach oben steigende Innenraumluft zu kühlen. Diese Kühlkörper befinden sich in der Regel außerhalb der Bestrahlungsbereiche.Furthermore, liquid-cooled heat sinks are preferably formed above the means of transport. The heat sinks can then be designed essentially in the form of a ceiling of the irradiation tunnel in order to absorb scattered radiation and to cool interior air rising upwards. These heat sinks are usually located outside of the irradiation areas.

Die flüssigkeitsgekühlten Kühlkörper können beispielsweise eine Gesamtfläche von wenigstens 0,5 m2 und insbesondere von wenigstens 1 m2 umfassen, wobei die Gesamtkühlfläche eine mit der Innenraumluft in Kontakt stehende Kühlfläche ist.The liquid-cooled heat sinks can, for example, have a total area of at least 0.5 m 2 and in particular at least 1 m 2 , the total cooling area being a cooling area that is in contact with the interior air.

Vorzugsweise umfassen die Kühlkörper Hohlplatten aus Metall, insbesondere aus einer Aluminiumlegierung. Derartige Hohlplatten ermöglichen eine gleichermaßen mechanisch stabile Einfassung der Transportstrecke für die Behälter als auch einen effektiven Wärmeübergang an die Kühlflüssigkeit, die insbesondere Kühlwasser ist. Die Hohlplatten weisen Kühlkanäle auf, die sich zwischen Vorlauf und Rücklauf auf flexible Weise parallel und/oder seriell schalten lassen, um die Kühlleistung in einzelnen Bereichen des Bestrahlungstunnels zu optimieren. Aluminiumlegierungen eignen sich in besonderem Maße für die Herstellung von Hohlplatten und können beispielsweise auf einfache Weise eloxiert werden.The heat sinks preferably comprise hollow plates made from metal, in particular from an aluminum alloy. Such hollow plates allow an equally mechanically stable enclosing of the transport route for the containers as well as an effective heat transfer to the cooling liquid, which is in particular cooling water. The hollow plates have cooling channels that can be flexibly connected in parallel and/or in series between the flow and return in order to optimize the cooling capacity in individual areas of the irradiation tunnel. Aluminum alloys are particularly suitable for the production of hollow panels and can be easily anodized, for example.

Ferner sind die Kühlkörper lichtabsorbierend beschichtet und/oder eloxiert mit einem mittleren Absorptionsgrad α von wenigstens 0,5 im Spektralbereich von 200 bis 450 nm. Dadurch lässt sich einfallende Strahlungsenergie effektiv aus dem Bestrahlungstunnel abführen und die Erwärmung von Innenraumluft folglich minimieren.Furthermore, the heat sinks have a light-absorbing coating and/or anodized with an average absorptance α of at least 0.5 in the spectral range from 200 to 450 nm.

Vorzugsweise umfasst der Bestrahlungstunnel ferner wenigstens einen Lüftungskanal zum Einblasen von Zuluft. Mit kontrollierter Zufuhr von Zuluft kann Konvektion im Bestrahlungstunnel erzwungen werden, um einen ständigen Wärmeaustausch von der Innenraumluft und den Kühlkörpern zu begünstigen. Über den Lüftungskanal lässt sich Zuluft mit einer geeigneten Qualität gezielt zuführen.The irradiation tunnel preferably also comprises at least one ventilation duct for blowing in supply air. With a controlled supply of supply air, convection can be forced in the irradiation tunnel to promote constant heat exchange from the indoor air and the heat sinks. Supply air of a suitable quality can be supplied in a targeted manner via the ventilation duct.

Vorzugsweise ist das Transportmittel ein Förderband für den stehenden Transport der Behälter, und der Lüftungskanal mündet unterhalb des Förderbands in den Bestrahlungstunnel. Damit lässt sich ein ausreichender Luftaustausch auch im Bereich unterhalb des Förderbands sicherstellen.Preferably, the transport means is a conveyor belt for transporting the containers in an upright position, and the ventilation duct opens into the irradiation tunnel below the conveyor belt. This ensures sufficient air exchange in the area below the conveyor belt.

Vorzugsweise umfasst der Bestrahlungstunnel ferner ein den Lüftungskanal versorgendes Gebläse und eine Absaugung für Abluft aus dem Bestrahlungstunnel, wobei das Gebläse wenigstens zum vollständigen Ersatz der abgesaugten Abluft ausgelegt ist. Dadurch lässt sich vermeiden, dass zusätzlich Umgebungsluft durch den Behältereingang und/oder Behälterausgang des Bestrahlungstunnels angesaugt wird.Preferably, the irradiation tunnel also comprises a blower supplying the ventilation duct and a suction device for exhaust air from the irradiation tunnel, the blower being designed at least to completely replace the extracted exhaust air. This makes it possible to avoid additional ambient air being sucked in through the container inlet and/or container outlet of the irradiation tunnel.

