EP3673165B1 - Procede de pilotage d'un moteur thermique en fonction de conditions thermodynamiques dans les lignes d'admission et d'echappement - Google Patents

Procede de pilotage d'un moteur thermique en fonction de conditions thermodynamiques dans les lignes d'admission et d'echappement Download PDF

Info

Publication number
EP3673165B1
EP3673165B1 EP18762357.4A EP18762357A EP3673165B1 EP 3673165 B1 EP3673165 B1 EP 3673165B1 EP 18762357 A EP18762357 A EP 18762357A EP 3673165 B1 EP3673165 B1 EP 3673165B1
Authority
EP
European Patent Office
Prior art keywords
heat engine
intake
torque
exhaust
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18762357.4A
Other languages
German (de)
English (en)
Other versions
EP3673165A1 (fr
Inventor
Maxime Karrer
Damien BERNOU
Sylvain GUERILLON
Pierre-Emmanuel GUILLAUME
Ivan EHRLICH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stellantis Auto SAS
Original Assignee
PSA Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PSA Automobiles SA filed Critical PSA Automobiles SA
Publication of EP3673165A1 publication Critical patent/EP3673165A1/fr
Application granted granted Critical
Publication of EP3673165B1 publication Critical patent/EP3673165B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/045Detection of accelerating or decelerating state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • F02D41/345Controlling injection timing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a method for controlling a heat engine as a function of thermodynamic conditions in the intake and exhaust lines.
  • the invention finds a particularly advantageous application for atmospheric gasoline engines with indirect injection. Such an engine is for example described in the document WO 2005/056995 A1 .
  • atmospheric gasoline engines can be subjected in a certain area of the engine field to "scavenging" phenomena linked to the acoustics of the engine and to the thermodynamic conditions (temperature, pressure) in the intake 1 and exhaust lines 2.
  • the "sweeping" phenomenon is a phenomenon which occurs during a so-called valve crossing phase in which the intake 3 and exhaust 4 valves are open simultaneously (cf. zone Z_crois on the picture 2 between the intake valve S_adm and the exhaust valve S_ech) and that an instantaneous pressure at the exhaust at the time of crossing is lower than that of the intake, as shown in the picture 2 .
  • the air-fuel mixture 5 contained in the intake duct is swept along the arrow F directly towards the exhaust and is not burned in the combustion chamber 6.
  • the strategies are not adaptive with respect to the different cases of engine life but calibrated in stabilized operating conditions.
  • Filling calibration is carried out on an engine bench with stabilized thermodynamic conditions (pressure, temperature) in the intake 1 and exhaust 2 lines.
  • Estimation by the filling model of the quantity of air and fuel enclosed in the combustion chamber 6 and the quantity of air and fuel swept away are therefore precisely calibrated for these pressure conditions (intake and exhaust) at the time of the crossing of valves 3, 4.
  • the richness of the mixture admitted into the combustion chamber 6 is therefore controlled at the stoichiometry (richness 1), which makes it possible to control the efficiency of the combustion (performance, engine approval) and to ensure depollution at the level of the catalysis.
  • thermodynamic conditions pressure, temperature
  • the precision of the filling model is less and no longer makes it possible to guarantee the correct operation of the engine at stoichiometry with "sweeping".
  • the estimate of the quantity of air admitted into the cylinder is less precise, and part of the injected fuel is swept directly to the exhaust, leading to the risks associated with lean combustion, namely a drop in engine performance, a risk jerking of the engine with a feeling for the driver in terms of pleasure, and a risk of increased emissions of nitrogen oxides.
  • the chosen strategy is defined once and for all on each operating point and in stabilized operating phases in the usual "scanning" zone (low speed, high load). As soon as the driver achieves an acceleration passing through these operating points, this strategy is applied. This is the result of a compromise under stabilized conditions at each operating point and is not necessarily optimal in all the operating conditions of the heat engine.
  • the invention thus makes it possible, by authorizing or not the crossing between the intake valves and the exhaust valves according to the mode of operation of the thermal engine, to control the engine parameters of air and fuel supply in order to guarantee the best compromise between engine performance, pollutant emissions and driving pleasure.
  • the invention makes it possible to optimize the low-speed torque of the engine under dynamic conditions, while reducing pollutant emissions and without having any adverse effect on the cost or the durability of the components.
  • a delay step is configured to obtain stabilization of the thermodynamic conditions of the heat engine.
  • the time delay is between 2 seconds and 10 seconds, and is preferably 5 seconds.
  • the method in the dynamic mode, includes a step of modifying an injection phasing so as to limit a quantity of fuel injected during the valve crossing phase.
  • a fuel injection step is carried out during an exhaust phase with an end of injection calibrated at a value between 400 degrees and 500 crankshaft degrees, preferably of the order of 450 crankshaft degrees before combustion engine top dead center.
  • a condition of depression of the accelerator is fulfilled when the depression of the accelerator exceeds a predefined percentage of depression of the accelerator which depends on the heat engine and on a pedal map of the heat engine .
  • the percentage of depression of the predefined accelerator is between 70% and 90% of a maximum depression of the accelerator.
  • the torque condition is fulfilled when the torque of the thermal engine enters a zone comprised between a torque from which a scavenging phenomenon is likely to appear and a maximum torque of the thermal engine.
  • the torque condition is fulfilled when a difference between the maximum torque of the heat engine and the torque of the engine is less than or equal to a calibrated difference between a maximum torque of the heat engine and a torque from which is likely to appear a sweeping phenomenon between 20 N.m to 40 N.m.
  • the invention also relates to an engine computer comprising a memory storing software instructions for implementing the method for controlling a heat engine as defined above.
  • FIG. 3 shows a partial schematic sectional view of a heat engine 10 comprising a plurality of cylinders 11, for example three or four in number.
  • This heat engine 10 is an indirect injection gasoline engine.
  • Each cylinder 11 comprises a piston 12, a combustion chamber 13, a fuel injector 14 positioned in the intake duct and upstream of the intake valves, a spark plug 17 associated with a system 18 for adjusting ignition advance angle, at least one intake valve 19, at least one exhaust valve 20.
  • the combustion chamber 13 is thus defined in the cylinder 11 between the underside of a cylinder head 21 and the top face of piston 12.
  • the spark plug 17 connected to the cylinder head 21 is equipped with electrodes which produce a spark in the combustion chamber 13 when the piston 12 is close to its top dead center.
  • the intake 19 and exhaust 20 valves are movably mounted in the cylinder head 21 and are arranged on either side of a median axial plane P of the cylinder 11 so as to define an intake side and an exhaust side.
