EP3393679B1 - Uv curing device with divided uv reflecting mirrors - Google Patents

Uv curing device with divided uv reflecting mirrors Download PDF

Info

Publication number
EP3393679B1
EP3393679B1 EP16816196.6A EP16816196A EP3393679B1 EP 3393679 B1 EP3393679 B1 EP 3393679B1 EP 16816196 A EP16816196 A EP 16816196A EP 3393679 B1 EP3393679 B1 EP 3393679B1
Authority
EP
European Patent Office
Prior art keywords
mirror
radiation
source
curing device
processing zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16816196.6A
Other languages
German (de)
French (fr)
Other versions
EP3393679A1 (en
Inventor
Othmar Zueger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Surface Solutions AG Pfaeffikon
Original Assignee
Oerlikon Surface Solutions AG Pfaeffikon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Surface Solutions AG Pfaeffikon filed Critical Oerlikon Surface Solutions AG Pfaeffikon
Priority to PL16816196T priority Critical patent/PL3393679T3/en
Publication of EP3393679A1 publication Critical patent/EP3393679A1/en
Application granted granted Critical
Publication of EP3393679B1 publication Critical patent/EP3393679B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating

Definitions

  • Lacquer coatings serve as a protective layer on component surfaces and give them a specifically desired appearance.
  • the protection of the surfaces can be of a mechanical nature, e.g. Scratch resistance of the surfaces, but also chemical resistance or prevention of aging effects caused by environmental influences such as light or moisture. Varnishes are used particularly in components made of materials whose surfaces are known to be neither mechanically strong, nor are they very stable to signs of aging when exposed to environmental conditions such as sunlight and moisture over a long period of time. Such materials can be a wide variety of plastics or natural materials such as wood. For reasons of clarity, the following descriptions are limited to plastics, without excluding other materials. Both the plastic components and the paint coatings are only partially temperature-resistant, which requires special attention during process steps during their processing to ensure that critical forming temperatures are never exceeded.
  • UV-curing paints are used in many different areas. Hardening essentially means the crosslinking of polymer chains. In UV-curing lacquers, this crosslinking is induced by UV radiation. UV-curing lacquer coatings have the advantage over thermally induced or chemically self-hardening lacquers that the curing reaction takes place much faster and more specifically via photonic induction and hardly depends on diffusion processes in the lacquer, as is the case with thermally and chemically induced reactions.
  • the paints are cured in a curing device which consists of an exposure device and various peripheral components, such as the cooling device or the component conveyor.
  • High-intensity UV radiation sources are based on gas discharge lamps, which emit large amounts of visible light (VIS) and infrared radiation (IR) in addition to the desired UV radiation.
  • VIS and IR contribute to a significant increase in temperature when curing paints. However, it must be avoided that the temperature rises above the glass transition temperature of the plastic components and the lacquer during the curing process. It is desirable to suppress this VIS & IR contribution as much as possible, but to lose as little UV radiation as possible.
  • the use of wavelength-selective mirrors has proven to be a very efficient means of efficiently reducing the wavelength range in the VIS & IR range, i.e. the heat input.
  • a device which can have one or two partially transparent mirrors, which increase the relative UV component of the radiation arriving at the substrate by single or multiple beam deflection.
  • the multi-mirror arrangement described reduces the IR radiation in the curing area, but also reduces the UV radiation dose in the effective area, especially in the case of multiple deflection.
  • the inventors have further recognized that the heat generated by transmitted IR radiation in the exposure device creates a heat dissipation problem if one intends a compact overall construction.
  • Air or liquid-cooled cooling fins which are arranged behind the partially transparent mirror in the main radiation direction of the UV source, are mentioned as a solution. At first glance, this cooling strategy has considerable disadvantages. On the one hand, this only effects indirect cooling of the exposure apparatus, but not of the mirror or the radiation source.
  • a cooling device has to be installed behind the partially transparent mirror, which affects the device size and any maintenance work in the exposure device.
  • a UV curing device with split UV deflecting mirrors is used, which significantly shortens the light path from the UV source to the substrate and thereby enables both a decisive increase in the area intensity in the area of application and at the same time one ensures efficient cooling of the heat-exposed components of the device.
  • a simple configuration of the curing device optimal exposure conditions for high-intensity UV exposure to the substrates and the possible shortening of the exposure times, which meet the economic aspect of the invention, can be achieved.
  • FIG. 1 A typical structure of a UV curing device is in Figure 1 shown.
  • High-intensity, broadband UV radiation sources consist of a gas discharge lamp 1 and a lamp reflector element 2, which collects UV radiation emitted in the direction facing away from the component and reflects it in the area in which the components 10 coated with UV-curing lacquer 11 are located are located. This area, hereinafter referred to as the processing area, is therefore exposed to radiation which is composed of direct radiation and reflected radiation.
  • the gas discharge lamp 1 is essentially tubular. However, it can also consist of one or a series of individual, essentially point-shaped lamps which are arranged in a row.
  • Gas discharge lamps as a UV radiation source consist of a tube which is highly permeable to UV radiation and hermetically sealed, with an evaporable amount of metal enclosed therein and an inert gas filling. The latter is excited by an electrically induced gas discharge, which heats it and leads to the evaporation of the amount of metal through heat transfer.
  • the metal vapor formed is also electrically excited and the metal vapor plasma that forms emits radiation according to known excitation lines, in particular UV light.
  • the plasma also emits radiation in the visible (VIS) and infrared (IR) range of the electromagnetic spectrum.
  • the tube of the gas discharge lamp which usually consists of UV-transmissive quartz glass, and causes the tube to heat up.
  • the hot gas in the pipe also transfers heat to the pipe walls. Because of that Pipe material made of quartz glass due to its material properties limits are set with regard to the temperature, beyond which the strength of the pipe is lost, this pipe must be cooled.
  • the cooling takes place by the flow of gas 31 (normally air), which heats up and thus dissipates the energy from the pipe.
  • the cooling gas is usually supplied actively with pressure in order to increase the flow quantity and thus the cooling capacity via one or more access openings 30.
  • the lamp tube is partially surrounded on one side with a lamp reflector element 2, which efficiently reflects the UV radiation into the opposite side in the processing area.
  • the cooling gas 31 must essentially be supplied on the lamp reflector side, since the desired UV radiation should be able to propagate freely to the component to be exposed on the front side.
  • the gas flow can be supplied through holes in the lamp reflector element 2 through which the gas flows with pressure onto the lamp tube 1.
  • the heated gas must be able to flow away as freely as possible on the processing area side to ensure the effectiveness of the cooling.
  • the lamp reflector element 2 can be provided with a coating which reflects the UV portion of the radiation well, the VIS & IR Share but little reflected. This can be done by a dichroic thin film coating, which on the one hand highly reflects the UV component and transmits the VIS & IR component in the lamp reflector body, which are absorbed by the underlying reflector material. The lamp reflector is heated and the resulting heat has to be dissipated via the IR radiation and the gas flow.
  • the direct radiation from the tubular gas discharge lamp ie the radiation that does not reach the processing area via the lamp reflector, is not attenuated in the VIS and / or IR portion.
  • a residual portion of the VIS & IR radiation which is not transmitted by the coating of the lamp reflector and is not absorbed in the reflector, reaches the processing area.
  • a further suppression of the VIS & IR radiation can be achieved by an additional, wavelength-selective deflection mirror 8 positioned in the beam path will. This deflecting mirror 8 is intended to reflect the UV component in the radiation 5 from the source as well as possible, while reflecting the VIS & IR component 7 as poorly as possible.
  • such a deflecting mirror is designed as a flat mirror which is coated with a dichroic thin-layer filter coating.
  • This mirror is usually arranged at an angle of 45 ° between the normal to the mirror surface to the main beam of the UV source, the processing region with the components 10 exposed to UV-curable lacquer 11 then being located downstream in the beam path of the UV radiation reflected by the deflecting mirror rotated by 90 ° to the main beam of the UV source.
  • the deflecting mirror can also be arranged at an angle ⁇ to the mirror normal that deviates from 45 °, the processing region then being rotated by the angle 2 ⁇ ⁇ relative to the main beam of the UV source.
  • the VIS & IR radiation 7 is mostly transmitted through the specific choice of the dichroic filter coating.
  • a suitable VIS & IR-permeable mirror substrate material is selected and ensures that the VIS & IR radiation 7 is transmitted as far as possible through the mirror and is thus kept away from the processing area.
  • Glasses with high VIS & IR transparency are particularly suitable as the mirror substrate. Borosilicate glass or quartz glass are particularly suitable for this, however the transparency for these glasses in the IR range is limited to wavelengths less than 2800 nm or 3500 nm.
  • the dimension of the deflecting mirror 8 should be chosen so that the largest possible proportion of the light emitted by the source hits the mirror and directs it into the processing area. With the size of this UV deflecting mirror, however, the light path d between the UV source and the processing area increases, so that the UV light intensity in this area decreases. Furthermore, the cooling gas flow from the UV source must be diverted past the deflecting mirror.
  • the Flow of this cooling gas should be as laminar as possible in order to ensure an efficient and unobstructed discharge.
  • the cooling gas flow usually runs, as can be seen from the prior art and in Figure 1 shown, along a closed line and flows out through an opening with the width a at the end of the UV deflection mirror which is furthest away from the UV source.
  • the cooling gas flow can also flow through a plurality of openings along an imaginary line from the end of the lamp reflector 2 to the end of the divided UV deflection mirrors 81 to 83 in Figure 4 respectively.
  • the simplest version uses a quartz glass panel. Furthermore, the spatial separation of the processing area from the exposure device described above by means of an optical disk element 9 makes it possible to carry out a separate substrate cooling by means of cooling gas, which allows the permissible exposure dose to be increased. With active suction devices in the area of the deflecting mirror facing away, the necessary cooling gas flow could be achieved with a reduced cross-sectional width a, but this requires additional pumps and fluidically advantageous arrangements of the mirror and their holders in order to ensure a uniform suction flow over the length L of the mirror. With the length L of the mirror, the dimension is perpendicular to the plane of Figure 1 designated and is in Figure 2 shown as a supervision of the arrangement. Such fluidically However, optimized arrangements represent unwanted restrictions regarding the most efficient UV light guidance in the processing area.
  • the cooling gas flow could be derived laterally, at least with a limited length of the UV source and the deflecting mirror, ie perpendicular to the plane of Figure 1 .
  • an ever greater cooling gas flow would have to be discharged through these two lateral openings, which limits the cooling efficiency with increasing length L , especially in the area of the center of the UV source.
  • flat reflector elements 18 are preferably attached laterally to the deflecting mirror.
  • lateral reflector elements direct light rays from the UV source, which have an essential component laterally along the length L of the UV source and predominantly spread in these directions, into the processing region, which extends essentially over the length L of the UV source.
  • a better uniformity of the illumination of the processing area with UV light is achieved.
  • intensity distribution curves over the length L of the UV source are shown schematically. Curve 181 shows the case without lateral reflector elements 18, curve 182 shows the case with lateral reflector elements 18, with the improved illumination compared to curve 181.
  • These lateral reflector elements 18 extend essentially over the entire height from the upper edge of the deflecting mirror 8 to the disk element 9 in Figure 1 and 4 to 7 in order to obtain the most homogeneous illumination possible over the length L. With the preferred use of these lateral reflector elements 18, however, the cooling gas is prevented from being able to flow off laterally. In this configuration, which is advantageous for illuminating the processing area, it must therefore be ensured that the cooling gas flow can flow out into area 4 exclusively over the cross-sectional opening width a.
  • a preferred embodiment of the present invention is in with a solution for guiding the UV light into the processing area as efficiently as possible while at the same time efficiently removing the cooling gas stream from the UV source Figure 4 shown schematically.
  • the cooling gas can pass between the Mirror segments are separated into individual cooling gas flow segments 41, 42, 43, 44.
  • Subdivision into three mirror segments shown is to be understood as an example; subdivisions into more than two, that is to say N, segments are possible, where N can be an integer greater than or equal to two.
  • the sum of the opening widths b1 , b2 , b3 , b4 in Figure 4 be substantially the same as the width a in Figure 1 .
  • both the widths b1 and b4 are kept as small as possible in order to make the light path d between the source and the processing area as short as possible.
  • the gap widths b2 and b3 result from this as an offset of the deflecting mirror segments.
  • both the optical disk element 9 and, accordingly, the paint-coated components 10 can be brought much closer to the deflecting mirror. This shortens the light path d between the UV source and components, which leads to an advantageously higher intensity of the UV light that falls on these components.
  • the reflected UV light 61 from segment 81 can be directed into the processing area with greater efficiency.
  • the angle ⁇ 3 of segment 83 can be reduced in order to bring the reflected UV light 63 closer to the region of the UV light 62 of segment 82.
  • This collection of the UV light in a region of smaller extent corresponds to a focusing of the UV light in the processing region.
  • the geometric extent of the usable processing area scales with the radius of the circular movement path. This trajectory should not be kept larger than the minimum necessary for the respective component size in a mechanically advantageous design.
  • the present invention enables the components 10 to be very close to the processing area in a single movement or alternately back-and-forth movement linear 101 or rotating 102 on a circular path for the duration of the curing.
  • the deflecting mirrors are designed in three segments. According to the invention, this division of the deflecting mirror can take place in at least two up to N segments, N being intended to represent an integer.
  • a FusionUV-Heraeus type LH10 source is to be used as the UV radiation source, which is equipped with an H13plus mercury metal halide gas discharge lamp.
  • This source has a length L of approximately 25 cm.
  • the total radiation power is nominally 6 kW and requires a cooling gas flow of at least 150 L / s ambient air, which with around 2500 Pa overpressure of the UV source the connection provided for this must be supplied. According to the situation in Figure 1 this cooling gas flow is led away in a laminar flow past the UV deflecting mirror.
  • a single deflecting mirror results in an intensity for the UVA radiation (mean value over the wavelength range 320 to 400 nm) at the apex of the circular path of 290 mW / cm 2 and a UVA dose rate of 48 mJ / cm 2 / s, wherein the dose rate denotes the dose that a flat component surface element receives during one revolution on the circular path at a rotational speed of 1 rotation per second.
  • the irradiated dose rate of VIS & IR radiation onto the components per rotation cycle in the illustrated case is around 60 mJ / cm 2 / s, while this value is only 27 mJ / cm 2 / s for the case corresponding to the prior art with a related, segmented deflection mirror.
  • the VIS & IR light increases more than twice in this configuration with the lower light path and partly direct VIS & IR radiation, while the desired UV radiation increases by 24% in the dose rate.
  • Figure 6 Another embodiment is shown. Compared to Figure 4 or Figure 5 the axis of rotation of the component movement is shifted relative to the UV source so that light rays can no longer reach the components directly from the UV lamp.
  • the UV deflecting mirrors are arranged at an angle ⁇ 45 ° with respect to the main beam, as a result of which a UVA dose rate in the present case of around 62 mJ / cm 2 / s is achieved, with a VIS- & IR dose rate of 31 mJ / cm 2 / s, which is about the same as in the case of the segmented and connected mirror.
  • the UV source can be tilted such that it is tilted away from the substrates 10 and thus the housing of the UV source direct radiation of the UV source towards the substrate shields and therefore the substrates are only exposed to the reflected radiation from the reflector element 2 and / or the divided mirror elements.
  • FIG. 7 Another application example is based on Figure 7 clarifies. Is made according to the configuration Figure 5 introduced a diaphragm element 21 with the length of 25 mm at the lower end of the reflector element 2, which blocks all direct rays from the UV lamp to the components in the processing area, the heat load can be eliminated by directly irradiated VIS & IR light.
  • the diaphragm element 21, like the reflector element 2, can be coated in order to increase the UV reflection, but the diaphragm element must be impervious to the VIS & IR radiation.
  • the unintentional blocking of UV light which should fall into the processing area as reflected by the UV deflecting mirror segment, is comparatively low.
  • Table 1 shows the data given for UVA intensity, UVA dose rate, and the corresponding dose rates for the irradiated VIS and IR light for the cases shown here from Figure 1 , 5 , 6 and 7 summarized.
  • the case of the coherently segmented UV deflecting mirror corresponding to the prior art was assumed to be a 100% reference value for the comparisons of the UVA intensity and dose rate.
  • a linear component movement through the processing area is possible in all of the above-mentioned embodiments, the components in the configurations of Figure 5 , 6 and 7 are slightly exposed to direct radiation from the UV lamp.
  • the individual mirror elements separated from each other can be shifted from the side, ie parallel to the main beam, in such a way that the upper edge of one mirror element protrudes from the lower edge of the neighboring mirror element, which, viewed from the UV source, is perceived as "opaque" and thus continuous mirror surface is avoided, whereby an intensity loss of UV radiation is avoided.
  • a curing device for components 10 coated with a curable lacquer 11 comprising at least one radiation source 1, at least one reflector element 2 surrounding the radiation source, at least two divided dichroic mirror elements opposite the radiation source, which largely transmit the VIS and IR component of the radiation source and keep away from a processing area and at the same time reflect the UV component of the radiation source in the direction of a processing area, at least one optical disk element 9, which separates the cooling gas flow in the exposure device from the processing area, characterized in that the at least two dichroic mirror elements are arranged such that they are separated from one another and offset from one another in the direction of the main beam and are displaced parallel to the main beam and are therefore opaque to the main beam, so that through the openings created, cooling Gas can flow out, but there is no loss of intensity of UV radiation.
  • the at least two divided dichroic mirror elements are tilted relative to one another by respective angles ⁇ 1 to ⁇ N between the mirror normal and the main radiation direction of the UV source such that the UV radiation is brought together in the processing area.
  • the angles ⁇ 1 to ⁇ N of the deflecting mirror elements differ in such a way that the largest angle ⁇ 1 is taken by the mirror element that is closest to the reflector element 2 and the angles of the further mirror elements are smaller than ⁇ 1, the angle of the mirror segment which is closest to the disk element 9 being ⁇ N and the smallest being the angle ⁇ 1 to ⁇ N.
  • reflector elements 18 are attached laterally to the lighting device over the entire height from the upper edge of the at least two mirror elements to the pane element 9.
  • the UV source and the at least two divided dichroic mirror elements are arranged in such a way that both direct radiation and reflected radiation are directed into the processing area. In a preferred embodiment, only reflected radiation is directed into the processing area. In a preferred embodiment, the UV source is inclined such that no direct radiation falls into the processing area.
  • a method for curing lacquer-coated substrates which uses a curing device in which the cooling gas is removed via openings between the mirror elements as described above and an increase in the UV intensity in the processing area by shortening the light path d from the source to the surface of the coated Substrate by suitable number and arrangement of the mirror elements in terms of distance, angle, and the like.
  • the coated components are cooled separately by means of cooling gas.
  • Gas discharge lamp 1 Lamp reflector: 2nd Cooling gas supply: 30th Cooling gas inflow: 31 Cooling gas outflow / flows: 4, 41, 42, 43, 44 Emitted radiation from the UV source: 5, 51, 52, 53, 54 Radiation reflected by UV deflecting mirror (mainly UV): 6, 61, 62, 63 Radiation transmitted by UV deflecting mirror (mainly VIS & lR): 7, 71, 72, 73 Deflecting mirror, Deflecting mirror segments: 8, 81, 82, 83 Optical disc element to separate the cooling gas flow: 9 Components: 10th Paint coating of the components: 11 Linear component movement: 101 Rotating component movement: 102 cover 21st Lateral reflector element 18th UV intensity distribution without side reflector elements 181 UV intensity distribution with side reflector elements 182 Opening cross section width in each case: - between disc element 9 and deflecting mirror 8: a - between reflector element 2 and mirror segment 81: b1 - between mirror segments 81-82 and 82-83:

