EP3667637B1 - Sensor system for monitoring an occupancy of a goods shelf - Google Patents

Sensor system for monitoring an occupancy of a goods shelf Download PDF

Info

Publication number
EP3667637B1
EP3667637B1 EP19210059.2A EP19210059A EP3667637B1 EP 3667637 B1 EP3667637 B1 EP 3667637B1 EP 19210059 A EP19210059 A EP 19210059A EP 3667637 B1 EP3667637 B1 EP 3667637B1
Authority
EP
European Patent Office
Prior art keywords
sensor
communication node
frequency radiation
sensor system
sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19210059.2A
Other languages
German (de)
French (fr)
Other versions
EP3667637A1 (en
Inventor
Oliver Prinz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sick AG
Original Assignee
Sick AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sick AG filed Critical Sick AG
Publication of EP3667637A1 publication Critical patent/EP3667637A1/en
Application granted granted Critical
Publication of EP3667637B1 publication Critical patent/EP3667637B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47FSPECIAL FURNITURE, FITTINGS, OR ACCESSORIES FOR SHOPS, STOREHOUSES, BARS, RESTAURANTS OR THE LIKE; PAYING COUNTERS
    • A47F10/00Furniture or installations specially adapted to particular types of service systems, not otherwise provided for
    • A47F10/02Furniture or installations specially adapted to particular types of service systems, not otherwise provided for for self-service type systems, e.g. supermarkets
    • A47F2010/025Furniture or installations specially adapted to particular types of service systems, not otherwise provided for for self-service type systems, e.g. supermarkets using stock management systems