  • the intake valves 19 are moved by a first camshaft 171 so as to place the combustion chamber 13, at a chosen instant preceding compression, in communication with an intake duct 22 connected to an intake manifold 23
  • the exhaust valves 20 are moved by a second camshaft 172 so as to place the combustion chamber 13 at a chosen time after combustion, in communication with an exhaust duct 25.
  • each camshaft 171, 172 with respect to the crankshaft of engine 10 can be modified respectively by means of a first so-called intake phase shifter 211 and a second so-called exhaust phase shifter 212.
  • Each phase shifter 211, 212 can be controlled hydraulically or electrically. The phase shifters 211, 212 thus make it possible, depending on the operating conditions, to advance or delay the opening and/or the closing of the intake 19 and exhaust 20 valves with respect to a reference operating mode.
  • heat engine 10 comprises a three-way catalyst downstream of combustion chamber 13.
  • This catalyst may be composed of one or more catalytic bars with various geometries and characteristics.
  • a means for determining the temperature at the outlet of the engine and/or at the inlet of the catalyst can take the form of a sensor and/or of a model.
  • a lambda probe (linear or two points) upstream of the catalyst is used to determine the richness of the gases.
  • An engine computer 33 ensures the control of the various elements of the architecture of the engine 10 as a function in particular of data coming from various sensors implanted in the system.
  • This computer 33 comprises for this purpose a memory 331 storing software instructions for the implementation of the method for controlling the heat engine according to the invention.
  • the engine 10 can be subjected in a certain zone of the engine field to scavenging phenomena linked to the acoustics of the engine 10 and to the thermodynamic conditions (temperature, pressure) in the intake 22 and exhaust 25 lines.
  • scavenging is a phenomenon that occurs when combining a crossover zone of intake 19 and exhaust 20 valves opened simultaneously and that an instantaneous pressure at the exhaust at the time of crossing is lower than that of the admission.
  • the air-fuel mixture contained in the intake duct 22 is swept directly towards the exhaust 25 and is not burned in the combustion chamber 13.
  • the scavenging phenomenon therefore depends on the pressure at the exhaust which depends on the temperature at the exhaust. Consequently, the sweeping phenomenon has a different behavior in a phase of stabilized operation of the heat engine 10, which is the life case calibrated on an engine bench, and in a phase of transient operation of the engine 10.
  • the tests show that, in a stabilized operating phase, the best setting favoring performance and pollutant emissions corresponds to the activating a scanning strategy.
  • curve C3 of the figure 4b showing the evolution of engine torque C as a function of time t) associated with jerks and a peak in hydrocarbon emissions
  • curve C5 of the figure 4c showing the evolution of HC hydrocarbon emissions as a function of time t
  • the method according to the invention consists, by adapting the control of the intake 211 and/or exhaust 212 phase shifter, in prohibiting the sweeping phenomenon in a nominal operating mode M_nom.
  • the nominal mode M_nom corresponds to an operating mode of the engine 10 according to which the engine torque is lower than the maximum torque and no strong stress on the engine 10 is requested by the driver, so that the crossing of valves 19, 20 is prohibited. or limited by imposing a crossing surface below a threshold.
  • the method provides a dynamic mode M_dyn authorizing, by controlling the intake phase shifter 211 and/or the exhaust phase shifter 212, the scavenging phenomenon when the thermodynamic conditions of the engine 10 allow it and when the will of the driver is to take advantage of the maximum performance of the heat engine 10.
  • the dynamic mode M_dyn can also make it possible to modify the phasing of the injection so as to limit the quantity of fuel injected during the crossing phase of the valves 19, 20 and which is therefore swept directly at the exhaust.
  • the fuel injection step Inj is carried out during an exhaust phase Ph_ech with an end of injection calibrated at a value between 400 degrees and 500 crankshaft degrees, preferably of the order of 450 crankshaft degrees before a combustion top dead center PMHc of the heat engine 10.
  • the intake phase is referenced Ph_adm.
  • the intake bottom dead center PMBa is located at 0 crankshaft degrees
  • the expansion bottom dead center PMBd is located at 360 crankshaft degrees
  • the exhaust top dead center PMHe is located at 540 crankshaft degrees.
  • the ignition advance is referenced AA.
  • the conditions for activating the M_dyn dynamic mode are linked to a depression condition of the accelerator and to a torque condition of the heat engine 10.
  • the condition of depression of the accelerator Cond_Eacc translates the notion of "strong stress" on the part of the driver.
  • the condition of depression of the accelerator Cond_Eacc is fulfilled when the depression of the accelerator exceeds a predefined percentage of depression of the accelerator which depends on the heat engine 10 and on a pedal map of the heat engine 10. This criterion enables the strategy to be activated only when there is a risk of rapidly transiting from a lightly charged point or the exhaust temperatures are low to a heavily charged point.
  • the predefined percentage of depression of the accelerator is comprised for example between 70% and 90% of the maximum depression of the accelerator.
  • the Cond_coup torque condition makes it possible to authorize the crossing of valves 19, 20 in the zone of the motor field in which the sweeping phenomenon is liable to appear.
  • the Cond_coup torque condition is fulfilled when a difference between the maximum torque Cmax of the heat engine 10 and the engine torque is less than or equal to a calibrated difference Ecal between a maximum torque Cmax of the engine 10 and a torque Cbal from which is likely to appear a sweeping phenomenon comprised in particular between 20 Nm to 40 Nm
  • a time delay Temp translates the concept of stabilization of the thermodynamic conditions making it possible to properly control the operation of the motor 10 under scanning. Tests are carried out to determine this time threshold which makes it possible to achieve thermodynamic conditions in the intake 19 and exhaust 20 lines sufficiently close to the conditions noted during the calibration on the engine bench to guarantee the correct management of the air and fuel filling.
  • the time delay Temp is between 2 seconds and 10 seconds, and is preferably 5 seconds.
  • THE figures 9a and 9b illustrate an example of implementation of the method according to the invention on a transient operating phase of load regime making it possible to reach the operating point cited above as an example, namely 2750 rotations per minute. It can be seen that by applying a Temp delay of 5 seconds before authorizing sweeping, good control of the richness is obtained (cf. curve C7 of the figure 9a showing the evolution of the richness R as a function of time t) and therefore an absence of torque dips (cf. curve C8 of the figure 9b showing the evolution of the torque C of the motor as a function of time t).
  • the method according to the invention thus makes it possible to obtain the best possible compromise between performance and polluting emissions, both in the transient operating phase and in the stabilized operating phase of the heat engine 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

