EP3642391B1 - Procédé, utilisation et cellule électrolytique dotée d'une électrode à diffusion de gaz destinée à réduire l'oxyde d'azote - Google Patents
Procédé, utilisation et cellule électrolytique dotée d'une électrode à diffusion de gaz destinée à réduire l'oxyde d'azote Download PDFInfo
- Publication number
- EP3642391B1 EP3642391B1 EP18735210.9A EP18735210A EP3642391B1 EP 3642391 B1 EP3642391 B1 EP 3642391B1 EP 18735210 A EP18735210 A EP 18735210A EP 3642391 B1 EP3642391 B1 EP 3642391B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gas diffusion
- diffusion electrode
- silver
- carbon dioxide
- electrocatalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims description 58
- 238000009792 diffusion process Methods 0.000 title claims description 47
- 238000000034 method Methods 0.000 title claims description 33
- 239000001569 carbon dioxide Substances 0.000 title claims description 29
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims description 29
- 238000005868 electrolysis reaction Methods 0.000 title claims description 21
- 239000007789 gas Substances 0.000 claims description 55
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 46
- 229910052709 silver Inorganic materials 0.000 claims description 42
- 239000004332 silver Substances 0.000 claims description 42
- 239000000203 mixture Substances 0.000 claims description 39
- 239000002245 particle Substances 0.000 claims description 24
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 24
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 24
- 239000010411 electrocatalyst Substances 0.000 claims description 22
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 20
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 13
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 13
- 229910052759 nickel Inorganic materials 0.000 claims description 10
- 229920001600 hydrophobic polymer Polymers 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 239000002105 nanoparticle Substances 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 239000006260 foam Substances 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 claims description 5
- 229910001514 alkali metal chloride Inorganic materials 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 4
- 239000000460 chlorine Substances 0.000 claims description 4
- 229910052801 chlorine Inorganic materials 0.000 claims description 4
- 229920000642 polymer Polymers 0.000 claims description 4
- -1 polytetrafluoroethylene Polymers 0.000 claims description 4
- 238000004626 scanning electron microscopy Methods 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 238000011068 loading method Methods 0.000 claims description 2
- 238000004438 BET method Methods 0.000 claims 1
- 238000010191 image analysis Methods 0.000 claims 1
- 239000000843 powder Substances 0.000 description 44
- 239000010410 layer Substances 0.000 description 24
- 239000003054 catalyst Substances 0.000 description 20
- 238000002156 mixing Methods 0.000 description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 12
- 238000003825 pressing Methods 0.000 description 11
- 239000012528 membrane Substances 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000004744 fabric Substances 0.000 description 6
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000012279 sodium borohydride Substances 0.000 description 5
- 229910000033 sodium borohydride Inorganic materials 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 101710134784 Agnoprotein Proteins 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- 239000003014 ion exchange membrane Substances 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 239000001509 sodium citrate Substances 0.000 description 4
- 229910000881 Cu alloy Inorganic materials 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 102100035182 Plastin-2 Human genes 0.000 description 3
- 101710081231 Plastin-2 Proteins 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- YOCUPQPZWBBYIX-UHFFFAOYSA-N copper nickel Chemical compound [Ni].[Cu] YOCUPQPZWBBYIX-UHFFFAOYSA-N 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 239000011244 liquid electrolyte Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 229910001961 silver nitrate Inorganic materials 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 3
- 229940038773 trisodium citrate Drugs 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000005341 cation exchange Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000007580 dry-mixing Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000002608 ionic liquid Substances 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011552 falling film Substances 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000005677 organic carbonates Chemical class 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000004375 physisorption Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/075—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
- C25B11/081—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the element being a noble metal
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/091—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
- C25B11/095—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one of the compounds being organic
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/23—Carbon monoxide or syngas
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/02—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
- C25B11/03—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
- C25B11/031—Porous electrodes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/02—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
- C25B11/03—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
- C25B11/031—Porous electrodes
- C25B11/032—Gas diffusion electrodes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/055—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/055—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
- C25B11/057—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
- C25B11/061—Metal or alloy
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/091—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
- C25B11/093—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/054—Electrodes comprising electrocatalysts supported on a carrier
Definitions
- the invention relates to a method for the electrochemical conversion of carbon dioxide to carbon monoxide on a special gas diffusion electrode (GDE) by cathodic reduction of carbon dioxide (CO2) on an electrocatalyst based on porous silver powder and anodic production of chlorine or oxygen, and an electrolytic cell suitable for this method with said GDE for the electrolysis of alkali chloride, and the use of the GDE for the electrochemical reduction of carbon dioxide to CO in the method according to the invention.
- GDE gas diffusion electrode
- CO2 cathodic reduction of carbon dioxide
- the invention is based on gas diffusion electrodes which are known per se and which usually comprise an electrically conductive carrier, a gas diffusion layer and a catalytically active component and are used in chlor-alkali electrolysis.