Definitions

  • the invention relates to a sensor system for monitoring the occupancy of a goods shelf according to the features of the preamble of claim 1.
  • a sensor system that includes sensors that are provided on the goods shelf and detect the degree of occupancy of the goods shelf, with the degree of occupancy being made available as sensor data.
  • the sensors transmit the sensor data to a controller, which uses the sensor data to manage the goods shelf.
  • the sensor system is intended for a goods shelf for self-service removal of baked goods, with the sensor system providing a light barrier as a sensor on each output compartment of the goods shelf.
  • the light barriers can be operated by means of a wired connection to a voltage source or each with a battery.
  • a battery-based voltage supply for the sensors has the disadvantage that battery life and battery replacement have to be monitored.
  • replacing the batteries with a large number of sensors and a spatially large goods shelf requires considerable effort, so that very high costs can arise.
  • U.S. 2012/0132710 A1 discloses an RFID sensor system for detecting physical or chemical measured variables, the RFID sensor system having an RFID component, an antenna, an energy store, a data acquisition module, an energy management device and a control module.
  • the energy store of the RFID sensor system can be charged by an RFID reader.
  • EP 1 223 057 A2 discloses an RFID sensor that can be provided, for example, in a tire.
  • the RFID sensor has an internal chargeable energy store, so that the RIFD sensor can be charged with energy by a reading device.
  • the senor comprises a capacitive or inductive sensor, or an RFID reader.
  • optical sensors such as a button, a light barrier, a scanner, etc., can also be used. This results in a very broad area of application.
  • the senor receives the data and radio frequency radiation on a first common channel and the sensor transmits the sensor data on a second channel. This can ensure that there is no mutual influencing of the transmission of the data between the communication node and the sensor.
  • the communication node sends an activation signal before the radio-frequency radiation is transmitted by the communication node, the activation signal activating the sensor for receiving the radio-frequency radiation. This results in the advantage that charging of the energy store of the sensor is ensured.
  • the sensor data preferably reflect the occupancy of the goods shelf and an energy level of the sensor, so that the degree of occupancy of the goods shelf is monitored on the one hand and information regarding the operating time of the energy store of the sensor is recorded on the other. This reduces the maintenance effort for the sensor system enormously.
  • a plurality of sensors are provided which communicate wirelessly with the communication node and each communicate an identification signal to the communication node, so that the communication node can always clearly identify the sensors.
  • the communication node advantageously prioritizes transmission of the high-frequency radiation to the sensors according to the energy level of the sensors, so that it is ensured that the energy stores of the respective sensors that require charging are charged promptly and unnecessary charging of the energy stores that are full or almost full , be avoided be able.
  • the communication node divides the sensors of the sensor system into a sequence for charging the respective energy storage and activates the sensors in sequence with the respective activation signal, so that the energy storage can be charged in sequence according to their energy level.
  • the radio interface and the energy module are advantageously designed together as a single common module or as separate modules. Forming the radio interface and the energy module as a single common module enables a compact structure for the sensor, since the radio interface and the energy module are arranged on a single so-called ASIC and can advantageously also share a single receiver. On the other hand, constructing the radio interface and the energy module as separate modules allows the energy module to reduce the influence of the voltage generation from the high-frequency radiation on the detection of the sensor and the transmission of the sensor data, so that the sensor can have better accuracy.
  • an exemplary goods shelf (R) is shown schematically, in which the sensor system 1 according to the invention is installed.
  • the sensor system 1 according to the invention comprises a multiplicity of sensors 2.1 to 2.4, which are provided, for example, to detect the degree of occupancy of the goods shelf (R).
  • the degree of occupancy of the goods shelf (R) is a quantity of pallets in the compartments of the goods shelf (R), the degree of occupancy being monitored by the sensor system 1 .
  • the sensors 2.1 to 2.4 make the detected degree of occupancy of the goods shelf (R) available as sensor data and communicate this sensor data wirelessly to at least one communication node 4.
  • the communication node 4 itself is connected by a cable to a voltage source that supplies the communication node 4 with voltage.
  • a controller 3 is advantageously provided, which processes sensor data from sensors 2.1 to 2.4.
  • the controller 3 for example a higher-level warehouse management system, receives information about the degree of occupancy of the goods shelf (R), so that the controller 3 can, for example, increase the goods shelf (R).
  • the sensors 2.1 to 2.4 can preferably include a capacitive or inductive sensor, or an RFID reader.
  • the sensors 2.1 to 2.4 can also each include an optical sensor, such as a light sensor, a light grid, a scanner, etc.
  • the sensors 2.1 to 2.4 each have a radio interface 2a (shown as a function block in the enlarged view), which is designed in such a way that the radio interface 2a transmits sensor data to the communication node 4 wirelessly.
  • the radio interface 2a also receives data from the communication node 4.
  • the communication between the sensors 2.1 to 2.4 and the communication node 4 is advantageously continuous or takes place according to a predetermined communication cycle, so that the communication node 4 always provides information about the current degree of occupancy of the goods shelf (R). is.
  • the sensors 2.1 to 2.4 each include an energy module 2b, which includes a receiver 2b.1, a converter 2b.2 and an energy store 2b.3.
  • the receiver 2b.1 is designed in such a way that it receives electromagnetic high-frequency radiation which is emitted by the communication node 4.
  • the converter 2b.2 is designed to convert the high-frequency energy from the high-frequency radiation into electrical voltage in order to load the energy store 2b.3 and to supply the respective sensor 2.1, 2.2, 2.3 or 2.4 with the stored electrical energy, so that the Sensors 2.1 to 2.4 can be operated.
  • the receiver 2b.1, the converter 2b.2 and the energy storage device 2b.3 include in particular electronic elements and circuits that can perform the functionality described.
  • the energy store 2b.3 includes a capacitor or a rechargeable battery, for example, so that the stored electrical energy can be supplied to the detection unit of the sensor 2.1, 2.2, 2.3 or 2.4.
  • the senor 2.1, 2.2, 2.3 or 2.4 detects the occupancy of the goods shelf (R) with its detection unit and processes the detection in a CPU unit into sensor data, which is then transmitted by the radio interface 2a to the communication node 4 be transmitted.
  • the detection unit can comprise, for example, a light transmitter and a light receiver.
  • the receiver 2b.1 of the energy module 2b receives the high-frequency radiation from the communication node 4, the high-frequency radiation with its high-frequency energy being converted into the electrical voltage by the converter 2b.2.
  • the electrical voltage serves to charge the energy store 2b.3, so that the energy store 2b.3 supplies the respective sensor 2.1 to 2.4 with electrical energy.
  • the data received from the communication node 4 can preferably be configuration data or operating data for the sensor 2.1, 2.2, 2.3 or 2.4.
  • the communication node 4 preferably includes a conversion unit, not shown, which generates the high-frequency radiation from the supply voltage of the communication node 4, the conversion unit also having electronic elements and Includes circuits that are designed to generate the high-frequency radiation from the supply voltage of the communication node 4 .
  • the senor 2.1, 2.2, 2.3 or 2.4 of the sensor system 1 is designed to be wireless, and monitoring and replacing a battery that is usually used with a wireless sensor can be omitted.
  • the sensors 2.1 to 2.4 each preferably receive the data and the high-frequency radiation of the communication node 4 on a first common channel and the sensors 2.1 to 2.4 each transmit the sensor data on a second channel to the communication node 4.
  • the sensor data can be transmitted in a frequency band that is different from a frequency band in which the communication node 4 transmits the high-frequency radiation to the respective sensor 2.1, 2.2, 2.3 or 2.4. This can be safely avoided that a negative mutual influence can arise in the transmission of the sensor data and the high-frequency radiation.
  • the radio interface 2a is preferably designed together with the energy module 2b as a single common module, a so-called ASIC.
  • the energy module 2b can also be designed as a separate module from the radio interface 2a, so that improved electrical isolation between the radio interface 2a and the energy module 2b can be achieved. This also results in a secure separation between the sensor data and the electromagnetic high-frequency radiation, so that the communication of the sensor data is not disturbed by the energy transmission by means of the high-frequency radiation.
  • the communication node 4 advantageously communicates in particular an activation signal to the respective sensor 2.1, 2.2, 2.3 or 2.4 before a Transmission of the electromagnetic high-frequency radiation can be carried out or is being carried out by the communication node 4, the activation signal activating the respective sensor 2.1, 2.2, 2.3 or 2.4 for receiving the high-frequency radiation.
  • the communication node 4 it is not necessary for the communication node 4 to control the high-frequency radiation continuously, but to control it based on time, or to emit it when the respective sensor 2.1, 2.2, 2.3 or 2.4 requests it.
  • the sensor data that is transmitted from the sensors 2.1 to 2.4 to the communication node 4 includes, in particular, not only the degree of occupancy of the goods shelf (R) but also an energy level of the respective sensor 2.1, 2.2, 2.3 or 2.4.
  • the sensor data reflect not only the degree of occupancy of the goods shelf (R), but also the energy level of the respective sensor 2.1, 2.2, 2.3 or 2.4 and thus the need to charge the respective energy store 2b.3 at the communication node 4, so that the communication node 4 communicates this information to the controller 3.
  • the controller 3 can instruct the communication node 4 to transmit the high-frequency radiation to the respective sensor 2.1, 2.2, 2.3 or 2.4 in order to charge its energy store 2b.3.
  • the sensors 2.1 to 2.4 advantageously each communicate an identification signal to the communication node 4, so that the communication node 4 can clearly identify the sensors 2.1 to 2.4 and assign their respective charging requirements.
  • the sensors 2.1 to 2.4 use their sensor data to transmit their readiness for operation, the degree of occupancy of the goods shelf (R), and their current energy level to the communication node 4.
  • the communication node 4 advantageously prioritizes the transmission of the high-frequency waves to the sensors 2.1 according to the energy level of the sensors 2.1 to 2.4 until 2.4.
  • the communication node 4 receives the identification signals from the sensors 2.1 to 2.4 and their energy level, so that the Communication node 4 divides the sensors 2.1 to 2.4 according to their energy requirements in an order.
  • the sensor for example sensor 2.1, with the lowest energy level is classified first in the row and the sensor, for example sensor 2.4, with the highest energy level is classified last in the row.
  • the communication node 4 communicates, for example, first the activation signal for the sensor 2.1 with the lowest energy level, so that this sensor 2.1 is supplied with the highest priority with the electromagnetic high-frequency radiation in order to charge its energy store 2b.3.
  • the sensors 2.1 to 2.4 are supplied with the electromagnetic high-frequency radiation in order of priority or sequence, so that the energy stores 2b.3 of the respective sensors 2.1 to 2.4 can be charged in sequence according to their energy level.
  • the controller 3 From the controller 3 it is possible for data for configuring the respective sensors 2.1 to 2.4 or the entire sensor system 1 to be transmitted wirelessly via the communication node 4 to the sensors 2.1 to 2.4 or to the sensor system 1.
  • the controller 3 can cause the respective sensors 2.1 to 2.4 to start the self-test via the communication node 4, so that the sensors 2.1 to 2.4 transmit a result of their own self-test together with the identification signal to the controller 3 via the communication node 4.
  • the controller 3 is able to check the operational readiness of the sensors 2.1 to 2.4 from the respective test result and to assign the test results exactly to the respective sensors 2.1 to 2.4 using the respective identification signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Description

Die Erfindung betrifft ein Sensorsystem zur Überwachung einer Belegung eines Warenregals gemäß den Merkmalen des Oberbegriffs des Anspruchs 1.The invention relates to a sensor system for monitoring the occupancy of a goods shelf according to the features of the preamble of claim 1.