  • La présente invention porte sur un procédé de pilotage d'un moteur thermique en fonction de conditions thermodynamiques dans les lignes d'admission et d'échappement. L'invention trouve une application particulièrement avantageuse pour les moteurs atmosphériques à essence à injection indirecte. Un tel moteur est par exemple décrit dans le document WO 2005/056995 A1 .
  • Comme cela est représenté sur la figure 1, les moteurs atmosphériques à essence peuvent être soumis dans une certaine zone du champ moteur à des phénomènes de "balayage" liés à l'acoustique du moteur et aux conditions thermodynamiques (température, pression) dans les lignes d'admission 1 et d'échappement 2. Le phénomène de "balayage" est un phénomène qui intervient lors d'une phase dite de croisement de soupapes dans laquelle les soupapes d'admission 3 et d'échappement 4 sont ouvertes simultanément (cf. zone Z_crois sur la figure 2 entre la soupape d'admission S_adm et la soupape d"échappement S_ech) et qu'une pression instantanée à l'échappement au moment du croisement est inférieure à celle de l'admission, tel que cela est représenté sur la figure 2. Dans ce cas de figure, le mélange air-carburant 5 contenu dans le conduit d'admission est balayé suivant la flèche F directement vers l'échappement et n'est pas brûlé dans la chambre de combustion 6.
  • Le phénomène de "balayage" dépend donc de la pression à l'échappement qui dépend de la température à l'échappement. Par conséquent, le phénomène de "balayage" engendre un comportement différent du moteur thermique lors de phases de fonctionnement stabilisé et lors de phases de fonctionnement transitoire du moteur thermique.
  • Actuellement, les stratégies ne sont pas adaptatives par rapport aux différents cas de vie du moteur mais calibrées en condition de fonctionnement stabilisé. La calibration du remplissage est réalisée sur banc moteur avec des conditions thermodynamiques (pression, température) stabilisées dans les lignes d'admission 1 et d'échappement 2. L'estimation par le modèle de remplissage de la quantité d'air et de carburant enfermée dans la chambre de combustion 6 et de la quantité d'air et de carburant balayée sont donc calibrées de façon précise pour ces conditions de pression (admission et échappement) au moment du croisement de soupapes 3, 4. La richesse du mélange admis dans la chambre de combustion 6 est donc maîtrisée à la stoechiométrie (richesse 1), ce qui permet de maîtriser le rendement de la combustion (performance, agrément moteur) et d'assurer la dépollution au niveau de la catalyse. Dans ces conditions, le balayage observable lors du croisement des soupapes 3, 4 est bénéfique pour le brio du moteur, dans la mesure où il permet de maximiser le remplissage en air du cylindre et donc d'atteindre les performances maximales du moteur tout en maîtrisant la dépollution.
  • Cependant, lorsque les conditions thermodynamiques (pression, température) dans les lignes d'admission 1 et d'échappement 2 sont différentes de celles vues lors de la calibration du remplissage sur banc moteur pour un même point de fonctionnement, la précision du modèle de remplissage est moindre et ne permet plus de garantir le bon fonctionnement du moteur à la stoechiométrie avec du "balayage". L'estimation de la quantité d'air admise dans le cylindre est moins précise, et une partie du carburant injecté est directement balayée à l'échappement entraînant les risques associés à une combustion pauvre, à savoir une baisse de performance du moteur, un risque d'à-coup du moteur avec un ressenti pour le conducteur en termes d'agrément, et un risque d'augmentation des émissions d'oxydes d'azote.
  • Généralement, soit aucune stratégie de "balayage" n'est utilisée ce qui diminue le couple disponible lors de phases de fonctionnement stabilisé et donc la performance du moteur; soit une stratégie de "balayage" est utilisée, mais il existe un risque de non maîtrise de la richesse en phases de fonctionnement transitoire entraînant les problématiques précitées.
  • La stratégie choisie est définie une fois pour toute sur chaque point de fonctionnement et en phases de fonctionnement stabilisé dans la zone usuelle de "balayage" (faible régime, forte charge). Dès que le conducteur réalise une accélération passant par ces points de fonctionnement, cette stratégie est appliquée. Celle-ci est issue d'un compromis en conditions stabilisées sur chaque point de fonctionnement et n'est pas forcément optimale dans toutes les conditions de fonctionnement du moteur thermique.
  • L'invention vise à remédier efficacement à cet inconvénient en proposant un procédé de pilotage d'un moteur thermique comportant des soupapes d'admission aptes à être déplacées par un premier arbre à cames, des soupapes d'échappement aptes à être déplacées par un deuxième arbre à cames, un premier déphaseur, dit d'admission, et un deuxième déphaseur, dit d'échappement, pour pouvoir modifier une position relative respective du premier arbre à cames et du deuxième arbre à cames par rapport à un vilebrequin du moteur thermique, caractérisé en ce que le procédé comporte:
    • une étape de fonctionnement du moteur thermique dans un mode nominal suivant lequel est interdit ou limité un croisement entre les soupapes d'admission et les soupapes d'échappement, via une commande du déphaseur d'admission et/ou du déphaseur d'échappement,
    • une étape de détection de conditions d'activation d'un mode dynamique liées à un degré d'enfoncement d'un accélérateur et à une condition de couple du moteur thermique,