- the known electrodes are used for cathodic oxygen reduction.
- Gas diffusion electrodes are electrodes in which the three states of matter - solid, liquid and gaseous - are in contact with each other and the solid, electron-conducting catalyst catalyzes an electrochemical reaction between the liquid and the gaseous phase.
- the carbon dioxide GDE must meet a number of basic requirements in order to be used in technical electrolysers. So the catalyst and all other materials used must be chemically stable. A high degree of mechanical stability is also required, since the electrodes are installed and operated in electrolyzers with a surface area of usually more than 2 m 2 (technical size). Other properties are: high electrical conductivity, low layer thickness, high internal surface area and high electrochemical activity of the electrocatalyst. Suitable hydrophobic and hydrophilic pores and a corresponding pore structure for conducting gas and electrolyte are just as necessary as a seal so that the gas and liquid spaces remain separate from one another. The long-term stability and low production costs are further special requirements for a technically usable oxygen-consuming electrode.
- Another important property is a low potential with a high current density, if possible greater than 4kA/m 2 and a high selectivity to carbon monoxide.
- a low potential with a high current density, if possible greater than 4kA/m 2 and a high selectivity to carbon monoxide.
- different silver morphologies as well as gold and carbon-based catalysts are known for the electrochemical reduction of carbon dioxide to carbon monoxide.
- Hori et al. describes that a polycrystalline gold catalyst achieves a selectivity of 87% for carbon monoxide at a current of 5mA/cm 2 (In: Modern Aspects of Electrochemistry, New York, Springer, 2008, Vol. 42, pp. 89-189 ).
- Porous silver materials can be produced using a colloidal approach, for example by crystallizing monodisperse polystyrene particles, filling the interstices between the particles with silver and then dissolving out the polystyrene particles. This process is very complex and not suitable for industrial use ( Chem. Mater. 2002, 14, 2199-2208 ). In another process, a polymer gel is used as a template instead of the colloid particles ( Chem. Mater. 2001, 13, 1114-1123 ), which is similarly complex. All of these processes also require high sintering temperatures of up to 800°C because they are multi-stage processes.
- an AlAg or CuAg alloy is first laboriously produced in order to then dissolve the copper or aluminum. High temperatures are also required here to produce the alloy ( Nano Energy, (2016) Vol. 29, pp. 439-456 ). In addition, mostly monoliths, ie very large particles, are obtained here, which are not suitable for further processing in a GDE.
- US2013/0078536 relates to oxygen-consuming electrodes containing at least one support with a flat structure, a coating with a gas diffusion layer and a catalytically active component, a finely divided hydrophilic component, preferably silver, with an average particle diameter in the range from 20 to 100 nm being additionally contained , which is on a side of the electrode that faces a liquid or ion exchange membrane during operation.
- U.S. 2008/0116063 A1 relates to oxygen gas diffusion electrodes for chloralkali electrolysis comprising a porous conductive substrate containing silver, hydrophobic material and carbon, said substrate being coated with a catalyst containing silver and palladium.
- U.S. 2006/0175195 A1 discloses a specific silver powder for use as an electrode material for gas diffusion electrodes for fuel cells or chloralkali electrolysis.
- U.S. 2012/0208094 A1 relates to gas diffusion electrodes which contain an electrocatalyst which is based on an agglomerate of nanoscale silver primary particles, in the interstices of which crystalline ZrO 2 particles are accumulated.
- the BET surface area of this entire catalyst is preferably 3 to 16 m 2 /g.
- Various electrocatalysts can be used to prepare the reaction products, including silver. The selectivity of the electrodes is controlled by selecting a membrane/helper membrane that is used in addition to the electrode.
- the task was therefore to provide a gas diffusion electrode and a method for its manufacture, with which the carbon dioxide reduction takes place at a high current density (>2kA/m 2 ) and high selectivity (>50%).
- the size of the nanoparticles and thus also the porosity can be controlled by the type of addition, the mixing and the concentration of the educts.
- the primary particles preferably have a diameter of less than 100 nm.
- Silver nitrate and trisodium citrate are dissolved in water to produce the porous catalyst.
- a solution consisting of a reducing agent such as NaBH4, KBH4 or formaldehyde dissolved in water is added with stirring.
- the porous particles form with a particle size greater than 1 ⁇ m and are then filtered off, washed and dried.
- Selective GDEs are obtained by means of these porous particles if these porous particles are mixed with a fluoropolymer according to the present inventive method and the powder mixture obtained is then pressed onto a carrier element.