Bei im Wesentlichen gleicher Menge Zuluft und Abluft oder bei geringfügig weniger Zuluft als Abluft, beispielsweise um höchstens 5% weniger, kann verhindert werden, dass durch die UV-Strahlung entstehendes Ozon aus dem Bestrahlungstunnel austritt.With essentially the same amount of supply air and exhaust air or with slightly less supply air than exhaust air, for example by at most 5% less, it is possible to prevent the ozone produced by the UV radiation from escaping from the irradiation tunnel.

Demgegenüber könnte die eingeblasene Zuluft einen größeren Volumenstrom aufweisen als die abgesaugte Abluft, sodass überschüssige Zuluft durch den Behältereingang und/oder Behälterausgang nach außen strömt. Einen Eintrag von Staub aus der Umgebungsluft in den Bestrahlungstunnel lässt sich somit noch wirkungsvoller entgegenwirken.On the other hand, the incoming air that is blown in could have a larger volume flow than the extracted air, so that excess incoming air flows out through the container inlet and/or container outlet. An entry of dust from the ambient air into the irradiation tunnel can thus be counteracted even more effectively.

Vorzugsweise sind die Lampen separat gekühlte UV-Lampen zur Aushärtung UV-härtender Druckfarben (Tinten) auf den Behältern. Die Lampen haben somit eine für die Aushärtung der Druckfarben ausreichende Abstrahlleistung. Die UV-Lampen beaufschlagen den Innenraum des Bestrahlungstunnels aufgrund ihrer eigenständigen Kühlung nicht nennenswert mit elektrischer Verlustleistung.Preferably, the lamps are separately cooled UV lamps for curing UV-curing inks on the containers. The lamps therefore have sufficient radiation power for curing the printing inks. The UV lamps do not significantly affect the interior of the irradiation tunnel due to their independent cooling with electrical power loss.

Die gestellte Aufgabe wird ebenso mit einer Direktdruckmaschine für Behälter gelöst, die Druckaggregate zum Aufdrucken von UV-härtender Druckfarbe (Tinte) auf die Behälter und einen stromabwärts der Druckaggregate zur UV-Aushärtung der Druckfarbe angeordneten Bestrahlungstunnel gemäß wenigstens einer der voranstehend beschriebenen Ausführungsformen umfasst.The stated object is also achieved with a direct printing machine for containers, which comprises printing units for printing UV-curing printing ink (ink) onto the containers and an irradiation tunnel arranged downstream of the printing units for UV-curing the printing ink, in accordance with at least one of the embodiments described above.

Die gestellte Aufgabe wird ebenso mit einem Verfahren gemäß Anspruch 10 gelöst, bei dem Behälter im Bestrahlungstunnel gemäß wenigstens einer der voranstehend beschriebenen Ausführungsformen bestrahlt werden, wobei auf den Behältern vorhandene UV-härtende Druckfarbe (Tinte) in den Bestrahlungsbereichen der Lampen ausgehärtet wird und die flüssigkeitsgekühlten Kühlkörper von den Lampen direkt einfallende UV-Strahlung mit einem mittleren Absorptionsgrad α von wenigstens 0,5 im Spektralbereich von 200 bis 450 nm absorbieren.The stated object is also achieved with a method according to claim 10, in which containers are irradiated in the irradiation tunnel according to at least one of the embodiments described above, with UV-curing printing ink (ink) present on the containers being cured in the irradiation areas of the lamps and the liquid-cooled Heat sinks absorb direct UV radiation from the lamps with an average absorptivity α of at least 0.5 in the spectral range from 200 to 450 nm.

Vorzugsweise werden die Behälter dann in konstanter Drehlage durch den Bestrahlungstunnel transportiert, und die Lampen bestrahlen die Behälter dabei beidseitig und insbesondere vollumfänglich. UV-härtende Druckfarben (Tinten) können somit auf einer vergleichsweise kurzen Transportstrecke auf ein wenigstens für die weitere Verarbeitung und Handhabung geeignetes Ausmaß ausgehärtet werden.The containers are then preferably transported through the irradiation tunnel in a constant rotational position, and the lamps irradiate the containers on both sides and in particular over their entire circumference. UV-curable printing inks (inks) can thus be cured to an extent that is at least suitable for further processing and handling over a comparatively short transport distance.

Vorzugsweise werden die Behälter dann in einem lichten Abstand zueinander transportiert, der mindestens doppelt so groß ist wie die größte Abmessung der Behälter in Transportrichtung. Dadurch kann schräg von den Lampen abgestrahlte Strahlung in ausreichendem Ausmaß auf Wandabschnitte fallen, die in (oder näherungsweise in) Transportrichtung oder entgegen ausgerichtet sind. Somit ist eine vollumfängliche Aushärtung UV-reaktiver Druckfarben (Tinten) oder dergleichen möglich.The containers are then preferably transported at a clear distance from one another which is at least twice as large as the largest dimension of the containers in the direction of transport. As a result, radiation emitted obliquely by the lamps can fall to a sufficient extent on wall sections which are aligned in (or approximately in) the transport direction or in the opposite direction. Thus, a complete curing of UV-reactive printing colors (inks) or the like is possible.