    • et lorsque des conditions thermodynamiques du moteur thermique sont stabilisées, lesdites conditions thermodynamiques du moteur thermique correspondant à la température et à la pression dans les lignes d'admission et d'échappement, le procédé comporte une étape d'activation du mode dynamique suivant lequel est autorisé un croisement entre les soupapes d'admission et les soupapes d'échappement via une commande du déphaseur d'admission et/ou du déphaseur d'échappement
  • L'invention permet ainsi, en autorisant ou non le croisement entre les soupapes d'admission et les soupapes d'échappement suivant le mode de fonctionnement du moteur thermique, de contrôler les paramètres moteur d'alimentation en air et en carburant afin de garantir le meilleur compromis entre la performance du moteur, les émissions de polluants, et l'agrément de conduite. En outre, l'invention permet d'optimiser le couple à bas régime du moteur en conditions dynamiques, tout en réduisant les émissions de polluants et sans avoir de conséquence néfaste sur le coût ni la durabilité des composants.
  • Selon une mise en oeuvre, une étape de temporisation est configurée pour obtenir une stabilisation de conditions thermodynamiques du moteur thermique.
  • Selon une mise en oeuvre, la temporisation est comprise entre 2 secondes et 10 secondes, et vaut de préférence 5 secondes.
  • Selon une mise en oeuvre, dans le mode dynamique, le procédé comporte une étape de modification d'un phasage de l'injection de manière à limiter une quantité de carburant injectée lors de la phase de croisement de soupapes.
  • Selon une mise en oeuvre, une étape d'injection de carburant est effectuée pendant une phase d'échappement avec une fin d'injection calibrée à une valeur comprise entre 400 degrés et 500 degrés vilebrequin, de préférence de l'ordre de 450 degrés vilebrequin avant un point mort haut de combustion du moteur thermique.
  • Selon une mise en oeuvre, une condition d'enfoncement de l'accélérateur est remplie lorsque l'enfoncement de l'accélérateur dépasse un pourcentage prédéfini d'enfoncement de l'accélérateur qui dépend du moteur thermique et d'une cartographie pédale du moteur thermique.
  • Selon une mise en oeuvre, le pourcentage d'enfoncement de l'accélérateur prédéfini est compris entre 70% et 90% d'un enfoncement maximal de l'accélérateur.
  • Selon l'invention, la condition de couple est remplie lorsque le couple du moteur thermique entre dans une zone comprise entre un couple à partir duquel est susceptible d'apparaître un phénomène de balayage et un couple maximal du moteur thermique.
  • Selon l'invention, la condition de couple est remplie lorsqu'un écart entre le couple maximal du moteur thermique et le couple du moteur est inférieur ou égal à un écart calibré entre un couple maximal du moteur thermique et un couple à partir duquel est susceptible d'apparaître un phénomène de balayage compris entre 20 N.m à 40 N.m.
  • L'invention a également pour objet un calculateur moteur comportant une mémoire stockant des instructions logicielles pour la mise en oeuvre du procédé de pilotage d'un moteur thermique tel que précédemment défini.
  • L'invention sera mieux comprise à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent. Ces figures ne sont données qu'à titre illustratif mais nullement limitatif de l'invention.
    • La figure 1, déjà décrite, est une représentation schématique partielle d'un moteur thermique illustrant le phénomène de balayage observable lors d'un croisement de soupapes pour une pression à l'échappement inférieure à une pression à l'admission;
    • La figure 2, déjà décrite, est une représentation graphique des levées de soupapes en fonction d'un angle de vilebrequin montrant une zone de croisement de soupapes;
    • La figure 3 est une représentation schématique partielle d'un moteur thermique apte à mettre en oeuvre le procédé selon l'invention;
    • Les figures 4a à 4c sont des représentations graphiques illustrant respectivement une évolution temporelle de la richesse de combustion dans le moteur thermique, du couple moteur, et de l'émission d'hydrocarbures lors d'une coupure d'injection respectivement avec limitation ou non du phénomène de balayage à une valeur de régime de 2750 tours par minute;
    • Les figures 5 et 6 sont des représentations schématiques des étapes du procédé de pilotage d'un moteur thermique en fonction de conditions thermodynamiques dans les lignes d'admission et d'échappement;
    • La figure 7 est un schéma illustrant le référentiel de phasage de l'injection du moteur thermique;
    • La figure 8 est une représentation graphique d'un écart calibré de couple par rapport à un couple maximal du moteur thermique utilisé dans la définition de la condition de couple à remplir pour activer le mode dynamique de fonctionnement du moteur thermique;
    • Les figures 9a et 9b sont des représentations graphiques illustrant respectivement une évolution temporelle de la richesse de combustion dans le moteur thermique et du couple moteur lors d'une mise en oeuvre du procédé selon la présente invention.
  • La figure 3 montre une vue en coupe schématique partielle d'un moteur thermique 10 comportant une pluralité de cylindres 11 par exemple au nombre de trois ou quatre. Ce moteur thermique 10 est un moteur à essence à injection indirecte.
  • Chaque cylindre 11 comporte un piston 12, une chambre de combustion 13, un injecteur de carburant 14 positionné dans le conduit d'admission et en amont des soupapes d'admission, une bougie d'allumage 17 associée à un système 18 de réglage d'angle d'avance à l'allumage, au moins une soupape d'admission 19, au moins une soupape d'échappement 20. La chambre de combustion 13 est ainsi définie dans le cylindre 11 entre la face inférieure d'une culasse 21 et la face supérieure du piston 12.