- the invention relates to a method for the electrochemical conversion of carbon dioxide into carbon monoxide, which is characterized in that the carbon dioxide is cathodically converted into CO at a gas diffusion electrode and chlorine or oxygen is produced simultaneously on the anode side, the gas diffusion electrode having at least one flat, electrically conductive Carrier and a gas diffusion layer applied to the carrier and an electrocatalyst applied, the gas diffusion layer consisting of at least a mixture of electrocatalyst and a hydrophobic polymer, and silver acting as an electrocatalyst for the reduction of carbon dioxide, characterized in that the electrocatalyst contains silver in the form of highly porous contains agglomerated nanoparticles and the nanoparticles have a surface area measured according to BET of at least 2 m 2 / g.
- the thickness of the catalytically active coating consisting of PTFE and silver of the gas diffusion electrode is preferably from 20 to 1000 ⁇ m, particularly preferably from 100 to 800 ⁇ m, very particularly preferably from 200 to 600 ⁇ m.
- the proportion of electrocatalyst is preferably from 80 to 97% by weight, particularly preferably from 90 to 95% by weight, based on the total weight of electrocatalyst and hydrophobic polymer.
- the proportion of hydrophobic polymer is preferably from 20 to 3% by weight, particularly preferably from 10 to 5% by weight, based on the total weight of electrocatalyst and hydrophobic polymer.
- hydrophobic polymer is a fluorine-substituted polymer, particularly preferably polytetrafluoroethylene (PTFE).
- Another preferred embodiment of the gas diffusion electrode used for the invention is characterized in that the electrode has a total loading of electrocatalyst in a range from 5 mg/cm 2 to 300 mg/cm 2 , preferably from 10 mg/cm 2 to 250 mg/cm 2 having.
- An embodiment of the gas diffusion electrode is preferred which is characterized in that the silver particles are present as an agglomerate of silver nanoparticles with an average agglomerate diameter (measured using laser diffraction) in the range from 1 to 100 ⁇ m, preferably in the range from 2 to 90 ⁇ m.
- a gas diffusion electrode in which the silver nanoparticles have an average diameter in the range from 50 to 150 nm, which was determined by means of scanning electron microscopy with image evaluation, can also be used with preference for the invention.
- the new gas diffusion electrode used for the invention preferably has a carrier consisting of a material selected from the series silver, nickel, coated nickel e.g. with silver, plastic, nickel-copper alloys or coated nickel-copper alloys such as silver-plated nickel-copper Alloys from which flat textile structures were made.
- the electrically conductive carrier can be a net, fleece, foam, fabric, mesh, or expanded metal.
- the support preferably consists of metal, particularly preferably of nickel, silver or silver-plated nickel.
- the carrier can be single-layer or multi-layer.
- a multi-layer carrier can be made up of two or more nets, non-woven fabrics, foams, fabrics, braids, expanded metals arranged one on top of the other.
- the nets, fleeces, foams, fabrics, braids, expanded metals can be different. For example, they can have different thicknesses or different porosities or have different mesh sizes.
- Two or more nets, nonwovens, foams, fabrics, braids, expanded metals can be connected to one another, for example by sintering or welding.
- a net made of nickel or silver with a wire diameter of 0.04 to 0.4 mm and a mesh size of 0.2 to 1.2 mm is preferably used.
- the carrier of the gas diffusion electrode is preferably based on nickel, silver or a combination of nickel and silver.
- the support is in the form of a mesh, woven fabric, knitted fabric, knitted fabric, fleece, expanded metal or foam, preferably a woven fabric.
- the different forms of carbon dioxide electrolysis can be distinguished by how the GDE is installed and how the distance between the ion exchange membrane and the GDE is set as a result.
- Many cell designs allow a gap between the ion exchange membrane and the GDE, the so-called finite-gap arrangement.
- the gap can be 1 to 3 mm, and KHCO3, for example, flows through the gap.
- the flow can take place in an upright arrangement of the electrode from top to bottom (principle of the falling film cell, see e.g WO 2001/057290A2 ) or from bottom to top (gas pocket principle, see e.g DE 4.444.114A2 )
- a special embodiment of the electrodes used for the invention are plastic-bonded electrodes, the gas diffusion electrodes being equipped with both hydrophilic and hydrophobic areas. These gas diffusion electrodes are chemically very resistant, especially when using PTFE (polytetrafluoroethylene).
- Such PTFE-catalyst mixtures are in principle produced, for example, by using dispersions of water, PTFE and catalyst.
- Emulsifiers in particular are added to stabilize PTFE particles in the aqueous solution and thickeners are preferably used to process the dispersion.
- An alternative to this wet production process is production by dry mixing of PTFE powder and catalyst powder.
- the gas diffusion electrodes used according to the invention can be produced by wet or dispersion and dry processes.
- the dry manufacturing method is particularly preferred.
- Dispersion processes are mainly chosen for electrodes with polymeric electrolytes - e.g. B. successfully introduced in the PEM (polymer electrolyte membrane) fuel cell or the HCl-GDE membrane electrolysis ( WO2002/18675 ).