Bei einem Warenregal mit einer Vielzahl an Ebenen und Reihen besteht der Bedarf, einen Belegungsgrad des Warenregals kontinuierlich zu erfassen, so dass eine Verwaltung des Warenregals betreffend einen Wareninhalt und eine Warenmenge vereinfacht durchgeführt werden kann. Hierzu ist ein Sensorsystem vorgesehen, das Sensoren umfasst, die an dem Warenregal vorgesehen sind und den Belegungsgrad des Warenregals erfassen, wobei der Belegungsgrad als Sensordaten zur Verfügung gestellt wird. Die Sensoren übermitteln die Sensordaten an eine Steuerung, die mittels der Sensordaten das Warenregal verwaltet.In the case of a goods shelf with a large number of levels and rows, there is a need to continuously detect the degree of occupancy of the goods shelf, so that management of the goods shelf with regard to a goods content and a quantity of goods can be carried out in a simplified manner. For this purpose, a sensor system is provided that includes sensors that are provided on the goods shelf and detect the degree of occupancy of the goods shelf, with the degree of occupancy being made available as sensor data. The sensors transmit the sensor data to a controller, which uses the sensor data to manage the goods shelf.

Solch ein beschriebenes Sensorsystem ist aus DE 20 2014 004 232 U1 bekannt. Insbesondere ist das Sensorsystem für ein Warenregal zur Selbstbedienungsentnahme von Backwaren bestimmt, wobei das Sensorsystem an jedem Ausgabefach des Warenregals eine Lichtschranke als Sensor vorsieht. Hierbei können die Lichtschranken mittels einer kabelgebundenen Verbindung zu einer Spannungsquelle oder jeweils mit einer Batterie betrieben werden.Such a described sensor system is out DE 20 2014 004 232 U1 famous. In particular, the sensor system is intended for a goods shelf for self-service removal of baked goods, with the sensor system providing a light barrier as a sensor on each output compartment of the goods shelf. In this case, the light barriers can be operated by means of a wired connection to a voltage source or each with a battery.

Bei einer kabelgebundenen Spannungsversorgung der Lichtschranken bzw. der Sensoren verursachen die Kabel und deren Verlegung zusätzliche Kosten. Weiterhin ist eine Anbringung der Sensoren erschwert.If the power supply for the light barriers or the sensors is wired, the cables and their installation cause additional costs. Furthermore, attachment of the sensors is made more difficult.

Eine auf Batterie basierende Spannungsversorgung der Sensoren hat auf der anderen Seite den Nachteil, dass eine Batterielebensdauer und ein Austausch der Batterie überwacht werden müssen. Insbesondere erfordert ein Auswechseln der Batterien bei einer großen Anzahl an Sensoren und einem räumlich großen Warenregal einen erheblichen Aufwand, so dass sehr hohe Kosten entstehen können.On the other hand, a battery-based voltage supply for the sensors has the disadvantage that battery life and battery replacement have to be monitored. In particular, replacing the batteries with a large number of sensors and a spatially large goods shelf requires considerable effort, so that very high costs can arise.

US 2012/0132710 A1 offenbart ein RFID-Sensorsystem zum Erfassen von physikalischen oder chemischen Messgrößen, wobei das RFID-Sensorsystem eine RFID-Komponente, eine Antenne, einen Energiespeicher, ein Datenerfassungsmodul, eine Energiemanagementvorrichtung und ein Steuermodul. Der Energiespeicher des RFID-Sensorsystems kann durch einen RFID-Reader aufgeladen werden. U.S. 2012/0132710 A1 discloses an RFID sensor system for detecting physical or chemical measured variables, the RFID sensor system having an RFID component, an antenna, an energy store, a data acquisition module, an energy management device and a control module. The energy store of the RFID sensor system can be charged by an RFID reader.

EP 1 223 057 A2 offenbart einen RFID-Sensor, der bspw. In einem Reifen vorgesehen werden kann. Hierbei weist der RFID-Sensor einen internen aufladbaren Energiespeicher auf, so dass der RIFD-Sensor durch ein Lesegerät mit Energie aufgeladen werden kann. EP 1 223 057 A2 discloses an RFID sensor that can be provided, for example, in a tire. In this case, the RFID sensor has an internal chargeable energy store, so that the RIFD sensor can be charged with energy by a reading device.

Es ist eine Aufgabe der vorliegenden Erfindung, ein Sensorsystem zur Überwachung einer Belegung eines Warenregals gemäß den Merkmalen des Oberbegriffs des Anspruchs 1 derart zu verbessern, dass eine lange Betriebsbereitschaft bei geringen Wartungskosten bei gleichzeitiger Vermeidung von Übertragungs- und Empfangsstörung gewährleistet ist.It is an object of the present invention to improve a sensor system for monitoring the occupancy of a goods shelf according to the features of the preamble of claim 1 in such a way that long operational readiness with low maintenance costs is ensured while transmission and reception faults are avoided at the same time.

Die Aufgabe wird erfindungsgemäß durch ein Sensorsystem mit den Merkmalen des Anspruchs 1 gelöst.The object is achieved according to the invention by a sensor system with the features of claim 1.

Hierdurch ergibt sich der Vorteil, dass einerseits kein Batteriewechseln durchgeführt werden muss und andererseits keine Kabel verlegt werden müssen, wodurch eine Installation des Sensors vereinfacht ist und der Betrieb des Sensorsystems kostengünstig ist.This results in the advantage that on the one hand no battery changes have to be carried out and on the other hand no cables have to be laid, which simplifies the installation of the sensor and the operation of the sensor system is cost-effective.

Gemäß einem bevorzugten Ausführungsbeispiel umfasst der Sensor einen kapazitiven oder induktiven Sensor, oder ein RFID-Lesegerät. Ferner können auch optische Sensoren, wie ein Taster, eine Lichtschranke, ein Scanner etc., eingesetzt werden. Damit ergibt sich ein sehr breites Anwendungsgebiet.According to a preferred embodiment, the sensor comprises a capacitive or inductive sensor, or an RFID reader. Furthermore, optical sensors, such as a button, a light barrier, a scanner, etc., can also be used. This results in a very broad area of application.

Weiterhin empfängt der Sensor gemäß einem bevorzugten Ausführungsbeispiel die Daten und Hochfrequenzstrahlung auf einem ersten gemeinsamen Kanal und der Sensor übermittelt die Sensordaten auf einem zweiten Kanal. Dadurch kann sichergestellt werden, dass keine gegenseitige Beeinflussung der Übertragung der Daten zwischen dem Kommunikationsknoten und dem Sensor vorhanden ist.Furthermore, according to a preferred embodiment, the sensor receives the data and radio frequency radiation on a first common channel and the sensor transmits the sensor data on a second channel. This can ensure that there is no mutual influencing of the transmission of the data between the communication node and the sensor.

Gemäß einem weiteren bevorzugten Ausführungsbeispiel sendet der Kommunikationsknoten ein Aktivierungssignal vor einer Übertragung der Hochfrequenzstrahlung durch den Kommunikationsknoten, wobei das Aktivierungssignal den Sensor für das Empfangen der Hochfrequenzstrahlung aktiviert. Dadurch ergibt sich der Vorteil, dass eine Aufladung des Energiespeichers des Sensors sichergestellt ist.According to a further preferred exemplary embodiment, the communication node sends an activation signal before the radio-frequency radiation is transmitted by the communication node, the activation signal activating the sensor for receiving the radio-frequency radiation. This results in the advantage that charging of the energy store of the sensor is ensured.

Vorzugsweise geben die Sensordaten die Belegung des Warenregals und einen Energiestand des Sensors wieder, so dass die Überwachung des Belegungsgrads des Warenregals einerseits sicherstellt ist und andererseits Information bzgl. der Betriebsdauer des Energiespeichers des Sensors erfasst ist. Hierdurch reduziert sich der Wartungsaufwand für das Sensorsystem enorm.The sensor data preferably reflect the occupancy of the goods shelf and an energy level of the sensor, so that the degree of occupancy of the goods shelf is monitored on the one hand and information regarding the operating time of the energy store of the sensor is recorded on the other. This reduces the maintenance effort for the sensor system enormously.

Ferner sind gemäß einem weiteren bevorzugten Ausführungsbeispiel mehrere Sensoren vorgesehen, die drahtlos mit dem Kommunikationsknoten und jeweils ein Identifizierungssignal gegenüber dem Kommunikationsknoten kommunizieren, so dass der Kommunikationsknoten die Sensoren immer eindeutig identifizieren kann. Vorteilhafterweise priorisiert der Kommunikationsknoten eine Übertragung der Hochfrequenzstrahlung an die Sensoren entsprechend des Energiestandes der Sensoren, so dass es sichergestellt ist, dass die Energiespeicher der jeweiligen Sensoren, die eine Aufladung benötigen, zeitnah aufgeladen werden und unnötige Aufladungen der Energiespeicher, die voll oder nahezu voll sind, vermieden werden können. Das heißt, der Kommunikationsknoten teilt die Sensoren des Sensorsystems in eine Reihenfolge für die Aufladung der jeweiligen Energiespeicher ein und aktiviert die Sensoren der Reihenfolge nach mit dem jeweiligen Aktivierungssignal, so dass die Energiespeicher entsprechend ihrem Energiestand der Reihenfolge nach aufgeladen werden können.Furthermore, according to a further preferred exemplary embodiment, a plurality of sensors are provided which communicate wirelessly with the communication node and each communicate an identification signal to the communication node, so that the communication node can always clearly identify the sensors. The communication node advantageously prioritizes transmission of the high-frequency radiation to the sensors according to the energy level of the sensors, so that it is ensured that the energy stores of the respective sensors that require charging are charged promptly and unnecessary charging of the energy stores that are full or almost full , be avoided be able. This means that the communication node divides the sensors of the sensor system into a sequence for charging the respective energy storage and activates the sensors in sequence with the respective activation signal, so that the energy storage can be charged in sequence according to their energy level.

Vorteilhafterweise sind das Funkinterface und das Energiemodul zusammen als ein einziges gemeinsames Modul oder als separate Module ausgebildet. Eine Ausbildung des Funkinterfaces und des Energiemoduls als ein einziges gemeinsames Modul ermöglicht einen kompakten Aufbau des Sensors, da beispielsweise das Funkinterface und das Energiemodul auf einem einzigen sogenannten ASIC angeordnet werden und vorteilhafterweise zusätzlich einen einzigen Empfänger teilen können. Auf der anderen Seite ermöglicht ein Aufbau des Funkinterfaces und des Energiemoduls als separate Module eine reduzierte Beeinflussung der Spannungserzeugung aus der Hochfrequenzstrahlung durch das Energiemodul auf die Erfassung des Sensors und die Übertragung der Sensordaten, so dass der Sensor eine bessere Genauigkeit aufweisen kann.The radio interface and the energy module are advantageously designed together as a single common module or as separate modules. Forming the radio interface and the energy module as a single common module enables a compact structure for the sensor, since the radio interface and the energy module are arranged on a single so-called ASIC and can advantageously also share a single receiver. On the other hand, constructing the radio interface and the energy module as separate modules allows the energy module to reduce the influence of the voltage generation from the high-frequency radiation on the detection of the sensor and the transmission of the sensor data, so that the sensor can have better accuracy.

Die Erfindung wird nachstehend auch hinsichtlich weiterer Vorteile und Merkmale unter Bezugnahme auf die beigefügte Zeichnung anhand von Ausführungsbeispielen erläutert. Die Figur der Zeichnung zeigen in:

Fig. 1
eine schematische Darstellung eines Anwendungsbeispiels des erfindungsgemäßen Sensorsystems, und
Fig. 2
eine schematische Darstellung eines Energiemoduls.
The invention is explained below also with regard to further advantages and features with reference to the attached drawing based on exemplary embodiments. The figure of the drawing show in:
1
a schematic representation of an application example of the sensor system according to the invention, and
2
a schematic representation of an energy module.

In Figur 1 ist ein beispielhaftes Warenregal (R) schematisch dargestellt, in dem das erfindungsgemäße Sensorsystem 1 installiert ist. Das erfindungsgemäße Sensorsystem 1 umfasst in diesem Ausführungsbeispiel eine Vielzahl von Sensoren 2.1 bis 2.4, die beispielsweise dafür vorgesehen sind, einen Belegungsgrad des Warenregals (R) zu erfassen. Der Belegungsgrad des Warenregals (R) ist im Sinne der Erfindung eine Menge an Paletten in den Fächern des Warenregals (R), wobei der Belegungsgrad durch das Sensorsystem 1 überwacht wird.In figure 1 an exemplary goods shelf (R) is shown schematically, in which the sensor system 1 according to the invention is installed. In this exemplary embodiment, the sensor system 1 according to the invention comprises a multiplicity of sensors 2.1 to 2.4, which are provided, for example, to detect the degree of occupancy of the goods shelf (R). According to the invention, the degree of occupancy of the goods shelf (R) is a quantity of pallets in the compartments of the goods shelf (R), the degree of occupancy being monitored by the sensor system 1 .

Die Sensoren 2.1 bis 2.4 stellen den erfassten Belegungsgrad des Warenregals (R) als Sensordaten zur Verfügung und kommunizieren diese Sensordaten drahtlos an zumindest einen Kommunikationsknoten 4. Der Kommunikationsknoten 4 selbst ist mittels eines Kabels mit einer Spannungsquelle verbunden, die den Kommunikationsknoten 4 mit Spannung versorgt.The sensors 2.1 to 2.4 make the detected degree of occupancy of the goods shelf (R) available as sensor data and communicate this sensor data wirelessly to at least one communication node 4. The communication node 4 itself is connected by a cable to a voltage source that supplies the communication node 4 with voltage.

Vorteilhafterweise ist eine Steuerung 3 vorgesehen, die Sensordaten der Sensoren 2.1 bis 2.4 verarbeitet. Die Steuerung 3, beispielsweise ein übergeordnetes Lagerverwaltungssystem, erhält eine Information über den Belegungsgrad des Warenregals (R) übermittelt, so dass die Steuerung 3 beispielweise eine Aufstockung des Warenregals (R) veranlassen kann. Hierbei können vorzugsweise die Sensoren 2.1 bis 2.4 einen kapazitiven oder induktiven Sensor, oder ein RFID-Lesegerät umfassen. Ferner können die Sensoren 2.1 bis 2.4 auch jeweils einen optischen Sensor, wie einen Lichttaster, ein Lichtgitter, einen Scanner etc., umfassen.A controller 3 is advantageously provided, which processes sensor data from sensors 2.1 to 2.4. The controller 3, for example a higher-level warehouse management system, receives information about the degree of occupancy of the goods shelf (R), so that the controller 3 can, for example, increase the goods shelf (R). Here, the sensors 2.1 to 2.4 can preferably include a capacitive or inductive sensor, or an RFID reader. Furthermore, the sensors 2.1 to 2.4 can also each include an optical sensor, such as a light sensor, a light grid, a scanner, etc.

Die Sensoren 2.1 bis 2.4 weisen jeweils ein (in der Vergrößerungsansicht als Funktionsblock dargestelltes) Funkinterface 2a auf, das derart ausgebildet ist, dass das Funkinterface 2a Sensordaten an den Kommunikationsknoten 4 drahtlos übermittelt. Das Funkinterface 2a empfängt ferner Daten von dem Kommunikationsknoten 4. Die Kommunikation zwischen den Sensoren 2.1 bis 2.4 und dem Kommunikationsknoten 4 ist vorteilhafterweise kontinuierlich bzw. erfolgt entsprechend einem vorgegebenen Kommunikationszyklus, so dass der Kommunikationsknoten 4 immer über den aktuellen Belegungsgrad des Warenregals (R) informiert ist.The sensors 2.1 to 2.4 each have a radio interface 2a (shown as a function block in the enlarged view), which is designed in such a way that the radio interface 2a transmits sensor data to the communication node 4 wirelessly. The radio interface 2a also receives data from the communication node 4. The communication between the sensors 2.1 to 2.4 and the communication node 4 is advantageously continuous or takes place according to a predetermined communication cycle, so that the communication node 4 always provides information about the current degree of occupancy of the goods shelf (R). is.

Wie in der Figur 2 dargestellt, umfassen die Sensoren 2.1 bis 2.4 jeweils ein Energiemodul 2b, das einen Empfänger 2b.1, einen Umsetzer 2b.2 und einen Energiespeicher 2b.3 umfasst. Der Empfänger 2b.1 ist derart ausgebildet, eine elektromagnetische Hochfrequenzstrahlung zu empfangen, die von dem Kommunikationsknoten 4 ausgesendet ist. Der Umsetzer 2b.2 ist derart ausgebildet, die Hochfrequenzenergie aus der Hochfrequenzstrahlung in elektrische Spannung umzusetzen, um damit den Energiespeicher 2b.3 zu laden und den jeweiligen Sensor 2.1, 2.2, 2.3 oder 2.4 mit der gespeicherten elektrischen Energie zu versorgen, so dass die Sensoren 2.1 bis 2.4 betrieben werden können. Hierbei umfassen der Empfänger 2b.1, der Umsetzer 2b.2 und der Energiespeicher 2b.3 insbesondere jeweils elektronische Elemente und Schaltungen, die die beschriebene Funktionalität ausführen können. Der Energiespeicher 2b.3 umfasst beispielsweise einen Kondensator oder einen Akku, so dass beispielsweise die gespeicherte elektrische Energie an die Erfassungseinheit des Sensors 2.1, 2.2, 2.3 oder 2.4 geliefert werden kann.Like in the figure 2 shown, the sensors 2.1 to 2.4 each include an energy module 2b, which includes a receiver 2b.1, a converter 2b.2 and an energy store 2b.3. The receiver 2b.1 is designed in such a way that it receives electromagnetic high-frequency radiation which is emitted by the communication node 4. The converter 2b.2 is designed to convert the high-frequency energy from the high-frequency radiation into electrical voltage in order to load the energy store 2b.3 and to supply the respective sensor 2.1, 2.2, 2.3 or 2.4 with the stored electrical energy, so that the Sensors 2.1 to 2.4 can be operated. In this case, the receiver 2b.1, the converter 2b.2 and the energy storage device 2b.3 include in particular electronic elements and circuits that can perform the functionality described. The energy store 2b.3 includes a capacitor or a rechargeable battery, for example, so that the stored electrical energy can be supplied to the detection unit of the sensor 2.1, 2.2, 2.3 or 2.4.

Mit anderen Worten, der Sensor 2.1, 2.2, 2.3 oder 2.4 erfasst bei dem dargestellten Beispiel mit seiner Erfassungseinheit die Belegung des Warenregals (R) und verarbeitet die Erfassung in einer CPU-Einheit zu Sensordaten, die dann von dem Funkinterface 2a an den Kommunikationsknoten 4 übermittelt werden. Die Erfassungseinheit kann bei einem Lichttaster als Sensor 2.1, 2.2, 2.3 oder 2.4 beispielweise einen Lichtsender und einen Lichtempfänger umfassen. Zusätzlich empfängt der Empfänger 2b.1 des Energiemoduls 2b die Hochfrequenzstrahlung von dem Kommunikationsknoten 4, wobei die Hochfrequenzstrahlung mit ihrer Hochfrequenzenergie durch den Umsetzer 2b.2 in die elektrische Spannung umgesetzt wird. Die elektrische Spannung dient zur Aufladung des Energiespeichers 2b.3, so dass der Energiespeicher 2b.3 den jeweiligen Sensor 2.1 bis 2.4 mit elektrischer Energie versorgt. Die von dem Kommunikationsknoten 4 empfangenen Daten können vorzugsweise Konfigurationsdaten oder Betriebsdaten für den Sensor 2.1, 2.2, 2.3 oder 2.4 sein. Ferner umfasst der Kommunikationsknoten 4 vorzugsweise eine, nicht dargestellte, Umwandlungseinheit, die aus der Versorgungsspannung des Kommunikationsknoten 4 die Hochfrequenzstrahlung erzeugt, wobei die Umwandlungseinheit ebenfalls elektronische Elemente und Schaltungen umfasst, die dazu ausgebildet sind, aus der Versorgungsspannung des Kommunikationsknoten 4 die Hochfrequenzstrahlung zu erzeugen.In other words, in the example shown, the sensor 2.1, 2.2, 2.3 or 2.4 detects the occupancy of the goods shelf (R) with its detection unit and processes the detection in a CPU unit into sensor data, which is then transmitted by the radio interface 2a to the communication node 4 be transmitted. In the case of a light scanner as sensor 2.1, 2.2, 2.3 or 2.4, the detection unit can comprise, for example, a light transmitter and a light receiver. In addition, the receiver 2b.1 of the energy module 2b receives the high-frequency radiation from the communication node 4, the high-frequency radiation with its high-frequency energy being converted into the electrical voltage by the converter 2b.2. The electrical voltage serves to charge the energy store 2b.3, so that the energy store 2b.3 supplies the respective sensor 2.1 to 2.4 with electrical energy. The data received from the communication node 4 can preferably be configuration data or operating data for the sensor 2.1, 2.2, 2.3 or 2.4. Furthermore, the communication node 4 preferably includes a conversion unit, not shown, which generates the high-frequency radiation from the supply voltage of the communication node 4, the conversion unit also having electronic elements and Includes circuits that are designed to generate the high-frequency radiation from the supply voltage of the communication node 4 .

Hierdurch ist der Sensor 2.1, 2.2, 2.3 oder 2.4 des Sensorsystems 1 kabellos ausgebildet und eine Überwachung und ein Austausch einer üblicherweise bei kabellosem Sensor verwendeten Batterie können entfallen.As a result, the sensor 2.1, 2.2, 2.3 or 2.4 of the sensor system 1 is designed to be wireless, and monitoring and replacing a battery that is usually used with a wireless sensor can be omitted.

Bezüglich einer bevorzugten Alternative und wie in der Vergrößerungsansicht der Figur 1 dargestellt, empfangen die Sensoren 2.1 bis 2.4 jeweils vorzugsweise die Daten und die Hochfrequenzstrahlung des Kommunikationsknoten 4 auf einem ersten gemeinsamen Kanal und die Sensoren 2.1 bis 2.4 übermitteln jeweils die Sensordaten auf einem zweiten Kanal an den Kommunikationsknoten 4.Regarding a preferred alternative and as shown in the enlargement of the figure 1 shown, the sensors 2.1 to 2.4 each preferably receive the data and the high-frequency radiation of the communication node 4 on a first common channel and the sensors 2.1 to 2.4 each transmit the sensor data on a second channel to the communication node 4.

Entsprechend einer anderen bevorzugten Alternative sind die Sensordaten in einem Frequenzband übertragbar, das verschieden zu einem Frequenzband ist, in dem der Kommunikationsknoten 4 die Hochfrequenzstrahlung an dem jeweiligen Sensor 2.1, 2.2, 2.3 oder 2.4 übermittelt. Dadurch kann sicher vermieden werden, dass sich eine negative gegenseitige Beeinflussung bei der Übermittlung der Sensordaten und der Hochfrequenzstrahlung ergeben kann.According to another preferred alternative, the sensor data can be transmitted in a frequency band that is different from a frequency band in which the communication node 4 transmits the high-frequency radiation to the respective sensor 2.1, 2.2, 2.3 or 2.4. This can be safely avoided that a negative mutual influence can arise in the transmission of the sensor data and the high-frequency radiation.

Das Funkinterface 2a ist vorzugsweise zusammen mit dem Energiemodul 2b als ein einziges gemeinsames Modul, ein sogenanntes ASIC, ausgebildet. Hierdurch kann ein sehr kompakter und platzsparender Aufbau der Sensoren 2.1 bis 2.4 erzielt werden. Das Energiemodul 2b kann jedoch auch als separates Modul von dem Funkinterface 2a ausgebildet sein, so dass eine verbesserte elektrische Trennung zwischen dem Funkinterface 2a und dem Energiemodul 2b erzielt werden kann. Hierbei ergibt sich auch eine sichere Trennung zwischen den Sensordaten und der elektromagnetischen Hochfrequenzstrahlung, so dass die Kommunikation der Sensordaten nicht durch die Energieübertragung mittels der Hochfrequenzstrahlung gestört wird.The radio interface 2a is preferably designed together with the energy module 2b as a single common module, a so-called ASIC. As a result, a very compact and space-saving design of the sensors 2.1 to 2.4 can be achieved. However, the energy module 2b can also be designed as a separate module from the radio interface 2a, so that improved electrical isolation between the radio interface 2a and the energy module 2b can be achieved. This also results in a secure separation between the sensor data and the electromagnetic high-frequency radiation, so that the communication of the sensor data is not disturbed by the energy transmission by means of the high-frequency radiation.

Vorteilhafterweise kommuniziert der Kommunikationsknoten 4 insbesondere ein Aktivierungssignal an den jeweiligen Sensor 2.1, 2.2, 2.3 oder 2.4 bevor eine Übertragung der elektromagnetischen Hochfrequenzstrahlung durch den Kommunikationsknoten 4 ausführbar ist bzw. ausgeführt wird, wobei das Aktivierungssignal den jeweiligen Sensor 2.1, 2.2, 2.3 oder 2.4 für das Empfangen der Hochfrequenzstrahlung aktiviert. Dadurch ist es nicht notwendig, dass der Kommunikationsknoten 4 die Hochfrequenzstrahlung ständig, sondern zeitbasiert steuert oder bei Bedarfsanforderung des jeweiligen Sensors 2.1, 2.2, 2.3 oder 2.4 aussendet.The communication node 4 advantageously communicates in particular an activation signal to the respective sensor 2.1, 2.2, 2.3 or 2.4 before a Transmission of the electromagnetic high-frequency radiation can be carried out or is being carried out by the communication node 4, the activation signal activating the respective sensor 2.1, 2.2, 2.3 or 2.4 for receiving the high-frequency radiation. As a result, it is not necessary for the communication node 4 to control the high-frequency radiation continuously, but to control it based on time, or to emit it when the respective sensor 2.1, 2.2, 2.3 or 2.4 requests it.

Aus diesem Grund umfassen die Sensordaten, die von den Sensoren 2.1 bis 2.4 an den Kommunikationsknoten 4 übermittelt werden, insbesondere neben den Belegungsgrad des Warenregals (R) auch einen Energiestand des jeweiligen Sensors 2.1, 2.2, 2.3 oder 2.4. Das heißt, die Sensordaten geben nicht nur den Belegungsgrad des Warenregals (R), sondern auch den Energiestand des jeweiligen Sensors 2.1, 2.2, 2.3 oder 2.4 und damit den Bedarf einer Aufladung des jeweiligen Energiespeichers 2b.3 an den Kommunikationsknoten 4 wieder, so dass der Kommunikationsknoten 4 diese Information an die Steuerung 3 kommuniziert. Die Steuerung 3 kann bei Bedarf den Kommunikationsknoten 4 anweisen, die Hochfrequenzstrahlung an den jeweiligen Sensor 2.1, 2.2, 2.3 oder 2.4 zu übermitteln, um dessen Energiespeicher 2b.3 aufzuladen.For this reason, the sensor data that is transmitted from the sensors 2.1 to 2.4 to the communication node 4 includes, in particular, not only the degree of occupancy of the goods shelf (R) but also an energy level of the respective sensor 2.1, 2.2, 2.3 or 2.4. This means that the sensor data reflect not only the degree of occupancy of the goods shelf (R), but also the energy level of the respective sensor 2.1, 2.2, 2.3 or 2.4 and thus the need to charge the respective energy store 2b.3 at the communication node 4, so that the communication node 4 communicates this information to the controller 3. If necessary, the controller 3 can instruct the communication node 4 to transmit the high-frequency radiation to the respective sensor 2.1, 2.2, 2.3 or 2.4 in order to charge its energy store 2b.3.

Bei einer Vielzahl an Sensoren 2.1 bis 2.4 an dem Warenregal (R) kommunizieren die Sensoren 2.1 bis 2.4 vorteilhafterweise jeweils ein Identifizierungssignal zu dem Kommunikationsknoten 4, so dass der Kommunikationsknoten 4 die Sensoren 2.1 bis 2.4 eindeutig identifizieren und deren jeweiligen Aufladungsbedarf zuordnen kann.With a large number of sensors 2.1 to 2.4 on the goods shelf (R), the sensors 2.1 to 2.4 advantageously each communicate an identification signal to the communication node 4, so that the communication node 4 can clearly identify the sensors 2.1 to 2.4 and assign their respective charging requirements.

Die Sensoren 2.1 bis 2.4 übermitteln mit ihren Sensordaten ihre Betriebsbereitschaft, den Belegungsgrad des Warenregals (R), und ihren aktuellen Energiestand an den Kommunikationsknoten 4. Vorteilhafterweise priorisiert der Kommunikationsknoten 4 entsprechend des Energiestandes der Sensoren 2.1 bis 2.4 die Übertragung der Hochfrequenzwellen an die Sensoren 2.1 bis 2.4.The sensors 2.1 to 2.4 use their sensor data to transmit their readiness for operation, the degree of occupancy of the goods shelf (R), and their current energy level to the communication node 4. The communication node 4 advantageously prioritizes the transmission of the high-frequency waves to the sensors 2.1 according to the energy level of the sensors 2.1 to 2.4 until 2.4.

Das heißt mit anderen Worten, der Kommunikationsknoten 4 erhält die Identifizierungssignale der Sensoren 2.1 bis 2.4 und deren Energiestand, so dass der Kommunikationsknoten 4 die Sensoren 2.1 bis 2.4 entsprechend ihres Energiebedarfs in eine Reihenfolge einteilt. Der Sensor, beispielsweise Sensor 2.1, mit dem niedrigsten Energiestand ist an erster Stelle der Reihe eingeteilt und der Sensor, beispielsweise Sensor 2.4, mit dem höchsten Energiestand ist an letzter Stelle der Reihe eingeteilt. Entsprechend der eingeteilten Reihenfolge kommuniziert der Kommunikationsknoten 4 beispielsweise zuerst das Aktivierungssignal für den Sensor 2.1 mit dem niedrigsten Energiestand, so dass dieser Sensor 2.1 mit der höchsten Priorität mit der elektromagnetischen Hochfrequenzstrahlung versorgt wird, um dessen Energiespeicher 2b.3 aufzuladen. Der Priorität bzw. Reihenfolge nach werden auf diese Weise die Sensoren 2.1 bis 2.4 mit der elektromagnetischen Hochfrequenzstrahlung versorgt, so dass die Energiespeicher 2b.3 der jeweiligen Sensoren 2.1 bis 2.4 entsprechend ihrem Energiestand der Reihenfolge nach aufgeladen werden können.In other words, the communication node 4 receives the identification signals from the sensors 2.1 to 2.4 and their energy level, so that the Communication node 4 divides the sensors 2.1 to 2.4 according to their energy requirements in an order. The sensor, for example sensor 2.1, with the lowest energy level is classified first in the row and the sensor, for example sensor 2.4, with the highest energy level is classified last in the row. According to the assigned order, the communication node 4 communicates, for example, first the activation signal for the sensor 2.1 with the lowest energy level, so that this sensor 2.1 is supplied with the highest priority with the electromagnetic high-frequency radiation in order to charge its energy store 2b.3. In this way, the sensors 2.1 to 2.4 are supplied with the electromagnetic high-frequency radiation in order of priority or sequence, so that the energy stores 2b.3 of the respective sensors 2.1 to 2.4 can be charged in sequence according to their energy level.

Auf die Art und Weise ist sichergestellt, dass sämtliche Sensoren 2.1 bis 2.4 des Sensorsystems 1 entsprechend ihres Energiebedarfs rechtzeitig und kabellos mit Energie versorgt werden. Hierdurch ist die Betriebsbereitschaft der Sensoren 2.1 bis 2.4 des Sensorsystems 1 wartungsfrei und für eine sehr lange Laufzeit sichergestellt.In this way it is ensured that all sensors 2.1 to 2.4 of the sensor system 1 are supplied with energy in good time and wirelessly according to their energy requirements. This ensures that the sensors 2.1 to 2.4 of the sensor system 1 are ready for operation without maintenance and for a very long service life.

Von der Steuerung 3 aus ist es möglich, dass Daten zum Konfigurieren der jeweiligen Sensoren 2.1 bis 2.4 bzw. des gesamten Sensorsystems 1 über den Kommunikationsknoten 4 kabellos an die Sensoren 2.1 bis 2.4 bzw. an das Sensorsystem 1 übermittelt werden. Zusätzlich kann die Steuerung 3 über den Kommunikationsknoten 4 die jeweiligen Sensoren 2.1 bis 2.4 zum Starten von Selbsttest veranlassen, so dass die Sensoren 2.1 bis 2.4 ein Ergebnis des eigenen Selbsttests zusammen mit dem Identifizierungssignal über den Kommunikationsknoten 4 an die Steuerung 3 zurück übermitteln. Dadurch ist die Steuerung 3 in der Lage, die Betriebsbereitschaft der Sensoren 2.1 bis 2.4 aus dem jeweiligen Testergebnis zu überprüfen und die Testergebnisse exakt den jeweiligen Sensoren 2.1 bis 2.4 durch das jeweilige Identifizierungssignal zuzuordnen.From the controller 3 it is possible for data for configuring the respective sensors 2.1 to 2.4 or the entire sensor system 1 to be transmitted wirelessly via the communication node 4 to the sensors 2.1 to 2.4 or to the sensor system 1. In addition, the controller 3 can cause the respective sensors 2.1 to 2.4 to start the self-test via the communication node 4, so that the sensors 2.1 to 2.4 transmit a result of their own self-test together with the identification signal to the controller 3 via the communication node 4. As a result, the controller 3 is able to check the operational readiness of the sensors 2.1 to 2.4 from the respective test result and to assign the test results exactly to the respective sensors 2.1 to 2.4 using the respective identification signal.

Hierdurch reduziert sich die Wartungsarbeit des Sensorsystems 1 erneut.This reduces the maintenance work on the sensor system 1 again.

BezugszeichenlisteReference List

11
Sensorsystemsensor system
2.1 bis 2.42.1 to 2.4
Sensorsensor
2a2a
Funkinterfaceradio interface
2b2 B
Energiemodulpower module
2b.12b.1
Empfängerrecipient
2b.22b.2
Umsetzerconverter
2b.32b.3
Energiespeicherenergy storage
33
Steuerungsteering
44
Kommunikationsknotencommunication node
RR
Warenregalgoods shelf

Claims (8)

  1. Sensor system (1) for monitoring an occupancy of a storage rack (R), comprising:
    at least one sensor (2.1 to 2.4), which detects the occupancy of a compartment of the storage rack (R) and makes it available as sensor data, and
    at least one communication node (4) that communicates wirelessly with the sensor (2.1 to 2.4),
    wherein the sensor (2.1 to 2.4) has a wireless interface (2a) that is designed in such a way that the wireless interface (2a) wirelessly transmits sensor data to the communication node (4),
    characterized in that the wireless interface (2a) receives data from the communication node (4) wirelessly, the communication node (4) emits electromagnetic high-frequency radiation, and the sensor (2.1 to 2.4) comprises a power module (2b), the power module (2b) having a receiver (2b.1) receiving the high-frequency radiation, a converter (2b.2) converting high-frequency energy of the high-frequency radiation into electrical voltage, and an energy storage (2b.3) for supplying the sensor (2.1 to 2.4) with stored electrical energy,
    wherein the sensor data is transmittable in a frequency band that is different from a frequency band in which the high-frequency radiation is transmittable to the sensor (2.1 to 2.4).
  2. Sensor system (1) according to claim 1, characterized in that the sensor (2.1 to 2.4) comprises an optical, capacitive or inductive sensor, or an RFID reader.
  3. Sensor system (1) according to claim 1 or 2, characterized in that the sensor (2.1 to 2.4) receives the data and high-frequency radiation on a first common channel and transmits the sensor data on a second channel.
  4. Sensor system (1) according to any one of the preceding claims 1 to 3, characterized in that the communication node (4) communicates an activation signal prior to a transmission of the high-frequency radiation by the communication node (4), wherein the activation signal activates the sensor (2.1 to 2.4) for receiving the high-frequency radiation.
  5. Sensor system (1) according to any of the preceding claims 1 to 4, characterized in that the sensor data reflect the occupancy of the compartment of the storage rack (R) and an energy level of the sensor (2.1 to 2.4).
  6. Sensor system (1) according to claim 5, characterized in that the communication node (4) prioritizes a transmission of the high-frequency radiation to the sensors (2.1 to 2.4) according to the energy level of the sensors (2.1 to 2.4).
  7. Sensor system (1) according to any of the preceding claims 1 to 6, characterized in that the wireless interface (2a) and the power module (2b) are formed together as a single common module or as separate modules.
  8. Sensor system (1) according to any of the preceding claims 1 to 7, characterized in that the energy storage (2b.3) of the power module (2b) comprises a capacitor or a rechargeable battery.
EP19210059.2A 2018-12-06 2019-11-19 Sensor system for monitoring an occupancy of a goods shelf Active EP3667637B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018131114.1A DE102018131114A1 (en) 2018-12-06 2018-12-06 Sensor system for monitoring the occupancy of a goods shelf

Publications (2)

Publication Number Publication Date
EP3667637A1 EP3667637A1 (en) 2020-06-17
EP3667637B1 true EP3667637B1 (en) 2022-04-27

Family

ID=68618047

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19210059.2A Active EP3667637B1 (en) 2018-12-06 2019-11-19 Sensor system for monitoring an occupancy of a goods shelf

Country Status (2)

Country Link
EP (1) EP3667637B1 (en)
DE (1) DE102018131114A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4152595B2 (en) * 2001-01-11 2008-09-17 横浜ゴム株式会社 Transponder and its system
DE102009019657A1 (en) * 2009-04-30 2011-08-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 80686 Device and method for powering an RFID component
DE202014004232U1 (en) 2014-05-22 2015-08-26 Kesseböhmer Holding e.K. Shelf for self-service removal of baked goods
DE102016213239B4 (en) * 2016-02-12 2018-12-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. DEVICE FOR COMMUNICATING WITH COMMUNICATION DEVICES, CORRESPONDING COMMUNICATION DEVICE AND METHOD

Also Published As

Publication number Publication date
DE102018131114A1 (en) 2020-06-10
EP3667637A1 (en) 2020-06-17

Similar Documents

Publication Publication Date Title
DE19832628C2 (en) Transponder arrangement
DE112017005816T5 (en) VEHICLE BATTERY MONITORING DEVICE AND VEHICLE BATTERY MONITORING SYSTEM
DE102012210253A1 (en) Method for monitoring a battery
EP3519254B1 (en) Apparatus for determining the position of a mobile access device on the vehicle
DE112017004731T5 (en) Device for determining the accumulator power consumption
EP2142396A1 (en) Device for monitoring an energy storage
DE102014113832A1 (en) Data and measuring device for a door handle and method therefor
DE102015002078B3 (en) Battery cell for a battery of a motor vehicle, battery and motor vehicle
WO2019030339A1 (en) Access arrangement for a vehicle
DE102010042717A1 (en) Arrangement comprising a first and a second radio unit and a field device and a method for operating the same
WO2020239795A1 (en) Unlocking system and lock assembly having such an unlocking system
DE112017004747T5 (en) Device for determining the accumulator power consumption
DE102017223665A1 (en) Electric battery module
EP2852997B1 (en) Conditioning device and method for conditioning a data channel of a cell of an electric energy accumulator
DE112017001587T5 (en) Device for detecting the degradation of a secondary battery
EP3179261A1 (en) Status indicator and communication system for controlling batteries and associated monitoring and communication method
EP3667637B1 (en) Sensor system for monitoring an occupancy of a goods shelf
DE102016220860A1 (en) Method, apparatus and system for evaluating a traction battery
EP2595218A1 (en) Method for monitoring a battery
DE202018106954U1 (en) Sensor system for monitoring the occupancy of a goods shelf
DE102008003498B4 (en) Impact detection element for an aircraft, impact detection device constructed therewith, and method for monitoring impact processes on an aircraft
DE102012006247A1 (en) Device for operating electrochemical energy storage device e.g. lithium ion battery, of battery management system, has cell controllers that are provided with charge compensation device to perform charge balance between storage cells
WO2016071099A1 (en) Battery system and device for transmitting signals within the battery system
DE102012000583A1 (en) Battery arrangement for a motor vehicle
DE102012012965A1 (en) Device for controlling access authorization and driving authorization of vehicle, has mobile communication device and control unit for checking access authorization data and driving authorization data

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201217

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220111

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20220318

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1487552

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019004187

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220829

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220728

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220827

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019004187

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

26N No opposition filed

Effective date: 20230130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231130

Year of fee payment: 5

Ref country code: DE

Payment date: 20231120

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20191119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427