  • La bougie d'allumage 17 liée à la culasse 21 est dotée d'électrodes qui produisent une étincelle dans la chambre de combustion 13 lorsque le piston 12 est au voisinage de son point mort haut. Les soupapes d'admission 19 et d'échappement 20 sont montées mobiles dans la culasse 21 et sont disposées de part et d'autre d'un plan axial médian P du cylindre 11 de manière à définir un côté admission et un côté échappement.
  • Les soupapes d'admission 19 sont déplacées par un premier arbre à cames 171 de manière à mettre la chambre de combustion 13, à un instant choisi précédant la compression, en communication avec un conduit d'admission 22 relié à un répartiteur d'admission 23. Une vanne 24, sous forme d'un papillon, assure la gestion du débit d'air issu du répartiteur 23 introduit dans le cylindre 11.
  • De façon analogue, les soupapes d'échappement 20 sont déplacées par un deuxième arbre à cames 172 de manière à mettre la chambre de combustion 13 à un instant choisi postérieur à la combustion, en communication avec un conduit d'échappement 25.
  • La position relative de chaque arbre à cames 171, 172 par rapport au vilebrequin du moteur 10 (non représenté) peut être modifiée respectivement au moyen d'un premier déphaseur 211 dit d'admission et d'un deuxième déphaseur 212 dit d'échappement. Chaque déphaseur 211, 212 pourra être commandé hydrauliquement ou électriquement. Les déphaseurs 211, 212 permettent ainsi, suivant les conditions de fonctionnement, d'avancer ou de retarder l'ouverture et/ou la fermeture des soupapes d'admission 19 et d'échappement 20 par rapport à un mode de fonctionnement de référence.
  • En outre, le moteur thermique 10 comporte un catalyseur trois voies en aval de la chambre de combustion 13. Ce catalyseur peut être composé d'un ou de plusieurs pains catalytiques avec des géométries et caractéristiques diverses. Un moyen de détermination de la température en sortie du moteur et/ou en entrée du catalyseur peut prendre la forme d'un capteur et/ou d'un modèle. Une sonde lambda (linéaire ou deux points) en amont du catalyseur permet de déterminer la richesse des gaz.
  • Un calculateur moteur 33 assure la commande des différents éléments de l'architecture du moteur 10 en fonction notamment de données issues de différents capteurs implantés dans le système. Ce calculateur 33 comporte à cet effet une mémoire 331 stockant des instructions logicielles pour la mise en oeuvre du procédé de pilotage du moteur thermique selon l'invention.
  • Le moteur 10 peut être soumis dans une certaine zone du champ moteur à des phénomènes de balayage liés à l'acoustique du moteur 10 et aux conditions thermodynamiques (température, pression) dans les lignes d'admission 22 et d'échappement 25. Le phénomène de balayage est un phénomène qui intervient lorsqu'on combine une zone de croisement de soupapes d'admission 19 et d'échappement 20 ouvertes simultanément et qu'une pression instantanée à l'échappement au moment du croisement est inférieure à celle de l'admission. Dans ce cas de figure, le mélange air-carburant contenu dans le conduit d'admission 22 est balayé directement vers l'échappement 25 et n'est pas brûlé dans la chambre de combustion 13.
  • Le phénomène de balayage dépend donc de la pression à l'échappement qui dépend de la température à l'échappement. Par conséquent le phénomène de balayage a un comportement différent dans une phase de fonctionnement stabilisé du moteur thermique 10, qui est le cas de vie calibré sur banc moteur, et dans une phase de fonctionnement transitoire du moteur 10.
  • Dans le cas par exemple d'un point de fonctionnement du moteur thermique à 2750 tours par minute en pleine charge, les essais montrent que, dans une phase de fonctionnement stabilisé, le meilleur réglage favorisant la performance et les émissions de polluants correspond à l'activation d'une stratégie de balayage.
  • Dans le cas réel d'un conducteur qui réalise un long lâché de pied suivi d'une accélération, lors de la coupure d'injection associée au lâché de pied, une forte quantité d'air frais est envoyée dans la ligne d'échappement 25, ce qui génère un refroidissement de cette ligne 25. Si le conducteur accélère ensuite pour rejoindre la zone de fonctionnement concernée par le balayage, la pression dans la ligne d'échappement 25 pourra être plus faible que celle vue lors de la calibration sur banc moteur, du fait d'une température plus faible entraînant un balayage plus fort que celui calibré pour une même surface de croisement de soupape 19, 20. On observe alors une combustion pauvre (cf. courbe C1 de la figure 4a montrant l'évolution de la richesse R en fonction du temps t), entraînant une baisse de couple (cf. courbe C3 de la figure 4b montrant l'évolution du couple C du moteur en fonction du temps t) associé à des à-coups et un pic d'émissions d'hydrocarbures (cf. courbe C5 de la figure 4c montrant l'évolution des émissions d'hydrocarbures HC en fonction du temps t).
  • En limitant ou en interdisant, lors de la phase de fonctionnement transitoire du moteur 10, la surface de croissement de soupapes 19, 20, cela permet d'éviter les effets négatifs du balayage en maîtrisant la richesse dans la chambre de combustion 13 (cf. courbe C2 de la figure 4a), en évitant le creux de couple (cf. courbe C4 de la figure 4b), ainsi qu'en évitant le pic d'hydrocarbures (cf. courbe C6 de la figure 4c). Toutefois, les courbes C3 et C4 de la figure 4b mettent en évidence que lorsque les conditions thermodynamiques se stabilisent dans le temps, la performance du moteur 10 atteinte sans croisement de soupapes 19, 20 est inférieure à celle obtenue avec du croisement de soupapes 19, 20.