- the dry process When using the GDE in liquid electrolytes, the dry process provides more suitable GDEs.
- strong mechanical compression can be dispensed with by evaporating the water and sintering the PTFE at 340 °C.
- These electrodes are usually very porous.
- incorrect drying conditions can quickly lead to cracks in the electrode through which liquid electrolyte can penetrate. Therefore, the dry process has prevailed for applications with liquid electrolytes such as zinc-air batteries or alkaline fuel cells.
- the catalyst is intensively mixed with a polymer component (preferably PTFE).
- a polymer component preferably PTFE
- the powder mixture can be formed into a film-like structure by pressing, preferably by pressing using a rolling process, which is then applied to the carrier (see e.g DE 3.710.168 A2 ; EP 144.002 A2 ).
- a preferred alternative that can also be used describes the DE 102005023615 A2 ; here, the powder mixture is scattered onto a carrier and pressed together with it.
- the gas diffusion electrode used for the invention is produced from a powder mixture consisting of silver and/or its oxides and PTFE. Doped silver and/or its oxides or mixtures of silver and/or its oxides with silver and PTFE can also be used.
- the catalysts and PTFE are, for example, as in the US6,838,408 described in a dry mixing process and the powder compacted into a sheet.
- the skin is then pressed together with a mechanical carrier.
- Both the skin formation process and the pressing of skin and backing can be carried out, for example, by a rolling process.
- the pressing force has an influence on the pore diameter and the porosity of the GDE.
- the pore diameter and the porosity influence the performance of the GDE.
- the production of the GDE used according to the invention can be analogous to that DE 10.148.599A1 be done in that the catalyst-powder mixture is applied directly to a support.
- the powder mixture is produced by mixing the catalyst powder and the binder and, if appropriate, other components. Mixing preferably takes place in a mixing device which has rapidly rotating mixing elements, such as, for example, fly cutters. To mix the components of the powder mixture, the mixing elements preferably rotate at a speed of 10 to 30 m/s or at a speed of 4000 to 8000 rpm. After mixing, the powder mixture is preferably sieved. The sieving is preferably done with a sieve device, which with nets or the like. equipped with a mesh size of 0.04 to 2 mm.
- the temperature during the mixing process is preferably 35 to 80°C.
- a coolant e.g., liquid nitrogen or other inert, heat-absorbing substances.
- Another way to control the temperature is by interrupting the mixing to allow the powder mixture to cool down or by selecting suitable mixing units or changing the filling quantity in the mixer.
- the powder mixture is applied to the electrically conductive carrier, for example, by sprinkling.
- the powder mixture can be scattered onto the carrier, for example, through a sieve.
- a frame-shaped template is particularly advantageously placed on the carrier, the template preferably being chosen such that it just encompasses the carrier.
- the template can also be selected to be smaller than the surface of the carrier. In this case, after the powder mixture has been sprinkled on and pressed with the carrier, an uncoated edge of the carrier remains free of an electrochemically active coating.
- the thickness of the stencil can be chosen according to the amount of powder mixture to be applied to the substrate.
- the template is filled with the powder mixture. Excess powder can be removed with a scraper. After that, the template is removed.
- the powder mixture is pressed with the carrier in a particularly preferred embodiment of the gas diffusion electrode used in the invention.
- the pressing can be done in particular by means of rollers. A pair of rollers is preferably used. However, a roller on a substantially flat base can also be used, with either the roller or the base being moved. Furthermore, the pressing can be done by a press stamp. The forces during pressing are in particular 0.01 to 7 kN/cm.
- a GDE used in the invention can in principle have a single-layer or multi-layer structure.
- powder mixtures with different compositions and different properties are applied in layers to the support.
- the layers of different powder mixtures are preferably not pressed individually with the carrier, but are first applied one after the other and then pressed together with the carrier in one step.
- a layer of a powder mixture can be applied which has a higher binder content, in particular a higher PTFE content, than the electrochemically active layer.
- a layer with high PTFE content from 6 to 100%.
- a gas diffusion layer made of PTFE can also be applied.
- a layer with a high content of PTFE can be applied directly to the support as the bottom layer. Further layers with different compositions can be applied to produce the gas diffusion electrode.
- the desired physical and/or chemical properties can be set in a targeted manner. These include, inter alia, the hydrophobicity or hydrophilicity of the layer, the electrical conductivity and the gas permeability.
- a gradient of a property can be built up in that the measure of the property increases or decreases from layer to layer.
- the thickness of the individual layers of the GDE can be adjusted by the amount of powder mixture that is applied to the carrier and by the pressing forces during pressing.
- the amount of powder mixture applied can be adjusted, for example, by the thickness of the stencil placed on the carrier to scatter the powder mixture onto the carrier.
- a skin is produced from the powder mixture.
- the thickness or density of the skin cannot be set independently of one another, since the parameters of the rollers, such as roller diameter, roller spacing, roller material, tension holding force and peripheral speed, have a decisive influence on these variables.
- the compressive force when compressing the powder mixture or layers of different powder mixtures with the carrier is carried out, for example, by roller pressing with a line compressive force in the range from 0.01 to 7 kN/cm.
- the carbon dioxide GDE is connected as a cathode, in particular in an electrolysis cell for the electrolysis of alkali metal chlorides, preferably sodium chloride or potassium chloride, particularly preferably sodium chloride.
- the current density during the reaction is at least 2 kA/m 2 , preferably at least 4 kA/m 2 .
- Another object of the invention is the use of the new gas diffusion electrode for the electrolysis of carbon dioxide to carbon monoxide in chlor-alkali electrolysis,
- the subject matter of the invention is also an electrolytic cell for the electrolysis of alkali metal chloride, having a previously described gas diffusion electrode as the cathode consuming carbon dioxide and alkali metal chloride.
- the GDEs prepared according to the following examples were used in oxygen electrolysis.
- a laboratory cell was used for this purpose, which consisted of an anode compartment and a cathode compartment separated by an ion exchange membrane.
- a KHCO 3 solution with a concentration of 300 g/l was used in the anode compartment, in which oxygen was generated on a commercially available DSA with iridium-coated titanium electrode.
- the cathode compartment was separated from the anode compartment by a commercially available cation exchange membrane from Asahi Glass, type F133. There was an electrolyte gap between the GDE and the cation exchange membrane, in which an NaHCO 3 solution with a concentration of 300 g/l was pumped.
- the GDE was supplied with carbon dioxide via a gas space, the concentration of which was greater than 99.5% by volume.
- the anode, membrane and gas diffusion electrode areas were each 3 cm 2 .
- the temperature of the electrolytes was 25°C.
- the current density of the electrolysis was 4 kA/m 2 in all experiments.
- the GDEs were produced as follows: 3.5 kg of a powder mixture consisting of 7% by weight of PTFE powder and 93% by weight of silver powder (e.g. Type 331 from Ferro) were mixed in an Ika Mühle A11 basic in such a way that the temperature of the powder mixture did not exceed 55 °C. This was achieved by stopping the mixing process and cooling the powder mixture. In total, mixing was performed three times with a mixing time of 10 seconds. After mixing, the powder mixture was sieved with a sieve with a mesh size of 1.0 mm. The screened powder mixture was then applied to an electrically conductive carrier element.
- the carrier element was a mesh made of nickel with a wire thickness of 0.14 mm and a mesh size of 0.5 mm.
- the powder was characterized by BET, laser diffraction and scanning electron microscopy.
- Particle size is about 145 nm in diameter and the BET surface area is 2.23 m 2 /g (N 2 adsorption).
- Particle size is about 290 nm in diameter and the BET surface area is 0.99 m 2 /g (N 2 adsorption).
- the GDE was produced using the dry method, with 93% by weight of silver powder from Examples 1 and 2 and silver LCP-1 Ames Goldsmith, 7% by weight of PTFE from DYNEON TF2053 being mixed in an Ika mill A11 basic and then was pressed with a roller press at a force of 0.5 kN/cm.
- the electrode was used in the above electrolytic cell and operated at 2 and 4 kA/m 2 .
- the Faraday efficiency for CO is shown in the table below.
- the physisorption of gases at cryogenic temperature conditions is used to determine the specific surface area (SSA) of compact finely dispersed or porous solids.
- the amount of nitrogen physicating on the accessible surface of the sample is measured in a static volumetric analyzer by adding a well-defined amount of nitrogen gas to the measuring cell with the sample. At the same time, the pressure increase due to the added gas is recorded after equilibrium is reached.
- the increase in pressure (at equilibrium) is the smaller, the larger the total area in the measuring cell is, since the proportion of nitrogen adsorbed on the surface cannot contribute to the increase in pressure.
- Forming the adsorbed molar amount of nitrogen on a sample the total area of the sample can be calculated by multiplying the molar amount by the known adsorption cross section of the adsorbing gas.
- Particle sizes were obtained by laser diffraction on a Malvern Mastersizer MS2000 Hydro MU.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Catalysts (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Claims (11)
- Procédé pour la conversion électrochimique de dioxyde de carbone en monoxyde de carbone, caractérisé en ce que le dioxyde de carbone est converti en CO à la cathode d'une électrode à diffusion de gaz et simultanément du chlore ou de l'oxygène est produit du côté anode, l'électrode à diffusion de gaz comportant au moins un support plat, électriquement conducteur et une couche de diffusion de gaz et électrocatalyseur appliqué, appliquée sur le support, la couche de diffusion de gaz étant constituée d'au moins un mélange d'électrocatalyseur et d'un polymère hydrophobe, et de l'argent agissant comme électrocatalyseur dans la réduction du dioxyde de carbone, caractérisé en ce que l'électrocatalyseur contient de l'argent sous forme de nanoparticules hautement poreuses agglomérées et la nanoparticule présente une surface, mesurée selon BET, d'au moins 2 m2/g.