Vorzugsweise streicht Luft im Bestrahlungstunnel infolge insbesondere erzwungener Luftkonvektion an den Kühlkörpern entlang und gibt dabei Wärmeenergie an eine die Kühlkörper durchströmende Kühlflüssigkeit ab. Die Luftkonvektion lässt sich beispielsweise durch kontrollierte Zuluft und/oder die Transportbewegung der Behälter erzwingen. Die derart von den Kühlkörpern aufgenommene Wärmeenergie wird effektiv und kontrollierbar von der Kühlflüssigkeit abtransportiert.Air in the irradiation tunnel preferably sweeps along the heat sinks, in particular as a result of forced air convection, and in the process gives off thermal energy to a cooling liquid flowing through the heat sinks. The air convection can be forced, for example, by controlled supply air and/or the transport movement of the containers. The thermal energy absorbed by the heat sinks in this way is transported away effectively and controllably by the coolant.

Vorzugsweise absorbieren die flüssigkeitsgekühlten Kühlkörper Behandlungsstrahlung. Die Behandlungsstrahlung fällt beispielsweise durch die in Transportrichtung zwischen den Behältern vorhandenen Transportlücken auf die Kühlkörper. Die Kühlköper nehmen aber auch gerichtete und/oder diffuse Reflexionen auf, beispielsweise nach Reflexion an den Behältern. Die durch Lichtabsorption abgeführte Energie wird dem Bestrahlungstunnel direkt entzogen und kann somit nicht mehr zur Erwärmung der Innenraumluft im Bestrahlungstunnel beitragen. Dies führt zu einer besonders effizienten Innenraumkühlung des Bestrahlungstunnels.The liquid-cooled heat sinks preferably absorb treatment radiation. The treatment radiation falls, for example, through the transport gaps between the containers in the transport direction, onto the heat sink. However, the cooling bodies also absorb directed and/or diffuse reflections, for example after reflection on the containers. The energy dissipated by light absorption is withdrawn directly from the irradiation tunnel and can therefore no longer contribute to heating the indoor air in the irradiation tunnel. This leads to a particularly efficient interior cooling of the irradiation tunnel.

Eine bevorzugte Ausführungsform des Bestrahlungstunnels ist zeichnerisch dargestellt. Es zeigen:

Fig. 1
eine schematische Ansicht des Innenraums des Bestrahlungstunnels von oben durch die Schnittebene A-A der Fig.2; und
Fig. 2
eine schematische seitliche Ansicht durch die Schnittebene B-B der Fig.1.
A preferred embodiment of the irradiation tunnel is shown in the drawing. Show it:
1
a schematic view of the interior of the irradiation tunnel from above through the section plane AA Fig.2 ; and
2
a schematic lateral view through the sectional plane BB Fig.1 .

Wie die Fig. 1 erkennen lässt umfasst der Bestrahlungstunnel 1 für Behälter 2 ein Gehäuse 1a und ein Transportmittel 3, das beispielsweise als Förderband für aufrecht stehende Behälter 2 ausgebildet ist. Zu beiden Seiten des Transportmittels 3 sind Lampen 4 zur UV-Bestrahlung UV-reaktiver Druckfarben (Tinten) 2a auf den Behältern 2 angeordnet.As the 1 reveals the irradiation tunnel 1 for containers 2 includes a housing 1a and a transport means 3, which is designed, for example, as a conveyor belt for upright containers 2. Lamps 4 for UV irradiation of UV-reactive printing inks (inks) 2a are arranged on the containers 2 on both sides of the means of transport 3 .

Die Lampen 4 können sowohl einander direkt gegenüberliegend angeordnet sein, als auch in Transportrichtung 3a überlappend oder ohne jeweils direkt gegenüberliegende Lampe 4. Letzteres ist in der Fig. 1 für eine eingangsseitige und eine ausgangsseitige Lampe 4 dargestellt. Die mittleren Lampen 4 sind einander direkt gegenüber angeordnet. Vor den Lampen 4 sind vorzugsweise überlappende Bestrahlungsbereiche 4a mit UV-Strahlung ausgebildet.The lamps 4 can be arranged directly opposite one another, as well as overlapping in the transport direction 3a or without a lamp 4 directly opposite each other. The latter is in FIG 1 shown for an input-side and an output-side lamp 4. The middle lamps 4 are arranged directly opposite one another. Overlapping irradiation areas 4a with UV radiation are preferably formed in front of the lamps 4 .

Als Kühleinrichtung zur Innenraumkühlung des Bestrahlungstunnels 1 sind wenigstens bis in die Bestrahlungsbereiche 4a der Lampen 4 hineinreichende erste flüssigkeitsgekühlte Kühlkörper 5 ausgebildet. Zum einen erstrecken sich die ersten Kühlkörper 5 seitenwandförmig zwischen den Lampen 4. Vorzugsweise sind die ersten Kühlkörper 5 auch oberhalb und unterhalb der Lampen 4 ausgebildet.First liquid-cooled heat sinks 5 extending at least into the irradiation regions 4a of the lamps 4 are designed as the cooling device for cooling the interior of the irradiation tunnel 1 . On the one hand, the first heat sinks 5 extend in the form of a side wall between the lamps 4. The first heat sinks 5 are preferably also formed above and below the lamps 4.

Vorzugsweise sind ferner zweite flüssigkeitsgekühlte Kühlkörper 6 in Form einer seitlichen Einfassung des Transportmittels 3 vorhanden. Auch diese Kühlkörper 6 können zumindest teilweise in den Bestrahlungsbereichen 4a der Lampen 4 liegen.Preferably, there are also second liquid-cooled heat sinks 6 in the form of a lateral enclosure of the means of transport 3 . These heat sinks 6 can also be located at least partially in the irradiation areas 4a of the lamps 4.

Vorzugsweise ist wenigstens ein dritter flüssigkeitsgekühlter Kühlkörper 7 in Form einer Zwischendecke oder dergleichen über dem Transportmittel 3 bzw. den Behältern 2 vorhanden.There is preferably at least a third liquid-cooled heat sink 7 in the form of an intermediate ceiling or the like above the means of transport 3 or the containers 2 .

Wie die Fig. 2 in einer Ansicht quer zur Transportrichtung 3a erkennen lässt, rahmen die ersten Kühlkörper 5 die Lampen 4 vorzugsweise vollumfänglich ein. In den ersten Kühlkörpern 5 sind dann Ausnehmungen 5a für die Lampen 4 ausgebildet.As the 2 can be seen in a view transverse to the transport direction 3a, the first heat sinks 5 preferably frame the lamps 4 completely. Recesses 5a for the lamps 4 are then formed in the first heat sinks 5 .

Zu diesem Zweck können die ersten Kühlkörper 5 aus sich kreuzenden Säulen 5b und Längsholmen 5c segmentartig um die Ausnehmungen 5a zusammengesetzt sein, wie dies zur Veranschaulichung nur auf der rechten Seite der Fig. 1 dargestellt ist. Eine segmentartige Konstruktion wäre prinzipiell auch bei den zweiten und dritten Kühlkörpern 6, 7 denkbar.For this purpose, the first heat sink 5 can be composed of intersecting columns 5b and longitudinal bars 5c in segments around the recesses 5a, as is illustrated only on the right-hand side of FIG 1 is shown. In principle, a segment-like construction would also be conceivable for the second and third heat sinks 6 , 7 .

Die Kühlkörper 5-7 sind vorzugsweise doppelwandig, also beispielsweise als Hohlplatten 8 ausgebildet mit einer den Behältern 2 zugewandten Vorderseite 8a, einer den Behältern abgewandten Rückseite 8b und dazwischen ausgebildeten Verbindungsstegen 8c. Zwischen diesen wird eine Vielzahl von Kühlkanälen 8d bereitgestellt, die in beliebiger Weise seriell oder parallel verschaltet an einen Vorlauf 9a und einen Rücklauf 9b für Kühlflüssigkeit 9 angeschlossen werden können. Als Kühlflüssigkeit 9 eignet sich unter herkömmlichem Leitungsdruck bereitgestelltes Wasser.The heat sinks 5-7 are preferably double-walled, ie, for example, designed as hollow plates 8 with a front side 8a facing the containers 2, a rear side 8b facing away from the containers, and connecting webs 8c formed in between. Between these, a multiplicity of cooling channels 8d are provided, which can be connected in any manner in series or in parallel to a supply 9a and a return 9b for cooling liquid 9. Water provided under conventional line pressure is suitable as the cooling liquid 9 .

Wie Fig. 1 ferner erkennen lässt, sind die Lampen 4 separat gekühlt, beispielsweise mittels geschlossener Luftkühlkreise 10 (nur rechts schematisch angedeutet). Diese führen elektrische Verlustleistung der Lampen 4 ab und gegebenenfalls auch unmittelbar vor den Lampen 4 entstehendes Ozon oder dergleichen. Die ersten Kühlkörper 5 haben für die verlustbedingte Kühlung der Lampen 4 keine oder nur untergeordnete Bedeutung.how 1 can also be seen, the lamps 4 are cooled separately, for example by means of closed air cooling circuits 10 (only indicated schematically on the right). These carry away the electrical power loss of the lamps 4 and possibly also ozone or the like occurring directly in front of the lamps 4 . The first heat sinks 5 are of little or no importance for the loss-related cooling of the lamps 4 .

Stattdessen dienen die Kühlkörper 5-7 der Innenraumkühlung des Bestrahlungstunnels 1 mittels insbesondere erzwungener Luftkonvektion 11 an den Kühlkörpern 5-7. Die Luftkonvektion 11 ist in der Fig. 2 beispielhaft durch Strömungspfeile angedeutet.Instead, the heat sinks 5-7 serve to cool the interior of the irradiation tunnel 1 by means of, in particular, forced air convection 11 on the heat sinks 5-7. The air convection 11 is in the 2 indicated by flow arrows as an example.

In der Fig. 2 ist ferner ein Lüftungskanal 12 schematisch dargestellt, der den Bestrahlungstunnel 1 mit Hilfe eines Gebläses 13 mit Zuluft 14 versorgt. Zusätzlich ist eine Absaugung 15 für Abluft 16 aus dem Bestrahlungstunnel 1 vorhanden.In the 2 a ventilation duct 12 is also shown schematically, which supplies the irradiation tunnel 1 with the aid of a blower 13 with supply air 14 . In addition, there is a suction device 15 for exhaust air 16 from the irradiation tunnel 1.

Die Zuluft 14 erzwingt zumindest einen Teil der Luftkonvektion 11 im Bestrahlungstunnel 1, so dass ein ständiger Luftaustausch an den Kühlkörpern 5-7 gegeben ist. Die Kühlkörper 5-7 nehmen somit ständig Wärmeenergie von der an ihnen entlang strömenden Innenraumluft auf und geben diese an die Kühlflüssigkeit 9 ab. Somit wird dem Innenraum des Bestrahlungstunnels 1 im Arbeitsbetrieb kontinuierlich Wärmeenergie entzogen.The supply air 14 forces at least part of the air convection 11 in the irradiation tunnel 1, so that there is a constant exchange of air at the heat sinks 5-7. The heat sinks 5-7 thus constantly absorb thermal energy from the interior air flowing past them and transfer this to the coolant 9 . Thermal energy is thus continuously withdrawn from the interior of the irradiation tunnel 1 during operation.

Der Volumenstrom der Zuluft 14 ist mindestens so groß wie der Volumenstrom der Abluft 16, um ein Ansaugen von Umgebungsluft durch den Behältereingang 17 und/oder Behälterausgang 18 des Bestrahlungstunnels 1 zu vermeiden.The volume flow of the supply air 14 is at least as large as the volume flow of the exhaust air 16 in order to prevent ambient air from being sucked in through the container inlet 17 and/or container outlet 18 of the irradiation tunnel 1 .

Vorzugsweise ist der Volumenstrom der Zuluft 14 geringfügig kleiner als der Volumenstrom der Abluft 16, beispielsweise um höchstens 5%, sodass eine geringe Menge Luft durch den Behältereingang 17 und den Behälterausgang 18 in den Bestrahlungstunnel 1 nachströmt. Ein Eintrag von Staub aus der Umgebungsluft lässt sich dadurch zuverlässig vermeiden und gleichzeitig ein Austritt von Ozon aus dem Bestrahlungstunnel 1. Austretendes Ozon führt zu unangenehmen Gerüchen, auch wenn die Arbeitsplatzgrenzkonzentration noch nicht erreicht wird.The volume flow of the supply air 14 is preferably slightly smaller than the volume flow of the exhaust air 16, for example by at most 5%, so that a small amount of air flows through the container inlet 17 and the container outlet 18 into the irradiation tunnel 1. An entry of dust from the ambient air can thus be reliably avoided and at the same time an escape of ozone from the irradiation tunnel 1. Escaped ozone leads to unpleasant odors, even if the occupational limit concentration has not yet been reached.

Wie die Fig. 2 ferner verdeutlicht, mündet der Lüftungskanal 12 vorzugsweise unterhalb des Transportmittels 3 in den Bestrahlungstunnel 1. Somit ist auch im Bereich unterhalb des Transportmittels 3 ein ausreichender Luftaustausch für die Vermeidung von Wärmestaus gegeben. Auch mittels der Transportbewegung der Behälter 2 kann die Luftkonvektion 11 im Bestrahlungstunnel 1 in einem nennenswerten Ausmaß erzwungen werden. Dies ist besonders vorteilhaft, da sich die ersten und zweiten Kühlkörper 5, 6 bis in die Bestrahlungsbereiche 4a bzw. bis in unmittelbarere Nachbarschaft des Transportmittels 3 und der Behälter 2 erstrecken, so dass der Wärmeübergang dort durch die derart erzwungene Luftkonvektion 11 verbessert werden kann.As the 2 further clarified, the ventilation duct 12 preferably opens into the irradiation tunnel 1 below the transport means 3. Thus, there is also sufficient air exchange in the area below the transport means 3 to avoid heat build-up. The air convection 11 in the irradiation tunnel 1 can also be forced to a significant extent by means of the transport movement of the containers 2 . This is particularly advantageous since the first and second heat sinks 5, 6 extend into the irradiation areas 4a or into the immediate vicinity of the means of transport 3 and the container 2, so that the heat transfer there can be improved by the air convection 11 forced in this way.