Description

Lackbeschichtungen dienen als Schutzschicht von Bauteiloberflächen und geben ihnen ein spezifisch gewünschtes Aussehen. Der Schutz der Oberflächen kann sowohl mechanischer Natur sein, z.B. Kratzfestigkeit der Oberflächen, aber auch chemische Resistenz oder Verhinderung von Alterungseffekten ausgelöst durch Umwelteinflüsse wie Licht oder Feuchtigkeit. Lacke werden besonders bei Bauteilen aus Materialien eingesetzt, deren Oberflächen bekannterweise weder mechanisch stark beanspruchbar sind, noch sehr stabil gegenüber Alterungserscheinungen sind bei langfristigem Aussetzen an Umgebungsbedingungen wie Sonnenlicht und Feuchtigkeit. Solche Materialien können verschiedenste Kunststoffe oder Naturstoffe wie Holz sein. Die nachfolgenden Beschreibungen beschränken sich der Verständlichkeit wegen auf Kunststoffe, ohne andere Materialien damit auszuschliessen. Sowohl die Kunststoffbauteile wie auch die Lackbeschichtungen sind nur bedingt temperaturresistent, was besondere Beachtung bei Prozessschritten bei deren Verarbeitung erfordert, um sicherzustellen, dass kritische Umformungstemperaturen nie überschritten werden.Lacquer coatings serve as a protective layer on component surfaces and give them a specifically desired appearance. The protection of the surfaces can be of a mechanical nature, e.g. Scratch resistance of the surfaces, but also chemical resistance or prevention of aging effects caused by environmental influences such as light or moisture. Varnishes are used particularly in components made of materials whose surfaces are known to be neither mechanically strong, nor are they very stable to signs of aging when exposed to environmental conditions such as sunlight and moisture over a long period of time. Such materials can be a wide variety of plastics or natural materials such as wood. For reasons of clarity, the following descriptions are limited to plastics, without excluding other materials. Both the plastic components and the paint coatings are only partially temperature-resistant, which requires special attention during process steps during their processing to ensure that critical forming temperatures are never exceeded.

UV-härtende Lacke werden in vielen unterschiedlichen Bereichen eingesetzt. Unter Aushärtung ist dabei im Wesentlichen die Vernetzung von Polymerketten zu verstehen. Bei UV-härtenden Lacken wird diese Vernetzung durch UV-Strahlung induziert. UV-härtende Lackbeschichtungen haben den Vorteil gegenüber thermisch induzierten oder chemisch selbsthärtenden Lacken, dass die Aushärtungsreaktion über die photonische Induzierung wesentlich schneller und gezielter abläuft und kaum von Diffusionsprozessen im Lack abhängt, wie das bei thermisch und chemisch induzierten Reaktionen der Fall ist. Die Aushärtung der Lacke erfolgt in einer Aushärtevorrichtung, welche aus einer Belichtungsvorrichtung und verschiedenen Peripheriekomponenten, wie unter anderem der Kühlvorrichtung oder der Bauteilfördereinrichtung, besteht.
Bei vielen Lacken ist zur vollständigen Aushärtung eine bestimmte Minimaldosis erforderlich, die durch das Produkt aus Strahlungsintensität pro Fläche und Belichtungszeit (genauer durch das zeitliche Integral der Intensität) gegeben ist. Allerdings weisen viele gängige UV-Lacke ein nicht-lineares Aushärteverhalten bezüglich dieser Flächenintensität auf, weshalb der Aushärtegrad nicht allein proportional zur Belichtungsdosis ist, sondern ab einem bestimmten Schwellwert überproportional mit kleinerer Flächenintensität abnimmt und somit nicht mehr über die Belichtungszeit kompensiert werden kann. Es ist somit wünschenswert, eine möglichst hohe Flächenintensität, also die Intensität pro Flächeneinheit, zu erreichen und dadurch die erforderliche Belichtungszeit so kurz wie möglich zu machen.
UV-curing paints are used in many different areas. Hardening essentially means the crosslinking of polymer chains. In UV-curing lacquers, this crosslinking is induced by UV radiation. UV-curing lacquer coatings have the advantage over thermally induced or chemically self-hardening lacquers that the curing reaction takes place much faster and more specifically via photonic induction and hardly depends on diffusion processes in the lacquer, as is the case with thermally and chemically induced reactions. The paints are cured in a curing device which consists of an exposure device and various peripheral components, such as the cooling device or the component conveyor.
For many coatings, a certain minimum dose is required for complete curing, which is given by the product of the radiation intensity per area and exposure time (more precisely, the temporal integral of the intensity). However, many common UV varnishes have a non-linear curing behavior with regard to this surface intensity, which is why the degree of curing is not alone is proportional to the exposure dose, but decreases disproportionately with a smaller surface intensity from a certain threshold value and can therefore no longer be compensated for via the exposure time. It is therefore desirable to achieve the highest possible surface intensity, that is to say the intensity per unit area, and thereby to make the required exposure time as short as possible.

Hoch intensive UV-Strahlungsquellen basieren auf Gasentladungslampen, die neben der erwünschten UV-Strahlung auch grosse Anteile von sichtbarem Licht (VIS) und infrarote Strahlung (IR) aussenden. VIS und IR tragen bei der Aushärtung von Lacken zu einem wesentlichen Temperaturanstieg bei. Dabei muss aber vermieden werden, dass die Temperatur während des Aushärtungsvorgangs über die Glastemperatur der Kunststoff-Bauteile und des Lackes ansteigt. Es ist wünschenswert, diesen VIS- & IR-Beitrag möglichst zu unterdrücken, dabei aber möglichst wenig UV-Strahlung zu verlieren.
Zu diesem Zweck hat sich die Verwendung von wellenlängenselektiven Spiegeln als sehr effizientes Mittel herausgestellt, um den Wellenlängenbereich im VIS- & IR-Bereich, also den Wärmeeintrag, effizient zu reduzieren.
In US 4644899 A1 wird beispielsweise eine Vorrichtung beschrieben, die über einen oder zwei teildurchlässige Spiegel verfügen kann, welche durch einfache oder mehrfache Strahlumlenkung den relativen UV-Anteil der am Substrat ankommenden Strahlung erhöhen. Durch die beschriebene Mehrspiegelanordnung wird zwar die IR-Strahlung im Aushärtungsbereich reduziert, jedoch gerade bei Mehrfachumlenkung auch die UV-Strahlungsdosis im Wirkungsbereich verringert. Die Erfinder haben weiters erkannt, dass durch die durch transmittierte IR-Strahlung entstehende Wärme in der Belichtungseinrichtung ein Wärmeabfuhrproblem entsteht, wenn man eine kompakte Gesamtkonstruktion beabsichtigt. Als Lösung werden luft- oder flüssigkeitsgekühlte Kühlrippen, die in Hauptstrahlungsrichtung der UV-Quelle hinter dem teildurchlässigen Spiegel angeordnet sind, genannt. Diese Kühlstrategie birgt jedoch auf den ersten Blick erhebliche Nachteile. Zum einen wird hierbei lediglich eine indirekte Kühlung des Belichtungsapparats, aber nicht des Spiegels oder der Strahlungsquelle bewirkt. Zum anderen muss eine Kühlvorrichtung hinter dem teildurchlässigen Spiegel angebracht werden, was die Vorrichtungsgröße sowie etwaige Wartungsarbeiten in der Belichtungsvorrichtung beeinträchtigt.
High-intensity UV radiation sources are based on gas discharge lamps, which emit large amounts of visible light (VIS) and infrared radiation (IR) in addition to the desired UV radiation. VIS and IR contribute to a significant increase in temperature when curing paints. However, it must be avoided that the temperature rises above the glass transition temperature of the plastic components and the lacquer during the curing process. It is desirable to suppress this VIS & IR contribution as much as possible, but to lose as little UV radiation as possible.
For this purpose, the use of wavelength-selective mirrors has proven to be a very efficient means of efficiently reducing the wavelength range in the VIS & IR range, i.e. the heat input.
In US 4644899 A1 For example, a device is described which can have one or two partially transparent mirrors, which increase the relative UV component of the radiation arriving at the substrate by single or multiple beam deflection. The multi-mirror arrangement described reduces the IR radiation in the curing area, but also reduces the UV radiation dose in the effective area, especially in the case of multiple deflection. The inventors have further recognized that the heat generated by transmitted IR radiation in the exposure device creates a heat dissipation problem if one intends a compact overall construction. Air or liquid-cooled cooling fins, which are arranged behind the partially transparent mirror in the main radiation direction of the UV source, are mentioned as a solution. At first glance, this cooling strategy has considerable disadvantages. On the one hand, this only effects indirect cooling of the exposure apparatus, but not of the mirror or the radiation source. On the other hand, a cooling device has to be installed behind the partially transparent mirror, which affects the device size and any maintenance work in the exposure device.