- Procédé selon la revendication 1, caractérisé en ce que la teneur en électrocatalyseur de l'électrode à diffusion de gaz vaut de 80 à 97 % en poids, de préférence 90 à 95 % en poids, par rapport au poids total d'électrocatalyseur et de polymère hydrophobe.
- Procédé selon l'une quelconque des revendications 1 et 2, caractérisé en ce que les particules d'argent de l'électrode à diffusion de gaz se trouvent sous forme d'agglomérat ayant un diamètre moyen d'agglomérat d50, mesuré par diffraction laser, dans la plage de 1 à 100 pm, de préférence dans la plage de 2 à 90 µm.
- Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que les nanoparticules d'argent de l'électrode à diffusion de gaz ont un diamètre moyen, qui a été déterminé par microscopie électronique à balayage avec analyse d'image, dans la plage de 50 à 150 nm.
- Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le polymère hydrophobe de l'électrode à diffusion de gaz est un polymère substitué par le fluor, de façon particulièrement préférée le polytétrafluoroéthylène (PTFE).
- Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que l'électrode à diffusion de gaz présente une charge totale en électrocatalyseur dans une plage de 5 mg/cm2 à 300 mg/cm2, de préférence de 10 mg/cm2 à 250 mg/cm2.
- Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le support de l'électrode à diffusion de gaz est à base de nickel, d'argent ou d'une association de nickel et d'argent.
- Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le support de l'électrode à diffusion de gaz est sous forme d'un filet, d'un tissu, d'un tissu à mailles, d'un tricot, d'un non-tissé, d'un métal étiré ou d'une mousse, de préférence d'un tissu.
- Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la densité de courant dans la conversion est d'au moins 2 kA/m2, de préférence d'au moins 4 KA/m2.
- Utilisation d'une électrode à diffusion de gaz telle que définie dans l'une quelconque des revendications 1 à 8, pour l'électrolyse de dioxyde de carbone en monoxyde de carbone dans l'électrolyse chlore-alcali.
- Cellule électrolytique pour l'électrolyse de chlorure de métal alcalin, comportant une électrode à diffusion de gaz telle que définie dans l'une quelconque des revendications 1 à 8 en tant que cathode consommant du dioxyde de carbone et un chlorure de métal alcalin.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17177031.6A EP3418429A1 (fr) | 2017-06-21 | 2017-06-21 | Électrode à diffusion de gaz destinée à réduire l'oxyde d'azote |
PCT/EP2018/066293 WO2018234322A1 (fr) | 2017-06-21 | 2018-06-19 | Électrode à diffusion de gaz pour la réduction du dioxyde de carbone |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3642391A1 EP3642391A1 (fr) | 2020-04-29 |
EP3642391B1 true EP3642391B1 (fr) | 2023-08-02 |
Family
ID=59093481
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17177031.6A Withdrawn EP3418429A1 (fr) | 2017-06-21 | 2017-06-21 | Électrode à diffusion de gaz destinée à réduire l'oxyde d'azote |
EP18735210.9A Active EP3642391B1 (fr) | 2017-06-21 | 2018-06-19 | Procédé, utilisation et cellule électrolytique dotée d'une électrode à diffusion de gaz destinée à réduire l'oxyde d'azote |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17177031.6A Withdrawn EP3418429A1 (fr) | 2017-06-21 | 2017-06-21 | Électrode à diffusion de gaz destinée à réduire l'oxyde d'azote |
Country Status (6)
Country | Link |
---|---|
US (1) | US20200208283A1 (fr) |
EP (2) | EP3418429A1 (fr) |
JP (1) | JP7222933B2 (fr) |
KR (1) | KR20200020714A (fr) |
CN (1) | CN110770370B (fr) |
WO (1) | WO2018234322A1 (fr) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018210457A1 (de) * | 2018-06-27 | 2020-01-02 | Siemens Aktiengesellschaft | Gasdiffusionselektrode zur Kohlendioxid-Verwertung, Verfahren zu deren Herstellung sowie Elektrolysezelle mit Gasdiffusionselektrode |
CN114373940A (zh) * | 2021-12-16 | 2022-04-19 | 清华大学 | 气体扩散电极及其制备方法和应用 |
KR20240010402A (ko) | 2022-07-15 | 2024-01-23 | 주식회사 엘지화학 | 전기화학적 이산화탄소 전환 시스템 |
KR20240031100A (ko) | 2022-08-29 | 2024-03-07 | 주식회사 엘지화학 | 전기 화학적 이산화 탄소 전환 시스템의 구동 방법 |
