EP3667182B1 - Heat pump assembly - Google Patents
Heat pump assembly Download PDFInfo
- Publication number
- EP3667182B1 EP3667182B1 EP19213760.2A EP19213760A EP3667182B1 EP 3667182 B1 EP3667182 B1 EP 3667182B1 EP 19213760 A EP19213760 A EP 19213760A EP 3667182 B1 EP3667182 B1 EP 3667182B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heating
- cooling
- heat
- temperature
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010438 heat treatment Methods 0.000 claims description 179
- 238000001816 cooling Methods 0.000 claims description 177
- 239000007788 liquid Substances 0.000 claims description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 25
- 238000006073 displacement reaction Methods 0.000 claims description 6
- 239000008236 heating water Substances 0.000 claims description 4
- 238000009434 installation Methods 0.000 claims 16
- 230000001419 dependent effect Effects 0.000 claims 1
- 238000003860 storage Methods 0.000 description 27
- 239000003507 refrigerant Substances 0.000 description 11
- 239000012267 brine Substances 0.000 description 7
- 230000002441 reversible effect Effects 0.000 description 7
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 7
- 230000006870 function Effects 0.000 description 5
- 238000013021 overheating Methods 0.000 description 5
- 239000003570 air Substances 0.000 description 4
- 238000004378 air conditioning Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000012080 ambient air Substances 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000005057 refrigeration Methods 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 235000013361 beverage Nutrition 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F5/00—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
- F24F5/0096—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater combined with domestic apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D11/00—Central heating systems using heat accumulated in storage masses
- F24D11/02—Central heating systems using heat accumulated in storage masses using heat pumps
- F24D11/0214—Central heating systems using heat accumulated in storage masses using heat pumps water heating system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D17/00—Domestic hot-water supply systems
- F24D17/02—Domestic hot-water supply systems using heat pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/89—Arrangement or mounting of control or safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D11/00—Central heating systems using heat accumulated in storage masses
- F24D11/02—Central heating systems using heat accumulated in storage masses using heat pumps
- F24D11/0214—Central heating systems using heat accumulated in storage masses using heat pumps water heating system
- F24D11/0221—Central heating systems using heat accumulated in storage masses using heat pumps water heating system combined with solar energy
Definitions
- the invention relates to a heat pump system that is designed for simultaneous heating and cooling.
- An example is the supply of a building from which heat has to be dissipated (e.g. server room) and at the same time heat has to be supplied at another point (e.g. heating of offices).
- Such supply tasks can be carried out in different ways.
- One possibility is to ensure the heat is supplied by an electrically or fossil-fuelled heat generator and the heat is removed by a chiller.
- a heat pump is integrated in such a way that both its heat source side and its heat sink side are used for heating and cooling at the same time.
- the heat pump has an evaporator on the heat source side and a condenser on the heat sink side.
- the evaporator is to be cooled by a heat transfer medium such. B. cooling water flows through.
- the condenser is simultaneously heated by a heat transfer medium, e.g. B. heating water flows through. Since in this case heat is shifted from the heat source side to the heat sink side, this type of integration and supply is also referred to as heat shift in the following.
- the heating and cooling capacity requirements in most applications, especially in building supply are not in the same, constant ratio to one another and, in particular, fluctuate over the year.
- the cooling capacity requirement will typically predominate in the warm summer months and the heating capacity requirement in the colder winter months.
- the center has a cold storage tank, which is fed with ambient heat from a solar system or an air-water heat pump.
- a water-water heat pump takes heat from the cold storage tank and feeds it into a hot water storage tank, which is used to supply rooms.
- the air-water heat pump is used directly to cool the rooms.
- the present invention is based on the object of specifying a heat pump system which is designed for simultaneous heating and cooling and which has a high level of efficiency, in particular the highest possible TER index (Total Efficiency Ratio).
- the object is achieved according to the invention by a heat pump system with the features of claim 1.
- the heat pump system is for simultaneous Formed heating and cooling and has a first heat pump, which is designed as a liquid-liquid heat pump.
- the heat pump is connected to a heat source on a source side and to a heat sink on a sink side, each via a liquid/liquid heat exchanger.
- the heat pump generally has a refrigerant circuit with an evaporator and a condenser and with an electrically driven compressor.
- a liquid-liquid heat pump is used here, this means that a liquid is used as the heat carrier on both the source side and the sink side, so that the heat on the source side is transferred from the liquid to a refrigeration circuit of the heat pump or heat is transferred from the sink side Refrigeration cycle is discharged into the liquid.
- the liquid can be water, brine or a water-glycol mixture.
- Different heat carriers can be used on the source side and sink side, for example water on the one hand and brine on the other.
- Brine and water-glycol mixtures often have a freezing point below 0°C and are therefore suitable for cooling circuits with particularly low temperatures.
- the term "brine” is used both for the actual brine (solution of technical salts in water) and for a glycol-water mixture.
- the heat source generally has a cooling circuit in which a liquid (water or brine) circulates as a heat carrier during operation and which has a cooling flow, a cooling return, a cooling buffer tank for cold water and - when connected - at least one Has cooling consumer.
- a liquid water or brine
- Cooling consumer is cooled or another heat transfer medium.
- the cooling consumer also referred to as a cooler, is preferably used for room cooling.
- the cooler can also be used for other cooling purposes, e.g. B. be used for cooling cold or freezer rooms.
- the heat pump system is used in particular for building air conditioning and, if necessary, additionally for the provision of heated service water.
- the heat pump system is used, for example, in the food and beverages industry and/or in industrial processes where there is a need for cooling, e.g. B. for cooling food, equipment, etc. and a heating requirement z. B. for building heating, water heating, for heating equipment, etc. is required.
- the heat sink includes a heating circuit in which a liquid (in particular water) circulates as a heat carrier during operation with a heating flow, a heating return, a heating buffer storage tank for heating water and - when connected - with at least one heating -Consumers who are trained to heat their surroundings.
- the heating consumer is preferably used in turn for direct heating, for example, the air in a room, but can also be used to heat another heat transfer medium.
- the heat source and/or the heat sink is preferably finally formed by the cooling circuit or heating circuit connected to it.
- the heating circuit has a hot water tank in which service water is heated.
- heat is shifted between the cooling circuit and the heating circuit via the first heat pump, so that cooling capacity is provided on the cooling circuit side and heating capacity on the heating circuit side at the same time.
- heat/cold is shifted between the two circuits and in particular between the cooling buffer tank and the heating buffer tank or hot water tank.
- heat is shifted from the cooling buffer tank to the heating circuit, specifically to the heating buffer tank/to the hot water tank.
- the cold comes from the The heating buffer tank / the hot water tank is shifted to the cooling circuit, specifically to the cooling buffer tank.
- Normal operation is understood here to mean an operating situation in which the first heat pump is in operation.
- the first heat pump is only operated under predetermined boundary conditions, in particular temperature conditions in the heating circuit or in the cooling circuit.
- an additional unit is also integrated into the heat pump system, which is hydraulically connected to both the cooling circuit and the heating circuit and, if necessary, is fluidically connected to either the cooling circuit or the heating circuit via appropriate valves, for example so that either additional heat is fed into the heating circuit or additional cold is hydraulically fed into the cooling circuit.
- heat or cold is transferred to the heating circuit or cooling circuit by means of a heat exchanger. This applies in particular if different liquids are used in the cooling circuit (or in the heating circuit) and the connected additional unit (e.g. brine/water) and the liquids must be separated.
- Connected hydraulically and/or fluidically means that a liquid exchange takes place from a circuit connected to the additional unit to the cooling circuit or to the heating circuit.
- Hydraulically connected is generally understood to mean a pipe connection for the liquid, which can be closed via a valve if necessary.
- the at least one additional unit is designed both to provide additional heat for the heating circuit and to provide additional cold for the cooling circuit and provides either heat or cold as required.
- the heat pump system as a whole has a control unit that is designed to control the operation of the heat pump system.
- the heat equalization is therefore provided hydraulically via the additional unit. It is therefore not necessary for the first heat pump—for example when there is an increased need for cooling—to emit heat unused to the environment.
- the first heat pump can therefore be operated in a highly efficient manner overall. Efficient operation is also supported by the integrated buffer storage. As a result, on the one hand, a desired temperature level can be maintained even with fluctuating load requirements and - at least temporary - shifts between the required cooling capacity and heating capacity can be adjusted via the respective buffer storage z.
- B. be intercepted by overheating or overcooling without the need to switch on the at least one additional unit. Overheating or undercooling is generally understood to mean an additional heat input or cold input into the buffer storage tank above a target temperature and up to a maximum/minimum temperature.
- This additional unit is a second heat pump, which is designed as a reversible air/liquid heat pump.
- This has a refrigerant circuit with an air-refrigerant heat exchanger and a refrigerant/liquid heat exchanger.
- the second heat pump can still be operated in reverse, so that the heat exchangers can be used as an evaporator and as a condenser, depending on the operating mode.
- the air/refrigerant heat exchanger absorbs heat from the ambient air in a heating mode and gives off heat to the ambient air in a cooling mode.
- heat is released in the heating mode and cold is provided in the cooling mode.
- Both the heat displacement and the heat equalization are therefore provided by two heat pumps, namely the first heat pump and the second heat pump. While the first heat pump cannot be operated in a reversible manner, a particular advantage of the second heat pump can be seen in its reversible operating mode, so that both heat and cold can be provided with just one additional unit.
- the second heat pump For the hydraulic integration of the second heat pump, it can be fluidically connected either to the heating circuit or to the cooling circuit via a first multi-way valve, which is designed in particular as a switching valve.
- Fluidically connectable is understood to mean that the liquid flowing through the refrigerant/liquid heat exchanger of the second heat pump is fed directly fluidically into the heating circuit or into the cooling circuit, ie a liquid exchange takes place.
- the second heat pump is fluidically connected only to the heating circuit in the heating mode and only to the cooling circuit in the cooling mode.
- a feed bypass line is provided for this purpose, which connects the cooling feed to the heating feed.
- the second heat pump has a flow, which is typically connected to the refrigerant-liquid heat exchanger. This flow is fluidically connected via the first multi-way valve in the cooling mode with the cooling flow of the cooling circuit and in the heating mode with the heating flow of the heating circuit.
- a return bypass line is formed, which connects the cooling return to the heating return.
- the second heat pump also has a return, which in turn is connected to the refrigerant-liquid heat exchanger. This is in turn fluidly connected via a second multi-way valve in the cooling mode to the cooling return and in the heating mode to the heating return.
- the two bypass lines and the two multi-way valves which are designed in particular as simple changeover valves, achieve an expedient hydraulic integration of the second heat pump into the heating circuit or the cooling circuit of the heat pump system.
- the respective consumer is either connected in series to the respective buffer store assigned to it or arranged in parallel thereto.
- the consumer is in each case in a consumer group integrated.
- the flow for the consumer is connected to the buffer tank.
- the return flow of the consumer is also connected to the buffer tank.
- the consumer return is directly connected to the heating return or the cooling return. If it is said here that a respective consumer is connected to the respective buffer memory assigned to him, this means that the heating consumer is connected to the heating buffer memory and the cooling consumer is connected to the cooling buffer memory. Connected is also understood to mean a hydraulic connection in each case.
- the first heat pump has priority over the additional unit, ie over the second heat pump.
- the first heat pump is therefore always in operation (normal operation) as long as it is permissible - within specified temperature limits - to move heat from the cooling circuit to the heating circuit.
- the first heat pump is only blocked for operation when a maximum heating temperature in the heating buffer tank or a minimum cooling temperature in the cooling buffer tank is reached.
- This operating mode in which normal operation is prevented and in particular only the additional unit is active, is called Additional operating mode called. In this case, heat displacement between the heating circuit and the cooling circuit is no longer permissible, since this would lead to the desired maximum heating temperature being exceeded or the desired minimum cooling temperature not being reached.
- the control unit is also designed in such a way that the additional unit, ie the second heat pump, is only switched on when the temperature in the heating buffer storage falls below a target heating temperature or the target cooling temperature in the cooling buffer storage is exceeded.
- additional heat is introduced into the heating circuit or additional cold into the cooling circuit by means of the additional unit.
- the additional unit is in operation in addition to the first heat pump. I.e. the normal operation is supplemented by the heating mode or the cooling mode of the additional unit.
- This operating mode is referred to as the support operating mode and is therefore a combined operating mode that is made up of normal operation and the heating or cooling mode.
- the additional unit is therefore used to regulate the temperature to the target temperature. In contrast to the first heat pump, no overheating or undercooling of the respective buffer storage is provided.
- the temperature values each define switching points for the control and regulation of the heat pump system. Switching, for example switching the additional unit on or off, switching the first heat pump on or off, takes place when the target temperature or the minimum and maximum temperatures (also referred to as switching temperatures) are exceeded or not reached, with each of these temperature values also having a Hysteresis is provided, i.e. switching only takes place if the respective temperature (switching temperature) plus a hysteresis temperature value of e.g. B. 2 to 5K, especially 3K, exceeded or fallen below.
- the desired heating temperature is expediently in a range from 30° to 60°C and in particular in a range from 30° to 45°C.
- the desired cooling temperature is preferably in a range from 5° to 20°C and in particular in a range from 8° to 18°C, for example preferably 15°C.
- water in particular is used as the heat carrier in the cooling circuit.
- Such temperatures in the cooling circuit are used in particular for cooling rooms used by people.
- the target cooling temperature is in a range from -15°C to 20°C, in particular in the range from -9°C to 10°C.
- the heating target temperature is preferably about 35°C.
- the cooling target temperature - in an application for building air conditioning for example by 10 ° to 20 ° C or 10 ° to 25 ° C below the heating target temperature. In these temperature ranges, a good building supply is achieved both for room air conditioning and for the provision of service water, for example.
- the setpoint temperatures relate in particular to the hottest (heating buffer storage) or coldest (cooling buffer storage) temperature in the buffer storage, in particular at an output of the buffer storage in a flow path to the consumer.
- the return temperatures from consumers are correspondingly lower (in the heating circuit) or higher (in the cooling circuit), for example by 5-10K.
- a temperature difference between the maximum heating temperature and the desired heating temperature is expediently in the range between 5 and 25K and in particular in the range between 10 and 15K. Furthermore or alternatively, a temperature difference between the minimum cooling temperature and the target cooling temperature is in the range between 5 and 20K and in particular in the range between 8 and 12K.
- the difference between the heating target temperature and the cooling target temperature is still - in particular in an application for building air conditioning - in the range from 10 to 40K, and especially in the range from 15 to 35K.
- the specified temperature values i.e. both the setpoint temperatures and the maximum/minimum temperatures, can preferably be set in each case, either during production when the heat pump system is configured, but preferably also during operation, for example by the user, or also automatically, in particular depending on current requirements. e.g. B. a current ambient temperature.
- control unit is also designed in such a way that the additional unit is only switched on in an additional operating mode when the first heat pump is blocked for operation. Therefore, no simultaneous operation of the first heat pump and the additional unit, ie the second heat pump, is provided in the additional operating mode.
- the first heat pump is preferably only designed for part of the maximum heating and/or cooling requirement, for example only up to a maximum of 75% or only up to a maximum of 50% of the maximum heating and/or cooling requirement. This is generally understood to mean that - based on a maximum required heating output and maximum required cooling output determined for the respective object (e.g. building, process) - the first heat pump is only used for part of this specific heating output and/or or cooling capacity is designed. This ensures that operation is as permanent as possible in the sense of a base load by the first heat pump.
- the additional unit is switched on for additional heating or cooling requirements.
- the required heat or cold is ensured both by heat displacement via the first heat pump and by additional heat or cold input via the second heat pump.
- the heating and cooling capacity of the first heat pump is also lower than the heating and cooling capacity of the additional unit, ie the second heat pump. It is preferably only a maximum of 80% or only a maximum of 50% of the heating and cooling capacity of the additional unit, ie the second heat pump.
- control unit is also designed in such a way that the minimum cooling temperature and/or the maximum heating temperature is varied during operation of the heat pump system.
- the temperature difference to the respective setpoint temperature ie to the heating setpoint temperature or cooling setpoint temperature, is varied automatically.
- This measure makes it possible during operation to adapt the loading status of the buffer storage tank, i.e. the degree of overheating or undercooling, to current situations, for example setting a higher loading status of the heating buffer storage tank when a large amount of heat is currently available.
- This is the case, for example, when the provision of heat is additionally supported by a solar-generated energy input, for example by a solar thermal system, in which solar-heated heating water is used to load the heating buffer tank.
- a regenerative heating or cooling generator is therefore additionally connected to the heat pump system.
- a regenerative heat or cold generator is understood to mean a generator that generates the heat/cold using regeneratively generated energies (solar, wind power ).
- control unit is also designed in such a way that the aforementioned variation takes place as a function of a currently excess energy supply or a current energy price.
- the excess energy supply is, for example, the previously mentioned solar-generated heat.
- the control unit preferably also takes currently valid energy prices into account as an alternative or in addition. For example, during favorable electricity tariff times (night electricity), the maximum or minimum temperature is set higher or lower, so that the degree of loading of the buffer storage is increased, which is charged at more or less low energy prices. At the same time, excessive loading beyond what is necessary is avoided during peak periods of high energy prices.
- control unit is also integrated into an intelligent power distribution network so that energy is temporarily stored in the buffer storage tanks when the network loads are low by increasing the maximum/minimum temperatures.
- the heat pump system 2 shown has a first heat pump 4 to which a cooling circuit 6 is connected on a source side as a heat source and a heating circuit 8 is connected on a sink side as a heat sink.
- the first heat pump 4 has, in a manner not shown in detail, a conventional structure with a refrigerant circuit in which an evaporator is connected in particular on the heat source side and a condenser is connected on the heat sink side.
- the evaporator and the condenser are each designed as a refrigerant/liquid heat exchanger in order to remove heat absorb a liquid heat transfer medium of the cooling circuit 6 and give off heat to a liquid heat transfer medium of the heating circuit 8 .
- the cooling circuit has a cooling flow 6A and a cooling return 6B.
- the heating circuit 8 also has a heating flow 8A and a heating return 8B.
- a cooling buffer store 10 and a cooling consumer 12 are integrated into the cooling circuit 6 in each case.
- a heating buffer tank 14 and a heating consumer 16 are integrated in the heating circuit 8 .
- more than one consumer 12,16 can be integrated into the respective cooling or heating circuit 6,8.
- a hot water tank 18 for hot water is still involved.
- a first temperature sensor R1 is also assigned to the cooling buffer storage tank 10 and a second temperature sensor R2 is assigned to the heating buffer storage tank 14 .
- the following temperature values for the target temperatures or the maximum/minimum values refer to temperatures when the temperature sensor R1, R2 is arranged at the buffer outlet.
- the heat pump system 2 has pumps 20 both in the heating circuit 8 and in the cooling circuit 6 .
- a pump 20 is connected in the exemplary embodiment in each case in the cooling return 6B or in the heating return 8B and in each case a further pump below the respective buffer memory 10,14 before the respective consumer 12,16 in a consumer circuit.
- the respective supply 6A, 8A to the respective consumer 12,16 is represented by a solid line and the return 6B, 8B by a dashed line.
- a consumer flow is arranged at an outlet of the respective buffer memory 10,14 and a return of the consumer 12.16 is directly connected to the cooling return 6B or heating return 8B.
- a parallel arrangement of the respective consumer 12,16 is provided.
- the consumer -return is connected to the buffer memory 10.14.
- a valve 24 is arranged in the cooling circuit 6 or heating circuit 8, which is designed in particular as a mixing valve. At least part of the heat transfer medium flowing back from the consumer 12, 16 can be added to the heat transfer medium flowing out of the buffer store 10, 14 in order to set a desired mixing temperature. To compensate for pressure differences in the flow and return is in the variant of the 1 Furthermore, a compensation element, in particular a so-called double differential pressureless distributor 25 is arranged.
- the heat pump system 2 has a second heat pump 26 which is designed as a reversible air/liquid heat pump.
- This has a refrigerant/liquid heat exchanger, not shown in detail here, which is connected on the one hand to an inlet 26A and to a return 26B.
- a feed bypass line 28 is arranged, which connects the cooling feed 6A to the heating feed 8A, bypassing the first heat pump 4 .
- a return bypass line 30 is arranged in a comparable manner, which connects the cooling return 6B to the heating return 8B, bypassing the first heat pump 4 .
- the feed 26A of the second heat pump 26 is now connected to the feed bypass line 28 via a first multi-way valve 32, which is preferably designed purely as a switching valve.
- the return 26B is connected to the return bypass line 30 via a second multi-way valve 34, which is also preferably in the form of a simple switching valve.
- a frame is shown in each case, which is a system boundary between the actual heat pump system and the consumer circuits connected to it when installed.
- interfaces for example connections, are provided at the system boundary, via which the consumer circuits are connected.
- the heat pump system 2 shown serves to provide heat on the part of the heating circuit 8 and cold on the part of the cooling circuit 6 at the same time.
- the first heat pump 4 has priority over the second heat pump 26 and is designed to ensure that the two buffer storage tanks 10, 14 are kept at a specific temperature level and in particular do not fall below a heating setpoint temperature T_Soll,Hz or in the cooling buffer tank 10 a cooling setpoint temperature T_Soll ,K is not exceeded.
- Loading of the respective buffer store 10, 14 with cold or heat is provided up to a maximum heating temperature T_max in the heating buffer store 14 or up to a minimum cooling temperature T_min in the cooling buffer store 10.
- the target temperatures and the maximum/minimum temperatures are preferably adjustable and can also be varied during operation.
- the heat pump system 2 is operated in such a way that the setpoint temperatures T_Soll,Hz; T_Soll,K is controlled.
- the first heat pump 4 is operated with priority, for example continuously or in cycles. If there is an excessive heating requirement, heat is increasingly withdrawn from the cooling circuit 6, so that the cooling buffer store 10 is quasi “supercooled”. Conversely, the heating buffer tank 14 is "overheated” when there is an excess cooling requirement. If the preset maximum heating temperature T_max or the minimum cooling temperature T_min is reached, further operation of the first heat pump 4 is blocked. Any additional heating or cooling requirement is then provided by the second heat pump 26 .
- This is also designed as an electric compression heat pump, but in contrast to the first heat pump 4 can be operated in reverse, ie the circuit can be operated in the reverse direction of flow by appropriate control.
- the function of the heat exchanger of the second heat pump 26 can therefore be switched between the evaporator and the condenser by reversing the direction of flow.
- the temperature values T_R1, T_R2 of the temperature sensors R1, R2 are first queried and evaluated. These temperature values T_R1, T_R2 are used to determine whether there is a heating or cooling requirement. If this is not the case, the first heat pump 4 and the second heat pump 26 are deactivated, ie switched off, or are not switched on. Ie the refrigerant circuit is not active, there is no heat displacement.
- the first heat pump 4 is enabled. If this is not the case, the second heat pump 26 is switched on. If the first heat pump 4 is enabled on the other hand, the first heat pump 4 is activated and switched on, so that heat is shifted from the cooling circuit 6 to the heating circuit 8 . If the second heat pump 26 is activated, heat is equalized.
- the temperature values T_R1, T_R2 are queried and evaluated continuously during operation, for example at discrete time intervals. If the second heat pump 26 is switched on, it either only introduces heat into the heating circuit 8 or cold into the cooling circuit 6. If, for example, the first heat pump 4 is released again later due to the operation of the second heat pump 26, this is preferably the case the second heat pump 26 deactivated again.
- the diagram according to the Figure 3A can be supplemented to the effect that subsequently to the check as to whether the first heat pump 4 is released, in the "yes case” it is still checked whether the second heat pump 26 is active. If this is the case, it is switched off.
- the control and regulation of the heat pump system 2 takes place with the aid of a control unit not shown in detail here.
- the diagram according to Figure 3B shows the control algorithm for querying whether there is a demand. For this purpose, it is checked whether the temperature T_R1 of the first temperature sensor R1 is greater than the cooling target temperature T_Soll,K. Furthermore, it is checked whether the temperature T_R2 of the second temperature sensor R2 is lower than the desired heating temperature T_Soll,Hz. If one of these conditions is met, a need is recognized.
- Figure 3C shows the control algorithm for querying whether the first heat pump 4 can be released.
- the temperature T_R1 of the first temperature sensor R1 is greater than the minimum cooling temperature T_min.
- the temperature T_R2 of the second temperature sensor R2 is lower than the maximum heating temperature T_max. If one of these conditions is not met, i.e. if the temperature T_R1, T_R2 in the cooling buffer tank 10 or in the heating buffer tank 14 has reached the minimum cooling temperature T_min or the maximum heating temperature T_max, the first heat pump 4 is blocked and cannot be activated become. Otherwise, if these conditions are not present, the first heat pump 4 is released for operation.
- the desired heating temperature T_Soll,Hz is, for example, in the range between 30° and 60° and in particular in a range from 30° to 45°C and specifically at 35°C. If this falls below, the first heat pump 4 is switched on or, if necessary, the second heat pump 26 is switched on in the heating mode.
- the target cooling temperature T_Soll,K is, for example, in the range from 5° to 20°C, specifically in the range from 8° to 18°C and in particular, for example, at 12°C. If this is exceeded, the first heat pump is switched on again 4 or if this is blocked, switching on the second heat pump 26.
- the maximum heating temperature T_max is for example 10° to 30°C, preferably 10° to 20°C and for example 10°C above the heating target temperature T_Soll, Hz. Buffer memory 14 allows up to this maximum heating temperature T_max. Conversely, this also applies to supercooling of the cooling buffer store 10.
- the minimum cooling temperature T_min is preferably also, for example, 10° to 15K below the cooling setpoint temperature T_Soll,K and, for example, 5K.
- the target temperatures T_Soll,Hz; T_Soll,K are controlled during operation as required, for example as a function of the outside temperature outside the building or as a function of the requirements of an industrial process.
- the desired difference from the maximum and minimum temperatures T_max, T_min is preferably defined, so that the absolute values for these maximum and minimum temperatures are tracked.
- the temperature difference between the setpoint temperatures T_Soll,Hz; T_Soll,K and the maximum and minimum temperatures T_max; T_min varies or the absolute values of the maximum or minimum temperatures T_max; T_min varies.
- this variation takes place automatically by means of the control device, which is not shown here, in particular as a function of a current energy price.
- the control device which is not shown here, in particular as a function of a current energy price.
- the temperature difference and/or the maximum values are increased (decreased), so that the degree of loading of the buffer storage tanks 10,14, i.e. their overheating or undercooling, can be increased.
- valves 24 are designed as mixing valves, so that a so-called Return admixture is realized in order to set the respective consumer flow temperature to the required temperature level.
- These valves 24 are also controlled by the control unit.
- Consumers 12, 16 are preferably controlled externally, e.g. via a building management system, i.e. the temperature level for consumers 12, 16 is set externally.
- a building management system i.e. the temperature level for consumers 12, 16 is set externally.
- more than one consumer (circuit) can be connected to a respective buffer storage 10,14.
- the entire system is designed for mono-energetic operation, so that preferably only an electrical energy supply is provided.
- the two heat pumps 4.26 are operated with electrical energy.
- additional electric heating elements can be arranged, for example, in the heating buffer tank 14 in order to ensure an efficient heat supply even at low outside temperatures.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Steam Or Hot-Water Central Heating Systems (AREA)
Description
Die Erfindung betrifft eine Wärmepumpenanlage, die zum gleichzeitigen Heizen und Kühlen ausgebildet ist.The invention relates to a heat pump system that is designed for simultaneous heating and cooling.
Anwendungsfälle mit zeitlich parallelem Heiz- und Kühlleistungsbedarf sind vielfältig. Beispielhaft sei die Versorgung eines Gebäudes genannt, aus dem zum einen Wärme abgeführt werden muss (z. B. Serverraum) und zeitgleich an einer anderen Stelle Wärme zugeführt werden muss (z. B. Beheizung von Büroräumen). Solche Versorgungsaufgaben können auf unterschiedliche Art und Weise erfolgen. Eine Möglichkeit besteht darin, die Wärmezufuhr durch einen elektrisch oder fossil betriebenen Wärmeerzeuger und die Wärmeabfuhr durch eine Kältemaschine sicherzustellen.There are many different applications with simultaneous heating and cooling requirements. An example is the supply of a building from which heat has to be dissipated (e.g. server room) and at the same time heat has to be supplied at another point (e.g. heating of offices). Such supply tasks can be carried out in different ways. One possibility is to ensure the heat is supplied by an electrically or fossil-fuelled heat generator and the heat is removed by a chiller.
Darüber hinaus besteht auch die Möglichkeit, eine solche ganzheitliche Versorgung eines Gebäudes unter Ausnutzung eines Wärmepumpen-Kreisprozesses anhand einer Heiz-Kühl-Anlage sicherzustellen. Dazu wird eine Wärmepumpe derart eingebunden, dass sowohl ihre Wärmequellen-Seite als auch ihre Wärmesenke-Seite für die gleichzeitig Beheizung und Kühlung genutzt werden. Die Wärmepumpe weist hierzu Wärmequellen-seitig einen Verdampfer und Wärmesenken-seitig einen Kondensator auf. Der Verdampfer wird von einem zu kühlenden Wärmeträger, z. B. Kühlwasser, durchströmt. Der Kondensator wird gleichzeitig von einem zu erhitzenden Wärmeträger, z. B. Heizwasser durchströmt. Da hierbei Wärme von der Wärmequellen-Seite zu der Wärmesenken-Seite verschoben wird, wird diese Art der Einbindung und Versorgung nachfolgend auch als Wärmeverschiebung bezeichnet.In addition, there is also the possibility of ensuring such a holistic supply of a building using a heat pump cycle using a heating-cooling system. For this purpose, a heat pump is integrated in such a way that both its heat source side and its heat sink side are used for heating and cooling at the same time. For this purpose, the heat pump has an evaporator on the heat source side and a condenser on the heat sink side. The evaporator is to be cooled by a heat transfer medium such. B. cooling water flows through. The condenser is simultaneously heated by a heat transfer medium, e.g. B. heating water flows through. Since in this case heat is shifted from the heat source side to the heat sink side, this type of integration and supply is also referred to as heat shift in the following.
Bei derartigen parallelen Heiz- und Kühlsystemen ist jedoch zu beachten, dass der Heiz- und Kühlleistungsbedarf in den meisten Anwendungsfällen, speziell in der Gebäudeversorgung, nicht im gleichen, konstanten Verhältnis zueinander stehen und insbesondere über das Jahr gesehen schwankt. So wird beispielsweise typischerweise in den warmen Sommermonaten der Kühlleistungsbedarf und in den kälteren Wintermonaten der Heizleistungsbedarf überwiegen.With such parallel heating and cooling systems, however, it should be noted that the heating and cooling capacity requirements in most applications, especially in building supply, are not in the same, constant ratio to one another and, in particular, fluctuate over the year. For example, the cooling capacity requirement will typically predominate in the warm summer months and the heating capacity requirement in the colder winter months.
Um eine Versorgung beispielsweise eines Gebäudes auf Basis der zuvor beschriebenen Wärmeverschiebung dennoch sicherzustellen, wird - je nach aktueller Situation - zusätzliche Wärme zu- oder abgeführt. Bei einem erhöhten Kühlleistungsbedarf wird also beispielsweise überschüssige Wärme an die Umgebung abgeführt. Umgekehrt wird bei einem erhöhten Heizleistungsbedarf zusätzlich Wärme aus der Umgebung aufgenommen. Die Umgebung liegt hierbei jeweils außerhalb des zu versorgenden Bereichs, beispielsweise also außerhalb des mit Wärme / Kälte zu versorgenden Gebäudes. Dies ist häufig jedoch mit Effizienzeinbußen verbunden.In order to nevertheless ensure the supply of a building, for example, on the basis of the heat displacement described above, additional heat is supplied or removed, depending on the current situation. If there is an increased need for cooling, for example, excess heat is dissipated to the environment. Conversely, when there is an increased heating requirement, additional heat is absorbed from the environment. The environment is in each case outside the area to be supplied, for example outside the building to be supplied with heat/cold. However, this is often associated with losses in efficiency.
Aus der
Ausgehend hiervon liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine Wärmepumpenanlage anzugeben, die zum gleichzeitigen Heizen und Kühlen ausgebildet ist und die eine hohe Effizienz, insbesondere eine möglichst hohe TER-Kennzahl (Total Efficiency Ratio) aufweist.Proceeding from this, the present invention is based on the object of specifying a heat pump system which is designed for simultaneous heating and cooling and which has a high level of efficiency, in particular the highest possible TER index (Total Efficiency Ratio).
Die Aufgabe wird erfindungsgemäß gelöst durch eine Wärmepumpenanlage mit den Merkmalen des Anspruchs 1. Die Wärmepumpenanlage ist zum gleichzeitigen Heizen und Kühlen ausgebildet und weist eine erste Wärmepumpe auf, die als Flüssigkeits-Flüssigkeits-Wärmepumpe ausgebildet ist. Die Wärmepumpe ist an einer Quellenseite mit einer Wärmequelle und an einer Senkenseite mit einer Wärmesenke jeweils über einen Flüssigkeits / Flüssigkeits Wärmetauscher verbunden. Die Wärmepumpe weist allgemein einen Kältemittelkreislauf mit einem Verdampfer und einem Kondensator sowie mit einem elektrisch angetriebenen Kompressor auf.The object is achieved according to the invention by a heat pump system with the features of claim 1. The heat pump system is for simultaneous Formed heating and cooling and has a first heat pump, which is designed as a liquid-liquid heat pump. The heat pump is connected to a heat source on a source side and to a heat sink on a sink side, each via a liquid/liquid heat exchanger. The heat pump generally has a refrigerant circuit with an evaporator and a condenser and with an electrically driven compressor.
Sofern vorliegend von einer Flüssigkeits-Flüssigkeits-Wärmepumpe gesprochen wird, so wird hierunter verstanden, dass sowohl quellenseitig als auch senkenseitig als Wärmeträger eine Flüssigkeit verwendet ist, sodass also die Wärme quellenseitig von der Flüssigkeit an einen Kältekreislauf der Wärmepumpe abgegeben wird bzw. senkenseitig Wärme vom Kältekreislauf in die Flüssigkeit abgegeben wird. Bei der Flüssigkeit kann es sich um Wasser, um Sole oder auch um eine Wasser-Glykolmischung handeln. Dabei können quellenseitig und senkenseitig unterschiedliche Wärmeträger, beispielsweise Wasser auf der einen Seite und Sole auf der anderen Seite, verwendet werden. Sole und Wasser-Glykolmischungen weisen häufig einen Gefrierpunkt unter 0°C auf und eignen sich daher für Kühlkreise mit besonders tiefen Temperaturen. Nachfolgend wird der Begriff "Sole" gemeinsam für die eigentliche Sole (Lösung technischer Salze in Wasser) als auch für eine Glykol-Wasser-Mischung verwendet.If a liquid-liquid heat pump is used here, this means that a liquid is used as the heat carrier on both the source side and the sink side, so that the heat on the source side is transferred from the liquid to a refrigeration circuit of the heat pump or heat is transferred from the sink side Refrigeration cycle is discharged into the liquid. The liquid can be water, brine or a water-glycol mixture. Different heat carriers can be used on the source side and sink side, for example water on the one hand and brine on the other. Brine and water-glycol mixtures often have a freezing point below 0°C and are therefore suitable for cooling circuits with particularly low temperatures. In the following, the term "brine" is used both for the actual brine (solution of technical salts in water) and for a glycol-water mixture.
Die Wärmequelle weist dabei allgemein einen Kühlkreislauf auf, in dem im Betrieb als Wärmeträger eine Flüssigkeit (Wasser oder Sole) zirkuliert und der einen Kühl-Vorlauf, einen Kühl-Rücklauf, einen Kühl-Pufferspeicher für Kaltwasser sowie - in einem angeschlossenen Zustand - zumindest einen Kühl-Verbraucher aufweist.The heat source generally has a cooling circuit in which a liquid (water or brine) circulates as a heat carrier during operation and which has a cooling flow, a cooling return, a cooling buffer tank for cold water and - when connected - at least one Has cooling consumer.
Dieser dient zur Kühlung seiner Umgebung und nimmt dabei Wärme aus der Umgebung auf und gibt sie an die Flüssigkeit des Kühlkreislaufs ab. Unter Umgebung wird hierbei verstanden, dass unmittelbar beispielsweise die Umgebungsluft desThis serves to cool its surroundings and absorbs heat from the surroundings and transfers it to the liquid of the cooling circuit. Environment is understood here to mean that, for example, the ambient air of the
Kühl-Verbrauchers gekühlt wird oder auch ein weiteres Wärmeträgermedium. Vorzugsweise dient der Kühl-Verbraucher, auch als Kühler bezeichnet, zur Raumkühlung. Je nach Anwendung kann der Kühler auch zu anderen Kühlzwecken, z. B. zum Kühlen von Kühl- oder Gefrierräumen eingesetzt werden.Cooling consumer is cooled or another heat transfer medium. The cooling consumer, also referred to as a cooler, is preferably used for room cooling. Depending on the application, the cooler can also be used for other cooling purposes, e.g. B. be used for cooling cold or freezer rooms.
Die Wärmepumpenanlage wird insbesondere zur Gebäudeklimatisierung und ggf. ergänzend zur Bereitstellung von erwärmtem Brauchwasser eingesetzt. Alternativ wird die Wärmepumpenanlage beispielsweise in der Nahrungs- und Genussmittelindustrie und/oder in industriellen Prozessen eingesetzt, bei denen ein Kältebedarf z. B. zur Kühlung von Nahrungsmitteln, Betriebsmitteln etc. und ein Heizbedarf z. B. zur Gebäudeerwärmung, Warmwasserbereitung, zur Erwärmung von Betriebsmitteln, etc. erforderlich ist.The heat pump system is used in particular for building air conditioning and, if necessary, additionally for the provision of heated service water. Alternatively, the heat pump system is used, for example, in the food and beverages industry and/or in industrial processes where there is a need for cooling, e.g. B. for cooling food, equipment, etc. and a heating requirement z. B. for building heating, water heating, for heating equipment, etc. is required.
In ähnlicher Weise umfasst die Wärmesenke einen Heizkreis, in dem im Betrieb als Wärmeträger eine Flüssigkeit (insbesondere Wasser) zirkuliert mit einem Heiz-Vorlauf, einem Heiz-Rücklauf, einem Heiz-Pufferspeicher für Heizwasser sowie - in einem angeschlossenen Zustand - mit zumindest einem Heiz-Verbraucher, welcher zur Beheizung seiner Umgebung ausgebildet ist. Der Heiz-Verbraucher dient dabei vorzugsweise wiederum zur unmittelbaren Beheizung beispielsweise der Luft eines Raumes, kann aber auch zur Erwärmung eines weiteren Wärmeträgermediums dienen. Die Wärmequelle und/oder die Wärmesenke ist vorzugsweise abschließend durch den daran angeschlossenen Kühlkreis bzw. Heizkreis gebildet.In a similar way, the heat sink includes a heating circuit in which a liquid (in particular water) circulates as a heat carrier during operation with a heating flow, a heating return, a heating buffer storage tank for heating water and - when connected - with at least one heating -Consumers who are trained to heat their surroundings. The heating consumer is preferably used in turn for direct heating, for example, the air in a room, but can also be used to heat another heat transfer medium. The heat source and/or the heat sink is preferably finally formed by the cooling circuit or heating circuit connected to it.
Alternativ und insbesondere ergänzend zum Heiz-Pufferspeicher und dem Heiz-Verbraucher weist der Heizkreis einen Warmwasserspeicher auf, in dem Brauchwasser erwärmt wird.As an alternative and in particular as a supplement to the heating buffer tank and the heating consumer, the heating circuit has a hot water tank in which service water is heated.
Über die erste Wärmepumpe erfolgt im Betrieb, genauer in einem bestimmten Betriebsmodus (Normalbetrieb) eine Wärmeverschiebung zwischen dem Kühlkreis und dem Heizkreis, sodass gleichzeitig auf der Seite des Kühlkreises eine Kühlleistung und auf Seite des Heizkreises eine Heizleistung bereitgestellt wird. Es wird also insbesondere Wärme / Kälte zwischen den beiden Kreisen und insbesondere zwischen dem Kühl-Pufferspeicher und dem Heiz-Pufferspeicher bzw. Warmwasserspeicher verschoben. Es wird also insbesondere Wärme aus dem Kühl-Pufferspeicher in den Heizkreis, speziell in den Heiz-Pufferspeicher /in den Warmwasserspeicher verschoben. Alternativ oder ergänzend wird Kälte aus dem Heiz-Pufferspeicher / dem Warmwasserspeicher in den Kühlkreis, speziell in den Kühl-Pufferspeicher verschoben.During operation, more precisely in a specific operating mode (normal operation), heat is shifted between the cooling circuit and the heating circuit via the first heat pump, so that cooling capacity is provided on the cooling circuit side and heating capacity on the heating circuit side at the same time. In particular, heat/cold is shifted between the two circuits and in particular between the cooling buffer tank and the heating buffer tank or hot water tank. In particular, heat is shifted from the cooling buffer tank to the heating circuit, specifically to the heating buffer tank/to the hot water tank. Alternatively or in addition, the cold comes from the The heating buffer tank / the hot water tank is shifted to the cooling circuit, specifically to the cooling buffer tank.
Unter Normalbetrieb wird hierbei eine Betriebsituation verstanden, bei der die erste Wärmepumpe in Betrieb ist. Der Betrieb der ersten Wärmepumpe erfolgt nur unter vorgegebenen Randbedingungen, insbesondere Temperaturverhältnissen im Heizkreis bzw. im Kühlkreis.Normal operation is understood here to mean an operating situation in which the first heat pump is in operation. The first heat pump is only operated under predetermined boundary conditions, in particular temperature conditions in the heating circuit or in the cooling circuit.
Um bei unterschiedlichem Wärme- oder Kühlbedarf einen Wärmeausgleich zur Verfügung zu stellen, ist weiterhin eine Zusatzeinheit in die Wärmepumpenanlage integriert, welche hydraulisch sowohl am Kühlkreis und am Heizkreis angeschlossen ist und bei Bedarf beispielsweise über entsprechende Ventile entweder mit dem Kühlkreis oder mit dem Heizkreis strömungstechnisch verbunden ist, sodass also entweder zusätzliche Wärme in den Heizkreis oder zusätzliche Kälte auf hydraulischem Weg in den Kühlkreis eingespeist wird. Alternativ zu einer strömungstechnischen Verbindung erfolgt die Übertragung von Wärme oder von Kälte in den Heizkreis bzw. in den Kühlkreis mittels eines Wärmetauschers. Dies betrifft insbesondere den Fall, wenn im Kühlkreis (oder im Heizkreis) und der angeschlossenen Zusatzeinheit unterschiedliche Flüssigkeiten verwendet werden (z. B. Sole/Wasser) und eine Trennung der Flüssigkeiten gefordert ist.In order to provide heat compensation for different heat or cooling requirements, an additional unit is also integrated into the heat pump system, which is hydraulically connected to both the cooling circuit and the heating circuit and, if necessary, is fluidically connected to either the cooling circuit or the heating circuit via appropriate valves, for example so that either additional heat is fed into the heating circuit or additional cold is hydraulically fed into the cooling circuit. As an alternative to a fluidic connection, heat or cold is transferred to the heating circuit or cooling circuit by means of a heat exchanger. This applies in particular if different liquids are used in the cooling circuit (or in the heating circuit) and the connected additional unit (e.g. brine/water) and the liquids must be separated.
Auf hydraulischem Weg und/ oder strömungstechnisch verbunden bedeutet dabei, dass jeweils ein Flüssigkeitstausch von einem an der Zusatzeinheit angeschlossenen Kreislauf mit dem Kühlkreis bzw. mit dem Heizkreis erfolgt.Connected hydraulically and/or fluidically means that a liquid exchange takes place from a circuit connected to the additional unit to the cooling circuit or to the heating circuit.
Unter hydraulisch verbunden wird allgemein eine Rohrverbindung für die Flüssigkeit verstanden, die ggf. über ein Ventil verschließbar ist. Die zumindest eine Zusatzeinheit ist sowohl zur Bereitstellung von zusätzlicher Wärme für den Heizkreis als auch zur Bereitstellung von zusätzlicher Kälte für den Kühlkreis ausgebildet und stellt je nach Bedarf entweder Wärme oder Kälte zur Verfügung.Hydraulically connected is generally understood to mean a pipe connection for the liquid, which can be closed via a valve if necessary. The at least one additional unit is designed both to provide additional heat for the heating circuit and to provide additional cold for the cooling circuit and provides either heat or cold as required.
Weiterhin weist die Wärmepumpenanlage insgesamt eine Steuereinheit auf, die zur Steuerung des Betriebs der Wärmepumpenanlage ausgebildet ist.Furthermore, the heat pump system as a whole has a control unit that is designed to control the operation of the heat pump system.
Über die Zusatzeinheit wird daher auf hydraulischem Wege der Wärmeausgleich bereitgestellt. Es ist daher nicht erforderlich, dass die erste Wärmepumpe - beispielsweise bei einem erhöhten Kühlbedarf - Wärme ungenutzt an die Umgebung abgibt. Die erste Wärmepumpe kann daher insgesamt hoch effizient betrieben werden. Der effiziente Betrieb wird zudem auch durch die integrierten Pufferspeicher unterstützt. Hierdurch kann zum einen ein gewünschtes Temperaturniveau auch bei schwankenden Lastanforderungen gehalten werden und - zumindest temporäre - Verschiebungen zwischen der erforderlichen Kühlleistung und Heizleistung können über den jeweiligen Pufferspeicher z. B. durch Überhitzen bzw. Unterkühlen abgefangen werden, ohne dass ein Zuschalten der zumindest einen Zusatzeinheit erforderlich ist. Unter Überhitzen oder Unterkühlen wird allgemein ein zusätzlicher Wärmeeintrag oder Kälteeintrag in den Pufferspeicher über eine Solltemperatur hinaus und bis zu einer maximalen / minimalen Temperatur verstanden.The heat equalization is therefore provided hydraulically via the additional unit. It is therefore not necessary for the first heat pump—for example when there is an increased need for cooling—to emit heat unused to the environment. The first heat pump can therefore be operated in a highly efficient manner overall. Efficient operation is also supported by the integrated buffer storage. As a result, on the one hand, a desired temperature level can be maintained even with fluctuating load requirements and - at least temporary - shifts between the required cooling capacity and heating capacity can be adjusted via the respective buffer storage z. B. be intercepted by overheating or overcooling without the need to switch on the at least one additional unit. Overheating or undercooling is generally understood to mean an additional heat input or cold input into the buffer storage tank above a target temperature and up to a maximum/minimum temperature.
Bei dieser Zusatzeinheit handelt es sich um eine zweite Wärmepumpe, die als eine reversible Luft/Flüssigkeits-Wärmepumpe ausgebildet ist. Diese weist einen Kältemittelkreislauf auf mit einem Luft-Kältemittel-Wärmetauscher sowie mit einem Kältemittel/Flüssigkeits-Wärmetauscher. Die zweite Wärmepumpe ist weiterhin reversibel betreibbar, sodass also die Wärmetauscher je nach Betriebsart einmal als Verdampfer und einmal als Kondensator eingesetzt werden. Der Luft/Kältemittel-Wärmetauscher nimmt in einem Heizmodus Wärme aus der Umgebungsluft auf und gibt in einem Kühlmodus Wärme an die Umgebungsluft ab. Entsprechend wird über den Kältemittel/Flüssigkeits-Wärmetauscher Wärme im Heizmodus abgegeben bzw. Kälte im Kühlmodus bereitgestellt. Sowohl die Wärmeverschiebung als auch der Wärmeausgleich wird daher jeweils durch zwei Wärmepumpen, nämlich die erste Wärmepumpe und die zweite Wärmepumpe, bereitgestellt. Während die erste Wärmepumpe insbesondere nicht reversibel betreibbar ist, ist ein besonderer Vorteil der zweiten Wärmepumpe in ihrer reversiblen Betriebsart zu sehen, sodass mit nur einer Zusatzeinheit sowohl Wärme als auch Kälte bereitgestellt werden kann.This additional unit is a second heat pump, which is designed as a reversible air/liquid heat pump. This has a refrigerant circuit with an air-refrigerant heat exchanger and a refrigerant/liquid heat exchanger. The second heat pump can still be operated in reverse, so that the heat exchangers can be used as an evaporator and as a condenser, depending on the operating mode. The air/refrigerant heat exchanger absorbs heat from the ambient air in a heating mode and gives off heat to the ambient air in a cooling mode. Correspondingly, via the refrigerant/liquid heat exchanger, heat is released in the heating mode and cold is provided in the cooling mode. Both the heat displacement and the heat equalization are therefore provided by two heat pumps, namely the first heat pump and the second heat pump. While the first heat pump cannot be operated in a reversible manner, a particular advantage of the second heat pump can be seen in its reversible operating mode, so that both heat and cold can be provided with just one additional unit.
Zur hydraulischen Einbindung der zweiten Wärmepumpe ist diese über ein erstes Mehrwegventil, welches insbesondere als ein Umschaltventil ausgestaltet ist, strömungstechnisch entweder mit dem Heizkreis oder mit dem Kühlkreis verbindbar. Unter strömungstechnisch verbindbar wird verstanden, dass die den Kältemittel/Flüssigkeits-Wärmetauscher der zweiten Wärmepumpe durchströmende Flüssigkeit in den Heizkreis bzw. in den Kühlkreis unmittelbar strömungstechnisch eingespeist wird, also ein Flüssigkeitstausch erfolgt. Dabei ist die zweite Wärmepumpe im Heizmodus lediglich mit dem Heizkreis und im Kühlmodus lediglich mit dem Kühlkreis strömungstechnisch verbunden.For the hydraulic integration of the second heat pump, it can be fluidically connected either to the heating circuit or to the cooling circuit via a first multi-way valve, which is designed in particular as a switching valve. Fluidically connectable is understood to mean that the liquid flowing through the refrigerant/liquid heat exchanger of the second heat pump is fed directly fluidically into the heating circuit or into the cooling circuit, ie a liquid exchange takes place. In this case, the second heat pump is fluidically connected only to the heating circuit in the heating mode and only to the cooling circuit in the cooling mode.
In bevorzugter Ausgestaltung ist hierzu eine Vorlauf-Bypass-Leitung ausgebildet, die den Kühl-Vorlauf mit dem Heiz-Vorlauf verbindet. Weiterhin weist die zweite Wärmepumpe einen Vorlauf auf, welcher typischerweise an den Kältemittel-Flüssigkeits-Wärmetauscher angeschlossen ist. Dieser Vorlauf ist dabei über das erste Mehrwegventil im Kühlmodus mit dem Kühl-Vorlauf des Kühlkreises und im Heizmodus mit dem Heiz-Vorlauf des Heizkreises strömungstechnisch verbunden.In a preferred embodiment, a feed bypass line is provided for this purpose, which connects the cooling feed to the heating feed. Furthermore, the second heat pump has a flow, which is typically connected to the refrigerant-liquid heat exchanger. This flow is fluidically connected via the first multi-way valve in the cooling mode with the cooling flow of the cooling circuit and in the heating mode with the heating flow of the heating circuit.
Weiterhin ist in bevorzugter Ausgestaltung eine Rücklauf-Bypass-Leitung ausgebildet, die den Kühl-Rücklauf mit dem Heiz-Rücklauf verbindet. Weiterhin weist die zweite Wärmepumpe ebenfalls einen Rücklauf auf, welcher wiederum an den Kältemittel-Flüssigkeits-Wärmetauscher angeschlossen ist. Dieser ist über ein zweites Mehrwegventil im Kühlmodus wiederum mit dem Kühl-Rücklauf und im Heizmodus mit dem Heiz-Rücklauf strömungstechnisch verbunden.Furthermore, in a preferred embodiment, a return bypass line is formed, which connects the cooling return to the heating return. Furthermore, the second heat pump also has a return, which in turn is connected to the refrigerant-liquid heat exchanger. This is in turn fluidly connected via a second multi-way valve in the cooling mode to the cooling return and in the heating mode to the heating return.
Durch die beiden Bypass-Leitungen und die beiden Mehrwegventile, die insbesondere als einfache Umschaltventile ausgebildet sind, ist eine zweckmäßige hydraulische Einbindung der zweiten Wärmepumpe in den Heizkreis bzw. den Kühlkreis der Wärmepumpenanlage erreicht.The two bypass lines and the two multi-way valves, which are designed in particular as simple changeover valves, achieve an expedient hydraulic integration of the second heat pump into the heating circuit or the cooling circuit of the heat pump system.
In bevorzugter Ausgestaltung ist der jeweilige Verbraucher an den ihm zugeordneten jeweiligen Pufferspeicher entweder in Reihe angeschlossen oder parallel zu diesem angeordnet. Der Verbraucher ist dabei jeweils in einem Verbraucherkreis integriert. Der Vorlauf für den Verbraucher ist dabei jeweils am Pufferspeicher angeschlossen. Bei der parallelen Anbindung ist auch der Rücklauf des Verbrauchers am Pufferspeicher angeschlossen. Im Unterschied hierzu wird bei der Anordnung des Verbrauchers in Reihe der Verbraucher-Rücklauf an den Heiz-Rücklauf bzw. den Kühl-Rücklauf unmittelbar angeschlossen. Sofern vorliegend davon gesprochen ist, dass ein jeweiliger Verbraucher an den ihm zugeordneten jeweiligen Pufferspeicher angeschlossen ist, so wird hierunter verstanden, dass der Heiz-Verbraucher am Heiz-Pufferspeicher und der Kühl-Verbraucher am Kühl-Pufferspeicher angeschlossen ist. Unter angeschlossen wird weiterhin jeweils eine hydraulische Verbindung verstanden.In a preferred embodiment, the respective consumer is either connected in series to the respective buffer store assigned to it or arranged in parallel thereto. The consumer is in each case in a consumer group integrated. The flow for the consumer is connected to the buffer tank. With the parallel connection, the return flow of the consumer is also connected to the buffer tank. In contrast to this, when the consumer is arranged in series, the consumer return is directly connected to the heating return or the cooling return. If it is said here that a respective consumer is connected to the respective buffer memory assigned to him, this means that the heating consumer is connected to the heating buffer memory and the cooling consumer is connected to the cooling buffer memory. Connected is also understood to mean a hydraulic connection in each case.
Im Hinblick auf einen möglichst effizienten Betrieb der gesamten Wärmepumpenanlage ist eine zweckmäßige Steuerung und Regelung der gesamten Wärmepumpenanlage mithilfe der Steuereinheit vorgesehen.With a view to operating the entire heat pump system as efficiently as possible, appropriate control and regulation of the entire heat pump system using the control unit is provided.
So ist zunächst gemäß einer bevorzugten Ausgestaltung die erste Wärmepumpe gegenüber der Zusatzeinheit, also gegenüber der zweiten Wärmepumpe priorisiert. Hierunter wird zunächst verstanden, dass grundsätzlich die Wärmeverschiebung lediglich über die erste Wärmepumpe erfolgt und die Zusatzeinheit nur dann zugeschaltet wird, wenn ein zusätzlicher Wärme- oder Kältebedarf erforderlich ist. Die erste Wärmepumpe ist daher grundsätzlich in Betrieb (Normalbetrieb), solange es - innerhalb vorgegebener Temperaturgrenzen - zulässig ist, Wärme aus dem Kühlkreis in den Heizkreis zu verschieben. Die erste Wärmepumpe ist für den Betrieb lediglich dann gesperrt, wenn eine maximale Heiztemperatur im Heiz-Pufferspeicher oder eine minimale Kühltemperatur im Kühl-Pufferspeicher erreicht ist.Dieser Betriebsmodus, in dem der Normalbetrieb unterbunden ist, und insbesondere lediglich die Zusatzeinheit aktiv ist, wird als Zusatz-Betriebsmodus bezeichnet. In diesem Fall ist daher keine Wärmeverschiebung zwischen dem Heizkreis und dem Kühlkreis mehr zulässig, da diese zu einer Überschreitung der gewünschten maximalen Heiztemperatur bzw. eine Unterschreitung der gewünschten minimalen Kühltemperatur führen würde.According to a preferred embodiment, the first heat pump has priority over the additional unit, ie over the second heat pump. This is initially understood to mean that, in principle, the heat is only shifted via the first heat pump and the additional unit is only switched on when additional heating or cooling is required. The first heat pump is therefore always in operation (normal operation) as long as it is permissible - within specified temperature limits - to move heat from the cooling circuit to the heating circuit. The first heat pump is only blocked for operation when a maximum heating temperature in the heating buffer tank or a minimum cooling temperature in the cooling buffer tank is reached. This operating mode, in which normal operation is prevented and in particular only the additional unit is active, is called Additional operating mode called. In this case, heat displacement between the heating circuit and the cooling circuit is no longer permissible, since this would lead to the desired maximum heating temperature being exceeded or the desired minimum cooling temperature not being reached.
Die Steuereinheit ist weiterhin derart ausgebildet, dass die Zusatzeinheit, also die zweite Wärmepumpe, nur dann zugeschaltet wird, wenn eine Heiz-Solltemperatur im Heiz-Pufferspeicher unterschritten oder eine Kühl-Solltemperatur im Kühl-Pufferspeicher überschritten ist. Je nachdem, welche Solltemperatur über- bzw. unterschritten ist, wird mittels der Zusatzeinheit zusätzliche Wärme in den Heizkreis oder zusätzliche Kälte in den Kühlkreis eingebracht. Solange die maximale Heiztemperatur nicht überschritten bzw. die minimale Kühltemperatur nicht unterschritten ist, ist die Zusatzeinheit zusätzlich zur ersten Wärmepumpe in Betrieb. D.h. der Normalbetrieb wird ergänzt durch den Heizmodus bzw. den Kühlmodus der Zusatzeinheit. Dieser Betriebsmodus wird als Unterstützungs-Betriebsmodus bezeichnet und ist also ein kombinierter Betriebsmodus, der sich aus dem Normalbetrieb und dem Heiz- bzw.Kühlmodus zusammensetzt.The control unit is also designed in such a way that the additional unit, ie the second heat pump, is only switched on when the temperature in the heating buffer storage falls below a target heating temperature or the target cooling temperature in the cooling buffer storage is exceeded. Depending on which target temperature is exceeded or fallen below, additional heat is introduced into the heating circuit or additional cold into the cooling circuit by means of the additional unit. As long as the maximum heating temperature is not exceeded or the minimum cooling temperature is not fallen below, the additional unit is in operation in addition to the first heat pump. I.e. the normal operation is supplemented by the heating mode or the cooling mode of the additional unit. This operating mode is referred to as the support operating mode and is therefore a combined operating mode that is made up of normal operation and the heating or cooling mode.
Weiterhin ist vorgesehen, dass die Zusatzeinheit abgeschalten wird, wenn die Heiz-Solltemperatur im Heiz-Pufferspeicher überschritten oder die Kühl-Solltemperatur im Kühl-Pufferspeicher unterschritten ist. Die Zusatzeinheit wird daher zur Regelung der Temperatur auf die Solltemperatur eingesetzt. Anders als mit der ersten Wärmepumpe ist keine Überhitzung bzw. Unterkühlung des jeweiligen Pufferspeichers vorgesehen.Provision is also made for the additional unit to be switched off when the heating target temperature in the heating buffer storage is exceeded or the cooling target temperature in the cooling buffer storage is undershot. The additional unit is therefore used to regulate the temperature to the target temperature. In contrast to the first heat pump, no overheating or undercooling of the respective buffer storage is provided.
Die Temperaturwerte (Solltemperaturen oder min- max-Temperaturen) definieren dabei jeweils Umschaltpunkte für die Steuerung und Regelung der Wärmepumpenanlage. Ein Umschalten, beispielsweise ein Zu oder Abschalten der Zusatzeinheit, ein Zu- oder Abschalten der ersten Wärmepumpe, erfolgt bei Überschreiten oder Unterschreiten der Solltemperatur bzw. der min- und max-Temperaturen (auch als Schalttemperaturen bezeichnet), wobei jeder dieser Temperaturwerte noch mit einer Hysterese versehen ist, d.h. ein Schalten erfolgt nur, wenn die jeweilige Temperatur (Schalttemperatur) zuzüglich eines Hysterese-Temperaturwertes von z. B. 2 bis 5K, speziell von 3K, über- bzw. unterschritten ist.The temperature values (target temperatures or min-max temperatures) each define switching points for the control and regulation of the heat pump system. Switching, for example switching the additional unit on or off, switching the first heat pump on or off, takes place when the target temperature or the minimum and maximum temperatures (also referred to as switching temperatures) are exceeded or not reached, with each of these temperature values also having a Hysteresis is provided, i.e. switching only takes place if the respective temperature (switching temperature) plus a hysteresis temperature value of e.g. B. 2 to 5K, especially 3K, exceeded or fallen below.
In zweckdienlicher Weise liegt dabei die Heiz-Solltemperatur in einem Bereich von 30° bis 60°C und insbesondere in einem Bereich von 30° bis 45°C.The desired heating temperature is expediently in a range from 30° to 60°C and in particular in a range from 30° to 45°C.
Die Kühl-Solltemperatur liegt ergänzend oder alternativ vorzugsweise in einem Bereich von 5° bis 20°C und insbesondere in einem Bereich von 8° bis 18°C, beispielsweise bei vorzugsweise 15°C. In diesem Fall wird als Wärmeträger im Kühlkreis insbesondere Wasser verwendet. Derartige Temperaturen im Kühlkreis werden insbesondere zur Kühlung für von Personen genutzte Räume eingesetzt.In addition or as an alternative, the desired cooling temperature is preferably in a range from 5° to 20°C and in particular in a range from 8° to 18°C, for example preferably 15°C. In this case, water in particular is used as the heat carrier in the cooling circuit. Such temperatures in the cooling circuit are used in particular for cooling rooms used by people.
Sind - je nach Anwendung - kältere Temperaturen erforderlich beispielsweise für Kühlräume oder Kühltheken, so liegt die Kühl-Solltemperatur in einem Bereich von -15°C bis 20°C, insbesondere im Bereich von -9°C bis 10°C.If - depending on the application - colder temperatures are required, for example for cold rooms or refrigerated counters, the target cooling temperature is in a range from -15°C to 20°C, in particular in the range from -9°C to 10°C.
Die Heiz-Solltemperatur liegt vorzugsweise bei etwa 35°C. Allgemein liegt die Kühl-Solltemperatur - bei einer Anwendung für die Gebäudeklimatisierung - beispielsweise um 10° bis 20°C oder auch 10° bis 25°C unter der Heiz-Solltemperatur. In diesen Temperaturbereichen ist eine gute Gebäudeversorgung sowohl zur Raumklimatisierung als auch zur Bereitstellung beispielsweise von Brauchwasser erreicht.The heating target temperature is preferably about 35°C. In general, the cooling target temperature - in an application for building air conditioning - for example by 10 ° to 20 ° C or 10 ° to 25 ° C below the heating target temperature. In these temperature ranges, a good building supply is achieved both for room air conditioning and for the provision of service water, for example.
Die Solltemperaturen beziehen sich dabei insbesondere auf die heißeste (Heiz-Pufferspeicher) bzw. kälteste (Kühl-Pufferspeicher) Temperatur im Pufferspeicher, insbesondere an einem Ausgang des Pufferspeichers in einem Vorlaufpfad zum Verbraucher. Die Rücklauftemperaturen vom Verbraucher liegen entsprechend niedriger (im Heizkreis) bzw. höher (im Kühlkreis), beispielsweise um 5-10K.The setpoint temperatures relate in particular to the hottest (heating buffer storage) or coldest (cooling buffer storage) temperature in the buffer storage, in particular at an output of the buffer storage in a flow path to the consumer. The return temperatures from consumers are correspondingly lower (in the heating circuit) or higher (in the cooling circuit), for example by 5-10K.
Zweckdienlicherweise liegt eine Temperaturdifferenz zwischen der maximalen Heiz-Temperatur und der Heiz-Solltemperatur im Bereich zwischen 5 und 25K und insbesondere im Bereich zwischen 10 und 15K. Weiterhin oder alternativ liegt eine Temperaturdifferenz zwischen der minimalen Kühl-Temperatur und der Kühl-Solltemperatur im Bereich zwischen 5 bis 20K und insbesondere im Bereich zwischen 8 und 12K.A temperature difference between the maximum heating temperature and the desired heating temperature is expediently in the range between 5 and 25K and in particular in the range between 10 and 15K. Furthermore or alternatively, a temperature difference between the minimum cooling temperature and the target cooling temperature is in the range between 5 and 20K and in particular in the range between 8 and 12K.
Gemäß einer bevorzugten Weiterbildung liegt weiterhin die Differenz zwischen der Heiz-Solltemperatur und der Kühl-Solltemperatur - insbesondere bei einer Anwendung für die Gebäudeklimatisierung - im Bereich von 10 bis 40K und insbesondere im Bereich von 15 bis 35K.According to a preferred further development, the difference between the heating target temperature and the cooling target temperature is still - in particular in an application for building air conditioning - in the range from 10 to 40K, and especially in the range from 15 to 35K.
Hierdurch besteht also die Möglichkeit, dass der jeweilige Pufferspeicher mit Wärme bzw. Kälte ausreichend aufgeladen werden kann, sodass der Einsatz der Zusatzeinheit auf ein notwendiges Minimum reduziert wird.As a result, there is the possibility that the respective buffer storage tank can be sufficiently charged with heat or cold, so that the use of the additional unit is reduced to a necessary minimum.
Die angegebenen Temperaturwerte, also sowohl die Solltemperaturen als auch die maximalen/minimalen Temperaturen sind dabei vorzugsweise jeweils einstellbar, entweder herstellungsseitig bei einer Konfiguration der Wärmepumpenanlage, vorzugsweise jedoch auch während des Betriebs beispielsweise durch den Benutzer oder auch automatisch, insbesondere in Abhängigkeit von aktuellen Anforderungen, z. B. einer aktuellen Umgebungstemperatur.The specified temperature values, i.e. both the setpoint temperatures and the maximum/minimum temperatures, can preferably be set in each case, either during production when the heat pump system is configured, but preferably also during operation, for example by the user, or also automatically, in particular depending on current requirements. e.g. B. a current ambient temperature.
Im Hinblick auf einen möglichst energieeffizienten Betrieb ist die Steuereinheit weiterhin derart ausgebildet, dass die Zusatzeinheit in einem Zusatz-Betriebsmodus nur dann zugeschalten wird, wenn die erste Wärmepumpe für den Betrieb gesperrt ist. In dem Zusatz-Betriebsmodus ist daher kein gleichzeitiger Betrieb der ersten Wärmepumpe und der Zusatzeinheit, also der zweiten Wärmepumpe, vorgesehen.With regard to the most energy-efficient operation possible, the control unit is also designed in such a way that the additional unit is only switched on in an additional operating mode when the first heat pump is blocked for operation. Therefore, no simultaneous operation of the first heat pump and the additional unit, ie the second heat pump, is provided in the additional operating mode.
Die erste Wärmepumpe ist vorzugsweise nur für einen Teil des maximalen Heiz- und/oder Kühlbedarfs ausgelegt, beispielsweise nur bis maximal 75% oder nur bis maximal 50% des maximalen Heiz- und/oder Kühlbedarfs. Hierunter wird allgemein verstanden, dass - ausgehend von einer für das jeweilige Objekt (z. B. Gebäude, Prozess) bestimmten maximal erforderlichen Heiz-Leistung sowie maximal erforderlichen Kühl-Leistung - die erste Wärmepumpe lediglich für einen Teil dieser bestimmten Heiz-Leistung und/oder Kühl-Leistung ausgelegt ist Dadurch wird ein möglichst dauerhafter Betrieb im Sinne einer Grundlast durch die erste Wärmepumpe sichergestellt.The first heat pump is preferably only designed for part of the maximum heating and/or cooling requirement, for example only up to a maximum of 75% or only up to a maximum of 50% of the maximum heating and/or cooling requirement. This is generally understood to mean that - based on a maximum required heating output and maximum required cooling output determined for the respective object (e.g. building, process) - the first heat pump is only used for part of this specific heating output and/or or cooling capacity is designed. This ensures that operation is as permanent as possible in the sense of a base load by the first heat pump.
Für einen zusätzlichen Heiz- oder Kühlbedarf wird die Zusatzeinheit zugeschaltet.The additional unit is switched on for additional heating or cooling requirements.
Je nach aktuellem Bedarf wird dann also in dem Unterstützungs-Betriebsmodus die erforderliche Wärme- bzw. Kälte sowohl durch eine Wärmeverschiebung über die erste Wärmepumpe als auch durch einen zusätzlichen Wärme- oder Kälteeintrag über die zweite Wärmepumpe sichergestellt.Depending on the current requirement, it is then in the support operating mode the required heat or cold is ensured both by heat displacement via the first heat pump and by additional heat or cold input via the second heat pump.
In bevorzugter Ausgestaltung ist weiterhin die Heiz- und die Kühlleistung der ersten Wärmepumpe geringer als die Heiz- und Kühl-Leistung der Zusatzeinheit, also der zweiten Wärmepumpe. Sie beträgt vorzugsweise lediglich maximal 80% oder auch lediglich maximal 50% der Heiz- und Kühl-Leistung der Zusatzeinheit, also der zweiten Wärmepumpe.In a preferred embodiment, the heating and cooling capacity of the first heat pump is also lower than the heating and cooling capacity of the additional unit, ie the second heat pump. It is preferably only a maximum of 80% or only a maximum of 50% of the heating and cooling capacity of the additional unit, ie the second heat pump.
In bevorzugter Weiterbildung ist die Steuereinheit weiterhin derart ausgebildet, dass während des Betriebs der Wärmepumpenanlage die minimale Kühltemperatur und/oder die maximale Heiztemperatur variiert wird. Alternativ zu der Variation dieser minimalen bzw. maximalen Temperaturen wird in bevorzugter Ausgestaltung die Temperaturdifferenz zu der jeweiligen Solltemperatur, also zur Heiz-Solltemperatur bzw. Kühl-Solltemperatur automatisch variiert.In a preferred development, the control unit is also designed in such a way that the minimum cooling temperature and/or the maximum heating temperature is varied during operation of the heat pump system. As an alternative to the variation of these minimum or maximum temperatures, in a preferred embodiment, the temperature difference to the respective setpoint temperature, ie to the heating setpoint temperature or cooling setpoint temperature, is varied automatically.
Durch diese Maßnahme wird während des Betriebs ermöglicht, den Beladungszustand der Pufferspeicher, also den Grad der Überhitzung bzw. Unterkühlung an aktuelle Situationen anzupassen, beispielsweise einen höheren Beladungszustand des Heiz-Pufferspeichers einzustellen, wenn aktuell eine große Wärmemenge zur Verfügung steht. Dies ist beispielsweise dann der Fall, wenn die Bereitstellung von Wärme zusätzlich unterstützt wird durch einen solar erzeugten Energieeintrag, also beispielsweise durch eine Solarthermie-Anlage, bei der solar erwärmtes Heizwasser zur Beladung des Heiz-Pufferspeichers herangezogen wird. In die Wärmepumpenanlage ist daher in bevorzugter Ausgestaltung zusätzlich ein regenerativer Wärme- oder Kälteerzeuger geschaltet. Unter einem regenerativen Wärme- oder Kälteerzeuger wird ein Erzeuger verstanden, welcher die Wärme/Kälte über regenerativ erzeugte Energien (Solar, Windkraft ...) erzeugt.This measure makes it possible during operation to adapt the loading status of the buffer storage tank, i.e. the degree of overheating or undercooling, to current situations, for example setting a higher loading status of the heating buffer storage tank when a large amount of heat is currently available. This is the case, for example, when the provision of heat is additionally supported by a solar-generated energy input, for example by a solar thermal system, in which solar-heated heating water is used to load the heating buffer tank. In a preferred embodiment, a regenerative heating or cooling generator is therefore additionally connected to the heat pump system. A regenerative heat or cold generator is understood to mean a generator that generates the heat/cold using regeneratively generated energies (solar, wind power ...).
Gemäß einer zweckdienlichen Ausgestaltung ist die Steuereinheit weiterhin derart ausgebildet, dass die zuvor genannte Variation in Abhängigkeit eines aktuell überschüssigen Energieangebotes oder eines aktuellen Energiepreises erfolgt.According to an expedient refinement, the control unit is also designed in such a way that the aforementioned variation takes place as a function of a currently excess energy supply or a current energy price.
Bei dem überschüssigen Energieangebot handelt es sich beispielsweise um die zuvor erwähnte solar erzeugte Wärme. Bevorzugt berücksichtigt jedoch die Steuereinheit alternativ oder ergänzend auch aktuell gültige Energiepreise. So wird beispielsweise während günstiger Stromtarifzeiten (Nachtstrom) die maximale bzw. minimale Temperatur höher bzw. tiefer gesetzt, sodass der Beladungsgrad des Pufferspeichers erhöht wird, dieser quasi zu günstigen Energiepreisen aufgeladen wird. Gleichzeitig wird übermäßiges Beladen, welches über das Notwendige hinausgeht, während der Spitzenzeiten bei hohen Energiepreisen vermieden.The excess energy supply is, for example, the previously mentioned solar-generated heat. However, the control unit preferably also takes currently valid energy prices into account as an alternative or in addition. For example, during favorable electricity tariff times (night electricity), the maximum or minimum temperature is set higher or lower, so that the degree of loading of the buffer storage is increased, which is charged at more or less low energy prices. At the same time, excessive loading beyond what is necessary is avoided during peak periods of high energy prices.
Die Steuereinheit ist beispielsweise auch in ein intelligentes Strom-Verteilungsnetzwerk integriert, sodass bei geringen Netzauslastungen durch Erhöhung der maximalen/minimalen Temperaturen Energie in den Pufferspeichern zwischengespeichert wird.For example, the control unit is also integrated into an intelligent power distribution network so that energy is temporarily stored in the buffer storage tanks when the network loads are low by increasing the maximum/minimum temperatures.
Ein Ausführungsbeispiel der Erfindung wird nachfolgend anhand der Figuren näher erläutert. Diese zeigen teilweise in vereinfachten Darstellungen:
- Fig. 1
- ein vereinfachtes Schaltbild einer Wärmepumpenanlage, bei der der Verbraucher in Reihe geschalten ist,
- Fig. 2
- ein weiteres vereinfachtes Schaltbild einer Wärmepumpenanlage, bei dem der Verbraucher parallel geschalten ist,
- Fig. 3A bis 3C
- Flussdiagramme zur Erläuterung der Steuerung und Regelung der Wärmepumpenanlage.
- 1
- a simplified circuit diagram of a heat pump system in which the consumer is connected in series,
- 2
- another simplified circuit diagram of a heat pump system, in which the consumer is connected in parallel,
- Figures 3A to 3C
- Flow charts to explain the control and regulation of the heat pump system.
Die in den
Der Kühlkreis weist einen Kühl-Vorlauf 6A sowie einen Kühl-Rücklauf 6B auf. Korrespondierend hierzu weist auch der Heizkreis 8 einen Heiz-Vorlauf 8A sowie einen Heiz-Rücklauf 8B auf. In den Kühlkreis 6 sind jeweils ein Kühl-Pufferspeicher 10 sowie ein Kühl-Verbraucher 12 eingebunden. Korrespondierend sind im Heizkreis 8 ein Heiz-Pufferspeicher 14 sowie ein Heiz-Verbraucher 16 eingebunden. Grundsätzlich können auch mehr als der jeweils eine Verbraucher 12,16 in den jeweiligen Kühl- bzw. Heizkreis 6,8 eingebunden sein. Im Heizkreis 8 ist weiterhin noch ein Warmwasserspeicher 18 für Brauchwasser eingebunden.The cooling circuit has a
Dem Kühl-Pufferspeicher 10 ist weiterhin ein erster Temperaturfühler R1 und dem Heiz-Pufferspeicher 14 ein zweiter Temperaturfühler R2 zugeordnet. Diese messen die Temperatur T_R1, T_R2 im Bereich des jeweiligen Pufferspeichers 10, 14, vorzugsweise jeweils am Austritt des Pufferspeichers, alternativ eine Temperatur am Eintritt oder auch innerhalb des Pufferspeichers. Die nachfolgenden Temperaturwerte für die Solltemperaturen bzw. die Maximal- /Minimalwerte beziehen sich dabei auf Temperaturen bei einer Anordnung des Temperaturfühlers R1,R2 am Pufferaustritt.A first temperature sensor R1 is also assigned to the cooling
Weiterhin weist die Wärmepumpenanlage 2 sowohl im Heizkreis 8 als auch im Kühlkreis 6 jeweils Pumpen 20 auf. Eine Pumpe 20 ist im Ausführungsbeispiel jeweils in den Kühl-Rücklauf 6B bzw. in den Heiz-Rücklauf 8B geschalten und jeweils eine weitere Pumpe nachfolgend zum jeweiligen Pufferspeicher 10,14 vor dem jeweiligen Verbraucher 12,16 in einem Verbraucherkreis. In den
Bei der Ausgestaltung der
Weiterhin ist im Kühlkreis 6 bzw. Heizkreis 8 ein Ventil 24 angeordnet, welches insbesondere als Mischventil ausgebildet ist. Über dieses kann zumindest ein Teil des vom Verbraucher 12, 16 zurückströmenden Wärmeträgermediums dem aus dem Pufferspeicher 10,14 strömenden Wärmeträgermedium zur Einstellung einer gewünschten Mischtemperatur beigemischt werden. Zum Ausgleich von Druckunterschieden im Vorlauf und Rücklauf ist bei der Ausführungsvariante der
Von besonderer Bedeutung ist weiterhin, dass die Wärmepumpenanlage 2 eine zweite Wärmepumpe 26 aufweist, die als reversibel arbeitende Luft/Flüssigkeits-Wärmepumpe ausgebildet ist. Diese weist einen hier nicht näher dargestellten Kältemittel/Flüssigkeits-Wärmetauscher auf, welcher einerseits an einem Vorlauf 26A sowie an einem Rücklauf 26B angeschlossen ist.It is also of particular importance that the
Weiterhin ist eine Vorlauf-Bypassleitung 28 angeordnet, die den Kühl-Vorlauf 6A mit dem Heiz-Vorlauf 8A unter Umgehung der ersten Wärmepumpe 4 verbindet. Weiterhin ist eine Rücklauf-Bypassleitung 30 in vergleichbarer Weise angeordnet, die den Kühl-Rücklauf 6B mit dem Heiz-Rücklauf 8B unter Umgehung der ersten Wärmepumpe 4 verbindet. Der Vorlauf 26A der zweiten Wärmepumpe 26 ist nunmehr über ein erstes Mehrwegeventil 32, welches vorzugsweise als reines Umschaltventil ausgebildet ist, an die Vorlauf-Bypassleitung 28 angeschlossen. Gleichzeitig ist der Rücklauf 26B über ein zweites Mehrwegventil 34, welches ebenfalls wiederum vorzugsweise als einfaches Schaltventil ausgebildet ist, an die Rücklauf-Bypassleitung 30 angeschlossen.Furthermore, a
In den
Die dargestellte Wärmepumpenanlage 2 dient zur gleichzeitigen Bereitstellung von Wärme auf Seiten des Heizkreises 8 und Kälte auf Seiten des Kühlkreises 6. Hierzu erfolgt mittels der ersten Wärmepumpe 4, welche als eine elektrische Kompressions-Wärmepumpe ausgebildet ist, eine Wärmeverschiebung vom Kühlkreis 6 zum Heizkreis 8. Die erste Wärmepumpe 4 ist dabei gegenüber der zweiten Wärmepumpe 26 priorisiert und dafür ausgelegt, dass die beiden Pufferspeicher 10, 14 auf einem speziellen Temperaturniveau gehalten werden und insbesondere eine Heizsolltemperatur T_Soll,Hz nicht unterschritten bzw. im Kühl-Pufferspeicher 10 eine Kühl-Solltemperatur T_Soll,K nicht überschritten wird. Eine Beladung des jeweiligen Pufferspeichers 10,14 mit Kälte bzw. Wärme ist dabei jeweils bis zu einer maximalen Heiztemperatur T_max im Heiz-Pufferspeicher 14 bzw. bis zu einer minimalen Kühltemperatur T_min im Kühl-Pufferspeicher 10 vorgesehen. Die Solltemperaturen sowie die maximalen/minimalen Temperaturen sind dabei vorzugsweise einstellbar und auch während des Betriebs variierbar. Der Betrieb der Wärmepumpenanlage 2 erfolgt so, dass auf die Solltemperaturen T_Soll,Hz; T_Soll,K geregelt wird. Hierzu wird priorisiert die erste Wärmepumpe 4 betrieben, beispielsweise kontinuierlich oder auch getaktet. Bei einem überschießenden Heizbedarf wird zunehmend Wärme dem Kühlkreis 6 entzogen, sodass der Kühl-Pufferspeicher 10 quasi "unterkühlt" wird. Umgekehrt wird bei einem übersteigenden Kühlbedarf der Heiz-Pufferspeicher 14 "überhitzt". Wird die voreingestellte maximale Heiztemperatur T_max bzw. die minimale Kühltemperatur T_min erreicht, so wird der weitere Betrieb der ersten Wärmepumpe 4 gesperrt. Ein eventuell zusätzlicher Heiz- bzw. Kühlbedarf wird dann durch die zweite Wärmepumpe 26 bereitgestellt. Diese ist ebenfalls als eine elektrische Kompressions-Wärmepumpe ausgebildet, die jedoch im Unterschied zu der ersten Wärmepumpe 4 reversibel betreibbar ist, d.h. der Kreislauf kann durch entsprechende Ansteuerung in umgekehrter Strömungsrichtung betrieben werden. Die Funktion der Wärmetauscher der zweiten Wärmepumpe 26 kann daher zwischen Verdampfer und Kondensator jeweils durch eine Umkehr der Strömungsrichtung umgeschalten werden.The
Anhand der in den
Gemäß der
According to the
Wird jedoch ermittelt, dass ein Bedarf vorhanden ist, so wird weiterhin überprüft, ob die erste Wärmepumpe 4 freigegeben ist. Ist dies nicht der Fall, so wird die zweite Wärmepumpe 26 zugeschalten. Ist die erste Wärmepumpe 4 dem gegenüber freigegeben, so wird die erste Wärmepumpe 4 aktiviert und zugeschalten, sodass eine Wärmeverschiebung vom Kühlkreis 6 in den Heizkreis 8 erfolgt. Im Falle der Aktivierung der zweiten Wärmepumpe 26 erfolgt ein Wärmeausgleich.However, if it is determined that there is a need, then it is also checked whether the
Die Abfrage und Auswertung der Temperaturwerte T_R1, T_R2 erfolgt während des Betriebs laufend, beispielsweise in diskreten Zeitabständen. Falls die zweite Wärmepumpe 26 eingeschalten ist, erfolgt über diese entweder lediglich ein Wärmeeintrag in den Heizkreis 8 oder ein Kälteeintrag in den Kühlkreis 6. Sofern im weiteren Verlauf aufgrund des Betriebs der zweiten Wärmepumpe 26 beispielsweise die erste Wärmepumpe 4 wieder freigegeben wird, so wird vorzugsweise die zweite Wärmepumpe 26 wieder deaktiviert. Dies bedeutet, dass das Schaubild gemäß der
Die Steuerung - und Regelung der Wärmepumpenanlage 2 erfolgt mit Hilfe einer hier nicht näher dargestellten Steuereinheit.The control and regulation of the
Das Schaubild gemäß der
Die Heiz-Solltemperator T_Soll,Hz liegt beispielsweise im Bereich zwischen 30° und 60° und insbesondere in einem Bereich von 30° bis 45°C und speziell bei 35°C. Wird diese unterschritten, so erfolgt ein Zuschalten der ersten Wärmepumpe 4 bzw. falls erforderlich, ein Zuschalten der zweiten Wärmepumpe 26 im Heizmodus.The desired heating temperature T_Soll,Hz is, for example, in the range between 30° and 60° and in particular in a range from 30° to 45°C and specifically at 35°C. If this falls below, the
Die Kühl-Solltemperatur T_Soll,K liegt beispielsweise im Bereich von 5° bis 20°C, speziell im Bereich von 8° bis 18° und insbesondere beispielsweise bei 12°C. Wird diese überschritten so erfolgt wiederum ein Zuschalten der ersten Wärmepumpe 4 bzw. falls diese gesperrt ist, ein Zuschalten der zweiten Wärmepumpe 26.The target cooling temperature T_Soll,K is, for example, in the range from 5° to 20°C, specifically in the range from 8° to 18°C and in particular, for example, at 12°C. If this is exceeded, the first heat pump is switched on again 4 or if this is blocked, switching on the
Um einen möglichst effizienten Betrieb zu erzielen, liegt die maximale Heiztemperatur T_max beispielsweise 10° bis 30°C, vorzugsweise 10° bis 20°C und beispielsweise 10°C oberhalb der Heiz-Solltemperatur T_Soll, Hz. Es ist also ein Überhitzen des Heiz-Pufferspeichers 14 bis zu dieser maximalen Heiztemperatur T_max ermöglicht. Umgekehrt gilt dies auch für ein Unterkühlen des Kühl-Pufferspeichers 10. Hierbei liegt die minimale Kühltemperatur T_min vorzugsweise ebenfalls bei beispielsweise 10° bis 15K unter der Kühl-Solltemperatur T_Soll,K und beispielsweise bei 5K.In order to achieve the most efficient operation possible, the maximum heating temperature T_max is for example 10° to 30°C, preferably 10° to 20°C and for example 10°C above the heating target temperature T_Soll, Hz.
Die Solltemperaturen T_Soll,Hz; T_Soll,K werden während des Betriebs bedarfsabhängig beispielsweise in Abhängigkeit der Außentemperatur außerhalb des Gebäudes oder in Abhängigkeit von Anforderungen eines industriellen Prozesses gesteuert. Gleichzeitig wird vorzugsweise die gewünschte Differenz zu den Maximal-, Minimaltemperaturen T_max, T_min festgelegt, sodass die Absolutwerte für diese Maximal-, Minimaltemperaturen nachgezogen werden.The target temperatures T_Soll,Hz; T_Soll,K are controlled during operation as required, for example as a function of the outside temperature outside the building or as a function of the requirements of an industrial process. At the same time, the desired difference from the maximum and minimum temperatures T_max, T_min is preferably defined, so that the absolute values for these maximum and minimum temperatures are tracked.
In bevorzugter Weiterbildung wird jedoch auch die Temperaturdifferenz zwischen den Solltemperaturen T_Soll,Hz; T_Soll,K und den maximalen bzw. minimalen Temperaturen T_max; T_min variiert oder es werden auch die Absolutwerte der maximalen bzw. minimalen Temperaturen T_max; T_min variiert.In a preferred development, however, the temperature difference between the setpoint temperatures T_Soll,Hz; T_Soll,K and the maximum and minimum temperatures T_max; T_min varies or the absolute values of the maximum or minimum temperatures T_max; T_min varies.
Speziell erfolgt diese Variation automatisch mittels der hier nicht dargestellten Steuereinrichtung, insbesondere in Abhängigkeit eines aktuellen Energiepreises. So werden beispielsweise bei einem günstigen Nachtstrom die Temperaturdifferenz und / oder die Maximalwerte (Minimalwerte) erhöht (erniedrigt), sodass der Beladungsgrad der Pufferspeicher 10,14, also deren Überhitzung bzw. Unterkühlung erhöht werden kann.In particular, this variation takes place automatically by means of the control device, which is not shown here, in particular as a function of a current energy price. For example, when night-time electricity is cheap, the temperature difference and/or the maximum values (minimum values) are increased (decreased), so that the degree of loading of the
Um an den Verbrauchern 12,16 jeweils die gewünschten Temperaturen einzustellen, sind die Ventile 24 als Mischventile ausgebildet, sodass eine sogenannte Rücklaufbeimischung realisiert ist, um die jeweilige Verbraucher-Vorlauftemperatur auf das geforderte Temperaturniveau einzustellen. Diese Ventile 24 (Mischer) werden ebenfalls von der Steuereinheit angesteuert.In order to set the desired temperatures at the
Die Verbraucher 12,16 werden vorzugsweise extern z.B. über eine Gebäudeleittechnik geregelt, d.h. das Temperaturniveau für die Verbraucher 12,16 wird von extern eingestellt. Grundsätzlich können mehr als ein Verbraucher(-Kreis) an einen jeweiligen Pufferspeicher 10,14 angeschlossen sein.
In bevorzugter Ausgestaltung ist die gesamte Anlage für einen monoenergetischen Betrieb ausgelegt, sodass vorzugsweise ausschließlich eine elektrische Energiezufuhr vorgesehen ist. Die beiden Wärmepumpen 4,26 werden mit elektrischer Energie betrieben. Bei Bedarf können beispielsweise im Heiz-Pufferspeicher 14 ergänzend elektrische Heizstäbe angeordnet sein, um eine effiziente Wärmeversorgung auch bei niedrigen Außentemperaturen sicherzustellen.In a preferred embodiment, the entire system is designed for mono-energetic operation, so that preferably only an electrical energy supply is provided. The two heat pumps 4.26 are operated with electrical energy. If required, additional electric heating elements can be arranged, for example, in the
- 22
- Wärmepumpenanordnungheat pump arrangement
- 44
- erste Wärmepumpefirst heat pump
- 66
- Kühlkreiscooling circuit
- 6A6A
- Kühl-Vorlaufcooling flow
- 6B6B
- Kühl-Rücklaufcooling return
- 88th
- Heizkreisheating circuit
- 8A8A
- Heiz-Vorlaufheating flow
- 8B8B
- Heiz-Rücklaufheating return
- 1010
- Kühl-Pufferspeichercooling buffer tank
- 1212
- Kühl-Verbrauchercooling consumer
- 1414
- Heiz-PufferspeicherHeating buffer tank
- 1616
- Heiz-Verbraucherheating consumer
- 1818
- Warmwasser-Speicherhot water storage tank
- 2020
- Pumpenpump
- 2424
- Mischventilmixing valve
- 2525
- doppelt differenzdruckloser Verteilerdouble differential pressureless distributor
- 2626
- zweite Wärmepumpesecond heat pump
- 26A26A
- Vorlaufleader
- 26B26B
- Rücklaufreturn
- 2828
- Vorlauf-Bypassleitungsupply bypass line
- 3030
- Rücklauf-Bypassleitungreturn bypass line
- 3232
- erstes Mehrwegventilfirst multi-way valve
- 3434
- zweites Mehrwegventilsecond multi-way valve
- R1R1
- erster Temperaturfühlerfirst temperature sensor
- R2R2
- zweiter Temperaturfühlersecond temperature sensor
- T_Soll,HzT_Soll,Hz
- Heiz-Solltemperaturheating target temperature
- T_Soll,KT_Soll,K
- Kühl-Solltemperaturcooling target temperature
- T_maxT_max
- maximale Heiztemperaturmaximum heating temperature
- T_minT_min
- minimale Kühltemperaturminimum cooling temperature
- T_R1T_R1
- Temperatur am ersten Fühler R1Temperature at the first sensor R1
- T_R2T_R2
- Temperatur am zweiten Fühler R2Temperature at the second sensor R2
Claims (14)
- Heat-pump installation (2) which is configured for simultaneous heating and cooling, having a heat source and having a heat sink and also having- a first heat pump (4), which is in the form of a liquid-liquid heat pump and is connected on a source side to the heat source and on a sink side to the heat sink, wherein- the heat source comprises a cooling circuit (6) having a cooling feed (6A), a cooling return (6B), a cooling buffer store (10) for cold water, and, in the connected state, a cooling consumer (12),- the heat sink comprises a heating circuit (8) having a heating feed (8A), a heating return (8B), a heating buffer store (14) for heating water, and a heating consumer (16), wherein the heating circuit (8) has, as an alternative or in addition to the heating buffer store (14) and the heating consumer (16), a hot-water store (18),- wherein, via the first heat pump (4), a heat displacement between the cooling circuit (6) and the heating circuit (8) is realized during operation such that there is simultaneously provided a cooling power on the side of the cooling circuit (6) and a heating power on the side of the heating circuit (8),- there is arranged an auxiliary unit which is connected, in particular hydraulically, to the cooling circuit (6) and to the heating circuit (8), wherein the auxiliary unit is configured both for providing additional heat for the heating circuit (8) and for providing additional cold for the cooling circuit (6),- having a control unit for controlling the operation of the heat-pump installation (2), wherein the auxiliary unit is a second heat pump (26) which is in the form of an air-liquid heat pump and which is reversibly operable, so that it can feed heat into the heating circuit (8) in a heating mode and can feed cold into the cooling circuit (6) in a cooling mode.
- Heat-pump installation (2) according to the preceding claim,
in which the second heat pump (26) is able to be connected, preferably in terms of flow, to the heating circuit (8) or the cooling circuit (6) via a first multi-way valve (32), wherein the second heat pump (26) is connected to the heating circuit (8) in the heating mode and to the cooling circuit (6) in the cooling mode. - Heat-pump installation (2) according to either of the preceding claims,
in which a feed bypass line (28) connects the cooling feed (6A) to the heating feed (8A) and the second heat pump (26) has a feed (26A) which, via the first multi-way valve (32), is connected, preferably in terms of flow, to the cooling feed (6A) in the cooling mode and to the heating feed (8A) in the heating mode. - Heat-pump installation (2) according to one of the preceding claims,
in which a return bypass line (30) connects the cooling return (6B) to the heating return (8B) and the second heat pump (26) has a return (26B) which, via a second multi-way valve (34), is connected, preferably in terms of flow, to the cooling return (6B) in the cooling mode and to the heating return (8B) in the heating mode. - Heat-pump installation (2) according to one of the preceding claims,
in which the control unit is configured in such a way that the first heat pump (4) has priority over the auxiliary unit (26) and is blocked for operation only if a maximum heating temperature (T_max) in the heating buffer store (14) or a minimum cooling temperature (T_min) in the cooling buffer store (10) has been reached. - Heat-pump installation (2) according to one of the preceding claims,
in which the control unit is configured in such a way that the auxiliary unit (26) is activated only if a heating target temperature (T_Soll,Hz) in the heating buffer store (14) has been fallen below or a cooling target temperature (T_Soll,K) in the cooling buffer store (10) has been exceeded. - Heat-pump installation (2) according to the preceding claim,
in which the control unit is configured in such a way that the auxiliary unit is deactivated if the heating target temperature (T_Soll,Hz) in the heating buffer store (14) has been exceeded or the cooling target temperature (T_Soll,K) in the cooling buffer store (10) has been fallen below. - Heat-pump installation (2) according to the preceding claim,
in which the heating target temperature (T_Soll,Hz) lies in a range from 30°C to 60°C and in particular in a range from 30°C to 45°C and the cooling target temperature (T_Soll,K) lies in a range from 5°C to 20°C and in particular in a range from 8°C to 18°C. - Heat-pump installation (2) according to Claims 5 and 6 or 7 or 8, in which a temperature difference between- the maximum heating temperature (T_max) and heating target temperature (T_Soll,Hz) lies in the range between 5 and 25 K, in particular 10 and 15 K, and/or- the minimum cooling temperature (T_min) and cooling target temperature (T_Soll,K) lies in the range between 5 and 20 K, in particular 8 and 12 K.
- Heat-pump installation (2) according to Claims 5 and 6 or according to Claim 7, 8 or 9, in which the difference between the heating target temperature (T_Soll,Hz) and the cooling target temperature (T_Soll,K) lies in the range from 10 to 40 K, in particular in the range from 15 to 35 K.
- Heat-pump installation (2) according to one of the preceding claims,
in which the control unit is configured in such a way that the auxiliary unit is activated in an auxiliary operating mode only if the first heat pump (4) is blocked for operation. - Heat-pump installation (2) according to one of the preceding claims,
in which the control unit is configured in such a way that the auxiliary unit is activated in addition to the first heat pump (4) in an assistance operating mode. - Heat-pump installation (2) according to one of the preceding claims,
in which the heating and cooling power of the first heat pump (4) is lower than heating and cooling power of the auxiliary unit and preferably amounts to merely 80% or merely 50% of the heating and cooling power of the auxiliary unit. - Heat-pump installation (2) according to one of the preceding claims and according to Claims 5 and 6, in which the control unit is configured in such a way that, during the operation of the heat-pump installation,- the minimum cooling temperature (T_min) or the maximum heating temperature (T_max) or alternatively- a temperature difference between the minimum cooling temperature (T_min) or the maximum heating temperature (T_max) and the respective target temperature is automatically varied, wherein the control unit is preferably furthermore configured in such a way that the variation is realized in a manner dependent on a presently surplus energy supply or a present energy price.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018221850.1A DE102018221850A1 (en) | 2018-12-14 | 2018-12-14 | Heat pump system |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3667182A1 EP3667182A1 (en) | 2020-06-17 |
EP3667182B1 true EP3667182B1 (en) | 2023-06-07 |
Family
ID=68806622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19213760.2A Active EP3667182B1 (en) | 2018-12-14 | 2019-12-05 | Heat pump assembly |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3667182B1 (en) |
DE (1) | DE102018221850A1 (en) |
PL (1) | PL3667182T3 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019135468A1 (en) * | 2019-12-20 | 2021-06-24 | Friedhelm Meyer | Method for operating an integral heating / air conditioning and cooling system as well as an integral heating / air conditioning and cooling system with thermal storage |
WO2023170300A1 (en) | 2022-03-11 | 2023-09-14 | Propellane | Heat pump having two thermal-energy storage and release systems |
FR3133430B1 (en) | 2022-03-11 | 2024-05-03 | Christophe Poncelet | HEAT PUMP WITH TWO THERMAL ENERGY STORAGE AND RELEASE SYSTEMS |
DE102022211372A1 (en) | 2022-10-26 | 2024-05-02 | Robert Bosch Gesellschaft mit beschränkter Haftung | Method for operating a combined heat and power system, control or regulating device and combined heat and power system |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4645908A (en) * | 1984-07-27 | 1987-02-24 | Uhr Corporation | Residential heating, cooling and energy management system |
DE19702416A1 (en) * | 1997-01-24 | 1998-07-30 | Heinz Dieter Hoose | Heat pump plant for heat and hot water supply to buildings |
DE10139065A1 (en) * | 2001-08-02 | 2003-02-20 | Hinrichs Guenter | Recovering heat with heat pump system by providing additional heat exchanger in return flow through which cold water from underground heat exchanger flows |
EP1674802A3 (en) * | 2004-12-21 | 2008-05-14 | Titano SA | Multifunctional heating and/or cooling device for residential buildings |
US9310087B2 (en) * | 2009-09-29 | 2016-04-12 | Carrier Corporation | System and method for maintaining air temperature within a building HVAC system |
SE539398C2 (en) * | 2014-11-10 | 2017-09-12 | Energy Machines S A | Heating system including heat pump with alternately connectable accumulator tanks |
CN107923655B (en) * | 2015-08-17 | 2021-01-22 | 三菱电机株式会社 | Heat utilization device |
-
2018
- 2018-12-14 DE DE102018221850.1A patent/DE102018221850A1/en active Pending
-
2019
- 2019-12-05 EP EP19213760.2A patent/EP3667182B1/en active Active
- 2019-12-05 PL PL19213760.2T patent/PL3667182T3/en unknown
Also Published As
Publication number | Publication date |
---|---|
EP3667182A1 (en) | 2020-06-17 |
DE102018221850A1 (en) | 2020-06-18 |
PL3667182T3 (en) | 2023-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3667182B1 (en) | Heat pump assembly | |
EP2608973B1 (en) | Heating/cooling device and heating/cooling module for a heating/cooling device | |
EP3739276B1 (en) | Heat exchanger and temperature control circuit system | |
DE1604205A1 (en) | air conditioner | |
EP2331880A2 (en) | Method and device for providing usable heat energy | |
DE102008000392A1 (en) | Plant for the generation, storage and distribution of heat energy between heat engineering resources with graduated temperature levels in a building and method for controlling such a plant | |
DE2411308A1 (en) | HEATING AND / OR AIR CONDITIONING | |
EP3270066A1 (en) | Method for operating an energy supply system comprising a latent heat accumulator, energy supply system for carrying out the method, and collector field for an energy supply system | |
EP3447403A1 (en) | Operating method for heat generation installations, air/liquid heat exchanger unit and heat generation installation | |
DE102007050446A1 (en) | Indirectly evaporating heat pump, has heat source circuit with external air heat circuit and geo heat circuit having different energy sources, where heat circuits are connected with each other and with refrigerant circuit | |
DE102013005035A1 (en) | Method and device for coupling heat from a district heating network | |
DE102010025115A1 (en) | Method for operating a solar system | |
EP1882888A1 (en) | Heat pump system, in particular for air conditioning a building | |
EP2492599B1 (en) | Heating assembly with biomass furnace and heat pump | |
EP2458304A2 (en) | Heat pump assembly comprising a heat pump and method for operating such a heat pump assembly | |
DE2730406A1 (en) | DEVICES AND METHODS FOR INCREASING THE TRANSPORT CAPACITY OF DISTRICT HEATING NETWORKS | |
EP3029384B1 (en) | Decentralized air conditioner comprising a latent heat storage arranged inside the indoor unit | |
EP2189730A2 (en) | System for supplying a heat consumer and method for operating such a system | |
DE102012212040B4 (en) | Heat pump system and method for providing hot water | |
EP4411253A1 (en) | System for supplying a plurality of consumer units arranged in a building with exergy | |
EP1788314A1 (en) | Space heating system with more than one heat source | |
AT519030B1 (en) | Cooling system for cooling and covering cooling load peaks for livestock farms, shopping centers, camps and compounds | |
DE9414055U1 (en) | Central heating system for buildings | |
WO2023232549A1 (en) | Ventilation system | |
WO2023138732A1 (en) | Heat supply network for a process plant, and method for operating such a heat supply network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20201207 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220920 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1576146 Country of ref document: AT Kind code of ref document: T Effective date: 20230615 Ref country code: DE Ref legal event code: R096 Ref document number: 502019007957 Country of ref document: DE |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230527 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20230607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230907 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230908 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230803 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231009 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231007 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20230908 Year of fee payment: 5 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502019007957 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240131 Year of fee payment: 5 Ref country code: CH Payment date: 20240101 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
26N | No opposition filed |
Effective date: 20240308 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20231205 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20231231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231205 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231231 |