In DE 69707539 T2 wird vorgeschlagen, segmentierte UV-Umlenkspiegel zur Trennung des UV- vom VIS- & IR-Anteil der UV-Quelle zu verwenden, um das UV-Licht in den Aushärtungsbereich umzuleiten. Darin sind die einzelnen Umlenkspiegel Segmente ohne Abstand aneinander anliegend angenommen und die Kühlung der UV-Quelle, sowie der Umlenkspiegel wird mittels eines Kühlgasstroms bewerkstelligt, welcher an dem Ende des zusammenhängenden Umlenkspiegels abgeführt wird, das von der UV-Quelle am weitesten entfernt ist. In diesen Fall schließt die ausführungsgemäße Kaltlichtspiegelanordnung einen plattenförmigen Wärme-Refraktionsfilter ein, der die Beleuchtungseinheit räumlich gegenüber dem Aushärtungsbereich abschirmt, und damit ein Ausströmen des aufgeheizten Gases gegenüber dem Substrat verhindert. Diese Aushärtevorrichtung birgt jedoch den entscheidenden Nachteil, dass eine gewisse Vorrichtungsgröße für eine genügende Kühlung durch die Gasströmung notwendig ist, welche einen verlängerten Lichtweg der UV-Strahlung zum Bauteil verursacht, was mit einer Reduktion der Flächenintensität einhergehen muss.
Aus dem Stand der Technik ergeben sich demnach einige Anforderungen an eine wirtschaftliche und effiziente Aushärtungsvorrichtung, welche bis dato nicht hinreichend realisiert werden konnten. Diese sind unter anderem:

  • Es soll eine möglichst hohe UV-Flächenintensität im Aushärtebereich erzielt werden.
  • Eine unerwünschte thermische Belastung der Substrate durch den VIS- & IR-Anteil der Strahlung soll vermieden werden.
  • Eine praktische Ausführung der Aushärtevorrichtung soll möglichst einfach sein und damit einfach zu warten und kostengünstig zu realisieren sein.
  • Die Aushärtevorrichtung soll eine möglichst geringe geometrische Ausdehnung einnehmen und einfach für unterschiedliche Substratgeometrien adaptierbar sein.
  • Eine Kühlung der Aushärtevorrichtung, und insbesondere der Belichtungsvorrichtung, sollte mit geringem Aufwand möglich sein, die Möglichkeit einer separaten Substratkühlung wäre erwünscht.
In DE 69707539 T2 It is proposed to use segmented UV deflection mirrors to separate the UV from the VIS and IR components of the UV source in order to redirect the UV light into the curing area. In it, the individual deflecting mirror segments are assumed to lie against each other without any spacing, and the cooling of the UV source and the deflecting mirror is accomplished by means of a cooling gas stream which is removed at the end of the coherent deflecting mirror that is furthest away from the UV source. In this case, the cold light mirror arrangement according to the embodiment includes a plate-shaped heat refraction filter which spatially shields the lighting unit from the curing area and thus prevents the heated gas from escaping from the substrate. However, this curing device has the decisive disadvantage that a certain device size is necessary for sufficient cooling by the gas flow, which causes an extended light path of the UV radiation to the component, which must be accompanied by a reduction in the area intensity.
From the prior art, there are therefore some requirements for an economical and efficient curing device, which until now could not be adequately met. These include:
  • The highest possible UV surface intensity should be achieved in the curing area.
  • An undesirable thermal load on the substrates by the VIS & IR portion of the radiation should be avoided.
  • A practical implementation of the curing device should be as simple as possible and thus easy to maintain and inexpensive to implement.
  • The curing device should have the smallest possible geometrical extent and be easily adaptable to different substrate geometries.
  • Cooling of the curing device, and in particular of the exposure device, should be possible with little effort, the possibility of separate substrate cooling would be desirable.

Erfindungsgemäß wird eine UV-Aushärtevorrichtung mit geteilten UV-Umlenkspiegeln eingesetzt, welche den Lichtweg von der UV-Quelle zum Substrat signifikant verkürzt und dadurch sowohl eine entscheidende Erhöhung der Flächenintensität im Anwendungsbereich ermöglicht, als auch gleichzeitig eine effiziente Kühlung der wärmeexponierten Komponenten der Vorrichtung gewährleistet. Dadurch können eine einfache Ausgestaltung der Aushärtevorrichtung, optimale Belichtungsbedingungen für hochintensive UV-Beaufschlagung der Substrate und die dadurch mögliche Verkürzung der Belichtungszeiten erreicht werden, welche dem wirtschaftlichen Aspekt der Erfindung entgegenkommen. Überdies wird es möglich, die Substrate separat durch Kühlgas oder -luft zu kühlen und eine thermische Überbeanspruchung des Substrats bei erhöhter UV-Dosis auszuschließen.According to the invention, a UV curing device with split UV deflecting mirrors is used, which significantly shortens the light path from the UV source to the substrate and thereby enables both a decisive increase in the area intensity in the area of application and at the same time one ensures efficient cooling of the heat-exposed components of the device. As a result, a simple configuration of the curing device, optimal exposure conditions for high-intensity UV exposure to the substrates and the possible shortening of the exposure times, which meet the economic aspect of the invention, can be achieved. Furthermore, it becomes possible to cool the substrates separately by means of cooling gas or air and to rule out thermal overloading of the substrate with an increased UV dose.

Die Erfindung wird im Folgenden im Detail erläutert und anhand von Figuren und einer Tabelle beispielhaft ergänzt:

  • Figur 1 zeigt schematisch eine UV-Aushärtevorrichtung als Seitenschnitt mit einem planaren Umlenkspiegel 8 zur Trennung von UV-Licht vom VIS- & IR-Licht. Schematisch für den Strahlengang sind aus der UV-Quelle vereinfacht nur drei Strahlen gezeigt, wobei der mittlere Strahl dem Hauptstrahl entsprechen soll.
  • Figur 2 zeigt schematisch die Aushärtevorrichtung gemäss Figur 1 in Aufsicht mit einer Länge L, die im Wesentlichen beliebig sein kann. Dabei sind die seitlichen Reflektoren 18 anschliessend an die Enden des Umlenkspiegels 8 gezeigt, mit denen die Ausleuchtung im Prozessierungsbereich über die Länge der Quelle gleichmässiger gemacht wird.
  • Figur 3 zeigt schematisch eine typische Intensitätsverteilung der UV-Strahlung über die Länge der Bestrahlungsvorrichtung im Prozessierungsbereich, in dem sich die Bauteile zur Belichtung befinden, mit, 182, und ohne, 181, seitliche Reflektorelemente 18.
  • Figur 4 zeigt schematisch eine UV-Aushärtevorrichtung als Seitenschnitt mit einzelnen segmentierten, gegeneinander versetzten Umlenkspiegelelementen, zwischen denen das erhitzte Kühlgas von der UV-Quelle nach oben wegströmen kann. Diese Anordnung erlaubt eine Reduktion des Lichtwegs d zwischen UV-Quelle und Bauteilen bei gleichzeitiger Erhaltung des notwendigen Kühlgasflusses der UV-Quelle.
  • Figur 5 zeigt schematisch eine UV-Aushärtevorrichtung als Seitenschnitt mit einzelnen segmentierten, gegeneinander versetzten Umlenkspiegeln, die in unterschiedlichen Winkeln zum Hauptstrahl angeordnet sind, um die UV-Strahlung im Prozessierungsbereich zu konzentrieren und die UV-Strahlung der Quelle effizienter zu sammeln.
  • Figur 6 zeigt eine UV-Aushärtevorrichtung als Seitenschnitt entsprechend Figur 5, wobei die Anordnung der Bauteile gegenüber der UV-Quelle relativ verschoben bzw. verkippt ist, um die direkte Einstrahlung von VIS&IR Licht aus der UV-Lampe auf die Bauteile zu minimieren.
  • Figur 7 zeigt eine UV-Aushärtevorrichtung als Seitenschnitt wie in Figur 5 mit zusätzlicher Blende 21, welche eine Bestrahlung des Substrats mit direkter Strahlung der UV-Quelle verhindert.
The invention is explained in detail below and supplemented by way of example using figures and a table:
  • Figure 1 shows schematically a UV curing device as a side section with a planar deflecting mirror 8 for separating UV light from VIS & IR light. Only three rays from the UV source are shown schematically for the beam path, the middle beam being supposed to correspond to the main beam.
  • Figure 2 shows schematically the curing device according to Figure 1 in supervision with a length L , which can be essentially any. The side reflectors 18 are shown next to the ends of the deflecting mirror 8, with which the illumination in the processing area is made more uniform over the length of the source.
  • Figure 3 shows schematically a typical intensity distribution of UV radiation over the length of the irradiation device in the processing area in which the components for exposure are located, with, 182, and without, 181, lateral reflector elements 18.
  • Figure 4 shows schematically a UV curing device as a side section with individual segmented, mutually offset deflection mirror elements, between which the heated cooling gas can flow away from the UV source upwards. This arrangement allows a reduction in the light path d between the UV source and components while maintaining the necessary cooling gas flow of the UV source.
  • Figure 5 shows schematically a UV curing device as a side section with individual segmented, mutually offset deflection mirrors, which are arranged at different angles to the main beam around the UV radiation to concentrate in the processing area and collect the UV radiation of the source more efficiently.
  • Figure 6 shows a UV curing device as a side section accordingly Figure 5 , the arrangement of the components being relatively shifted or tilted with respect to the UV source in order to minimize the direct irradiation of VIS & IR light from the UV lamp on the components.
  • Figure 7 shows a UV curing device as a side section as in Figure 5 with an additional aperture 21, which prevents the substrate from being irradiated with direct radiation from the UV source.

Ein typischer Aufbau einer UV-Aushärtevorrichtung ist in Figur 1 dargestellt. Hochintensive, breitbandige UV-Strahlungsquellen bestehen aus einer Gasentladungslampe 1 und einem Lampen-Reflektorelement 2, das in die dem Bauteil abgewandte Richtung ausgesandte UV-Strahlung sammelt und in Richtung des Bereichs reflektiert, in dem sich die mit UV-härtendem Lack 11 beschichteten Bauteile 10 befinden. Dieser Bereich, im Folgenden als Prozessierungsbereich bezeichnet, wird daher mit einer Strahlung beaufschlagt, welche sich aus Direktstrahlung und reflektierter Strahlung zusammensetzt. Im Falle einer im Wesentlichen linearen Quelle ist die Gasentladungslampe 1 im Wesentlichen rohrförmig. Sie kann aber auch aus einer oder als Serie von einzelnen, im Wesentlichen punktförmigen Lampen bestehen, die in einer Reihe angeordnet sind. Gasentladungslampen als UV-Strahlungsquelle bestehen aus einem für UV-Strahlung hoch-durchlässig, hermetisch geschlossenen Rohr mit einer darin eingeschlossenen verdampfbaren Metallmenge und einer Edelgas-Füllung. Letztere wird über eine elektrisch induzierte Gasentladung angeregt, womit es erhitzt wird und durch Wärmeübertrag zum Verdampfen der Metallmenge führt. Als Folge wird der gebildete Metalldampf ebenfalls elektrisch angeregt und das sich dabei bildende Metalldampf-Plasma emittiert Strahlung gemäss bekannten Anregungslinien, insbesondere UV-Licht. Neben der gewünschten Emission von UV-Licht emittiert das Plasma auch Strahlung im sichtbaren (VIS) und Infrarotbereich (IR) des elektromagnetischen Spektrums. Im Rohr der Gasentladungslampe, das gewöhnlich aus UV-durchlässigem Quarzglas besteht, wird ein Teil der vom Metalldampf Plasma emittierten Infrarotstrahlung absorbiert und führt zu einer Erhitzung des Rohrs. Ebenso überträgt das heisse Gas im Rohr Wärme auf die Rohrwände. Da dem Rohrmaterial aus Quarzglas durch deren Materialeigenschaften Grenzen betreffend der Temperatur gesetzt sind, bei deren Überschreiten die Festigkeit des Rohrs verloren geht, muss dieses Rohr gekühlt werden. Im technisch relevanten Anwendungsfall erfolgt die Kühlung durch Anströmung mit Gas 31 (im Normalfall Luft), das sich erwärmt und so die Energie vom Rohr abführt. Die Zuführung des Kühlgases erfolgt gewöhnlich aktiv mit Druck, um die Flussmenge und damit die Kühlleistung zu erhöhen über eine oder mehrere Zutrittsöffnungen 30.
Um möglichst viel emittiertes UV-Licht in den Prozessierungsbereich zu bringen, wird das Lampenrohr von einer Seite mit einem Lampen-Reflektorelement 2 teilweise umgeben, das die UV-Strahlung effizient in die Gegenseite in den Prozessierungsbereich reflektiert. Die Zuführung des Kühlgases 31 muss im Wesentlichen Lampen-reflektor-seitig erfolgen, da frontseitig die gewünschte UV-Strahlung sich ungehindert zum zu belichtenden Bauteil ausbreiten können soll. Konkret kann der Gasstrom durch Löcher im Lampen-Reflektorelement 2 zugeführt werden, durch die das Gas mit Druck auf das Lampenrohr 1 einströmt. Das erhitzte Gas muss Prozessierungsbereich-seitig möglichst ungehindert wegströmen können, um die Effektivität der Kühlung zu gewährleisten.
Um den unerwünschten VIS- & IR-Anteil der emittierten Strahlung der Lampe, die in den Prozessierungsbereich fällt, abzuschwächen, kann das Lampen-Reflektorelement 2 mit einer Beschichtung versehen werden, die den UV-Anteil der Strahlung gut reflektiert, den VIS- & IR-Anteil aber wenig reflektiert. Dies kann durch eine dichroitische Dünnfilm Beschichtung ausgeführt werden, die einerseits den UV-Anteil hoch reflektiert, und den VIS- & IR-Anteil in den Lampen Reflektorkörper transmittiert, die vom darunterliegenden Reflektormaterial absorbiert werden. Der Lampen-Reflektor wird dabei erhitzt, und die resultierende Wärme muss über die IR-Strahlung und den Gasstrom abgeführt werden.
Die Direktstrahlung aus der rohrförmigen Gasentladungslampe, d.h. die Strahlung, die nicht via Lampen-Reflektor in den Prozessierungsbereich gelangt, erfährt keine Abschwächung des VIS- und/oder IR-Anteils. Zudem gelangt auch noch ein Restanteil der VIS- & IR-Strahlung, die von der Beschichtung des Lampen-Reflektors nicht transmittiert und im Reflektor nicht absorbiert wird, in den Prozessierungsbereich.
Eine weitere Unterdrückung der VIS- & IR-Strahlung kann durch einen zusätzlichen, im Strahlengang positionierten, wellenlängen-selektiven Umlenkspiegel 8 erreicht werden. Dieser Umlenkspiegel 8 soll den UV-Anteil in der Strahlung 5 von der Quelle möglichst gut reflektieren, den VIS- & IR-Anteil 7 hingegen möglichst schlecht reflektieren. Ein solcher Umlenkspiegel wird im einfachsten Falle als flacher Spiegel ausgeführt, der mit einer dichroitischer Dünnschicht Filterbeschichtung belegt ist. Dieser Spiegel wird gewöhnlich in einem Winkel von 45° zwischen der Normalen auf die Spiegelfläche zum Hauptstrahl der UV-Quelle angeordnet, wobei sich dann der Prozessierungsbereich mit den mit UV-aushärtbarem Lack 11 beaufschlagten Bauteilen 10 stromabwärts im Strahlengang der durch den Umlenkspiegel reflektierten UV Strahlung um 90° gedreht zum Hauptstrahl der UV-Quelle befindet. Der Umlenkspiegel kann auch in einem von 45° abweichenden Winkel α zur Spiegelnormalen angeordnet sein, wobei sich der Prozessierungsbereich dann um den Winkel 2·α gedreht relativ zum Hauptstrahl der UV-Quelle befindet.
Die VIS- & IR-Strahlung 7 wird durch die spezifische Wahl der dichroitischen Filterbeschichtung mehrheitlich transmittiert. Um eine übermässige Erhitzung des Umlenkspiegels zu vermeiden, die durch Absorption dieser VIS- & IR-Strahlung im Umlenkspiegelsubstrat erfolgen würde und die wiederum IR-Strahlung in den Prozessierungsbereich werfen würde, wird für den Umlenkspiegel ein geeignetes VIS- & IR-durchlässiges Spiegelsubstratmaterial gewählt und dafür gesorgt, dass die VIS- & IR-Strahlung 7 weiter durch den Spiegel möglichst transmittiert und so vom Prozessierungsbereich weggehalten wird. Als Spiegelsubstrat eignen sich insbesondere Gläser mit hoher VIS- & IR-Transparenz. Borsilikatglas oder Quarzglas sind besonders geeignet dafür, jedoch ist die Transparenz auch für diese Gläser im IR-Bereich beschränkt auf Wellenlängen kleiner als 2800 nm, respektive 3500 nm. Für die transmittierte VIS- & IR-Strahlung 7 muss gesorgt sein, dass sie im Rest des Aufbaus so weiter weggelenkt und schliesslich absorbiert wird, dass sie in keinem beträchtlichen Anteil mehr über Mehrfachreflektionen an Teilen des Aufbaus weder in den Prozessierungsbereich noch in die UV-Quelle selber gelangen kann, um in beiden Fällen unerwünschte Erwärmungen zu vermeiden.
Die Dimension des Umlenkspiegels 8 soll so gewählt werden, dass ein möglichst großer Anteil des von der Quelle emittierten Lichts auf den Spiegel trifft und in den Prozessierungsbereich lenkt. Mit der Grösse dieses UV-Umlenkspiegels steigt allerdings der Lichtweg d zwischen der UV-Quelle und dem Prozessierungsbereich, womit die UV-Lichtintensität in diesem Bereich sinkt. Des Weiteren muss der Kühlgasstrom aus der UV-Quelle am Umlenkspiegel vorbei abgeführt werden. Die Strömung dieses Kühlgases sollte möglichst laminar sein, um einen effizienten und wenig gehinderten Abfluss zu gewährleisten.
Der Kühlgasstrom verläuft üblicherweise, wie dem Stand der Technik zu entnehmen ist und in Figur 1 dargestellt, entlang einer geschlossenen Linie und strömt durch eine Öffnung mit der Breite a an dem Ende des UV-Umlenkspiegels, das von der UV-Quelle am weitesten entfernt ist, aus.
Unerwarteter Weise kann jedoch der Kühlgasstrom ebenso über mehrere Öffnungen entlang einer gedachten Linie vom Ende des Lampenreflektors 2 bis zum Ende der geteilten UV-Umlenkspiegel 81 bis 83 in Figur 4 erfolgen. Wie in Figur 4 ersichtlich, sind minimale Öffnungen mit den Querschnittsbreiten b1 bis b4 zwischen den geteilten UV-Umlenkspiegeln, sowie den Umlenkspiegeln und dem Reflektorelement 2 bzw. dem Scheibenelement 9, ausreichend, damit sich der Kühlgasstrom in die Bereiche 41 bis 44 aufteilen kann. Es ist somit möglich, das Scheibenelement 9 näher an die geteilten Spiegelelemente heranzuführen, was eine Verkürzung des gesamten Lichtweges d von der UV-Quelle zur Oberfläche des beschichteten Substrats bewirkt.
Damit der erhitzte Kühlgasstrom des Lampenrohrs und des Lampen-Reflektors nicht direkt in den Prozessierungsbereich fliesst und zu einer unerwünschten Erwärmung der zu belichtenden Bauteile führt, wird der Gasstrom vom Prozessierungsbereich mit Hilfe eines optischen Scheibenelements 9 abgetrennt, das die gewünschte UV-Strahlung möglichst gut transmittiert. In einfachster Ausführung wird dafür ein Scheibenelement aus Quarzglas verwendet.
Weiters ist es durch die oben beschriebene räumliche Trennung des Prozessierungsbereiches von der Belichtungsvorrichtung durch ein optisches Scheibenelement 9 möglich, eine separate Substratkühlung mittels Kühlgas auszuführen, was eine Erhöhung der zulässigen Belichtungsdosis erlaubt.
Mit aktiven Absaugvorrichtungen im abgewandten Bereich des Umlenkspiegels könnte zwar der notwendige Kühlgasstrom bei reduzierter Querschnittsbreite a erreicht werden, jedoch erfordert dies zusätzliche Pumpen und strömungstechnisch vorteilhafte Anordnungen des Spiegels und deren Halterungen, um eine über die Länge L des Spiegels gleichmässige Absaugströmung zu gewährleisten. Mit der Länge L des Spiegels ist die Dimension senkrecht zur Ebene von Figur 1 bezeichnet und ist in Figur 2 als Aufsicht auf die Anordnung gezeigt. Solche strömungstechnisch optimierte Anordnungen stellen aber eine ungewollte Einschränkungen betreffend möglichst effizienter UV-Lichtführung in den Prozessierungsbereich dar.
Die Ableitung der Kühlgasströmung könnte zumindest bei beschränkter Länge der UV-Quelle und des Umlenkspiegels seitlich erfolgen, d.h. senkrecht zur Ebene von Figur 1. Mit zunehmender Länge L der Quelle müsste aber ein immer grösserer Kühlgasstrom über diese beiden seitlichen Öffnungen abgeführt werden, was der Kühleffizienz mit zunehmender Länge L Grenzen setzt, insbesondere im Bereich der Mitte der UV-Quelle.
Um eine hohe Gleichförmigkeit der Ausleuchtung über die Länge L der UV-Quelle zu erhalten, werden vorzugsweise flächige Reflektorelemente 18 seitlich anschliessend an den Umlenkspiegel angebracht. Diese seitlichen Reflektorelemente lenken Lichtstrahlen der UV-Quelle, die eine wesentliche Komponente seitlich entlang der Länge L der UV-Quelle haben und sich mehrheitlich in diese Richtungen ausbreiten, in den Prozessierungsbereich, der sich im Wesentlichen über die Länge L der UV-Quelle erstreckt. Mit diesen Seitenreflektoren 18 wird eine bessere Gleichförmigkeit der Ausleuchtung des Prozessierungsbereichs mit UV-Licht erzielt. In Figur 3 sind Intensitätsverteilungskurven über die Länge L der UV-Quelle schematisch gezeigt. Die Kurve 181 zeigt den Fall ohne seitliche Reflektorelemente 18, die Kurve 182 zeigt den Fall mit seitlichen Reflektorelementen 18, mit der verbesserten Ausleuchtung gegenüber der Kurve 181.
Diese seitlichen Reflektorelemente 18 erstrecken sich im Wesentlichen über die gesamte Höhe von Oberkante des Umlenkspiegels 8 bis zum Scheibenelement 9 in Figur 1 und 4 bis 7, um eine möglichst homogene Ausleuchtung über die Länge L zu erhalten. Mit dem vorzugsweisen Einsatz dieser seitlichen Reflektorelemente 18 wird jedoch das Kühlgas daran gehindert, seitlich abfliessen zu können. Damit muss in dieser, für die Ausleuchtung des Prozessierungsbereichs vorteilhaften Konfiguration gewährleistet sein, dass der Kühlgasstrom ausschliesslich über die Querschnittsöffnungsbreite a in den Bereich 4 ausströmen kann.
Eine bevorzugte Ausführungsform der gegenständlichen Erfindung ist mit einer Lösung zur möglichst effizienten Führung des UV-Lichts in den Prozessierungsbereich, bei gleichzeitig effizienter Abführung des Kühlgasstroms von der UV-Quelle, in Figur 4 schematisch dargestellt. Durch Unterteilung des Umlenkspiegels in einzelne, voneinander getrennte und gegeneinander in Richtung des Hauptstrahls versetzte Segmente kann das Kühlgas zwischen den Spiegelsegmenten in einzelne Kühlgasstromsegmente 41, 42, 43, 44 aufgetrennt werden. Die in Figur 4 dargestellte Unterteilung in drei Spiegelsegmente ist beispielhaft zu verstehen, Unterteilungen in mehr als zwei, also N, Segmente sind möglich, wobei N eine ganze Zahl grösser oder gleich zwei sein kann. Um zumindest dieselbe Kühleffizienz gewährleisten zu können, wie bei oben beschriebener Anordnung mit nur einer oder zwei Öffnungen, muss die Summe der Öffnungsbreiten b1, b2, b3, b4 in Figur 4 im Wesentlichen gleich sein wie die Breite a in Figur 1. Mit dieser Forderung ergeben sich dieselben Querschnittsflächen für den Austritt des Kühlgasstroms und damit im Wesentlichen dieselbe Kühlleistung für unterschiedliche Konfigurationen. Es hat sich als besonders vorteilhaft erwiesen, wenn sowohl die Breite b1 und b4 möglichst klein gehalten werden, um den Lichtweg d zwischen Quelle und Prozessierungsbereich möglichst kurz zu gestalten. Um den notwendigen Kühlgasstrom zu erhalten, ergeben sich daraus die Spaltbreiten b2 und b3 als Versatz der Umlenkspiegel-Segmente. Insbesondere mit der Minimierung von b4 können sowohl das optischen Scheibenelement 9 als auch entsprechend die lackbeschichteten Bauteile 10 wesentlich näher an die Umlenkspiegel herangebracht werden. Damit wird der Lichtweg d zwischen UV-Quelle und Bauteilen verkürzt, was zu einer vorteilhaft höheren Intensität des UV-Lichts führt, das auf diese Bauteile fällt.
Dies hat zur Konsequenz, dass bei gleichbleibender UV-Dosis (=UV-lntensität multipliziert mit Belichtungszeit) zur Aushärtung des Lacks die Belichtungszeit verkürzt werden kann, womit in dieser Anordnung eine höhere Produktivität im Belichtungsprozess erzielt wird.
Der Reduktion des Abstands b1 vom Spiegelsegment 81 von der UV-Quelle sind aber natürliche Grenzen gesetzt. Bei zu geringem Abstand wird ein Teil des am Spiegelsegment 81 reflektierten UV-Lichts in die UV-Quelle zurückgeworfen und gelangt nicht wie erwünscht in den Prozessierungsbereich.
Eine besonders bevorzugte Ausführung ist in Figur 5 dargestellt, worin die Kippwinkel α1, α2, α3 der einzelnen Umlenkspiegelsegmente 81, 82, 83 unterschiedlich sein können. Dementsprechend können diese Winkel einzeln der Situation angepasst werden. Durch beispielsweise Vergrössern des Kippwinkels α1 des Segments 81 auf einen Wert grösser als α2 von Segment 82, der dem Winkel α in Figur 1 entspricht, kann das reflektierte UV-Licht 61 von Segment 81 mit höherer Effizienz in den Prozessierungsbereich gelenkt werden. Ebenso kann beispielsweise der Winkel α3 von Segment 83 verkleinert werden, um das reflektierte UV-Licht 63 näher in den Bereich des UV-Lichts 62 von Segment 82 zu bringen. Durch Anpassen dieser Winkel α1, α2, α3 kann nicht nur das UV-Licht effizienter gesammelt werden, es kann auch in einen Bereich kleinerer geometrischer Ausdehnung gebracht werden, womit die vorhandene Intensität in diesem Bereich weiter gesteigert wird, was aufgrund der oben genannten Intensitätsabhängigkeit der Aushärtedosis des Lacks vorteilhaft ist. Dieses Sammeln des UV-Lichts in einen Bereich kleinerer Ausdehnung entspricht einer Fokussierung des UV-Lichts in den Prozessierungsbereich.
Im Falle der Bewegung der Bauteile auf einer Kreisbahn 102 wie in Figuren 1 und 4 bis 7 angedeutet, skaliert die geometrische Ausdehnung des nutzbaren Prozessierungsbereichs mit dem Radius der Kreisbewegungsbahn. Diese Bewegungsbahn sollte bei maschinentechnisch vorteilhafter Auslegung nicht grösser als für die jeweilige Bauteilgröße minimal notwendig gehalten werden. Mit Hilfe der geeigneten Verkippungen α1 bis αN der einzelnen Umlenkspiegelsegmente gegenüber dem Hauptstrahl erlangt man den Vorteil, dass eine Belichtungsanlage damit geometrisch kleiner und somit kostengünstiger gebaut werden kann.
Weiters ist es möglich, bei hoher UV-lntensität die Temperatur der lackbeschichteten Bauteile unter ihrem kritischen Anwendungsbereich zu halten, da die gegenständliche Erfindung ermöglicht, die Bauteile 10 sehr nahe am Prozessierungsbereich in einer Einfachbewegung oder auch wechselweisen Vor-Zurück-Bewegung linear 101 bzw. auf einer Kreisbahn rotierend 102, für die Dauer der Aushärtung vorbeizuführen.
In den bisherigen Ausführungen wurde die Annahme gemacht, dass die Umlenkspiegel in drei Segmenten ausgeführt sind. Erfindungsgemäss kann diese Aufteilung des Umlenkspiegels in mindestens zwei bis zu N Segmenten erfolgen, wobei N eine ganze Zahl darstellen soll.
A typical structure of a UV curing device is in Figure 1 shown. High-intensity, broadband UV radiation sources consist of a gas discharge lamp 1 and a lamp reflector element 2, which collects UV radiation emitted in the direction facing away from the component and reflects it in the area in which the components 10 coated with UV-curing lacquer 11 are located are located. This area, hereinafter referred to as the processing area, is therefore exposed to radiation which is composed of direct radiation and reflected radiation. In the case of a substantially linear source, the gas discharge lamp 1 is essentially tubular. However, it can also consist of one or a series of individual, essentially point-shaped lamps which are arranged in a row. Gas discharge lamps as a UV radiation source consist of a tube which is highly permeable to UV radiation and hermetically sealed, with an evaporable amount of metal enclosed therein and an inert gas filling. The latter is excited by an electrically induced gas discharge, which heats it and leads to the evaporation of the amount of metal through heat transfer. As a result, the metal vapor formed is also electrically excited and the metal vapor plasma that forms emits radiation according to known excitation lines, in particular UV light. In addition to the desired emission of UV light, the plasma also emits radiation in the visible (VIS) and infrared (IR) range of the electromagnetic spectrum. Part of the infrared radiation emitted by the metal vapor plasma is absorbed in the tube of the gas discharge lamp, which usually consists of UV-transmissive quartz glass, and causes the tube to heat up. The hot gas in the pipe also transfers heat to the pipe walls. Because of that Pipe material made of quartz glass due to its material properties limits are set with regard to the temperature, beyond which the strength of the pipe is lost, this pipe must be cooled. In the technically relevant application, the cooling takes place by the flow of gas 31 (normally air), which heats up and thus dissipates the energy from the pipe. The cooling gas is usually supplied actively with pressure in order to increase the flow quantity and thus the cooling capacity via one or more access openings 30.
In order to bring as much emitted UV light into the processing area, the lamp tube is partially surrounded on one side with a lamp reflector element 2, which efficiently reflects the UV radiation into the opposite side in the processing area. The cooling gas 31 must essentially be supplied on the lamp reflector side, since the desired UV radiation should be able to propagate freely to the component to be exposed on the front side. Specifically, the gas flow can be supplied through holes in the lamp reflector element 2 through which the gas flows with pressure onto the lamp tube 1. The heated gas must be able to flow away as freely as possible on the processing area side to ensure the effectiveness of the cooling.
In order to attenuate the undesired VIS & IR portion of the emitted radiation from the lamp which falls within the processing range, the lamp reflector element 2 can be provided with a coating which reflects the UV portion of the radiation well, the VIS & IR Share but little reflected. This can be done by a dichroic thin film coating, which on the one hand highly reflects the UV component and transmits the VIS & IR component in the lamp reflector body, which are absorbed by the underlying reflector material. The lamp reflector is heated and the resulting heat has to be dissipated via the IR radiation and the gas flow.
The direct radiation from the tubular gas discharge lamp, ie the radiation that does not reach the processing area via the lamp reflector, is not attenuated in the VIS and / or IR portion. In addition, a residual portion of the VIS & IR radiation, which is not transmitted by the coating of the lamp reflector and is not absorbed in the reflector, reaches the processing area.
A further suppression of the VIS & IR radiation can be achieved by an additional, wavelength-selective deflection mirror 8 positioned in the beam path will. This deflecting mirror 8 is intended to reflect the UV component in the radiation 5 from the source as well as possible, while reflecting the VIS & IR component 7 as poorly as possible. In the simplest case, such a deflecting mirror is designed as a flat mirror which is coated with a dichroic thin-layer filter coating. This mirror is usually arranged at an angle of 45 ° between the normal to the mirror surface to the main beam of the UV source, the processing region with the components 10 exposed to UV-curable lacquer 11 then being located downstream in the beam path of the UV radiation reflected by the deflecting mirror rotated by 90 ° to the main beam of the UV source. The deflecting mirror can also be arranged at an angle α to the mirror normal that deviates from 45 °, the processing region then being rotated by the angle 2 × α relative to the main beam of the UV source.
The VIS & IR radiation 7 is mostly transmitted through the specific choice of the dichroic filter coating. In order to avoid excessive heating of the deflecting mirror, which would take place through absorption of this VIS & IR radiation in the deflecting mirror substrate and which in turn would throw IR radiation into the processing area, a suitable VIS & IR-permeable mirror substrate material is selected and ensures that the VIS & IR radiation 7 is transmitted as far as possible through the mirror and is thus kept away from the processing area. Glasses with high VIS & IR transparency are particularly suitable as the mirror substrate. Borosilicate glass or quartz glass are particularly suitable for this, however the transparency for these glasses in the IR range is limited to wavelengths less than 2800 nm or 3500 nm. For the transmitted VIS & IR radiation 7, care must be taken to ensure that it is in the rest of the structure is deflected so far and finally absorbed that it can no longer get into the processing area or the UV source itself by multiple reflections on parts of the structure in order to avoid undesired heating in both cases.
The dimension of the deflecting mirror 8 should be chosen so that the largest possible proportion of the light emitted by the source hits the mirror and directs it into the processing area. With the size of this UV deflecting mirror, however, the light path d between the UV source and the processing area increases, so that the UV light intensity in this area decreases. Furthermore, the cooling gas flow from the UV source must be diverted past the deflecting mirror. The Flow of this cooling gas should be as laminar as possible in order to ensure an efficient and unobstructed discharge.
The cooling gas flow usually runs, as can be seen from the prior art and in Figure 1 shown, along a closed line and flows out through an opening with the width a at the end of the UV deflection mirror which is furthest away from the UV source.
However, unexpectedly, the cooling gas flow can also flow through a plurality of openings along an imaginary line from the end of the lamp reflector 2 to the end of the divided UV deflection mirrors 81 to 83 in Figure 4 respectively. As in Figure 4 can be seen, minimal openings with the cross-sectional widths b1 to b4 between the divided UV deflecting mirrors, as well as the deflecting mirrors and the reflector element 2 or the disc element 9, are sufficient so that the cooling gas flow can be divided into the areas 41 to 44. It is thus possible to bring the pane element 9 closer to the divided mirror elements, which causes a shortening of the entire light path d from the UV source to the surface of the coated substrate.
So that the heated cooling gas flow of the lamp tube and the lamp reflector does not flow directly into the processing area and leads to undesired heating of the components to be exposed, the gas flow is separated from the processing area with the aid of an optical disk element 9, which transmits the desired UV radiation as well as possible . The simplest version uses a quartz glass panel.
Furthermore, the spatial separation of the processing area from the exposure device described above by means of an optical disk element 9 makes it possible to carry out a separate substrate cooling by means of cooling gas, which allows the permissible exposure dose to be increased.
With active suction devices in the area of the deflecting mirror facing away, the necessary cooling gas flow could be achieved with a reduced cross-sectional width a, but this requires additional pumps and fluidically advantageous arrangements of the mirror and their holders in order to ensure a uniform suction flow over the length L of the mirror. With the length L of the mirror, the dimension is perpendicular to the plane of Figure 1 designated and is in Figure 2 shown as a supervision of the arrangement. Such fluidically However, optimized arrangements represent unwanted restrictions regarding the most efficient UV light guidance in the processing area.
The cooling gas flow could be derived laterally, at least with a limited length of the UV source and the deflecting mirror, ie perpendicular to the plane of Figure 1 . With increasing length L of the source, however, an ever greater cooling gas flow would have to be discharged through these two lateral openings, which limits the cooling efficiency with increasing length L , especially in the area of the center of the UV source.
In order to obtain a high uniformity of the illumination over the length L of the UV source, flat reflector elements 18 are preferably attached laterally to the deflecting mirror. These lateral reflector elements direct light rays from the UV source, which have an essential component laterally along the length L of the UV source and predominantly spread in these directions, into the processing region, which extends essentially over the length L of the UV source. With these side reflectors 18, a better uniformity of the illumination of the processing area with UV light is achieved. In Figure 3 intensity distribution curves over the length L of the UV source are shown schematically. Curve 181 shows the case without lateral reflector elements 18, curve 182 shows the case with lateral reflector elements 18, with the improved illumination compared to curve 181.
These lateral reflector elements 18 extend essentially over the entire height from the upper edge of the deflecting mirror 8 to the disk element 9 in Figure 1 and 4 to 7 in order to obtain the most homogeneous illumination possible over the length L. With the preferred use of these lateral reflector elements 18, however, the cooling gas is prevented from being able to flow off laterally. In this configuration, which is advantageous for illuminating the processing area, it must therefore be ensured that the cooling gas flow can flow out into area 4 exclusively over the cross-sectional opening width a.
A preferred embodiment of the present invention is in with a solution for guiding the UV light into the processing area as efficiently as possible while at the same time efficiently removing the cooling gas stream from the UV source Figure 4 shown schematically. By dividing the deflecting mirror into individual segments which are separate from one another and offset from one another in the direction of the main beam, the cooling gas can pass between the Mirror segments are separated into individual cooling gas flow segments 41, 42, 43, 44. In the Figure 4 Subdivision into three mirror segments shown is to be understood as an example; subdivisions into more than two, that is to say N, segments are possible, where N can be an integer greater than or equal to two. In order to be able to guarantee at least the same cooling efficiency as in the arrangement described above with only one or two openings, the sum of the opening widths b1 , b2 , b3 , b4 in Figure 4 be substantially the same as the width a in Figure 1 . This requirement results in the same cross-sectional areas for the exit of the cooling gas flow and thus essentially the same cooling capacity for different configurations. It has proven to be particularly advantageous if both the widths b1 and b4 are kept as small as possible in order to make the light path d between the source and the processing area as short as possible. In order to obtain the necessary cooling gas flow, the gap widths b2 and b3 result from this as an offset of the deflecting mirror segments. In particular, with the minimization of b4 , both the optical disk element 9 and, accordingly, the paint-coated components 10 can be brought much closer to the deflecting mirror. This shortens the light path d between the UV source and components, which leads to an advantageously higher intensity of the UV light that falls on these components.
The consequence of this is that, with a constant UV dose (= UV intensity multiplied by exposure time), the exposure time can be shortened to harden the lacquer, with which a higher productivity in the exposure process is achieved in this arrangement.
The reduction of the distance b1 from the mirror segment 81 from the UV source, however, has natural limits. If the distance is too small, part of the UV light reflected at the mirror segment 81 is reflected back into the UV source and does not reach the processing area as desired.
A particularly preferred embodiment is in Figure 5 shown, wherein the tilt angle α1, α2, α3 of the individual deflecting mirror segments 81, 82, 83 can be different. Accordingly, these angles can be individually adapted to the situation. For example, by increasing the tilt angle α1 of segment 81 to a value greater than α2 of segment 82, which corresponds to the angle α in Figure 1 corresponds, the reflected UV light 61 from segment 81 can be directed into the processing area with greater efficiency. Likewise, for example the angle α3 of segment 83 can be reduced in order to bring the reflected UV light 63 closer to the region of the UV light 62 of segment 82. By adapting these angles α1 , α2 , α3 , not only can the UV light be collected more efficiently, it can also be brought into a region of smaller geometric extent, which further increases the existing intensity in this region, which is due to the above-mentioned intensity dependence of the Curing dose of the lacquer is advantageous. This collection of the UV light in a region of smaller extent corresponds to a focusing of the UV light in the processing region.
In the case of movement of the components on a circular path 102 as in Figures 1 and 4 to 7 indicated, the geometric extent of the usable processing area scales with the radius of the circular movement path. This trajectory should not be kept larger than the minimum necessary for the respective component size in a mechanically advantageous design. With the aid of the suitable tilting α1 to αN of the individual deflecting mirror segments with respect to the main beam , one has the advantage that an exposure system can be constructed geometrically smaller and thus more cost-effectively.
Furthermore, it is possible to keep the temperature of the paint-coated components below their critical area of application at high UV intensity, since the present invention enables the components 10 to be very close to the processing area in a single movement or alternately back-and-forth movement linear 101 or rotating 102 on a circular path for the duration of the curing.
In the previous statements, the assumption was made that the deflecting mirrors are designed in three segments. According to the invention, this division of the deflecting mirror can take place in at least two up to N segments, N being intended to represent an integer.

Im Folgenden soll die Erfindung an einem konkreten Beispiel dargelegt werden. Als UV-Strahlungsquelle soll eine FusionUV-Heraeus Typ LH10 Quelle verwendet werden, die mit einer H13plus Quecksilber Metallhalid Gasentladungslampe ausgerüstet ist. Diese Quelle hat eine Länge L von ca. 25 cm. Die gesamte Strahlungsleistung beträgt nominal 6 kW und benötigt einen Kühlgasstrom von minimal 150 L/s Umgebungsluft, die mit rund 2500 Pa Überdruck der UV-Quelle über den dazu vorgesehenen Anschluss zugeführt werden muss. Entsprechend der Situation in Figur 1 wird dieser Kühlgasstrom in einer laminaren Strömung am UV-Umlenkspiegel vorbei abgeführt. Dies wird erreicht, indem die Querschnittsöffnungsbreite mit a = 80 mm dimensioniert wird, woraus eine Ausströmungsgeschwindigkeit des Kühlgases von rund 7 m/s resultiert, womit um die Querschnittsöffnungen im Wesentlichen noch laminare Strömung oder schwach turbulente Strömung erhalten werden kann.
Die Bauteile werden zyklisch in den Prozessierungsbereich auf einer Kreisbahn mit Durchmesser von 220 mm geführt, wobei sie sich am Scheitelpunkt der Drehbewegung in einer Distanz von 20 mm zum Scheibenelement 9 befinden. Unter diesen Bedingungen ergibt sich mit einem einzelnen Umlenkspiegel eine Intensität für die UVA-Strahlung (Mittelwert über Wellenlängenbereich 320...400nm) am Scheitelpunkt der Kreisbahn von 290 mW/cm2 und eine UVA-Dosisleistung von 48 mJ/cm2/s, wobei die Dosisleistung die Dosis bezeichnet, die ein flaches Bauteiloberflächenelement während einer Umdrehung auf der Kreisbahn bei einer Umdrehungsgeschwindigkeit von 1 Rotation pro Sekunde erfährt. Wird in ähnlicher Konfiguration, aber mit zusammenhängenden, segmentierten Umlenkspiegeln entsprechend oben beschriebenem Stand der Technik gearbeitet, bei dem die Querschnittsöffnungsbreite mit a =80 mm gleich gehalten wird, kann eine UVA-lntensität im Scheitelpunkt von 390 mW/cm2 und eine UVA-Dosisleistung für die Rotationsbewegung der Bauteile von 58 mJ/cm2/s erreicht werden. Die Länge des Lichtwegs d des Hauptstrahls, von der Gasentladungslampe zum Scheitelpunkt der Rotationsbewegung der Bauteile, beträgt bei einer Gesamtbreite des Umlenkspiegels von 175 mm in beiden Fällen gerundet d = 285 mm.
The invention is to be explained below using a specific example. A FusionUV-Heraeus type LH10 source is to be used as the UV radiation source, which is equipped with an H13plus mercury metal halide gas discharge lamp. This source has a length L of approximately 25 cm. The total radiation power is nominally 6 kW and requires a cooling gas flow of at least 150 L / s ambient air, which with around 2500 Pa overpressure of the UV source the connection provided for this must be supplied. According to the situation in Figure 1 this cooling gas flow is led away in a laminar flow past the UV deflecting mirror. This is achieved by dimensioning the cross-sectional opening width with a = 80 mm, which results in an outflow speed of the cooling gas of around 7 m / s, with which essentially laminar flow or slightly turbulent flow can still be obtained around the cross-sectional openings.
The components are guided cyclically into the processing area on a circular path with a diameter of 220 mm, and are located at the apex of the rotary movement at a distance of 20 mm from the disk element 9. Under these conditions, a single deflecting mirror results in an intensity for the UVA radiation (mean value over the wavelength range 320 to 400 nm) at the apex of the circular path of 290 mW / cm 2 and a UVA dose rate of 48 mJ / cm 2 / s, wherein the dose rate denotes the dose that a flat component surface element receives during one revolution on the circular path at a rotational speed of 1 rotation per second. If a similar configuration is used, but with connected, segmented deflecting mirrors according to the prior art described above, in which the cross-sectional opening width is kept the same with a = 80 mm, a UVA intensity at the apex of 390 mW / cm 2 and a UVA dose rate can be achieved for the rotational movement of the components of 58 mJ / cm 2 / s can be achieved. The length of the light path d of the main beam, from the gas discharge lamp to the apex of the rotational movement of the components, is rounded in both cases with a total width of the deflection mirror of 175 mm d = 285 mm.