WO2024185870A1 (fr) * | 2023-03-09 | 2024-09-12 | 三井金属鉱業株式会社 | Catalyseur d'électrode, dispositif de réaction électrochimique et procédé de production de catalyseur d'électrode |
KR20240138775A (ko) | 2023-03-13 | 2024-09-20 | 한국과학기술연구원 | 소수성 은 나노입자 촉매, 상기 촉매를 포함하는 환원전극 및 상기 촉매의 제조방법 |
CN116876005B (zh) * | 2023-07-21 | 2024-07-16 | 深圳先进技术研究院 | 用于电催化co2还原制co的气相扩散电极、制备方法及应用 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3342969A1 (de) | 1983-11-28 | 1985-06-05 | Varta Batterie Ag, 3000 Hannover | Poroese gaselektrode |
DE3710168A1 (de) | 1987-03-27 | 1988-10-13 | Varta Batterie | Verfahren zur herstellung einer kunststoffgebundenen gasdiffusionselektrode mit metallischen elektrokatalysatoren |
DE4444114C2 (de) | 1994-12-12 | 1997-01-23 | Bayer Ag | Elektrochemische Halbzelle mit Druckkompensation |
US6402930B1 (en) | 1999-05-27 | 2002-06-11 | De Nora Elettrodi S.P.A. | Process for the electrolysis of technical-grade hydrochloric acid contaminated with organic substances using oxygen-consuming cathodes |
IT1317753B1 (it) | 2000-02-02 | 2003-07-15 | Nora S P A Ora De Nora Impiant | Cella di elettrolisi con elettrodo a diffusione di gas. |
DE10148599A1 (de) | 2001-10-02 | 2003-04-10 | Bayer Ag | Verfahren zur Herstellung von Gasdiffusionselektroden aus trockenen Pulvermischungen mittels Walzen |
JP2006219694A (ja) * | 2005-02-08 | 2006-08-24 | Permelec Electrode Ltd | ガス拡散電極 |
DE102005023615A1 (de) | 2005-05-21 | 2006-11-23 | Bayer Materialscience Ag | Verfahren zur Herstellung von Gasdiffusionselektroden |
EP2079545B1 (fr) * | 2006-09-22 | 2013-11-06 | Bar-Ilan University | Agrégats poreux de poudre d'argent comprenant de l'oxyde de zirconium en tant que promoteur destinés à être utilisés en tant que catalyseur dans des électrodes à diffusion gazeuse et procédé pour la production de ceux-ci |
US8900750B2 (en) * | 2006-09-22 | 2014-12-02 | Bar-Ilan University | Porous clusters of silver powder promoted by zirconium oxide for use as a catalyst in gas diffusion electrodes, and method for the production thereof |
JP5031336B2 (ja) * | 2006-11-21 | 2012-09-19 | ペルメレック電極株式会社 | 食塩電解用酸素ガス拡散陰極 |
DE602007007783D1 (de) * | 2007-10-31 | 2010-08-26 | Daiki Ataka Engineering Co Ltd | Elektrode für Sauerstoffentwicklung |
US10047446B2 (en) * | 2010-07-04 | 2018-08-14 | Dioxide Materials, Inc. | Method and system for electrochemical production of formic acid from carbon dioxide |
JP6021074B2 (ja) * | 2011-02-28 | 2016-11-02 | 国立大学法人長岡技術科学大学 | 二酸化炭素の還元固定化システム、二酸化炭素の還元固定化方法、及び有用炭素資源の製造方法 |
US9714472B2 (en) * | 2011-09-23 | 2017-07-25 | Covestro Deutschland Ag | Gas diffusion electrodes and process for production thereof |
US10329676B2 (en) * | 2012-07-26 | 2019-06-25 | Avantium Knowledge Centre B.V. | Method and system for electrochemical reduction of carbon dioxide employing a gas diffusion electrode |
EP3149228B1 (fr) * | 2014-05-29 | 2021-03-03 | Avantium Knowledge Centre B.V. | Procédé pour la réduction électrochimique de dioxyde de carbone au moyen d'une électrode à diffusion gazeuse |
US10570524B2 (en) * | 2014-09-08 | 2020-02-25 | 3M Innovative Properties Company | Ionic polymer membrane for a carbon dioxide electrolyzer |
DE102015212504A1 (de) * | 2015-07-03 | 2017-01-05 | Siemens Aktiengesellschaft | Elektrolysesystem und Reduktionsverfahren zur elektrochemischen Kohlenstoffdioxid-Verwertung, Alkalicarbonat- und Alkalihydrogencarbonaterzeugung |
DE102017204096A1 (de) * | 2017-03-13 | 2018-09-13 | Siemens Aktiengesellschaft | Herstellung von Gasdiffusionselektroden mit Ionentransport-Harzen zur elektrochemischen Reduktion von CO2 zu chemischen Wertstoffen |
-
2017
- 2017-06-21 EP EP17177031.6A patent/EP3418429A1/fr not_active Withdrawn
-
2018
- 2018-06-19 CN CN201880041586.2A patent/CN110770370B/zh active Active
- 2018-06-19 EP EP18735210.9A patent/EP3642391B1/fr active Active
- 2018-06-19 KR KR1020197037391A patent/KR20200020714A/ko not_active Application Discontinuation
- 2018-06-19 JP JP2019570373A patent/JP7222933B2/ja active Active
- 2018-06-19 WO PCT/EP2018/066293 patent/WO2018234322A1/fr unknown
- 2018-06-19 US US16/623,437 patent/US20200208283A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
KR20200020714A (ko) | 2020-02-26 |
US20200208283A1 (en) | 2020-07-02 |
JP7222933B2 (ja) | 2023-02-15 |
CN110770370A (zh) | 2020-02-07 |
CN110770370B (zh) | 2022-11-25 |
JP2020524742A (ja) | 2020-08-20 |
EP3642391A1 (fr) | 2020-04-29 |
EP3418429A1 (fr) | 2018-12-26 |
WO2018234322A1 (fr) | 2018-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3642391B1 (fr) | Procédé, utilisation et cellule électrolytique dotée d'une électrode à diffusion de gaz destinée à réduire l'oxyde d'azote | |
EP2398101B1 (fr) | Electrode de diffusion gazeuse et méthode de fabrication | |
DE2720529C2 (de) | Verfahren zur Herstellung einer Brennstoffzellenelektrode | |
DE102006050090B4 (de) | Sauerstoff-Reduktions-Gasdiffusionskathode und Verfahren zur Durchführung einer Natriumchlorid-Elektrolyse in einer Elektrolysezelle | |
WO2010078952A2 (fr) | Électrode de diffusion de gaz structurée pour cellules électrolytiques | |
EP1402587B1 (fr) | Procede pour la production d'electrodes a diffusion gazeuse | |
EP3568507A1 (fr) | Fabrication d'électrocatalyseurs dendritiques pour la réduction de co2 et/ou co | |
EP2498327A2 (fr) | Procédé destiné à la fabrication d'électrodes d'alimentation en oxygène | |
DE102007033753A1 (de) | An seiner Oberfläche mit metallischen Nanopartikeln versehenes ultrahydrophobes Substrat, Verfahren zu dessen Herstellung und Verwendung desselben | |
EP2573211B1 (fr) | Procédé de fabrication des électrodes de diffusion gazeuse | |
EP2609649B1 (fr) | Électrode consommant de l'oxygène et procédé de fabrication de ladite électrode | |
EP3191619A1 (fr) | Électrode consommant de l'oxygène, contenant des nanotubes de carbone, et son procédé de fabrication | |
WO2015135858A1 (fr) | Procédé de production de poudres catalytiquement actives constituées d'argent métal ou de mélanges d'argent métal et d'oxyde d'argent destinées à fabriquer des électrodes à diffusion de gaz | |
EP3191620B1 (fr) | Électrode consommant de l'oxygène et procédé de fabrication de ladite électrode | |
EP2573213B1 (fr) | Electrode catalytique consommant de l'oxygène et son procédé de fabrication | |
EP2573210B1 (fr) | Electrode catalytique consommant de l'oxygène et son procédé de fabrication | |
EP3788184A1 (fr) | Électrode de diffusion gazeuse destinée au recyclage de dioxyde de carbone, son procédé de fabrication et cellule électrolytique dotée d'une électrode de diffusion gazeuse | |
DE3125173C2 (de) | Verwendung einer Kathode, die aus einer Einlagerungsverbindung besteht, zum Elektrolysieren von Alkalichloridsole | |
DE102022004678A1 (de) | Verfahren zur Elektrolyse von Kohlendioxid mit Vorreduktion einer Silberoxid-enthaltenden Gasdiffusionselektrode | |
DE102022133773A1 (de) | Verfahren zur elektrokatalytischen Hydrierung von Alkinen und elektrochemische Zelle für dieses Verfahren |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200121 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: COVESTRO DEUTSCHLAND AG |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: COVESTRO INTELLECTUAL PROPERTY GMBH & CO. KG |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20201210 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502018012875 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C25B0001000000 Ipc: C25B0001230000 Ref legal event code: R079 Ipc: C25B0001230000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C25B 11/081 20210101ALI20230125BHEP Ipc: C25B 11/032 20210101ALI20230125BHEP Ipc: C25B 1/23 20210101AFI20230125BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20230313 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502018012875 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231204 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231102 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231202 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231103 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502018012875 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240527 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240516 Year of fee payment: 7 |
|
26N | No opposition filed |
Effective date: 20240503 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240522 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240530 Year of fee payment: 7 |