In den Fig. 1 und 2 sind der Vollständigkeit halber ferner am Behältereingang 17 und am Behälterausgang 18 angeschlossene Sichtschutzschleusen 19 zur Abschirmung der von den Lampen 4 abgestrahlte UV-Strahlung dargestellt. In den Sichtschutzschleusen 19 ändert sich die Transportrichtung der Behälter 2 vorzugsweise derart, dass die UV-Strahlung nicht auf direktem Wege von den Lampen 4 nach außen dringen kann. Zu diesem Zweck können in den Sichtschutzschleusen 19 Strahlfallen 20 in Form absorbierender Lamellen oder dergleichen angeordnet sein. Die Sichtschutzschleusen 19 dienen dem Arbeitsschutz und insbesondere der Vermeidung unzulässiger Bestrahlungsstärken der UV-Strahlung außerhalb des Bestrahlungstunnels 1.In the 1 and 2 For the sake of completeness, visual protection locks 19 connected to the container inlet 17 and the container outlet 18 for shielding the UV radiation emitted by the lamps 4 are also shown. In the visual protection locks 19, the transport direction of the containers 2 preferably changes in such a way that the UV radiation cannot penetrate directly from the lamps 4 to the outside. For this purpose, beam traps 20 in the form of absorbing slats or the like can be arranged in the privacy locks 19 . The privacy locks 19 are used for occupational safety and in particular to avoid impermissible levels of UV radiation outside of the irradiation tunnel 1.

Eine Kombination der beschriebenen Innenraumkühlung mit den Sichtschutzschleusen 19 ist auch deshalb besonders vorteilhaft, da für die Sichtschutzschleusen 19 benötigte Aufstellungsfläche durch die kompakte Anordnung der Lampen 4 und der flüssigkeitsgekühlten Kühlkörper 5-7 bereitgestellt werden kann.A combination of the interior cooling described with the privacy locks 19 is also particularly advantageous because the installation space required for the privacy locks 19 can be provided by the compact arrangement of the lamps 4 and the liquid-cooled heat sink 5-7.

Somit eignet sich der Bestrahlungstunnel 1 auch für einen verbesserten Arbeitsschutz hinsichtlich der zulässigen Immission von UV-Strahlung.The irradiation tunnel 1 is therefore also suitable for improved occupational safety with regard to the permissible immission of UV radiation.

Wie die Fig. 2 ferner erkennen lässt, werden die Behälter 2 vorzugsweise in einem lichten Abstand 21 zueinander transportiert, der wenigstens doppelt so groß ist wie die größte Abmessung 22 der Behälter 2 in Transportrichtung 3a. Dadurch entstehen zwischen den Behältern 2 ausreichend große Lücken für schräg einfallende UV-Strahlung zur Bestrahlung der Behälter 2 in Seitenwandbereichen, die näherungsweise in Transportrichtung 3a oder entgegengesetzt dazu ausgerichtet sind. Somit ist eine vollumfängliche Härtung UV-reaktiver Druckfarben (Tinten) 2a auch bei feststehender Drehlage der Behälter 2 auf dem Transportmittel 3 möglich.As the 2 can also be seen, the containers 2 are preferably transported at a clear distance 21 from one another, which is at least twice as large as the largest dimension 22 of the container 2 in the transport direction 3a. This creates sufficiently large gaps between the containers 2 for obliquely incident UV radiation for irradiating the container 2 in side wall areas which are aligned approximately in the transport direction 3a or opposite thereto. Thus, a complete curing of UV-reactive printing inks (inks) 2a is possible even when the container 2 is in a fixed rotational position on the transport means 3 .

Im Produktionsbetrieb werden die Behälter 2 kontinuierlich durch den Bestrahlungstunnel 1 gefördert, wobei die Lampen 4 vorzugsweise kontinuierlich, also im Dauerstrich-Verfahren, abstrahlen. Dabei durch die Lücken zwischen den Behältern 2 direkt auf die ersten und zweiten Kühlkörper 5, 6 einfallende UV-Strahlung kann dort je nach dem Absorptionsgrad α bereits weitgehend absorbiert werden, um den Energieeintrag in den Bestrahlungstunnel 1 zu minimieren. Dies gilt ebenso für an den Behältern 2 und/oder an Bauteilen im Bestrahlungstunnel 1 reflektierte Strahlung.In production operation, the containers 2 are conveyed continuously through the irradiation tunnel 1, with the lamps 4 preferably emitting continuously, ie in the continuous wave method. In doing so, through the gaps between the containers 2 directly onto the first and second UV radiation incident on cooling bodies 5, 6 can already be largely absorbed there, depending on the degree of absorption α, in order to minimize the energy input into the irradiation tunnel 1. This also applies to radiation reflected on the containers 2 and/or on components in the irradiation tunnel 1 .

Zusätzlich strömt die Innenraumluft durch insbesondere erzwungene Luftkonvektion 11 ständig an den flüssigkeitsgekühlten Kühlkörpern 5-7 entlang und gibt dabei Wärmeenergie an diese ab. Hierbei lassen sich beispielsweise Vorlauftemperatur und Volumenstrom der Kühlflüssigkeit 9 auf bekannt einfache Weise an die aus dem Bestrahlungstunnel 1 abzuführende Abwärme anpassen.In addition, the interior air flows constantly along the liquid-cooled heat sinks 5-7, in particular due to forced air convection 11, and in the process emits heat energy to them. In this case, for example, the flow temperature and volume flow of the cooling liquid 9 can be adapted in a known simple manner to the waste heat to be removed from the irradiation tunnel 1 .

Der Bestrahlungstunnel 1 ist vorzugsweise ein Bestandteil einer Direktdruckmaschine (nicht dargestellt) mit an sich bekannten Druckaggregaten zum Aufdrucken der UV-härtenden Druckfarbe (Tinte) 2a auf die Behälter 2. Die UV-härtende Druckfarbe (Tinte) 2a kann dann unmittelbar anschließend im Bestrahlungstunnel 1 mit Hilfe der Lampen 4 für die weitere Verarbeitung / Handhabung der Behälter 2 vollständig ausgehärtet werden.The irradiation tunnel 1 is preferably part of a direct printing machine (not shown) with printing units known per se for printing the UV-curing printing ink (ink) 2a onto the containers 2. The UV-curing printing ink (ink) 2a can then immediately subsequently be placed in the irradiation tunnel 1 be fully cured with the help of lamps 4 for further processing/handling of the container 2.

Claims (13)

  1. Irradiation tunnel (1) for containers (2), comprising: a transport means (3) for the containers (2); lamps (4) arranged along the transport means (3) for UV irradiation of the containers (2); and a cooling device for cooling the interior of the irradiation tunnel (1), the cooling device comprising liquid-cooled heat sinks (5, 6) which extend into the irradiation regions (4a) of the lamps (4), characterised in that the liquid-cooled heat sinks are coated and/or anodised so as to absorb UV light with an average absorptivity α of at least 0.5 in a spectral range of 200 to 450 nm.
  2. Irradiation tunnel according to claim 1, wherein the lamps (4) are arranged on both sides of the transport means (3) and the heat sinks (5, 6), viewed transversely to the transport direction (3a), are formed at least between the lamps (4), in particular so as to frame the lamps (4).
  3. Irradiation tunnel according to either claim 1 or claim 2, further comprising at least one liquid-cooled heat sink (7) formed above the transport means (3).
  4. Irradiation tunnel according to any of the preceding claims, wherein the liquid-cooled heat sinks (5-7) comprise hollow plates (8) made of metal, in particular of an aluminium alloy.
  5. Irradiation tunnel according to at least one of the preceding claims, further having at least one ventilation duct (12) for blowing in supply air (14).
  6. Irradiation tunnel according to claim 5, wherein the transport means (3) is a conveyor belt for upright transport of the containers (2) and the ventilation duct (12) opens into the irradiation tunnel (1) below the conveyor belt.
  7. Irradiation tunnel according to either claim 5 or claim 6, further having a fan (13) supplying the ventilation duct (12) and having an extraction means (15) for exhaust air (16) from the irradiation tunnel (1), wherein the fan (13) is designed at least to completely replace the extracted exhaust air (16).
  8. Irradiation tunnel according to at least one of the preceding claims, wherein the lamps (4) are separately cooled UV lamps for curing UV-curing printing inks (2a) on the containers (2).
  9. Direct printing machine for containers (2), comprising printing units for printing UV-curing printing inks (2a) onto the containers (2) and comprising an irradiation tunnel (1) according to at least one of the preceding claims arranged downstream of the printing units for UV-curing the printing inks (2a).
  10. Method for irradiating containers (2) in the irradiation tunnel (1) according to at least one of the preceding claims, wherein UV-curing printing ink (2a) present on the containers (2) is cured in the irradiation regions (4a) of the lamps (4) and the liquid-cooled heat sinks (5, 6) absorb UV radiation directly incident from the lamps (4) with an average absorptivity α of at least 0.5 in a spectral range of 200 to 450 nm.
  11. Method according to claim 10, wherein the containers (2) are transported through the irradiation tunnel (1) in a constant rotational position and the lamps (4) irradiate the containers (2) on both sides and in particular over the entire surface thereof.
  12. Method according to either claim 11 or claim 10, wherein the containers (2) are transported at a clear distance (21) from one another which is at least twice the largest dimension (22) of the containers (2) in the transport direction (3a).
  13. Method according to any of claims 10 to 12, wherein, due to in particular forced air convection (11), air in the irradiation tunnel (1) flows along the heat sinks (5-7) and thereby delivers thermal energy to a cooling liquid (9) flowing through the heat sinks (5-7).
EP18735261.2A 2017-09-04 2018-06-27 Irradiation tunnel for containers, and method for irradiating containers Active EP3678790B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017215453.5A DE102017215453A1 (en) 2017-09-04 2017-09-04 Irradiation tunnel for containers and method for irradiating containers
PCT/EP2018/067289 WO2019042625A1 (en) 2017-09-04 2018-06-27 Irradiation tunnel for containers, and method for irradiating containers

Publications (2)

Publication Number Publication Date
EP3678790A1 EP3678790A1 (en) 2020-07-15
EP3678790B1 true EP3678790B1 (en) 2022-03-23

Family

ID=62784150

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18735261.2A Active EP3678790B1 (en) 2017-09-04 2018-06-27 Irradiation tunnel for containers, and method for irradiating containers

Country Status (4)

Country Link
EP (1) EP3678790B1 (en)
CN (1) CN212883369U (en)
DE (1) DE102017215453A1 (en)
WO (1) WO2019042625A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019125845A1 (en) * 2019-09-25 2021-03-25 Krones Aktiengesellschaft Pre-treatment machine and pre-treatment process for containers
IT202100014864A1 (en) * 2021-06-08 2022-12-08 Quantix Digital S R L PRE-TREATMENT DEVICE AND DIGITAL INKJET PRINTER INCLUDING SUCH PRE-TREATMENT DEVICE

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB557252A (en) * 1942-08-19 1943-11-11 Gen Electric Co Ltd Improvements in apparatus for exposing objects to radiant heat
CH325668A (en) * 1953-10-05 1957-11-15 Philips Nv Process for sterilizing hollow objects with ultraviolet radiation and with ozone generated by means of this radiation
US4048916A (en) * 1975-09-26 1977-09-20 Sun Chemical Corporation Curing section for continuous motion decorator
US4008401A (en) * 1975-10-01 1977-02-15 Dart Industries Inc. U. V. curing system
US4143278A (en) * 1977-05-16 1979-03-06 Geo. Koch Sons, Inc. Radiation cure reactor
DE3322401C1 (en) * 1983-06-22 1984-11-08 Unilever N.V., Rotterdam Drying device for printed or coated cups or the like
US4503086A (en) * 1983-08-22 1985-03-05 Adolph Coors Company Device and method for uniformly curing uv photoreactive overvarnish layers
US4839522A (en) * 1987-07-29 1989-06-13 American Screen Printing Company Reflective method and apparatus for curing ink
JP4993666B2 (en) * 2006-05-23 2012-08-08 トリニティ工業株式会社 UV paint curing equipment, paint curing method

Also Published As

Publication number Publication date
CN212883369U (en) 2021-04-06
DE102017215453A1 (en) 2019-03-07
WO2019042625A1 (en) 2019-03-07
EP3678790A1 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
DE60101855T2 (en) TARGET FOR X-RAY GENERATION
EP3678790B1 (en) Irradiation tunnel for containers, and method for irradiating containers
EP1547099B1 (en) Radiation device and method for its operation
DE2423238B2 (en) Device for radiation treatment, in particular for curing, of a solvent-free coating applied to the peripheral surfaces of objects with a rotationally symmetrical or polygonal contour
DE4436713B4 (en) Device for drying the surfaces of an object
EP3393679B1 (en) Uv curing device with divided uv reflecting mirrors
EP1541179A1 (en) Sterilising apparatus
EP3692947B1 (en) Polymerisation and coating device
EP3419808B1 (en) Device and method for thermally conditioning preforms
DE102008004322B4 (en) Air supply arrangement for a housing wall of a housing and housing with an air supply arrangement
EP0026443B1 (en) Device for dissipating the power loss heat of electronic-equipment units built into a cabinet-type rack
DE102011009456A1 (en) Ultraviolet-dryer for drying printing inks and other ultraviolet-photopolymerizable materials, has ultraviolet radiation head with irradiation unit having cylindrical tubular ultraviolet lamp
EP3046686B1 (en) Gas stream device for system for the radiation treatment of substrates
EP3974003A1 (en) Device for disinfection of air with electromagnetic radiation
EP2192366B1 (en) Device for radiating a substrate
DE1805750A1 (en) Mercury lamp arrangement eg for hardening polyesters
DE102021131796B3 (en) Furnace system for heating laminated glass panes
EP3678863B1 (en) Treatment unit for containers
DE102007024791B4 (en) Device for drying objects, in particular painted vehicle bodies
EP1834147B1 (en) Thermal irradiation system for heating material to be irradiated
EP4035697A1 (en) Method and device for disinfecting and sterilizing air
EP2006713A1 (en) UV radiation device
DE10035080C2 (en) Device and method for the thermal treatment of substrate material
EP1867453B1 (en) Method for local heating of objects
DE102014117617A1 (en) soldering device

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211026

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018009178

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1477080

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220415

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220623

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220624

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220725

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220723

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018009178

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220630

26N No opposition filed

Effective date: 20230102

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220627

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220627

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220627

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230510

Year of fee payment: 6

Ref country code: FR

Payment date: 20230510

Year of fee payment: 6

Ref country code: DE

Payment date: 20230502

Year of fee payment: 6