In der erfindungsmässigen Konfiguration entsprechend Figur 5 werden die Abstandsgrössen b1 = 5 mm, b2 = 30 mm, b3 = 40 mm und b4 = 5 mm gewählt, so dass in Summe b1+b2+b3+b4 = 80 mm wie in den oben dargestellten Fällen mit a = 80 mm ergibt. Damit sinkt der Lichtweg d des Hauptstrahls von 285 mm auf 250 mm, d.h. der Lichtweg verkürzt sich um 35 mm. Die Winkel der Umlenkspiegel werden dabei erfindungsgemäß so angepasst, dass maximale UV-Lichtintensität im Prozessierungsbereich erreicht wird. Im vorliegenden Beispiel sind α1 = 60°, α2 = 45° und α3 = 25° gewählt. Mit dieser Anordnung wird im Scheitelpunkt eine UVA-lntensität von rund 510 mW/cm2 und eine Dosisleistung für die zyklische Drehbewegung der Bauteile von 72 mJ/cm2/s, also eine Erhöhung der Intensität um rund 30 % und der Dosisleistung um 24 % gegenüber dem Fall des segmentierten, aber zusammenhängenden Umlenkspiegels erreicht. Diese Verbesserungen werden allein im Besonderen durch die Trennung und Ausrichtung der Umlenkspiegelsegmente erreicht, bei gleichbleibender Leistung der UV-Quelle.
Mit dem in dieser Konfiguration verkürzten Lichtweg können nun Lichtstrahlen auf direktem Weg von der UV-Lampe auf die zu belichtenden Bauteile im Prozessierungsbereich fallen. Da bei diesen Lichtstrahlen keine Unterdrückung der VIS- & IR-Strahlung erfolgt, führen diese zu einer stärkeren Erwärmung der Bauteile. Die eingestrahlte Dosisleistung von VIS- & IR-Strahlung auf die Bauteile pro Rotationszyklus beträgt im dargestellten Fall rund 60 mJ/cm2/s, während dieser Wert nur 27 mJ/cm2/s für den dem Stand der Technik entsprechenden Fall mit zusammenhängendem, segmentiertem Umlenkspiegel beträgt. Das VIS- & IR-Licht steigt auf mehr wie das Zweifache in dieser Konfiguration mit dem geringeren Lichtweg und teilweise direkter VIS- & lR-Einstrahlung, während die erwünschte UV-Strahlung um 24 % in der Dosisleistung ansteigt.
Eine weitere Ausführungsform wird in Figur 6 dargestellt. Im Vergleich zu Figur 4 oder Figur 5 ist die Rotationsachse der Bauteilbewegung relativ zur UV-Quelle hin so verschoben, dass keine Lichtstrahlen mehr direkt von der UV-Lampe zu den Bauteilen gelangen können. Gleichzeitig sind die UV-Umlenkspiegel in einem Winkel <45° gegenüber dem Hauptstrahl angeordnet, wodurch eine UVA-Dosisleistung im vorliegenden Fall von rund 62 mJ/cm2/s erzielt wird, bei VIS- & lR-Dosisleistung von 31 mJ/cm2/s, was etwa gleich wie im Fall des segmentierten und zusammenhängenden Spiegels ist. Damit wird eine Erhöhung der UV-Dosisleistung gegenüber dem Stand der Technik mit zusammenhängend segmentierten UV-Umlenkspiegeln erreicht, die aber unter der UVA-Dosisleistung wie mit separierten UV-Umlenkspiegeln wie in Figur 5 dargestellt liegt.
Alternativ dazu kann anstatt einer Positionierung der Rotationsachse der Substrate näher zur UV-Quelle eine Verkippung der UV-Quelle derart erfolgen, dass sie weggeneigt von den Substraten 10 ist und somit die Einhausung der UV-Quelle die direkte Strahlung der UV-Quelle zum Substrat hin abschirmt und demnach die Substrate nur noch von der reflektierten Strahlung vom Reflektorelement 2 und/oder den geteilten Spiegelelementen belichtet werden.
In the configuration according to the invention accordingly Figure 5 The distance sizes b1 = 5 mm, b2 = 30 mm, b3 = 40 mm and b4 = 5 mm are selected, so that in total b1 + b2 + b3 + b4 = 80 mm as in the cases shown above with a = 80 mm . The light path d of the main beam thus drops from 285 mm to 250 mm, ie the light path is shortened by 35 mm. The angles of the deflecting mirrors are adjusted according to the invention such that maximum UV light intensity is achieved in the processing area. In the present example, α1 = 60 °, α2 = 45 ° and α3 = 25 ° are selected. With this arrangement, a UVA intensity of around 510 mW / cm 2 and a dose rate for the cyclic are at the apex Rotational movement of the components of 72 mJ / cm 2 / s, i.e. an increase in intensity by around 30% and dose rate by 24% compared to the case of the segmented but connected deflecting mirror. These improvements are achieved in particular by separating and aligning the deflecting mirror segments while maintaining the UV source's power.
With the light path shortened in this configuration, light rays can now fall directly from the UV lamp onto the components to be exposed in the processing area. Since there is no suppression of VIS & IR radiation with these light beams, this leads to a greater heating of the components. The irradiated dose rate of VIS & IR radiation onto the components per rotation cycle in the illustrated case is around 60 mJ / cm 2 / s, while this value is only 27 mJ / cm 2 / s for the case corresponding to the prior art with a related, segmented deflection mirror. The VIS & IR light increases more than twice in this configuration with the lower light path and partly direct VIS & IR radiation, while the desired UV radiation increases by 24% in the dose rate.
Another embodiment is shown in Figure 6 shown. Compared to Figure 4 or Figure 5 the axis of rotation of the component movement is shifted relative to the UV source so that light rays can no longer reach the components directly from the UV lamp. At the same time, the UV deflecting mirrors are arranged at an angle <45 ° with respect to the main beam, as a result of which a UVA dose rate in the present case of around 62 mJ / cm 2 / s is achieved, with a VIS- & IR dose rate of 31 mJ / cm 2 / s, which is about the same as in the case of the segmented and connected mirror. This results in an increase in the UV dose rate compared to the prior art with cohesively segmented UV deflecting mirrors, but under the UVA dose rate as with separate UV deflecting mirrors as in FIG Figure 5 shown lies.
Alternatively, instead of positioning the axis of rotation of the substrates closer to the UV source, the UV source can be tilted such that it is tilted away from the substrates 10 and thus the housing of the UV source direct radiation of the UV source towards the substrate shields and therefore the substrates are only exposed to the reflected radiation from the reflector element 2 and / or the divided mirror elements.

Ein weiteres Anwendungsbeispiel wird anhand Figur 7 verdeutlicht. Wird entsprechend der Konfiguration aus Figur 5 ein Blendenelement 21 mit der Länge von 25 mm am unteren Ende des Reflektorelements 2 eingeführt, das alle direkten Strahlen von der UV-Lampe zu den Bauteilen im Prozessierungsbereich blockiert, kann die Wärmebelastung durch direkt eingestrahltes VIS- & IR-Licht eliminiert werden. Das Blendenelement 21 kann, ebenso wie das Reflektorelement 2, beschichtet sein, um die UV-Reflektion zu erhöhen, für die VIS- & IR-Strahlung muss das Blendenelement jedoch zwingend undurchlässig sein. Die ungewollt mit diesem Blendenelement stattfindende Blockierung von UV-Licht, das vom UV-Umlenkspiegel Segment reflektiert in den Prozessierungsbereich fallen sollte, ist vergleichsweise gering. Mit einer UVA-Dosisleistung von 69 mJ/cm2/s fällt diese nur um rund 3 % im Vergleich zur Anordnung in Figur 5 ab, während sich der VIS- & IR-Anteil mit 32 mJ/cm2/s beinahe auf den Wert reduziert, der sich auch mit dem Stand der Technik mit zusammenhängenden segmentierten UV-Umlenkspiegeln von 27 mJ/cm2/s ergibt. Damit kann in der dargestellten Konfiguration von Figur 7 im vorliegenden Fall eine Erhöhung der UVA-Dosisleistung von rund 19% erzielt werden, wobei der Relativ-Anteil von VIS- & IR-Licht zum UV-Licht gleich bleibt wie im Falle der zusammenhängend segmentierten UV-Umlenkspiegel.
In Tabelle 1 sind die angebenen Daten von UVA-lntensität, UVA-Dosisleistung, sowie den entsprechenden Dosisleistungen für das eingestrahlte VIS- & IR-Licht für die hier dargestellten Fälle von Figur 1, 5, 6 und 7 zusammengefasst. Als 100%-Referenzwert für die Vergleiche der UVA-lntensität und -Dosisleistung wurde der Fall des dem Stand der Technik entsprechenden, zusammenhängend segmentiertem UV-Umlenkspiegels angenommen.
Eine lineare Bauteilbewegung durch den Prozessierungsbereich ist in allen oben genannten Ausführungsformen möglich, wobei die Bauteile in den Konfigurationen von Figur 5, 6 und 7 geringfügig der direkten Einstrahlung der UV-Lampe ausgesetzt sind. Eine völlige Unterdrückung ist in realer Anwendung häufig nicht erforderlich und dieser Effekt kann aus wirtschaftlicher Sicht durch die verbesserte UV-Dosisleistung, wie auch die Möglichkeit einer zusätzlichen Substratkühlung durch die räumliche Anordnung, und damit kürzeren Belichtungszyklen leicht kompensiert werden.
Durch die erfindungsgemäße Aushärtungsvorrichtung mit voneinander getrennt angeordneten Spiegelsegmenten wird neben der Verringerung des Lichtweges d und der dadurch erhöhten Flächenintensität am Bauteil, ein optimaler Abfluss des Kühlgases erreicht. Die der Erfindung inhärente Optimierung der Kühlung der Belichtungsvorrichtung erlaubt zudem eine zuvor unmögliche Erhöhung der Leistung der UV-Quelle, ohne eine negative Beeinflussung der lackbeschichteten Substrate zu riskieren, was einer gesamtheitlichen Effizienzsteigerung der UV-lntensität im Aushärtebereich entspricht.
Die einzelnen voneinander getrennten Spiegelelemente können von der Seite betrachtet, also parallel zum Hauptstrahl, so verschoben sein, dass die Oberkante eines Spiegelelementes gegenüber der Unterkante des benachbarten Spiegelelementes übersteht, was von der UV-Quelle aus gesehen als "blickdicht" und somit durchgehende Spiegelfläche wahrgenommen wird, wodurch ein Intensitätsverlust der UV-Strahlung vermieden wird.
Es wurde eine Aushärtevorrichtung für mit einem aushärtbaren Lack 11 beschichtete Bauteile 10 vorgestellt, umfassend zumindest eine Strahlungsquelle 1, zumindest ein die Strahlungsquelle umgebendes Reflektorelement 2, zumindest zwei geteilte, der Strahlungsquelle gegenüberliegende dichroitische Spiegelelemente, welche den VlS-&lR-Anteil der Strahlungsquelle größtenteils transmittieren und von einem Prozessierungsbereich fernhalten und gleichzeitig den UV-Anteil der Strahlungsquelle in Richtung eines Prozessierungsbereichs reflektieren, zumindest ein optisches Scheibenelement 9, das die Kühlgasströmung in der Belichtungsvorrichtung vom Prozessierungsbereich trennt, dadurch gekennzeichnet, dass die zumindest zwei dichroitischen Spiegelelemente derart angeordnet sind, dass sie voneinander getrennt und gegeneinander in Richtung des Hauptstrahls versetzt sind und parallel zum Hauptstrahl verschoben somit gegenüber dem Hauptstrahl blickdicht sind, so dass durch die entstandenen Öffnungen Kühlgas ausströmen kann, es jedoch nicht zu einem Intensitätsverlust der UV-Strahlung kommt.
In einer bevorzugten Ausführungsform sind die zumindest zwei geteilten dichroitischen Spiegelelemente um jeweilige Winkel α1 bis αN zwischen der Spiegelnormalen und der Hauptstrahlungsrichtung der UV-Quelle derart zueinander verkippt, dass die UV-Strahlung im Prozessierungsbereich zusammengeführt wird.
In einer bevorzugten Ausführungsform sind die Winkel α1 bis αN der Umlenkspiegelelemente in der Art unterschiedlich, dass der grösste Winkel α1 von dem Spiegelelement eingenommen wird, das dem Reflektorelement 2 am nächsten ist, und die Winkel der weiteren Spiegelelemente kleiner sind als α1, wobei der Winkel des Spiegelsegmentes, das dem Scheibenelement 9 am nächsten ist, αN ist und den kleinsten der Winkel α1 bis αN darstellt.
In einer bevorzugten Ausführungsform der Aushärtevorrichtung werden Reflektorelemente 18 seitlich an die Beleuchtungsvorrichtung über die gesamte Höhe von der Oberkante der zumindest zwei Spiegelelemente bis zum Scheibenelement 9 angebracht.
In einer bevorzugten Ausführungsform werden die UV-Quelle und die zumindest zwei geteilten dichroitischen Spiegelelemente derart angeordnet, dass sowohl direkte Strahlung als auch reflektierte Strahlung in den Prozessierungsbereich gelenkt wird.
In einer bevorzugten Ausführungsform wird ausschließlich reflektierte Strahlung in den Prozessierungsbereich gelenkt.
In einer bevorzugten Ausführungsform ist die UV-Quelle derart geneigt, dass keine direkte Strahlung in den Prozessierungsbereich fällt.
In einer bevorzugten Ausführungsform nimmt von allen Öffnungen mit den Querschnittsbreiten b1 bis bN, die sich zwischen den einzelnen Spiegelelementen, sowie zwischen dem Spiegelelement, das dem Reflektorelement am nächsten angeordnet ist, und dem Reflektorelement 2, sowie zwischen jenem Spiegelelement, welches dem Scheibenelement 9 am nächsten angeordnet ist, und dem Scheibenelement 9 befinden, jene Öffnung zwischen Spiegelelement 9 und dem nächstliegenden Spiegelelement die geringste Querschnittsbreite bN ein.
Weiters wurde ein Verfahren zur Aushärtung von lackbeschichteten Substraten vorgestellt, das eine Aushärtevorrichtung verwendet, bei der die Kühlgasabfuhr über Öffnungen zwischen den Spiegelelementen wie oben beschrieben erfolgt und eine Erhöhung der UV-lntensität im Prozessierungsbereich durch Verkürzung des Lichtweges d von der Quelle zur Oberfläche des beschichteten Substrates durch geeignete Anzahl und Anordnung der Spiegelelemente hinsichtlich Abstand, Winkel, und dergleichen. In einer bevorzugten Ausführungsform erfolgt zusätzlich zur Kühlung der Belichtungsvorrichtung eine separate Kühlung der lackierten Bauteile mittels Kühlgas. Gasentladungslampe: 1 Lampenreflektor: 2 Kühlgaszuführung: 30 Kühlgaszustrom: 31 Kühlgasabstrom-/ströme: 4, 41, 42, 43, 44 Emittierte Strahlung der UV-Quelle: 5, 51, 52, 53, 54 Durch UV-Umlenkspiegel reflektierte Strahlung (vornehmlich UV): 6, 61, 62, 63 Durch UV-Umlenkspiegel transmittierte Strahlung (vornehmlich VIS&lR): 7, 71, 72, 73 Umlenkspiegel, Umlenkspiegel Segmente: 8, 81, 82, 83 Optisches Scheibenelement zur Trennung des Kühlgasstroms: 9 Bauteile: 10 Lackbeschichtung der Bauteile: 11 Lineare Bauteilbewegung: 101 Rotierende Bauteilbewegung: 102 Blende 21 Seitliches Reflektorelement 18 UV-Intensitätsverteilung ohne seitliche Reflektorelemente 181 UV-lntensitätsverteilung mit seitlichen Reflektorelementen 182 Öffnungsquerschnittbreite jeweils: - zwischen Scheibenelement 9 und Umlenkspiegel 8: a - zwischen Reflektorelement 2 und Spiegelsegment 81: b1 - zwischen Spiegelsegmenten 81-82 und 82-83: b2, b3 - zwischen Scheibenelement 9 und Spiegelsegment 83: b4 Winkel der Oberflächennormalen des Umlenkspiegels 8 gegenüber Hauptstrahlachse der UV-Quelle: α Winkel der Oberflächennormalen der Umlenkspiegelsegmente 81, 82, 83 gegenüber Hauptstrahlungsachse der UV-Quelle: α1, α2, α3: Länge der Belichtungsvorrichtung: L Lichtweg des Hauptstrahls von der UV-Quelle zur Oberfläche des Bauteils 10:
Another application example is based on Figure 7 clarifies. Is made according to the configuration Figure 5 introduced a diaphragm element 21 with the length of 25 mm at the lower end of the reflector element 2, which blocks all direct rays from the UV lamp to the components in the processing area, the heat load can be eliminated by directly irradiated VIS & IR light. The diaphragm element 21, like the reflector element 2, can be coated in order to increase the UV reflection, but the diaphragm element must be impervious to the VIS & IR radiation. The unintentional blocking of UV light, which should fall into the processing area as reflected by the UV deflecting mirror segment, is comparatively low. With a UVA dose rate of 69 mJ / cm 2 / s, this only falls by around 3% compared to the arrangement Figure 5 decreases, while the VIS & IR portion with 32 mJ / cm 2 / s almost reduces to the value that also results with the prior art with connected segmented UV deflection mirrors of 27 mJ / cm 2 / s. In the configuration shown by Figure 7 in the present case, an increase in the UVA dose rate of around 19% can be achieved, the relative proportion of VIS & IR light to UV light remaining the same as in the case of the contiguously segmented UV deflection mirror.
Table 1 shows the data given for UVA intensity, UVA dose rate, and the corresponding dose rates for the irradiated VIS and IR light for the cases shown here from Figure 1 , 5 , 6 and 7 summarized. The case of the coherently segmented UV deflecting mirror corresponding to the prior art was assumed to be a 100% reference value for the comparisons of the UVA intensity and dose rate.
A linear component movement through the processing area is possible in all of the above-mentioned embodiments, the components in the configurations of Figure 5 , 6 and 7 are slightly exposed to direct radiation from the UV lamp. A complete suppression is often not necessary in real use and this effect can be easily compensated from an economic point of view by the improved UV dose rate, as well as the possibility of additional substrate cooling due to the spatial arrangement and thus shorter exposure cycles.
Through the curing device according to the invention with mirror segments arranged separately from one another, in addition to reducing the light path, d and the resulting increased surface intensity on the component, an optimal outflow of the cooling gas is achieved. The optimization of the cooling of the exposure device inherent in the invention also allows a previously impossible increase in the output of the UV source without risking a negative influence on the coated substrates, which corresponds to an overall increase in efficiency of the UV intensity in the curing area.
The individual mirror elements separated from each other can be shifted from the side, ie parallel to the main beam, in such a way that the upper edge of one mirror element protrudes from the lower edge of the neighboring mirror element, which, viewed from the UV source, is perceived as "opaque" and thus continuous mirror surface is avoided, whereby an intensity loss of UV radiation is avoided.
A curing device for components 10 coated with a curable lacquer 11 has been presented, comprising at least one radiation source 1, at least one reflector element 2 surrounding the radiation source, at least two divided dichroic mirror elements opposite the radiation source, which largely transmit the VIS and IR component of the radiation source and keep away from a processing area and at the same time reflect the UV component of the radiation source in the direction of a processing area, at least one optical disk element 9, which separates the cooling gas flow in the exposure device from the processing area, characterized in that the at least two dichroic mirror elements are arranged such that they are separated from one another and offset from one another in the direction of the main beam and are displaced parallel to the main beam and are therefore opaque to the main beam, so that through the openings created, cooling Gas can flow out, but there is no loss of intensity of UV radiation.
In a preferred embodiment, the at least two divided dichroic mirror elements are tilted relative to one another by respective angles α 1 to α N between the mirror normal and the main radiation direction of the UV source such that the UV radiation is brought together in the processing area.
In a preferred embodiment, the angles α 1 to α N of the deflecting mirror elements differ in such a way that the largest angle α1 is taken by the mirror element that is closest to the reflector element 2 and the angles of the further mirror elements are smaller than α 1, the angle of the mirror segment which is closest to the disk element 9 being α N and the smallest being the angle α 1 to α N.
In a preferred embodiment of the curing device, reflector elements 18 are attached laterally to the lighting device over the entire height from the upper edge of the at least two mirror elements to the pane element 9.
In a preferred embodiment, the UV source and the at least two divided dichroic mirror elements are arranged in such a way that both direct radiation and reflected radiation are directed into the processing area.
In a preferred embodiment, only reflected radiation is directed into the processing area.
In a preferred embodiment, the UV source is inclined such that no direct radiation falls into the processing area.
In a preferred embodiment, of all openings with the cross-sectional widths b1 to bN, which are between the individual mirror elements, as well as between the mirror element, which is arranged closest to the reflector element, and the reflector element 2, as well as between that mirror element, which is on the disc element 9 is arranged next, and the disc element 9, that opening between the mirror element 9 and the closest mirror element has the smallest cross-sectional width bN.
Furthermore, a method for curing lacquer-coated substrates was presented, which uses a curing device in which the cooling gas is removed via openings between the mirror elements as described above and an increase in the UV intensity in the processing area by shortening the light path d from the source to the surface of the coated Substrate by suitable number and arrangement of the mirror elements in terms of distance, angle, and the like. In a preferred embodiment, in addition to cooling the exposure device, the coated components are cooled separately by means of cooling gas. Gas discharge lamp: 1 Lamp reflector: 2nd Cooling gas supply: 30th Cooling gas inflow: 31 Cooling gas outflow / flows: 4, 41, 42, 43, 44 Emitted radiation from the UV source: 5, 51, 52, 53, 54 Radiation reflected by UV deflecting mirror (mainly UV): 6, 61, 62, 63 Radiation transmitted by UV deflecting mirror (mainly VIS & lR): 7, 71, 72, 73 Deflecting mirror, Deflecting mirror segments: 8, 81, 82, 83 Optical disc element to separate the cooling gas flow: 9 Components: 10th Paint coating of the components: 11 Linear component movement: 101 Rotating component movement: 102 cover 21st Lateral reflector element 18th UV intensity distribution without side reflector elements 181 UV intensity distribution with side reflector elements 182 Opening cross section width in each case: - between disc element 9 and deflecting mirror 8: a - between reflector element 2 and mirror segment 81: b1 - between mirror segments 81-82 and 82-83: b2 , b3 - between disc element 9 and mirror segment 83: b4 Angle of the surface normal of the deflecting mirror 8 with respect to the main beam axis of the UV source: α Angle of the surface normal of the deflecting mirror segments 81, 82, 83 with respect to the main radiation axis of the UV source: α1, α2, α3 : Length of the exposure device: L Main beam light path from the UV source to the surface of component 10:

Claims (11)

  1. A curing device for components (10) coated with a curable paint (11), comprising at least one radiation source (1), at least one reflector member (2) surrounding the radiation source, at least two divided dichroic mirror members opposite to the radiation source, which largely transmit the VIS & IR content of the radiation source and keep it away from a processing zone and at the same time reflect the UV content of the radiation source in the direction of a processing zone, at least one optical disk member (9) that separates the cooling gas flow in the exposure device from the processing zone, characterized in that the at least two dichroic mirror members are arranged in such a manner:
    - that they are separate from one another and offset from one another in the direction of the main beam
    - and are displaced parallel to the main beam and thus opaque to the main beam,
    - so that cooling gas can flow out through the openings created, but intensity loss of the UV radiation does not occur.
  2. The curing device according to claim 1, characterized in that the at least two divided dichroic mirror members are inclined relative to one another by respective angles α1 to αN between the mirror normal and the main beam direction of the UV source in such a way that the UV radiation is combined in the processing zone.
  3. The curing device according to claim 2, characterized in that the angles α1 to αN of the deflecting mirror members are different from one another in such a way that the largest angle α1 is assumed by the mirror member closest to the reflector member (2), and the angles of the other mirror members are smaller than α1, wherein the angle of the mirror segment closest to the mirror member (9) is αN and constitutes the smallest of the angles α1 to αN.
  4. The curing device according to at least one of the preceding claims, characterized in that reflector members (18) are laterally attached to the lighting device over the entire height from the upper edge of the at least two mirror members to the disk member (9).
  5. The curing device according to at least one of the preceding claims, characterized in that the arrangement of the UV source and the at least two divided dichroic mirror members directs both direct radiation and reflected radiation into the processing zone.
  6. The curing device according to at least one of the preceding claims, characterized in that only reflected radiation is directed into the processing zone.
  7. The curing device according to at least one of the preceding claims, characterized in that the UV source is inclined in such a way that no direct radiation is incident into the processing zone.
  8. The curing device according to at least one of the preceding claims, characterized in that, of all openings with the cross-sectional widths (b1) to (bN) that are located
    - between the individual mirror members, as well as
    - between the mirror member arranged closest to the reflector member and the reflector member (2), as well as
    - between the mirror member arranged closest to the disk member (9) and the disk member (9),
    - the smallest cross-sectional width, bN, is between the mirror member (9) and the closest mirror member.
  9. A method which uses a curing device according to one or several of the preceding claims for curing paint-coated substrates.
  10. The method according to claim 9, wherein the UV intensity in the processing zone is increased by shortening the light path d from the source to the surface of the coated substrate.
  11. The method according to claim 10 or 9, characterized in that the painted components are cooled separately by means of cooling gas.
EP16816196.6A 2015-12-22 2016-12-07 Uv curing device with divided uv reflecting mirrors Active EP3393679B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16816196T PL3393679T3 (en) 2015-12-22 2016-12-07 Uv curing device with divided uv reflecting mirrors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015016730.8A DE102015016730A1 (en) 2015-12-22 2015-12-22 UV curing device with split UV deflecting mirrors
PCT/EP2016/002074 WO2017108163A1 (en) 2015-12-22 2016-12-07 Uv curing device with divided uv reflecting mirrors

Publications (2)

Publication Number Publication Date
EP3393679A1 EP3393679A1 (en) 2018-10-31
EP3393679B1 true EP3393679B1 (en) 2020-05-27

Family

ID=57590465

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16816196.6A Active EP3393679B1 (en) 2015-12-22 2016-12-07 Uv curing device with divided uv reflecting mirrors

Country Status (10)

Country Link
US (1) US11203038B2 (en)
EP (1) EP3393679B1 (en)
JP (1) JP6934008B2 (en)
KR (1) KR20180105654A (en)
CN (1) CN108698078B (en)
DE (1) DE102015016730A1 (en)
ES (1) ES2813559T3 (en)
MX (1) MX2018007671A (en)
PL (1) PL3393679T3 (en)
WO (1) WO2017108163A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7139085B2 (en) * 2018-06-08 2022-09-20 東芝三菱電機産業システム株式会社 Deposition equipment
CN112122071B (en) * 2020-08-13 2022-07-26 博斯特精工科技(苏州)有限公司 Transmission device for dispensing equipment
CN115709156B (en) * 2022-11-15 2023-06-30 中科伟通智能科技(江西)有限公司 UV curing production line for penetrating type car lamp

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2607249C2 (en) * 1976-02-23 1986-09-18 Nath, Guenther, Dr., 8000 Muenchen Irradiation device for the ultraviolet spectral range
CH660489A5 (en) 1984-08-31 1987-04-30 Bernhard Glaus METHOD AND DEVICE FOR CURING POLYMERIZABLE COATING MEASURES ON NON-TEXTILE SUBSTRATES.
JPH07106316B2 (en) * 1987-07-21 1995-11-15 ウシオ電機株式会社 UV irradiation device
JP3094902B2 (en) * 1996-03-27 2000-10-03 ウシオ電機株式会社 UV irradiation device
DE19651977C2 (en) 1996-12-13 2001-03-01 Michael Bisges UV irradiation device
DE19837501A1 (en) * 1997-08-13 1999-10-07 Olaf Schierenberg Profiled or zoom floodlight for stage, film or studio use
JP2001079388A (en) * 1999-09-17 2001-03-27 Japan Storage Battery Co Ltd Ultraviolet ray irradiation device
JP2005208046A (en) 2003-12-25 2005-08-04 Canon Inc Device and method for measuring cured state of reactive curable resin
DE102004055782A1 (en) * 2004-11-18 2006-06-01 Ansorg Gmbh Luminaire, in particular installation light emitter, for mounting in a recess
US7638780B2 (en) 2005-06-28 2009-12-29 Eastman Kodak Company UV cure equipment with combined light path
WO2008137637A2 (en) * 2007-05-04 2008-11-13 The General Hospital Corporation Methods, arrangements and systems for obtaining information associated with a sample using brillouin microscopy
JP5156338B2 (en) * 2007-06-27 2013-03-06 三洋電機株式会社 LIGHTING DEVICE AND PROJECTION VIDEO DISPLAY DEVICE USING THE SAME
WO2012009353A1 (en) * 2010-07-12 2012-01-19 Nordson Corporation Ultraviolet lamp system and method for controlling emitted ultraviolet light
CN102759801A (en) * 2011-04-25 2012-10-31 旭丽电子(广州)有限公司 Three-dimensional optical element, manufacture method thereof and projector
DE102013011066A1 (en) * 2013-07-03 2015-01-08 Oerlikon Trading Ag, Trübbach Heat-light separation for a UV radiation source
CN107250768A (en) 2014-11-25 2017-10-13 欧瑞康表面解决方案股份公司,普费菲孔 The process monitoring hardened for UV

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
PL3393679T3 (en) 2020-11-16
KR20180105654A (en) 2018-09-28
EP3393679A1 (en) 2018-10-31
JP6934008B2 (en) 2021-09-08
DE102015016730A1 (en) 2017-06-22
MX2018007671A (en) 2018-11-14
US20190001371A1 (en) 2019-01-03
ES2813559T3 (en) 2021-03-24
CN108698078A (en) 2018-10-23
CN108698078B (en) 2021-12-24
WO2017108163A1 (en) 2017-06-29
JP2019503269A (en) 2019-02-07
US11203038B2 (en) 2021-12-21

Similar Documents

Publication Publication Date Title
EP1062467B1 (en) Cold light-uv-radiation device
EP3752765B1 (en) Motor vehicle headlamp with a shielding screen against incoming solar radiation
EP3393679B1 (en) Uv curing device with divided uv reflecting mirrors
WO2017021504A1 (en) Uv irradiation unit for radiation curing
DE212013000076U1 (en) Deflectors for a lighting module
DE19651977A1 (en) UV light radiating apparatus for hardening UV-curable coatings on flat objects, especially information-carrying discs
DE10125770C2 (en) Irradiation device with an elongated radiation source and method for operating the same
DE4202944A1 (en) METHOD AND DEVICE FOR HEATING A MATERIAL
EP2844474B1 (en) Lighting unit with reflector
EP3692947B1 (en) Polymerisation and coating device
EP3678790B1 (en) Irradiation tunnel for containers, and method for irradiating containers
EP1541179A1 (en) Sterilising apparatus
WO2023078600A1 (en) Optical device for disinfecting upper air layers in a room
WO2003021173A1 (en) Uv radiation device
DE102022123220A1 (en) OPTICAL DEVICE FOR THE DISINFECTION OF UPPER AIR LAYERS IN A ROOM
EP1390969B1 (en) Device for heating substrates with side screens and secondary reflectors
DD257200B1 (en) INFRARED HIGH PERFORMANCE RADIATION SOURCE
EP1902246B1 (en) Reflector systems
DE102007029316B4 (en) Apparatus for UV radiation hardening
EP3016751B1 (en) Separation of heat and light for a uv radiation source
DE102019219511B4 (en) EXPOSURE DEVICE WITH A VARIETY OF OPTICAL ELEMENTS AND A MODULAR ELECTROMAGNETIC RADIATION SOURCE INCLUDING A RADIATION SOURCE MODULE WITH A HALF-VALUE ANGLE
WO2015086358A1 (en) Irradiation apparatus for irradiating plants
WO1994025108A1 (en) Uv radiation scattering plane
DE102008061597A1 (en) UV irradiation device
DE19624768A1 (en) Crystal reflector

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180704

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190920

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20200219

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016010084

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1274012

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200615

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200928

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200827

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200828

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200927

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200827

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016010084

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2813559

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210324

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201207

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20221220

Year of fee payment: 7

Ref country code: FR

Payment date: 20221222

Year of fee payment: 7

Ref country code: CZ

Payment date: 20221208

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1274012

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20221207

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230118

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221222

Year of fee payment: 7

Ref country code: DE

Payment date: 20221227

Year of fee payment: 7