EP3639355A1 - Verfahren zur steuerung eines dreiphasigen vienna-gleichrichters - Google Patents

Verfahren zur steuerung eines dreiphasigen vienna-gleichrichters

Info

Publication number
EP3639355A1
EP3639355A1 EP18735647.2A EP18735647A EP3639355A1 EP 3639355 A1 EP3639355 A1 EP 3639355A1 EP 18735647 A EP18735647 A EP 18735647A EP 3639355 A1 EP3639355 A1 EP 3639355A1
Authority
EP
European Patent Office
Prior art keywords
phase
mod
rectifier
vienna rectifier
values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18735647.2A
Other languages
English (en)
French (fr)
Other versions
EP3639355B1 (de
Inventor
Najib ROUHANA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Nissan Motor Co Ltd
Original Assignee
Renault SAS
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS, Nissan Motor Co Ltd filed Critical Renault SAS
Publication of EP3639355A1 publication Critical patent/EP3639355A1/de
Application granted granted Critical
Publication of EP3639355B1 publication Critical patent/EP3639355B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4216Arrangements for improving power factor of AC input operating from a three-phase input voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/2176Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only comprising a passive stage to generate a rectified sinusoidal voltage and a controlled switching element in series between such stage and the output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4833Capacitor voltage balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • H02M7/2195Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration the switches being synchronously commutated at the same frequency of the AC input voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a method of controlling a three-phase rectifier for a three-phase input charging device, comprising an isolated AC-DC (AC-DC) converter.
  • a charging device is particularly suitable for use as a device embedded in an electric or hybrid motor vehicle.
  • These vehicles are equipped with high-voltage electric batteries and generally include on-board chargers, that is, charging devices for electric batteries that are mounted directly on the vehicles.
  • the main function of these charging devices is the recharging of the batteries from the electricity available on the electrical distribution network. They therefore provide a conversion of an alternating current into direct current.
  • the criteria sought for charging devices, and especially for on-board chargers, are high efficiency, small footprint, galvanic isolation, good reliability, operational safety, low electromagnetic disturbance emission, and low battery rate. of harmonics on the input current.
  • FIG. 1 illustrates a known topology of an isolated charging device 10 embedded in an electric or hybrid vehicle for recharging the high voltage battery of the vehicle from the three-phase electrical network 30 to which the on-board charging device 10 is connected by via the line impedance 40 of the network.
  • a charging device 10 comprising a first AC-DC converter, which comprises a power factor corrector circuit (PFC, for " Power factor correction ") in order to limit the input current harmonics, and a second DC-DC (DC-DC) converter 12, to ensure the regulation of the load and also to provide the insulation function for the security of use.
  • An input filter 13 is conventionally integrated into the input of the charging device 10, upstream of the PFC circuit 20 with respect to the three-phase electrical network 30.
  • the PFC circuit 20 is controlled by an integrated controller (not shown), which analyzes and corrects in real time the shape of the current with respect to the voltage. He deduces the errors of form by comparison with the rectified sinusoid of the voltage and he corrects them by controlling the quantity of energy thanks to a cutting high frequency and a storage of energy in an inductance. Its role is more precisely to obtain a current not out of phase and the most sinusoidal possible input of the power supply of the charger.
  • each phase of the three-phase AC input voltage 30 is connected by respective inductances La, Lb, Le to a switching arm 1, 2, 3 of the rectifier 20, which is provided with a power switch cell respectively Sa, Sb, Se.
  • the power switch cells Sa, Sb, Se are each arranged between a respective inductance La, Lb, Le and a midpoint O between the two output voltages Vdch and Vdcl of the rectifier 20, respectively corresponding to the voltage on a first output capacitor C1 connected between the midpoint O and a positive supply line H and the voltage on a second output capacitor C2 connected between the midpoint O and a negative supply line L.
  • a method of controlling a three-phase Vienna rectifier comprising a plurality of controlled power switches each associated with an electrical phase; the method comprising:
  • the input currents of the two DC-DC converters are constant and balanced, which allows a regulation of the DC / DC simpler and more robust.
  • each modulator value is calculated by adding the homopolar component with the associated simple voltage. This allows a fast and simple calculation of modulator values, in particular because it does not involve trigonometric or vector calculation.
  • the generation of the six switching signals of the controlled power switches comprises the comparison of the modulator values with respect to two high frequency carriers which are synchronous and in phase with respect to each other.
  • the generation of the switching signals is simplified by a simple comparison of the calculated modulator values with high frequency carriers.
  • the modulator associated with the phase is compared to a symmetrical triangular signal varying between 0 and +1.
  • the modulator associated with the phase is compared with a symmetrical triangular signal varying between -1 and 0.
  • the latter is in phase the symmetrical triangular signal varying between 0 and 1.
  • the two previous comparisons have the same advantage which is to obtain a simple logical comparison to be made by using a fast triangular signal to be generated.
  • the invention also relates to a device for controlling a three-phase Vienna rectifier comprising means for implementing the method according to any one of the preceding claims.
  • FIG. 1 represents a voltage converter implementing a method according to one embodiment of the invention represented in FIG. 3;
  • FIG. 2 represents a three-phase Vienna rectifier known from the prior art
  • FIG. 3 is a schematic representation of one embodiment of the invention.
  • FIG. 4 is a schematic representation of a step of generating the switching signals of the controlled power switches of the Vienna rectifier, according to the embodiment of Figure 3;
  • FIG. 5 is a schematic representation of another step of generating the switching signals of the controlled power switches of the Vienna rectifier, according to the embodiment of FIG. 3.
  • Figure 2 shows the structure of a known three-phase Vienna rectifier as used in the invention.
  • the three-phase rectifier Vienna 2 comprises three parallel incoming connections each coupled to a phase of a three-phase power supply network 30 via a series inductor coil La, Lb, Le, and each connected to a pair of switches Sa, Sb, forming a first one second and third switching arm of the three-phase rectifier of Vienna.
  • Each pair of switches Sa, Sb, Se comprises a series of head-to-tail series consisting of a first corresponding switch Sah, Sbh, Sch, which is controlled when a corresponding input current Ia, Ib, is positive, and d a second corresponding switch Sal, SbI, Sel which is controlled when the corresponding input current is negative.
  • the switches are formed by semiconductor components controlled at closing and opening, such as SiC-MOS (Silicon Carbide-Metal Oxide Semiconductor) transistors connected in antiparallel with a diode. This type of semiconductor is suitable for very high switching frequencies.
  • the Sah, Sbh and Sch switches are also called high switches and the Sal, SbI, Sel switches, low switches.
  • the three-phase rectifier of Vienna 20 also comprises three parallel branches 1, 2 and 3, each having two diodes Dah and Dal, Dbh and Dbl and Dch and Del, which form a three-phase bridge with six diodes allowing a unidirectional transfer of energy and to rectify the current and voltage taken from the three-phase power supply network.
  • Each input of the three-phase rectifier Vienna is connected, by a respective parallel incoming connection, to a connection point located between two diodes of the same branch 1, 2 and 3.
  • the two common ends of the branches 1, 2 and 3 constitute two output terminals H and L, respectively positive H and negative L, of the three-phase rectifier of Vienna 20, which are intended to be coupled to the device DC-DC 12.
  • the switching arms Sa, Sb, Se of each phase are furthermore respectively connected respectively between the connection point a, b, c situated between the two diodes of the first 1, second 2 and third branches 3 and a midpoint O of the voltages.
  • output V D CH and V D CL of the three-phase rectifier of Vienna 20 respectively corresponding to the voltage on an output capacitor C1 between the positive output terminal H of the three-phase rectifier and the midpoint O and the voltage on an output capacitor C2 between the midpoint O and a negative output terminal L of the three-phase rectifier 20.
  • the voltage on the output capacitors C1, C2 is independently controlled by the DC-DC converter of the charging device connected to the output of the three-phase rectifier of Vienna 20, according to the overall topology illustrated in FIG. In other words, the output voltages of the three-phase rectifier Vienna are controlled by the DC-DC converter 12.
  • the three-phase rectifier Vienna 20 interposed at the input of the power supply of the charger 10 assumes the role of correction of the power factor of the charger. Such a role makes it possible to prevent the disturbing currents (harmonics) produced by the charger, from circulating through the impedance of the network, situated upstream of the Vienna rectifier 20.
  • the switching arms Sa, Sb and Se of each phase of the three-phase network 30 are controlled by means of six PWM control signals (according to English "Pulse Width Modulation") having a variable duty cycle with equal fixed switching frequency. at 140kHz individually set by FPGA processing means for example (not shown) for high sampling rates.
  • the processing means are adapted to determine the cyclic ratios of the switching control signals of the switches of the rectifier switching arms, necessary for servocontrolling the sinusoidal currents at the input of the rectifier.
  • the invention relates to a method for controlling the processing means for the application of cyclic ratios adapted to, on the one hand, to reduce to the minimum possible the ripple of the input currents of the two capacitors C1 and C2 and, on the other hand equalizing these currents so as to provide an equal power on the two DC buses at the output of the Vienna rectifier 20, which makes the regulation of the DC / DC 12 more robust following the minimization of the ripple of the input current.
  • DC / DC Indeed, when the energy flow downstream of the Vienna rectifier 20 is constant, it is easier to control the DC / DC 12 in voltage.
  • equations (1) and (2) are expressed as follows:
  • the average value of the phase currents (noted (i a ), (i b ) and (i c )) is none other than the fundamental component of the current devoid of the high frequency components which are due to the division.
  • This basic component is the current setpoint obtained from the user-defined setpoint power in the case of a PFC power factor correction control of the bridge rectifier in Vienna.
  • the value average of a noted switching signal is none other than the duration of closure of the semiconductor during the
  • the objective being to have one seek to determine the value of
  • a duty cycle can be determined as a function of a low frequency signal, called “the modulator” and noted mod x such that:
  • equations (7) and (8) become equal to:
  • the "modulating" is expressed as a function of the injected harmonic component and the voltages of references generated by closed-loop control as follows
  • V dc DC bus voltage
  • the compound voltages U * ab, U * ac, U * bc (setpoint voltages between phases, corresponding to the voltages between the points a and b, a and c and b respectively, respectively) are transformed.
  • c) in simple voltages v * a, v * b, v * c also say set voltages v * a, v * b, v * c.
  • the rotating reference voltage vector is expressed, on average, as a function of the three simple voltages (for the three-phase case) noted
  • Equation (1) is applied to obtain the three simple voltages (va, vb, v * c) from the two compound voltages:
  • the homopolar component to be injected is calculated.
  • equations (1) and (2) become:
  • mod x is greater than or equal to the triangular signal that varies between 0 and 1
  • mod x is less than or equal to the triangular signal that varies between -1 and 0 l

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
EP18735647.2A 2017-06-15 2018-05-24 Verfahren zur steuerung eines dreiphasigen vienna-gleichrichters Active EP3639355B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1755421A FR3067886B1 (fr) 2017-06-15 2017-06-15 Procede de commande d'un redresseur de vienne triphase
PCT/FR2018/051228 WO2018229378A1 (fr) 2017-06-15 2018-05-24 Procédé de commande d'un redresseur de vienne triphasé

Publications (2)

Publication Number Publication Date
EP3639355A1 true EP3639355A1 (de) 2020-04-22
EP3639355B1 EP3639355B1 (de) 2023-11-08

Family

ID=60202090

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18735647.2A Active EP3639355B1 (de) 2017-06-15 2018-05-24 Verfahren zur steuerung eines dreiphasigen vienna-gleichrichters

Country Status (7)

Country Link
US (1) US10819223B2 (de)
EP (1) EP3639355B1 (de)
JP (1) JP7145881B2 (de)
CN (1) CN110663163B (de)
FR (1) FR3067886B1 (de)
RU (1) RU2732541C1 (de)
WO (1) WO2018229378A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034696A (zh) * 2019-03-27 2019-07-19 南京航空航天大学 一种用于三相三电平vienna整流器的电流采样方法
CN111327081B (zh) * 2020-02-25 2021-12-07 东莞市峰谷科技有限公司 一种两相三线逆变器的控制方法
CN114094803B (zh) * 2020-06-29 2024-03-12 中兴通讯股份有限公司 纹波电流控制方法和装置、电子设备、计算机可读存储介质
CN112953270B (zh) * 2021-02-07 2022-09-06 石家庄通合电子科技股份有限公司 三相三电平整流器中点平衡控制方法、装置及终端设备
CN114900031B (zh) * 2021-12-23 2024-06-21 广东泰坦智能动力有限公司 一种用于平衡pfc输出电容电压的鲁棒系统设计方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT406434B (de) * 1993-12-23 2000-05-25 Ixys Semiconductor Gmbh Vorrichtung zur umformung eines dreiphasigen spannungssystems in eine vorgebbare, einen verbraucher speisende gleichspannung
BR9907351A (pt) * 1999-12-22 2001-08-07 Ericsson Telecomunicacoees S A Método e circuito de controle para retificador do tipo elevador trifásico de três nìveis
US6459596B1 (en) * 2000-08-18 2002-10-01 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for a Reduced parts-counts multilevel rectifier
JP2008092640A (ja) * 2006-09-29 2008-04-17 Sanken Electric Co Ltd 3相整流装置
FR2921211B1 (fr) * 2007-09-13 2010-12-10 Hamilton Sundstrand Corp Systeme de redressement actif ameliore a correction du facteur de puissance.
CN101753044B (zh) * 2010-01-26 2012-06-27 北方工业大学 一种基于零序电压注入的三电平中点电位平衡控制方法
CN103036461B (zh) * 2011-09-29 2016-03-30 台达电子企业管理(上海)有限公司 三相整流模组、其适用的系统及谐波抑制方法
CN103825291B (zh) * 2014-02-24 2016-05-04 国家电网公司 一种模块化三电平储能装置并离网控制方法
CN104811061A (zh) * 2015-04-30 2015-07-29 安徽动力源科技有限公司 新型三相pfc整流器
RU163741U1 (ru) * 2016-02-25 2016-08-10 Федеральное государственное бюджетное учреждение "Центральный научно-исследовательский испытательный институт инженерных войск" Министерства обороны Российской Федерации Многофазный выпрямитель с коррекцией коэффициента мощности
RU163740U1 (ru) * 2016-02-25 2016-08-10 Федеральное государственное бюджетное учреждение "Центральный научно-исследовательский испытательный институт инженерных войск" Министерства обороны Российской Федерации Многофазный выпрямитель с коррекцией коэффициента мощности
US10063077B2 (en) * 2016-03-28 2018-08-28 The Boeing Company System architecture for battery charger
US9973097B2 (en) * 2016-06-21 2018-05-15 Astronics Advanced Electronic Systems Corp. Regulating transformer rectifier unit with multiple circuits for preventing output overvoltage
CN106169879A (zh) * 2016-09-19 2016-11-30 山东大学 修正注入零序分量的vienna整流器调制方法、控制器及系统

Also Published As

Publication number Publication date
FR3067886B1 (fr) 2023-05-26
WO2018229378A1 (fr) 2018-12-20
RU2732541C1 (ru) 2020-09-22
CN110663163A (zh) 2020-01-07
FR3067886A1 (fr) 2018-12-21
JP7145881B2 (ja) 2022-10-03
US10819223B2 (en) 2020-10-27
CN110663163B (zh) 2023-10-20
JP2020523961A (ja) 2020-08-06
EP3639355B1 (de) 2023-11-08
US20200169165A1 (en) 2020-05-28

Similar Documents

Publication Publication Date Title
EP3639355B1 (de) Verfahren zur steuerung eines dreiphasigen vienna-gleichrichters
EP3554887B1 (de) Steuerungsverfahren einer in einem elektrischen oder hybriden fahrzeug eingebetteten ladevorrichtung
EP2864150B1 (de) Verfahren zur steuerung des ladens einer batterie eines elektrofahrzeugs in einem kontaktlosen ladesystem
EP3607644B1 (de) Verfahren zur steuerung einer aufladevorrichtung an bord eines elektro- oder hybridfahrzeugs
FR2944653A1 (fr) Vehicule automobile a propulsion electrique et borne de charge de la batterie d'un tel vehicule
EP3183795B1 (de) Batterieladegerät für hochintegriertes elektrisches oder hybrides kraftfahrzeug
EP3520210B1 (de) Verfahren zur steuerung eines dreiphasigen wechselrichters für eine ladevorrichtung an bord eines elektro- oder hybridfahrzeugs
EP3539204B1 (de) Verfahren zur steuerung eines dreiphasigen gleichrichters für eine ladevorrichtung an bord eines elektro- oder hybridfahrzeugs
EP3707815B1 (de) Verfahren zur steuerung eines dreiphasigen vienna-gleichrichters bei fehlerhaftem leistungsschalter
EP3707800B1 (de) Verfahren zur steuerung eines batterieladegerätes für elektrische akkumulatoren
EP3539203B1 (de) Verfahren zur steuerung eines dreiphasigen wechselrichters für eine ladevorrichtung an bord eines elektro- oder hybridfahrzeugs
FR2985615A1 (fr) Systeme d'alimentation d'une charge alternative par plusieurs sources de tension continue
FR3056853B1 (fr) Procede de commande d'un redresseur triphase pour un dispositif de charge embarque sur un vehicule electrique ou hybride
FR3077441A1 (fr) Procede de commande d'un redresseur triphase pour un dispositif de charge a entree triphasee.
FR3067885A1 (fr) Procede de commande d'un redresseur de vienne triphase.
FR3073992A1 (fr) Procede de commande d'un redresseur de vienne triphase
EP3807984A1 (de) Verfahren zur steuerung eines vienna-gleichrichters
FR3007908A1 (fr) Dispositif de conversion d'energie electrique multifonction
FR2974462A1 (fr) Dispositif de charge et procede associe

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191029

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201013

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NISSAN MOTOR CO. LTD

Owner name: RENAULT S.A.S

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NISSAN MOTOR CO. LTD

Owner name: RENAULT S.A.S

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H02M 7/487 20070101ALN20230517BHEP

Ipc: H02M 7/483 20070101ALI20230517BHEP

Ipc: H02M 1/42 20070101AFI20230517BHEP

INTG Intention to grant announced

Effective date: 20230602

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018060789

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1630524

Country of ref document: AT

Kind code of ref document: T

Effective date: 20231108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240308

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240209

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240208

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240208

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240521

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240521

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602018060789

Country of ref document: DE

Owner name: NISSAN MOTOR CO., LTD., YOKOHAMA-SHI, JP

Free format text: FORMER OWNERS: NISSAN MOTOR CO., LTD., YOKOHAMA-SHI, KANAGAWA, JP; RENAULT S.A.S, BOULOGNE-BILLANCOURT, FR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602018060789

Country of ref document: DE

Owner name: AMPERE S.A.S., FR

Free format text: FORMER OWNERS: NISSAN MOTOR CO., LTD., YOKOHAMA-SHI, KANAGAWA, JP; RENAULT S.A.S, BOULOGNE-BILLANCOURT, FR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240527

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018060789

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240809