  • Comme cela est représenté sur le tableau ci-dessous, les mesures de couples réalisées démontrent que le meilleur comportement dynamique est obtenu en limitant ou en interdisant le croisement de soupapes 19, 20 sur les phases de fonctionnement transitoires du moteur dans la zone de balayage, et en autorisant le croisement de soupapes 19, 20 entraînant du balayage lorsque les conditions thermodynamiques sont stabilisées.
    2750 tours/minute Couple en stabilisé (conditions thermodynamiques stabilisées) Couple à 10s après réinjection
    Sans limitation du phénomène de "balayage" 113Nm 106Nm
    Avec limitation du phénomène de "balayage" 106Nm 108Nm
  • Plus précisément, comme cela est représenté sur la figure 5, le procédé selon l'invention consiste, en adaptant la commande du déphaseur d'admission 211 et/ou d'échappement 212, à interdire le phénomène de balayage dans un mode de fonctionnement nominal M_nom. Le mode nominal M_nom correspond à un mode de fonctionnement du moteur 10 suivant lequel le couple moteur est inférieur au couple maximum et aucune forte sollicitation du moteur 10 n'est demandée par le conducteur, en sorte que le croisement de soupapes 19, 20 est interdit ou limité en imposant une surface de croisement inférieure à un seuil.
  • En outre, le procédé prévoit un mode dynamique M_dyn autorisant, par commande du déphaseur d'admission 211 et/ou du déphaseur d'échappement 212, le phénomène de balayage lorsque les conditions thermodynamiques du moteur 10 le permettent et lorsque la volonté du conducteur est de tirer profit des performances maximales du moteur thermique 10.
  • Le mode dynamique M_dyn peut également permettre de modifier le phasage de l'injection de manière à limiter la quantité de carburant injectée lors de la phase de croisement de soupapes 19, 20 et qui est donc directement balayée à l'échappement.
  • Selon un exemple de mise en oeuvre représenté sur la figure 7, l'étape d'injection de carburant Inj est effectuée pendant une phase d'échappement Ph_ech avec une fin d'injection calibrée à une valeur comprise entre 400 degrés et 500 degrés vilebrequin, de préférence de l'ordre de 450 degrés vilebrequin avant un point mort haut de combustion PMHc du moteur thermique 10. On note également que sur cette figure, la phase d'admission est référencée Ph_adm. Par ailleurs, le point mort bas d'amission PMBa se situe à 0 degré vilebrequin, le point mort bas de détente PMBd se situe à 360 degrés vilebrequin, et le point mort haut d'échappement PMHe se situe à 540 degrés vilebrequin. L'avance à l'allumage est référencée AA.
  • Les conditions d'activation du mode dynamique M_dyn, détaillées sur la figure 6, sont liées à une condition d'enfoncement de l'accélérateur et à une condition de couple du moteur thermique 10.
  • La condition d'enfoncement de l'accélérateur Cond_Eacc traduit la notion de "forte sollicitation" de la part du conducteur. La condition d'enfoncement de l'accélérateur Cond_Eacc est remplie lorsque l'enfoncement de l'accélérateur dépasse un pourcentage prédéfini d'enfoncement de l'accélérateur qui dépend du moteur thermique 10 et d'une cartographie pédale du moteur thermique 10. Ce critère permet d'activer la stratégie uniquement quand il y a un risque de transiter rapidement d'un point peu chargé ou les températures à l'échappement sont faibles vers un point fortement chargé. Le pourcentage d'enfoncement de l'accélérateur prédéfini est compris par exemple entre 70% et 90% de l'enfoncement maximal de l'accélérateur.
  • La condition de couple Cond_coup permet d'autoriser le croisement de soupapes 19, 20 dans la zone du champ moteur dans laquelle est susceptible d'apparaitre le phénomène de balayage. Comme cela est représenté sur la figure 8, la condition de couple Cond_coup est remplie lorsqu'un écart entre le couple maximal Cmax du moteur thermique 10 et le couple du moteur est inférieur ou égal à un écart calibré Ecal entre un couple maximal Cmax du moteur 10 et un couple Cbal à partir duquel est susceptible d'apparaître un phénomène de balayage compris notamment entre 20 N.m à 40 N.m.
  • En outre, une temporisation Temp traduit la notion de stabilisation des conditions thermodynamiques permettant de bien maîtriser le fonctionnement du moteur 10 sous balayage. Des essais sont réalisés pour déterminer ce seuil temporel qui permet d'atteindre des conditions thermodynamiques dans les lignes admission 19 et échappement 20 suffisamment proches des conditions relevées lors de la calibration sur banc moteur pour garantir la bonne gestion du remplissage en air et en carburant. Suivant une mise en oeuvre particulière du procédé, la temporisation Temp est comprise entre 2 secondes et 10 secondes, et vaut de préférence 5 secondes.
  • Les figures 9a et 9b illustrent un exemple de mise en oeuvre du procédé selon l'invention sur une phase de fonctionnement transitoire de régime charge permettant d'atteindre le point de fonctionnement précédemment cité en exemple, à savoir 2750 tours par minute. On constate qu'en appliquant une temporisation Temp de 5 secondes avant d'autoriser le balayage, on obtient une bonne maîtrise de la richesse (cf. courbe C7 de la figure 9a montrant l'évolution de la richesse R en fonction du temps t) et donc une absence de creux de couple (cf. courbe C8 de la figure 9b montrant l'évolution du couple C du moteur en fonction du temps t). Le procédé selon l'invention permet ainsi d'obtenir le meilleur compromis possible entre performance et émissions polluantes, aussi bien en phase de fonctionnement transitoire qu'en phase de fonctionnement stabilisé du moteur thermique 10.

Claims (8)

  1. Procédé de pilotage d'un moteur thermique (10) comportant des soupapes d'admission (19) aptes à être déplacées par un premier arbre à cames (171), des soupapes d'échappement (20) aptes à être déplacées par un deuxième arbre à cames (172), un premier déphaseur (211), dit d'admission, et un deuxième déphaseur (212), dit d'échappement, pour pouvoir modifier une position relative respective du premier arbre à cames (171) et du deuxième arbre à cames (172) par rapport à un vilebrequin du moteur thermique (10), ledit procédé comportant:
    - une étape de fonctionnement du moteur thermique (10) dans un mode nominal (M_nom) suivant lequel est interdit ou limité un croisement entre les soupapes d'admission (19) et les soupapes d'échappement (20), via une commande du déphaseur d'admission (211) et/ou du déphaseur d'échappement (212),
    - une étape de détection de conditions d'activation d'un mode dynamique (M_dyn) liées à un degré d'enfoncement d'un accélérateur et à une condition de couple (Cond_coup) du moteur thermique (10),
    - et lorsque des conditions thermodynamiques du moteur thermique (10) sont stabilisées, lesdites conditions thermodynamiques du moteur thermique (10) correspondant à la température et à la pression dans les lignes d'admission et d'échappement, ledit procédé comporte une étape d'activation dudit mode dynamique (M_dyn) suivant lequel est autorisé un croisement entre les soupapes d'admission (19) et les soupapes d'échappement (20) via une commande du déphaseur d'admission (211) et/ou du déphaseur d'échappement (212), le procédé étant tel que la condition de couple (Cond_coup) est remplie lorsque le couple du moteur thermique (10) entre dans une zone comprise entre un couple à partir duquel est susceptible d'apparaître un phénomène de balayage et un couple maximal (Cmax) du moteur thermique (10), la condition de couple (Cond_coup) étant remplie lorsqu'un écart entre le couple maximal (Cmax) du moteur thermique (10) et le couple du moteur est inférieur ou égal à un écart calibré (Ecal) entre un couple maximal (Cmax) du moteur thermique (10) et un couple à partir duquel est susceptible d'apparaître un phénomène de balayage compris entre 20 N.m à 40 N.m.
  2. Procédé selon la revendication 1, caractérisé en ce que la condition d'enfoncement de l'accélérateur est remplie lorsque l'enfoncement de l'accélérateur dépasse un pourcentage prédéfini d'enfoncement de l'accélérateur qui dépend du moteur thermique (10) et d'une cartographie pédale dudit moteur thermique (10).
  3. Procédé selon la revendication 2, caractérisé en ce que le pourcentage d'enfoncement de l'accélérateur prédéfini est compris entre 70% et 90% d'un enfoncement maximal de l'accélérateur.
  4. Procédé selon l'une quelconque des revendications 2 ou 3, caractérisé en ce qu'une étape de temporisation (Temp) est configurée pour obtenir une stabilisation des conditions thermodynamiques du moteur thermique (10), ladite étape de temporisation (Temp) faisant suite à l'étape où est remplie la condition d'enfoncement de l'accélérateur.
  5. Procédé selon la revendication 4, caractérisé en ce que la temporisation (Temp) est comprise entre 2 secondes et 10 secondes, et vaut de préférence 5 secondes.
  6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que, dans le mode dynamique (M _dyn), le procédé comporte une étape de modification d'un phasage de l'injection de manière à limiter une quantité de carburant injectée lors de la phase de croisement de soupapes (19, 20).
  7. Procédé selon la revendication 6, caractérisé en ce qu'une étape d'injection (Inj) de carburant est effectuée pendant une phase d'échappement (Ph_ech) avec une fin d'injection (Inj) calibrée à une valeur comprise entre 400 degrés et 500 degrés vilebrequin, de préférence de l'ordre de 450 degrés vilebrequin avant un point mort haut de combustion (PMHc) du moteur thermique (10), le point mort bas d'admission (PMBa) se situant à 0 degré vilebrequin.
  8. Calculateur moteur (33) comportant une mémoire (331) stockant des instructions logicielles pour la mise en oeuvre du procédé de pilotage d'un moteur thermique (10) tel que défini selon l'une quelconque des revendications précédentes, ledit moteur thermique (10) comportant des soupapes d'admission (19) aptes à être déplacées par un premier arbre à cames (171), des soupapes d'échappement (20) aptes à être déplacées par un deuxième arbre à cames (172), un premier déphaseur (211 ), dit d'admission, et un deuxième déphaseur (212), dit d'échappement, pour pouvoir modifier une position relative respective du premier arbre à cames (171) et du deuxième arbre à cames (172) par rapport à un vilebrequin du moteur thermique (10).
EP18762357.4A 2017-08-22 2018-07-19 Procede de pilotage d'un moteur thermique en fonction de conditions thermodynamiques dans les lignes d'admission et d'echappement Active EP3673165B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1757789A FR3070435B1 (fr) 2017-08-22 2017-08-22 Procede de pilotage d'un moteur thermique en fonction de conditions thermodynamiques dans les lignes d'admission et d'echappement
PCT/FR2018/051843 WO2019038490A1 (fr) 2017-08-22 2018-07-19 Procede de pilotage d'un moteur thermique en fonction de conditions thermodynamiques dans les lignes d'admission et d'echappement

Publications (2)

Publication Number Publication Date
EP3673165A1 EP3673165A1 (fr) 2020-07-01
EP3673165B1 true EP3673165B1 (fr) 2023-07-19

Family

ID=59974676

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18762357.4A Active EP3673165B1 (fr) 2017-08-22 2018-07-19 Procede de pilotage d'un moteur thermique en fonction de conditions thermodynamiques dans les lignes d'admission et d'echappement

Country Status (5)

Country Link
EP (1) EP3673165B1 (fr)
BR (1) BR112020002412A2 (fr)
FR (1) FR3070435B1 (fr)
MA (1) MA49944A (fr)
WO (1) WO2019038490A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3114619B1 (fr) * 2020-09-29 2023-01-06 Ifp Energies Now Procédé de détermination de la masse de gaz aspiré dans un cylindre avec prise en compte des conditions réelles d’utilisation
WO2024023683A1 (fr) * 2022-07-26 2024-02-01 Maserati S.P.A. Procédé pour atténuer les émissions d'oxydes d'azote dans un moteur à combustion interne à hydrogène à allumage commandé pendant un état transitoire

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002213259A (ja) * 2001-01-19 2002-07-31 Honda Motor Co Ltd 内燃機関の動弁制御装置
WO2005056995A1 (fr) * 2003-12-12 2005-06-23 Hitachi, Ltd. Unite de commande de moteur
US20090125215A1 (en) * 2007-11-08 2009-05-14 Denso Corporation Variable valve timing control system and method
JP6425121B2 (ja) * 2014-10-03 2018-11-21 三菱自動車工業株式会社 内燃機関

Also Published As

Publication number Publication date
FR3070435A1 (fr) 2019-03-01
FR3070435B1 (fr) 2019-09-13
WO2019038490A1 (fr) 2019-02-28
MA49944A (fr) 2021-04-21
EP3673165A1 (fr) 2020-07-01
BR112020002412A2 (pt) 2020-07-28

Similar Documents

Publication Publication Date Title
KR100879486B1 (ko) 엔진
EP2211043A1 (fr) Procédé pour contrôler les masses de gaz enfermées dans un cylindre d'un moteur essence à distribution variable
EP1632668B1 (fr) Procédé de contrôle d'un moteur à combustion interne à injection directe de carburant et moteur utilisant un tel procédé
EP1726805A1 (fr) Procédé de contrôle du balayage des gaz brûlés d'un moteur à injection indirecte, notamment moteur suralimenté, et moteur utilisant un tel procédé
JP2011117392A (ja) 内燃機関の燃料性状判定装置
JP2010525232A (ja) 内燃機関のシリンダ均等化方法
EP1801398A1 (fr) Procédé d'injection de carburant pour moteur à combustion interne, notamment à injection directe, comportant un piston muni d'un bol avec un téton
EP3673165B1 (fr) Procede de pilotage d'un moteur thermique en fonction de conditions thermodynamiques dans les lignes d'admission et d'echappement
JP2015036523A (ja) エンジンの排気還流装置のための故障検出装置
JP2010007581A (ja) 空燃比制御装置
WO2006045982A2 (fr) Procédé de commande d'un moteur de véhicule via des lois de levée de soupapes
FR2868481A1 (fr) Procede de controle de la recirculation des gaz d'echappement d'un moteur suralimente a combustion interne et moteur utilisant un tel procede
FR2891309A1 (fr) Procede de gestion d'un moteur a combustion
FR2870887A1 (fr) Procede de gestion d'un moteur a combustion interne
EP3596326B1 (fr) Procédé de réglage de la richesse dans un moteur à combustion interne à allumage commandé
EP3475556B1 (fr) Procede de determination de l'avance a l'allumage d'un moteur a combustion interne et procede de controle d'un moteur utilisant un tel procede
JP2017159734A (ja) エンジン、エンジン制御システム及びこれを備えた車両
FR2818324A1 (fr) Moteur a injection directe, pourvu d'un injecteur a faible angle de nappe
WO2004090301A1 (fr) Moteur a combustion interne a essence et a auto-allumage
JP6821923B2 (ja) エンジン及びこれを備えた車両
WO2008012452A2 (fr) Procede de reduction des emissions d ' hydrocarbures d ' un moteur froid a injection indirecte d ' essence
EP1703105B1 (fr) Système d'aide à la régénération d'un piège à NOx intégré dans une ligne d'échappement d'un moteur de véhicule automobile
FR3072129A1 (fr) Procede de gestion du fonctionnement d'un moteur a allumage commande a injection directe
JP2005194887A (ja) 内燃機関及び内燃機関の始動制御装置、並びに内燃機関の始動制御方法
FR2836514A1 (fr) Procede et dispositif de commande du fonctionnement d'un moteur a combustion interne

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200115

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PSA AUTOMOBILES SA

DAX Request for extension of the european patent (deleted)
RAV Requested validation state of the european patent: fee paid

Extension state: MA

Effective date: 20200115

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210322

RIC1 Information provided on ipc code assigned before grant

Ipc: F02D 41/04 20060101ALN20230209BHEP

Ipc: F02D 41/34 20060101ALI20230209BHEP

Ipc: F02D 13/02 20060101ALI20230209BHEP

Ipc: F02D 41/10 20060101AFI20230209BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F02D 41/04 20060101ALN20230223BHEP

Ipc: F02D 41/34 20060101ALI20230223BHEP

Ipc: F02D 13/02 20060101ALI20230223BHEP

Ipc: F02D 41/10 20060101AFI20230223BHEP

INTG Intention to grant announced

Effective date: 20230321

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 602018053645

Country of ref document: DE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018053645

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230823

Year of fee payment: 6

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230719

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230821

Year of fee payment: 6

Ref country code: DE

Payment date: 20230720

Year of fee payment: 6

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: STELLANTIS AUTO SAS

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1589710

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231120

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231019

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231119

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231020

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230719

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602018053645

Country of ref document: DE

Owner name: STELLANTIS AUTO SAS, FR

Free format text: FORMER OWNER: PSA AUTOMOBILES SA, POISSY, FR

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT