EP3635354A2 - Dispositif optoélectronique de mesure répartie par fibre optique - Google Patents

Dispositif optoélectronique de mesure répartie par fibre optique

Info

Publication number
EP3635354A2
EP3635354A2 EP18728981.4A EP18728981A EP3635354A2 EP 3635354 A2 EP3635354 A2 EP 3635354A2 EP 18728981 A EP18728981 A EP 18728981A EP 3635354 A2 EP3635354 A2 EP 3635354A2
Authority
EP
European Patent Office
Prior art keywords
frequency
optical fiber
signal
coupler
brillouin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18728981.4A
Other languages
German (de)
English (en)
Other versions
EP3635354B1 (fr
Inventor
Vincent Lanticq
Pierre Clement
Etienne Almoric
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Febus Optics SAS
Original Assignee
Febus Optics SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Febus Optics SAS filed Critical Febus Optics SAS
Publication of EP3635354A2 publication Critical patent/EP3635354A2/fr
Application granted granted Critical
Publication of EP3635354B1 publication Critical patent/EP3635354B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35358Sensor working in reflection using backscattering to detect the measured quantity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/322Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres using Brillouin scattering

Definitions

  • the invention relates to an optoelectronic measuring device distributed by optical fiber.
  • the invention more precisely relates to an optoelectronic device capable of measuring the parameters of the Brillouin and Rayleigh backscattering spectra and possibly comprising means capable of separating the distributed temperature measurement and the distributed deformation measurement.
  • Such devices can be used for the permanent control of the integrity and safety of systems and structures in civil engineering or the oil industry.
  • Optoelectronic optical fiber distributed measurement devices are generally used to measure, in real time, the temperature and deformations of large infrastructures in order to monitor their structural health and ensure their maintenance. They provide, for each measurement, the temperature and deformation information at any point of the optical fiber connected to them.
  • Measurements are generally made with a range of a few meters to several tens of kilometers and a metric or even centimeter resolution. Thus, for example, a measurement can be made every meter on a structure of a length of 20 kilometers.
  • Optoelectronic optical fiber distributed measurement devices exploiting the Brillouin backscattering phenomenon are already known and used for applications of temperature measurement and deformation in civil engineering.
  • these systems are ideal for monitoring linear structures such as bridges, dams, earthen hydraulic dikes or fluid transport networks (water, hydrocarbons, gas) in order to control the movement of land (slip, settlement ) or the deformations of buried or non-buried pipes.
  • the measurement systems In order to be able to analyze intensity variations over tens of kilometers with a metric spatial resolution, the measurement systems generally use OTDR (Optical Time Domain Reflectometry).
  • the OTDR consists in propagating a light pulse in the optical fiber to be analyzed and measuring the return intensity as a function of time.
  • the time that the backscattered light has to be detected makes it possible to locate the event to be measured (coordinate of a point z along the optical fiber).
  • the spatial resolution is then a function of the width of the light pulse: a pulse of width 10 ns resulting for example a resolution of about 1 m. Thanks to the Brillouin backscattering phenomenon combined with the OTDR technique, measurements of temperature and deformation are carried out all along the fiber, over several tens of kilometers, with a metric or even centimetric resolution.
  • the measurements along the fiber are performed with a device as shown diagrammatically in FIG. 1.
  • a light source 1 such as a laser
  • One of the arms called “pump”
  • pump sends the light signal, pulse form through an acousto-optical modulator 6, in the optical fiber 15 to be tested.
  • a signal is backscattered by the optical fiber 15, according to the Brillouin phenomenon.
  • the spectral components of backscattering of light by the material constituting the optical fiber, in general of silica have a frequency vB z offset from that vO of the incident light wave.
  • Such a frequency is very high.
  • the frequency can be transposed at a lower frequency to reduce the bandwidth of the detector to be used and thus eliminate a large part of the noise.
  • a heterodyne detection is carried out consisting in recombining the backscattered signal to be analyzed with a wave coming from the other arm, called a "local oscillator" 50.
  • This local oscillator 50 may, for example, be in the form of a laser. in Brillouin ring.
  • the continuous light signal of frequency vo is directed to a circulator 51 which in turn directs it to a reference fiber.
  • This reference fiber emits by spontaneous amplified diffusion a radiation in the opposite direction of the frequency vo - VBref that the circulator sends to a coupler 52.
  • the latter sends a part of the energy to the output signal, while it redirects the another part towards the reference fiber where the Radiation is amplified by a gain factor G by stimulated Brillouin scattering (spontaneous amplified) before being redirected to the circulator 51 which returns the amplified radiation to the coupler 52 and the output.
  • the local oscillator 50 then forms a stimulated Brillouin scattering amplification ring.
  • a photo detector 10 makes it possible to recover the beat of the two signals. The recovered beat is then amplified and then transmitted to an electric spectrum analyzer 12.
  • Such an optoelectronic Brillouin scattering distributed measurement device in an optical fiber, using a single laser frequency to generate a light pulse is more particularly described in document US Pat. No. 7,283,213.
  • JP 2010 217029 discloses another optoelectronic device of US Pat. Brillouin scattering distributed measurement using a single laser frequency to generate a light pulse.
  • the device aims, via heterodyne detection, to reduce the light-receiving bandwidth of the Brillouin backscattering light in order to reduce costs and to facilitate the treatment of backscattered light.
  • the device comprises a reference fiber similar to the test fiber so as to measure a difference in frequency between the backscattering lights of the reference line and the line to be tested.
  • the temperature and deformation parameters both create the same physical phenomenon in the optical fiber (variation of the Brillouin VB backscattering frequency).
  • the Brillouin frequency VB depends linearly on the temperature and the deformation in the material.
  • the invention therefore aims to overcome the disadvantages of the prior art.
  • the invention aims in particular to provide an optoelectronic measuring device distributed by optical fiber, simple and compact and able to produce a more accurate and fast measurement with no or little parasite on low frequencies.
  • the optoelectronic device has a new architecture for generating a local oscillator inducing no or few parasitic signals.
  • a reference fiber is included in the "pump" arm to generate an amplified spontaneous diffusion signal making it possible to dispense with all the necessary preliminary checks.
  • the invention also aims at providing an optical fiber optically distributed optoelectronic measuring device, capable in a single measurement and from a single optical fiber to be tested, to differentiate the temperature parameter and the deformation parameter.
  • the optoelectronic device has a new architecture for simultaneous measurement of the anti-Stokes Brillouin backscattering line and Rayleigh backscattering.
  • the device proposed according to the invention makes it possible to perform much faster analyzes than the devices of the prior art while having fewer energy consuming elements than the existing systems described in the prior art. which makes it possible to have a portable device adapted to interventions by an operator on foot or occasional measures.
  • the optoelectronic measurement device distributed by optical fiber comprises a continuous light source emitting a continuous light signal at a first frequency vo, a modulator capable of imposing a frequency shift of minus 100 MHz to the continuous signal and transforming it into a pulse signal intended to be injected into an optical fiber to be tested and a photo-detection module able to detect a backscattering signal, coming from the optical fiber to be tested, derived from an amplified spontaneous Brillouin backscattering and / or a Rayleigh backscattering from said optical fiber to be tested, said device being mainly characterized in that it further comprises a first coupler and a second coupler, said first coupler being capable of dividing said continuous light signal in two identical frequency signals distributed in two arms,
  • a second arm connecting the first coupler to the second coupler situated upstream of the photo-detection module and capable of transmitting to the second coupler a continuous light signal at a frequency vo, thus constituting a local oscillator, said second coupler being able to couple the second coupler signal from the local oscillator to the backscattering signal from said optical fiber to be tested before transmitting it to the photo-detection module,
  • the backscattering signal being modulated at a frequency vrB equal to vo - vbref + VA + vbAs, where vbAs is the anti-Stokes Brillouin backscattering frequency that can be measured at any point z of said optical fiber, and
  • said photo-detection module being able to transmit the received backscattering signal, to a processing module able to link the modulation of the backscattering signal to a temperature value and to a deformation value at any point z of said optical fiber to test.
  • the device used eliminates all the necessary prior checks when using a local oscillator having a Brillouin ring laser configuration.
  • the return signal emitted by the reference fiber is an amplified spontaneous diffusion signal (by stimulated diffusion), and not the product of a resonance in a laser-like cavity which consequently would depend heavily on the exact length of the cavity, difficult to control depending on influence parameters such as temperature.
  • this new architecture including the presence of a reference block positioned on the pump line gives the opportunity to the user to measure the anti-Stokes backscattering Brillouin line.
  • a reference block positioned on the pump line gives the opportunity to the user to measure the anti-Stokes backscattering Brillouin line.
  • Such a configuration makes it possible to improve the measurement quality by having a signal in the local oscillator without interference at low frequencies. It is therefore not necessary to use a low frequency electrical filter at the output of the photo-detection module.
  • such a configuration has a smaller footprint and reduced power consumption.
  • the local oscillator consists solely of the signal coming directly from the source laser, it does not include any element that can alter the quality of the signal.
  • the device may further comprise a third coupler and a fourth coupler, the third coupler being able to divide said continuous light signal coming from the light source into two identical frequency signals distributed in two arms. a first arm connecting the third coupler to the first coupler and capable of transmitting to the first coupler a continuous light signal at a frequency vo,
  • said fourth coupler being adapted to couple the initial signal vo to the light signal of frequency vo - vbref, from the reference block.
  • This optional feature based in particular on the presence of a series of couplers gives the possibility to the user to differentiate, in a single measurement and on a single fiber to test, the temperature parameter and that of deformation. It allows simultaneous measurement of the Brillouin backscattering anti-Stokes line and Rayleigh backscattering from a single measurement, the latter always being located around the VO + VA frequency (.VA in the electrical domain). is particularly advantageous compared to devices of the prior art that require the implementation of two measurements, for example via the use of two measuring devices (eg Brillouin and Raman).
  • the device has a backscattering signal containing the Rayleigh backscattering spectrum at a frequency v r R equal to vo + VA and the backscattering spectrum Brillouin at a frequency vrB equal to vo - vbref + VA + vbAs.
  • vr R the Rayleigh backscattering spectrum
  • vrB the backscattering spectrum Brillouin
  • the photo-detection module receives a signal from the modulated Rayleigh backscattering at the frequency of the acousto-optic modulator VA and the Brillouin backscattering modulated at the frequency VbAs -vbref + VA without there is no overlap between the two spectra.
  • the reference fiber is positioned the same optical arm as the optical fiber to be tested. Since the reference fiber is on the test arm, the local oscillator no longer has any element that can alter the quality of the light signal that propagates there. Indeed, the local oscillator comes directly from the source laser and goes directly to the detection module. So there is an improvement in the quality of the measurement.
  • the reference optical fiber of the reference fiber block has a Brillouin frequency different from that of the optical fiber to be tested.
  • the Brillouin frequency of the reference optical fiber has a frequency difference with the Brillouin frequency of the optical fiber to be tested, between 300 MHz and 1 MHz;
  • the second arm may comprise a polarization hybridization module, or a beam splitter, or a polarization jammer, then arranged upstream of the inputs of a second coupler.
  • the second arm may comprise a polarization scrambler then disposed upstream of the inputs of a second coupler.
  • Such a pulse signal may be based on the fact that the local oscillator comes directly from the source laser and goes directly to the detection module.
  • the invention also relates to a method of digital processing of a signal, for example from an optoelectronic optical fiber distributed measuring device according to the invention, said method comprising the following steps: digitizing a signal corresponding to the beat between a backscattered signal coming from an optical fiber to be tested and a reference signal, and detected by a photo-detection module,
  • the method according to the invention relates to a digital signal processing that can be applied right out of a photo-detection module.
  • the following signal processing is done digitally at the spectral level and not directly on the signal.
  • This processing notably comprises performing a cutting of the digitized signal into a plurality of sections whose width is equal to the time width of a pulse of the pulse signal injected into the optical fiber to be tested.
  • the duration of a measurement is short relative to the measurement time of the systems of the prior art. Typically the duration of a measurement is from 1 to a few seconds for a fiber of 10 km.
  • it may comprise the determination, from the averaged frequency spectra, of the variation of the frequency maxima of the Brillouin Anti-Stokes backscattering and the variation of the total intensity of the Brillouin backscattering. and varying the total intensity of the Rayleigh backscatter as a function of the backscatter forward and backward tt time, as well as the determination of the Rayleigh total intensity ratio and Brillouin total intensity at any point (z) of the fiber. This ratio corresponds to the ratio of Landau Placzek.
  • This optional feature allows the user to differentiate, in a single processed measure, the temperature parameter and that of deformation. This is particularly advantageous over prior art methods which require the implementation of a signal processing from at least two measurements.
  • the digitized signal may advantageously have portion by portion at least two spectra corresponding to the spectrum of Brillouin VA + ((vbAs (z) - vbref) and to Rayleigh VA spectrum.
  • the digital processing method according to the invention may also comprise a sub-step of determining a Rayleigh total intensity ratio on total Brillouin intensity at any point of the fiber in order to determine a ratio of Landau Placzek depending on the temperature parameter.
  • FIG. 1 already described, a diagram of a Brillouin backscattered distributed optoelectronic measurement device according to the prior art
  • FIG. 2 a diagram of an optoelectronic optical fiber distributed measuring device according to the invention, the dashed elements being optional elements,
  • FIGS. 3A to 3C time traces obtained in the first steps of the digitized signal digital processing method, and averaged, interpretable frequency spectra obtained following the fourth step of the method according to the invention relating to the T1 portion (line full) TN (dashed line), • Figures 4A to 4B, the Brillouin frequency (4A) and the Landau Placzek (4B) ratio at two different temperatures, obtained from a set of diffusion spectra (Rayleigh and Brillouin) on a fiber length of approximately 150 m, ⁇ Figures 5A to 5B, distributed temperature (5A) and deformation (5B) measurements, obtained on a 150 meter fiber with the device according to the invention, from a single measurement.
  • optical fiber to be tested or under test
  • the optical fiber arranged along a structure to monitor and allows for a distributed measurement.
  • optical fiber is meant an optical fiber that can have a different Brillouin frequency, identical or substantially identical to the Brillouin frequency of the test fiber. This reference optical fiber is maintained throughout the measurement without deformation and at a reference temperature.
  • optical fiber with different Brillouin frequency refers to an optical fiber whose Brillouin frequency has a frequency difference with the Brillouin frequency of the optical fiber to be tested, of at least 200 MHz and preferably a difference of at least 300 MHz .
  • a single measure means a pulse series for obtaining an averaged frequency spectrum.
  • duration of a measurement the time required for the system to display a measurement at the nominal accuracy in terms of deformation or temperature. This duration includes both:
  • the meaning of the invention means a value varying from less than 30% relative to the value compared, preferably less than 20%, even more preferably less than 10%. .
  • the majority means at least 50%.
  • the present invention relates generally to optoelectronic devices for measurement distributed by optical fiber.
  • the invention relates more precisely to an optoelectronic configuration of the device making it possible to increase its precision, to reduce its electrical consumption, to reduce its bulk, to reduce the duration of a measurement and to provide a distributed measurement separated from the temperature and the deformation.
  • Figure 2 schematizes more particularly the configuration of an optoelectronic measuring device distributed by optical fiber according to the invention.
  • the same references as in Figure 1 are used to designate the same elements.
  • the device according to the invention also comprises a light source 1 emitting a continuous light signal.
  • This light source 1 is advantageously embodied by a laser, preferably a DFB laser (of the acronym "Distributed Feedback"), using a Bragg grating.
  • the emission wavelength ⁇ is preferably equal to or substantially equal to 1550 nm, at the corresponding frequency vo.
  • the line of the emitted light wave is centered on the emission wavelength ⁇ and its width is at most 1 MHz.
  • the light source 1 is tunable in frequency and it is possible to vary its frequency continuously at a speed of at least 1 GHz / sec over an interval of at least 125 GHz. More preferably, the light source 1 is able to emit a continuous laser radiation at an optical frequency var that can be varied, over the duration of all acquisitions, following a continuous ramp of at least 250 GHz.
  • This frequency modulation must be continuous and not in frequency steps and thus makes it possible to reduce the effects of intra-pulse interference and therefore noise. This feature is especially important when tracking Rayleigh backscatter is desired.
  • the light source 1 for example a laser, emits a moderately powerful continuous light signal, typically of the order of 20 mW, in an optical fiber connecting it to a first coupler 3 or to the third coupler 2.
  • the first coupler 3, receiving the light signal via light source 1 or via the first arm 21 of the third coupler 2, is adapted to divide said continuous light signal into two identical frequency signals distributed in two arms.
  • the first arm 31 connects the first coupler 3 to a reference fiber block 4 comprising a reference fiber 42, said reference fiber block 4 being able to emit another light signal of frequency vo - vbref, where vbref is the Brillouin frequency of the reference fiber 42, intended to be transmitted to the modulator 6 or to be mixed with said initial signal by a fourth coupler 5.
  • the reference block 4 makes it possible to send the information in a lower frequency band improving thus the performance of the device.
  • the reference optical fiber 42 is preserved without deformation and at a reference temperature.
  • the second arm 32 reads the first coupler 3 to a second coupler 9 located downstream of the modulator 6 and is able to transmit to the second coupler 9 a continuous light signal at a frequency vo, thus constituting a local oscillator. More particularly, the second arm 32 reads the first coupler 3 to a second coupler 9 located upstream of the photodetection module 10 and preferably it is positioned just before said photodetection module 10.
  • the first coupler 3 is suitable directing sufficient energy from the light signal to the first arm 31 to exceed the Stimulated Brillouin Scattering threshold and, in the reference fiber 42, the backscattered wave is shifted in frequency from vbref with respect to the optical wave.
  • the first coupler 3 is able to direct the majority of the energy of the light signal towards the first arm 31.
  • the first coupler 3 is capable of directing more than 70%, more preferably more than 80%, even more preferably substantially 90% of the energy of the light signal towards the first arm 31.
  • the reference block 4 advantageously comprises a circulator 41 which directs the incident continuous light signal, at the frequency vo, from the first coupler 3, in an optical fiber 42 of reference.
  • This reference optical fiber 42 may be identical to the optical fiber 15 to be tested.
  • the reference fiber 42 is not subjected to any deformation. It is placed at a reference temperature, generally between 18 and 25 ° C, preferably at a temperature of the order of 20 ° C.
  • the reference optical fiber 42 has a Brillouin frequency shifted by at least 200 MHz, preferably at least 300 MHz relative to the Brillouin response of the fiber to be measured.
  • the Brillouin frequency of the reference optical fiber 42 has a frequency difference with the Brillouin frequency of the optical fiber to be tested, between 300 MHz and 1 GHz.
  • the photo-detection module 10 located at the end of the optoelectronic assembly receives a signal from the Rayleigh backscattering which is modulated at the frequency of the acousto-optic modulator VA (for example 200 MHz) and the backscattering of Brillouin. modulated at the frequency (VbAs - Vbref + VA) without there being overlap between the two spectra.
  • VA acousto-optic modulator
  • Such an architecture makes it possible to position the reference fiber 42 on the same optical arm as the optical fiber 15 to be tested. This has the advantage of improving the measurement quality by having a signal in the local oscillator directly from the source and therefore without interference at low frequencies. It is therefore not necessary to use a low frequency electrical filter at the output of the photodetection module.
  • This configuration also makes it possible to measure the anti-Stokes line of the Brillouin backscatter and, unlike the devices of the prior art, to access measurements close to DC (for example around 100 MHz) in the electrical domain where it Until then, it was not possible to make reliable measurements.
  • the third coupler 2 is used to divide the incident light signal emitted by the light source 1 into two identical frequency signals distributed in two arms 21, 22 of the device.
  • the first arm 21 connects the third coupler 2 to the first coupler 3 and the first arm 21 is adapted to transmit to the first coupler 3 a continuous light signal at a frequency vo.
  • the second arm 22 connects the third coupler 2 to a fourth coupler 5 located upstream of the modulator 6 and the second arm 22 is able to transmit to the fourth coupler 5 an initial signal at a frequency vo.
  • the third coupler 2 is able to direct the majority of the energy of the light signal towards the first arm 21.
  • the third coupler 2 is capable of directing more than 70%, more preferably more than 80%, even more preferably substantially 90% of the energy of the light signal to the first arm 21.
  • the fourth coupler 5 is able to mix the initial signal vo from the second arm 22 of the third coupler 2 with the light signal of frequency vo - vbref coming from the reference fiber 42 and to inject them into The signals coming from the reference optical fiber 42 are thus recombined with the initial signal vo in the fourth coupler 5.
  • a signal is obtained which contains a signal at the frequency vo - Vbref from of the reference optical fiber 42 and a signal at the same frequency as the initial signal vo.
  • the modulator 6 is able to impose a frequency shift of at least 100 MHz to the DC signal and transform it into a pulse signal intended to be injected into an optical fiber 15 to be tested.
  • the modulator 6 is an acousto-optical modulator 6.
  • the modulator 6 can be associated with one or more amplifiers if necessary to give gain.
  • the modulator 6 is able to generate a pulse signal having a frequency offset with respect to the frequency of the continuous light signal.
  • the frequency offset VA applied to said shifted frequency may be greater than or equal to 100 MHz.
  • the frequency VA is the frequency specific to the modulator 6 and is generally greater than or equal to 100 MHz and less than or equal to 1 GHz, preferably substantially equal to 200 MHz.
  • the temporal width of the pulse thus generated may for example be between 10 ns and 500 ns, preferably it is substantially equal to 20 ns.
  • the pulse signal is then directed to a circulator 7 which injects it then in the optical fiber to be tested, on which the distributed measurement is to be carried out.
  • VbS (z) is the Brillouin Stokes frequency.
  • the second arm 32 may comprise a polarization jammer 8 then disposed upstream of the inputs of a second coupler 9. This makes it possible to reduce the effects of interference due to the polarization between the arm of the local oscillator and the measuring arm 25, also called "pump" arm, and located between the circulator 7 and a second coupler 9.
  • the second coupler 9 is able to couple the signal of the local oscillator to the backscattering signal coming from the optical fiber 15 to be tested before transmitting it to the photo-detection module 10.
  • the second coupler 9 may be associated with optional modules such as a polarization beam splitter or polarization hybridization module.
  • the backscattering signal may be modulated at least at a Brillouin frequency vbB equal to vo-vbref + VA + VbAs, where VbAs is the anti-Stokes Brillouin backscattering frequency that can be measured at any point z of the optical fiber to be tested. This gives the user the opportunity to measure the Brillouin backscattering anti-Stokes line while taking advantage of a low-frequency, parasitic local oscillator and thereby improving the quality of the measurement.
  • the backscattering signal from the optical fiber 15 to be tested can also be modulated at a Rayleigh frequency v R R equal to vo + VA.
  • the device according to the invention comprises the third coupler 2 and the fourth coupler 5.
  • This second coupler 9 then allows the Rayleigh backscattering created in the optical fiber 15 to be coupled with the frequency of the local oscillator.
  • the device according to the invention also makes it possible to measure the Rayleigh backscattering spectrum.
  • the backscattering signal is modulated, it contains the Rayleigh backscattering spectrum at a frequency v r R equal to vo + VA and the Brillouin backscattering spectrum at a frequency vrB equal to vo - vbref + VA + vbAs.
  • photo-detection module 10 positioned downstream of the second coupler 9 and it is able to transmit the received backscattering signal to a processing module 12.
  • photo-detection module 10 comprises at least one photodetector.
  • the photo-detection module 10 has a bandwidth of at least 800 MHz, preferably at least 1 GHz.
  • the photo-detection module 10 located at the end of the optoelectronic assembly is able to receive a signal coming from the Rayleigh modulated backscattering at the frequency of the acousto-optic modulator VA and the frequency-modulated Brillouin backscattering (vbAs - Vbref + GOES).
  • these beats were obtained from a single measurement and a single optical fiber 15 to be tested.
  • these beats have a lower frequency than the incident signals because the frequency vo from the light source 1 is eliminated.
  • VA - (vbs + VBref) is about 20 GHZ and therefore out of band.
  • the optical configuration therefore makes it possible to increase the efficiency of the photo-detection module 10 by limiting the bandwidth to less than 2 GHz instead of 11 GHz, preferably less than 1 GHz, for example between 400 MHz and 1 GHz .
  • the device according to the invention may not include a low frequency electrical filter output of the photo-detection module 10.
  • the positioning of the reference fiber 42 on the same optical arm that the optical fiber 15 to be tested makes it possible to improve the measurement quality by having a signal in the local oscillator without interference at low frequencies. By removing these parasites at low frequencies, this configuration also gives access to non-exploitable information with the configurations of the prior art (eg ⁇ 100 MHz).
  • the beat signal or signals obtained can then be digitized, by means of an analog-digital converter module 11. Then they are processed by a digital processing module 12.
  • the analog-to-digital converter module 1 1 has a bandwidth of at least 800 MHz, preferably of at least 1 GHz and a sampling speed of at least 1.6 G / s, preferably at least 2 Gech / s.
  • the processing module 12 is configured to connect said anti-Stokes Brillouin frequency VbAs to a temperature value and / or to a deformation value at any point z of said optical fiber 15 to be tested. Thus, it is able to separate the temperature measurement and the deformation measurement in order to obtain, from a single measurement, distinct values of temperature and deformation.
  • the latter may comprise an acquisition card which makes it possible to acquire the signal generated by the photo-detection module 10 and thus have a bandwidth and a sampling frequency able to analyze a signal corresponding to: VA + VbAs - Vbref.
  • the processing module 12 is able to measure a signal having a bandwidth of at least 800 MHz, preferably of at least 1 GHz and a sampling speed of at least 1.6 g / s / s. preferably at least 2 Gech / s for the purpose of detecting both spectra simultaneously (Brillouin spectrum and Rayleigh spectrum).
  • an acquisition card with a high resolution such as a resolution greater than or equal to 10 bits. This allows, considering the small variations of intensity of the backscattered Brillouin spectrum as a function of the temperature, to reach an accuracy of the order of 1 ° C.
  • the analog-to-digital converter modules 11 and processing modules 12 are presented separately but can be integrated in a single set positioned directly after the photo-detection module 10.
  • the processing module 12 is able to cut the digitized signal into a plurality of sections (T1 ... TL .TN) by application of a sliding window of rectangular window type or Hamming, or Hann or Blackman-Harris, each section having a width equal to the time width of a pulse of the pulse signal injected into the optical fiber to be tested, the width of each stub further being centered around a date t corresponding to a coordinate point z of said optical fiber 15 to be tested.
  • the digital processing module 12 advantageously uses a discrete (preferably fast) fourier transform algorithm, for example by means of a logic integrated circuit known as FPGA (for "Field Programmable Gaste”). Array >>). It thus makes it possible to directly calculate the Brillouin frequency, the total intensity of the Brillouin backscattering and / or the total intensity of the Rayleigh backscattering at any coordinate point z of the optical fiber under test.
  • the digital processing module 12 also makes it possible to average the spectra obtained in the frequency domain, for each z-point of said fiber, following the application of the discrete (preferably fast) fourier transform algorithm. to determine the distributed measurement of the frequency variation along said optical fiber under test.
  • the invention relates to a digital processing method of a signal that may be derived, preferably from an optoelectronic measuring device distributed by optical fiber according to the invention.
  • the different steps of the digital processing carried out on the digitized signal are more particularly illustrated by the experimental and explanatory FIGS. 3 to 5 which represent temporal or spectral traces obtained at each step of the digital signal processing method, obtained after recombination of the signals. backscattered by the optical fiber under test and the reference optical fiber.
  • the processing method according to the invention comprises a first step of digitizing a signal corresponding to the beat between a backscattered signal from an optical fiber 15 to be tested and a reference signal, and detected by a photo module.
  • Figure 3A shows the digitized signal at the output of the analog-to-digital converter 1 1.
  • the digitized signal comes only from a single measurement and the processing method according to the invention relies only on a single measurement made on an optical fiber 15 to be tested.
  • the signal comprises a beat VA + (vbAs - VBref) and a beat VA.
  • a second step of the digital processing performed by the digital processing module 12 is to cut the digitized signal into sections.
  • the first step is to cut the digitized signal in sections around the date t corresponding to the position z on the fiber width equal to the time width of the pulse.
  • the section cutting is performed for example by applying a sliding time window on the signal.
  • the windowing is done by a rectangular or Hamming or Hann or Blackman-Harris window.
  • the cutting of the digitized signal is shown in FIG. 3B, a first section to be processed being identified by the reference T1 and the section N being identified by the reference TN.
  • Each section advantageously has a width equal to the time width of a pulse of the pulse signal injected into the optical fiber 5 to be tested.
  • Each section T1 ... Ti ... TN is further centered around a date ti, ... ti ..
  • z 2nc * t
  • the time tz corresponds to the round-trip time (z ) a pulse, counted from the starting point of the pulse to the measuring point z.
  • the difference between two measurement points can be as small as a sampling unit (slip of an interval).
  • the difference between two independent measurements is considered equal to the width of the pulse.
  • the difference between two independent measurement points z (t1), z (t2) is equal to the width of a pulse.
  • the digitized signal has portion by portion at least two spectra corresponding to the spectrum of Brillouin VA + (vBas (z) - VBref) and the spectrum of Rayleigh VA.
  • a third step of the digital processing then consists in calculating the frequency spectrum of each section T1 ... Ti ... TN of said digitized signal, by the use of a Discrete Fourier Transform algorithm DFT and preferably an algorithm of Fast Fourier Transform FFT.
  • DFT Discrete Fourier Transform algorithm
  • FFT Fast Fourier Transform
  • a fourth step consists in repeating the three steps of digitization, division and calculation of the frequency spectrum, and averaging the results in order to obtain an averaged, interpretable frequency spectrum.
  • the fourth step makes it possible to generate an interpretable frequency spectrum comprising a Brillouin spectrum and a Rayleigh spectrum whose maximum can be determined for Brillouin frequency measurement, energy for Brillouin intensity measurement, and energy for Rayleigh intensity measurement.
  • This is to average the DFT curves (preferably FFT) to minimize the background noise.
  • FFT preferably Gaussian or Lorentz adjustment algorithm is used.
  • Two interpretable averaged frequency spectra are illustrated in FIG. 3C corresponding to the section T1 (solid line) and the section TN (dotted line) of the cut signal of FIG. 3B.
  • the fifth step of the digital processing then consists in determining the variation of the frequency positions of the maxima of the Brillouin spectrum and / or of the total intensity of the Rayleigh and Brillouin spectra, as a function of the z coordinates of the different points of the optical fiber. , and may include a step of drawing one or more graphs of the distributed maximum frequency or intensity variation measurement along the optical fiber to be tested.
  • the fifth step of the digital processing consists in determining the frequency positions of the maxima of the Brillouin spectrum and the total intensity of the Rayleigh and Brillouin spectra, respectively, as a function of the z coordinates of the different points of the optical fiber 15. For example, FIG.
  • This fifth step may also include a sub-step of determining the total Rayleigh intensity ratio and the total Brillouin intensity at any point (z) of the fiber in order to determine the Placzek Landau ratio depending on the temperature parameter. . Temperature-only variations created on an optical fiber cause the Brillouin backscattering intensity to increase or decrease.
  • This intensity can be normalized thanks to a Rayleigh backscattering measurement which makes it possible to give information on the linear losses of the tested fiber as well as the defects of the latter which can cause optical losses.
  • This normalization involves the calculation of Landau Placzek's ratio.
  • Figure 4B shows the ratio of Landau Placzek in function of the z coordinates of the optical fiber to be tested under the two conditions above.
  • the intensity of the Brillouin backscatter spectrum varies with the temperature parameter.
  • the Brillouin backscattering intensity should be normalized by the Rayleigh backscattering intensity (representative of the optical losses in a fiber).
  • the variation can for example be measured with respect to frequency position values of the maxima, and / or of total intensity, obtained during an earlier measurement. Said values being a function of the z coordinates of the different points of the optical fiber 15.
  • a last step of the digital processing consists in applying the sensitivity coefficient specific to the optical fiber to be tested to variations in frequency positions and / or to variations in total intensities of the Rayleigh and Brillouin spectra determined upstream. This can make it possible to obtain two results corresponding to a distributed measurement of deformation and to a distributed measurement of temperature. This was not conceivable from a single measurement with the methods of the prior art since VBas (z) depends on these two parameters. In addition, in the methods of the prior art, these measurements could be obtained by an analysis of the Brillouin and Raman spectra, the acquisition of which requires two different devices and therefore necessarily two measurements.
  • the last step of the digital processing consists in applying the coefficients of sensitivity, respectively of temperature CT and of strain C E , specific to the optical fiber 15, to obtain a result respectively in terms of distributed measurement of temperature and distributed measurement of deformation.
  • FIGS. 5A and 5B show a graph obtained after application of the coefficients of sensitivity to the deformation and making it possible respectively to obtain the distributed measurement of deformation ⁇ all along the optical fiber and the distributed measurement of temperature T all along the fiber optical.
  • the coefficient Cvbs of sensitivity deformation is typically 0.05 MHz / ( ⁇ / m)) and the temperature sensitivity coefficient CvbT is typically 1 MHz / ° C.
  • the invention allows a deletion of all the analog electronic components, except the photo-detection module 10 and allows their replacement by a digitizer 1 1 and a digital processing module 12. Thus, it eliminates levels of noise brought by active analog components such as amplifiers or oscillators for example.
  • the signal processing is entirely digital, the processes are less energy consuming and the device has a small footprint, so that it can be embedded. It can therefore advantageously be supplied with low voltage, typically 12 or 24 volts, from a battery. This battery can also be rechargeable, for example by an insulated solar panel, whose power requirement is of the order of 100 Watt continuous.
  • the device is able to operate by accessing one end of the optical fiber to be tested and as has been seen, it is able to separately measure the temperature and the deformations in the optical fiber to be tested. a single measure.
  • the device makes it possible to use a digital calculation module that makes it possible to perform parallel processing for each section, which reduces the measurement time to the acquisition time, for example for 10 km of fiber. have 10000 acquisitions per second with a processor clock frequency of 10 kHz and thus get 10000 averages.
  • the numerical calculation module advantageously comprises graphical processing unit GPU (Graphical Processing Unit) in order to shift the highly parallelizable calculation thereon.
  • GPU Graphic Processing Unit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

L'invention concerne un dispositif optoélectronique de mesure répartie par fibre optique, ledit dispositif comprenant une source de lumière (1) continue émettant un signal lumineux continu à une première fréquence v 0, un modulateur acousto-optique (6) apte à transformer ledit signal continu en un signal impulsionnel destiné à être injecté dans une fibre optique (15) à tester et un module de photo-détection (10) apte à détecter un signal de rétrodiffusion issu d'une rétrodiffusion Rayleigh et une rétrodiffusion Brillouin spontanée provenant de ladite fibre optique (15) à tester, ledit dispositif étant caractérisé en ce qu'il comprend en outre un premier coupleur (3) et un deuxième coupleur (9), ledit deuxième coupleur (9) étant apte à mélanger le signal de l'oscillateur local au signal de rétrodiffusion provenant de ladite fibre optique (15) à tester avant de le transmettre au module de photo-détection (10), le signal de rétrodiffusion étant modulé au moins à une fréquence v rB égale à v 0 - v bref + v A + v bAS, où v bAS est la fréquence (de rétrodiffusion) Brillouin anti-Stokes, et de façon préférée modulé également à une fréquence v rR égale à v 0 + v A de rétrodiffusion Rayleigh pouvant être mesurée en tout point z de ladite fibre optique (15), et ledit module de photo-détection (10) étant apte à transmettre le signal de rétrodiffusion reçu, à un module de traitement (12) apte à relier ladite fréquence Brillouin anti-Stokes v bAS à une valeur de température ou une valeur de déformation en tout point z de ladite fibre optique (15) à tester.

Description

DISPOSITIF OPTOELECTRONIQUE DE MESURE REPARTIE PAR FIBRE
OPTIQUE
[Domaine de l'invention! [001 ] L'invention concerne un dispositif optoélectronique de mesure répartie par fibre optique. L'invention concerne plus précisément un dispositif optoélectronique apte à mesurer les paramètres des spectres de rétrodiffusion Brillouin et Rayleigh et pouvant comporter un moyen apte à séparer la mesure répartie de température et la mesure répartie de déformation. [002] De tels dispositifs peuvent être utilisés pour le contrôle permanent de l'intégrité et de la sécurité des systèmes et structures dans le génie civil ou l'industrie pétrolière.
[Art antérieur!
[003] Les dispositifs optoélectroniques de mesure répartie par fibre optique sont généralement utilisés pour mesurer, en temps réel, la température et les déformations des infrastructures de grandes tailles afin de surveiller leur santé structurelle et d'assurer leur maintenance. Ils fournissent, à chaque mesure, les informations de température et de déformation en tout point de la fibre optique qui leur est raccordée.
Les mesures sont généralement réalisées avec une portée de quelques mètres à plusieurs dizaines de kilomètres et une résolution métrique voire centimétrique. Ainsi, par exemple, une mesure peut être réalisée tous les mètres sur un ouvrage d'une longueur de 20 kilomètres.
[004] Des dispositifs optoélectroniques de mesure répartie par fibre optique exploitant le phénomène de rétrodiffusion Brillouin sont déjà connus et utilisés pour des applications de mesures de température et de déformation dans le génie civil. Ces systèmes trouvent notamment un terrain privilégié pour la surveillance des ouvrages linéaires comme les ponts, les barrages, les digues hydrauliques en terre ou les réseaux de transport de fluides (eau, hydrocarbures, gaz) afin de contrôler les mouvements de terrain (glissement, tassement) ou les déformations des conduites enterrées ou non. [005] Pour pouvoir analyser des variations d'intensité sur des dizaines de kilomètres avec une résolution spatiale métrique, les systèmes de mesure utilisent en général la réflectométrie optique temporelle OTDR (de l'acronyme anglais « Optical Time Domain Reflectometry >>). L'OTDR consiste à propager une impulsion lumineuse dans la fibre optique à analyser et à mesurer l'intensité retour en fonction du temps. Le temps que met la lumière rétrodiffusée à être détectée permet de localiser l'événement à mesurer (coordonnée d'un point z le long de la fibre optique). La résolution spatiale est alors fonction de la largeur de l'impulsion lumineuse : une impulsion de largeur 10 ns entraînant par exemple une résolution d'environ 1 m. Grâce au phénomène de rétrodiffusion Brillouin combiné à la technique de l'OTDR, on réalise des mesures de température et de déformation réparties tout le long de la fibre, sur plusieurs dizaines de kilomètres, avec une résolution métrique voire centimétrique.
[006] Les mesures le long de la fibre sont effectuées avec un dispositif tel que schématisé sur la Figure 1 . La lumière issue d'une source lumineuse 1 , tel qu'un laser, est répartie dans deux bras. L'un des bras, appelé « pompe », permet d'envoyer le signal lumineux, sous forme impulsionnelle grâce à un modulateur acousto-optique 6, dans la fibre optique 15 à tester. Un signal est rétrodiffusé par la fibre optique 15, selon le phénomène Brillouin. Selon le phénomène Brillouin, les composantes spectrales de rétrodiffusion de la lumière par le matériau de constitution de la fibre optique, en général de la silice, présentent une fréquence vBz décalée de celle vO de l'onde lumineuse incidente. Le décalage fréquentiel Brillouin est en général de l'ordre de 1 1 GHz pour une onde incidente de longueur d'onde λο = 1550 nm. Une telle fréquence est très élevée. Pour pouvoir effectuer le traitement sur le signal rétrodiffusé on peut transposer la fréquence à une plus basse fréquence pour réduire la bande passante du détecteur à utiliser et ainsi éliminer une grande partie du bruit. Pour cela on procède à une détection hétérodyne consistant à recombiner le signal rétrodiffusé à analyser avec une onde provenant de l'autre bras, appelé « oscillateur local >> 50. Cet oscillateur local 50 peut par exemple se présenter sous la forme d'un laser en anneau Brillouin. Dans ce cas, le signal lumineux continu de fréquence vo est dirigé vers un circulateur 51 qui le dirige à son tour vers une fibre de référence. Cette fibre de référence émet par diffusion spontanée amplifiée un rayonnement en sens inverse de fréquence vo - VBref que le circulateur envoie vers un coupleur 52. Ce dernier envoie une partie de l'énergie vers le signal de sortie, tandis qu'il redirige l'autre partie vers la fibre de référence où le rayonnement est amplifié d'un facteur de gain G par diffusion Brillouin stimulée (spontanée amplifiée) avant d'être redirigé vers le circulateur 51 qui renvoie le rayonnement amplifié vers le coupleur 52 et la sortie. L'oscillateur local 50 forme alors un anneau d'amplification par diffusion Brillouin stimulée. Un photo-détecteur 10 permet de récupérer le battement des deux signaux. Le battement récupéré est ensuite amplifié puis transmis à un analyseur 12 de spectre électrique. Un tel dispositif optoélectronique de mesure répartie par diffusion Brillouin dans une fibre optique, utilisant une seule fréquence laser pour générer une impulsion de lumière, est plus particulièrement décrit dans le document US 7 283 216. Le document JP 2010 217029 décrit un autre dispositif optoélectronique de mesure répartie par diffusion Brillouin utilisant une seule fréquence laser pour générer une impulsion de lumière. Le dispositif vise, via une détection hétérodyne, à réduire la largeur de bande de réception de lumière de la lumière de rétrodiffusion Brillouin de façon à réduire les coûts et de faciliter le traitement de la lumière rétrodiffusée. Pour cela le dispositif comporte une fibre de référence similaire à la fibre test de façon à mesurer une différence de fréquence entre les lumières de rétrodiffusion de la ligne de référence et de la ligne à tester. Néanmoins, un des inconvénients de ces dispositifs est qu'ils présentent de longues durées de mesures. En effet, typiquement, la durée de mesure est supérieure à 1 minute pour une fibre de 10 km. [007] De plus, lors de la mesure de rétrodiffusion Brillouin, les paramètres de température et de déformation créent tous deux le même phénomène physique dans la fibre optique (variation de la fréquence de rétrodiffusion Brillouin VB). Ainsi, la fréquence Brillouin VB, dépend linéairement de la température et de la déformation dans le matériau. Le décalage fréquentiel AVB entre l'onde incidente et l'onde rétrodiffusée varie donc avec les variations de température ΔΤ et de déformation ε suivant l'équation : Δνε = ΟτΔΤ + Οεε, où CT et CE sont respectivement les coefficients de sensibilité de température et de déformation propres à la fibre optique utilisée. Ainsi, à l'heure actuelle il est impossible de pouvoir différencier le paramètre de température et celui de déformation sur une même mesure de rétrodiffusion Brillouin. [008] Le seul moyen de palier à ce problème avec ce type d'appareil est de fixer une des deux contraintes, soit en fixant mécaniquement la fibre optique pour pouvoir mesurer seulement de la température, soit en isolant thermiquement ou en faisant l'approximation que la température est stable autour de la fibre optique dans le but de mesurer seulement de la déformation. Ces méthodes ne sont jamais efficaces à 100% et il reste toujours une incertitude résiduelle sur la mesure car il est impossible de garantir qu'une fibre est protégée de toutes contraintes (par exemple frottement ou écrasement du tube) notamment lorsque le câble qui la contient n'est plus accessible.
[009] D'autres solutions ont été proposées telle que la réalisation de mesures réparties de température par diffusion Raman (Alahbabi, M. N., et al. Optics Letters 30, no. 1 1 (June 1 , 2005): 1276-78) et d'utiliser cette mesure pour soustraire l'effet de la température sur la fréquence Brillouin afin de déterminer la déformation. Mais cela pose souvent d'importantes difficultés de mise en œuvre car les deux mesures ne sont pas réalisées dans la même fibre, et deux instruments distincts sont utilisés. Donc, un alignement spatial parfait des mesures des deux instruments est nécessaire. Il existe en outre une forte complexité, une dégradation de la précision notamment liée aux dérives cumulatives des deux appareils et également un surcoût associé à l'achat de deux dispositifs et à l'ingénierie d'utilisation des deux mesures pour traduire les résultats en mesure simultanée de température et déformation (par exemple alignement des grilles de mesure, estimation des incertitudes, correction des dérives). Enfin, de façon générale, les systèmes reposant sur deux mesures distinctes génèrent des résultats de qualité médiocre car généralement les erreurs liées aux deux mesures se cumulent et il existe une dérive des fonctions de transferts de chaque mesure qui doit être prise en compte dans l'incertitude sur les mesures à long terme.
[0010] Ainsi, il existe également un besoin pour un dispositif capable en une seule mesure et à partir d'une seule fibre optique à tester de différencier le paramètre de température et celui de déformation.
[Problème technique]
[001 1 ] L'invention a donc pour but de remédier aux inconvénients de l'art antérieur. L'invention vise notamment à proposer un dispositif optoélectronique de mesure répartie par fibre optique, simple et peu encombrant et capable de produire une mesure plus précise et rapide ne comportant pas ou peu de parasite sur les basses fréquences. Pour cela, le dispositif optoélectronique présente une nouvelle architecture permettant la génération d'un oscillateur local n'induisant pas ou peu de signaux parasites. Une fibre de référence est incluse dans le bras « pompe >> pour générer un signal de diffusion spontanée amplifiée permettant de s'affranchir de tous les contrôles préalables nécessaires.
[0012] L'invention vise également à proposer un dispositif optoélectronique de mesure répartie par fibre optique, capable en une seule mesure et à partir d'une seule fibre optique à tester, de différencier le paramètre de température et celui de déformation. Pour cela, le dispositif optoélectronique présente une nouvelle architecture permettant une mesure simultanée de la raie anti-Stokes de rétrodiffusion Brillouin et de la rétrodiffusion Rayleigh. [0013] En outre, le dispositif proposé selon l'invention permet de réaliser des analyses beaucoup plus rapides que les dispositifs de l'art antérieur tout en comportant moins d'éléments consommateurs d'énergie que les systèmes existants décrits dans l'art antérieur ce qui permet d'avoir un dispositif portable adapté à des interventions par un opérateur à pieds ou à des mesures occasionnelles.
[Brève description de l'invention]
[0014] A cet effet, le dispositif optoélectronique de mesure répartie par fibre optique selon l'invention, comprend une source de lumière continue émettant un signal lumineux continu à une première fréquence vo, un modulateur apte à imposer un décalage de fréquence d'au moins 100 MHz au signal continu et à le transformer en un signal impulsionnel destiné à être injecté dans une fibre optique à tester et un module de photo-détection apte à détecter un signal de rétrodiffusion, provenant de la fibre optique 15 à tester, issu d'une rétrodiffusion Brillouin spontanée amplifiée et/ou d'une rétrodiffusion Rayleigh provenant de ladite fibre optique à tester, ledit dispositif étant principalement caractérisé en ce qu'il comprend en outre un premier coupleur et un deuxième coupleur, ledit premier coupleur étant apte à diviser ledit signal lumineux continu en deux signaux de fréquence identique répartis dans deux bras,
- un premier bras reliant le premier coupleur à un bloc fibre de référence comportant une fibre de référence, ledit bloc fibre de référence étant apte à émettre un autre signal lumineux de fréquence vo - vbref, où vbref est la fréquence Brillouin de la fibre de référence sans déformation et à une température de référence,
- un second bras reliant le premier coupleur au deuxième coupleur situé en amont du module de photo-détection et apte à transmettre au deuxième coupleur un signal lumineux continu à une fréquence vo, constituant ainsi un oscillateur local, ledit deuxième coupleur étant apte à coupler le signal de l'oscillateur local au signal de rétrodiffusion provenant de ladite fibre optique à tester avant de le transmettre au module de photo-détection,
le signal de rétrodiffusion étant modulé à une fréquence vrB égale à vo - vbref + VA + vbAs, où vbAs est la fréquence de rétrodiffusion Brillouin anti-Stokes pouvant être mesurée en tout point z de ladite fibre optique, et
ledit module de photo-détection étant apte à transmettre le signal de rétrodiffusion reçu, à un module de traitement apte à relier la modulation du signal de rétrodiffusion à une valeur de température et à une valeur de déformation en tout point z de ladite fibre optique à tester.
[0015] Ainsi, le dispositif utilisé permet de s'affranchir de tous les contrôles préalables nécessaires lorsque l'on utilise un oscillateur local présentant une configuration de laser en anneau Brillouin. En effet, dans la configuration selon l'invention, le signal retour émis par la fibre de référence est un signal de diffusion spontanée amplifiée (par diffusion Stimulée), et non le produit d'une résonnance dans une cavité de type laser qui par conséquent dépendrait fortement de la longueur exacte de la cavité, difficile à maîtriser en fonction de paramètres d'influence comme la température.
[0016] En outre, cette nouvelle architecture comportant notamment la présence d'un bloc de référence positionné sur la ligne de pompe donne la possibilité à l'utilisateur de mesurer la raie anti-Stokes de rétrodiffusion Brillouin. Une telle configuration permet d'améliorer la qualité de mesure en ayant un signal dans l'oscillateur local sans parasite à basses fréquences. Il n'est donc ensuite pas nécessaire d'utiliser de filtre électrique basse fréquence en sortie du module de photo-détection. Enfin, une telle configuration présente un moindre encombrement et une consommation électrique réduite. En outre, En outre, l'oscillateur local étant constitué uniquement du signal provenant directement du laser source, il ne comporte aucun élément pouvant altérer la qualité du signal. [0017] Selon une autre caractéristique avantageuse du dispositif, il peut comprendre en outre un troisième coupleur et un quatrième coupleur, le troisième coupleur étant apte à diviser ledit signal lumineux continu provenant de la source lumineuse en deux signaux de fréquence identique répartis dans deux bras, - un premier bras reliant le troisième coupleur au premier coupleur et apte à transmettre au premier coupleur un signal lumineux continu à une fréquence vo,
- un second bras reliant le troisième coupleur au quatrième coupleur situé en amont du modulateur et apte à transmettre au quatrième coupleur un signal initial à une fréquence vo,
ledit quatrième coupleur étant apte à coupler le signal initial vo au signal lumineux de fréquence vo - vbref, provenant du bloc de référence.
[0018] Cette caractéristique optionnelle basée notamment sur la présence d'une série de coupleurs donne la possibilité à l'utilisateur de différencier, en une seule mesure et sur une seule fibre à tester, le paramètre de température et celui de déformation. Elle permet une mesure simultanée de la raie anti-Stokes de rétrodiffusion Brillouin et de la rétrodiffusion Rayleigh et ce à partir d'une seule mesure, cette dernière étant toujours située autour de la fréquence VO+VA (.VA dans le domaine électrique) Cela est particulièrement avantageux par rapport aux dispositifs de l'art antérieur qui nécessitent la mise en œuvre de deux mesures, par exemple via l'utilisation de deux dispositifs de mesure (par exemple Brillouin et Raman).
[0019] Avantageusement, le dispositif présente un signal de rétrodiffusion contenant le spectre de rétrodiffusion Rayleigh à une fréquence vrR égale à vo + VA et le spectre de rétrodiffusion Brillouin à une fréquence vrB égale à vo - vbref + VA + vbAs. De façon préférée, il n'y a pas de recouvrement entre les deux spectres. Cela permet notamment de pourvoir réaliser une analyse distincte de l'influence de la température et de la déformation. En outre, de façon préférée, le module de photo-détection reçoit un signal issu de la rétrodiffusion de Rayleigh modulé à la fréquence du modulateur acousto- optique VA et de la rétrodiffusion de Brillouin modulé à la fréquence VbAs - vbref + VA sans qu'il n'y ait de recouvrement entre les deux spectres.
[0020] Selon d'autres caractéristiques avantageuses du dispositif : - la fibre de référence est positionné le même bras optique que la fibre optique à tester. La fibre de référence se trouvant sur le bras test, l'oscillateur local ne comporte plus aucun élément pouvant altérer la qualité du signal lumineux qui s'y propage. En effet, l'oscillateur local provient directement du laser source et va directement au module de détection. Il y a donc bien une amélioration de la qualité de la mesure.
- la fibre optique de référence du bloc fibre de référence présente une fréquence Brillouin différente de celle de la fibre optique à tester.
- la fréquence Brillouin de la fibre optique de référence présente un écart de fréquence avec la fréquence Brillouin de la fibre optique à tester, compris entre 300 MHz et 1
GHz.
- le second bras peut comporter un module d'hybridation de polarisation, ou un module de séparation (« beam splitter >>), ou un brouilleur de polarisation disposés alors en amont des entrées d'un deuxième coupleur. De préférence, le second bras peut comporter un brouilleur de polarisation disposé alors en amont des entrées d'un deuxième coupleur. Ces éléments permettent d'éliminer le bruit de polarisation entre le bras test et l'oscillateur local.
- le signal impulsionnel provenant du modulateur comporte au moins deux composantes : une composante impulsionnelle de fréquence vp1 = vo - vbref + VA, et une composante impulsionnelle de fréquence vp2 = vo + VA. En particulier, le signal impulsionnel provenant du modulateur comporte deux composantes : une composante impulsionnelle de fréquence vp1 = vo - vbref + VA, et une composante impulsionnelle de fréquence vp2 = vo + VA. Cela engendre une différence notable de performance et de qualité de mesure par rapport aux dispositifs de l'art antérieur. Un tel signal impulsionnel peut être basé sur le fait que l'oscillateur local provient directement du laser source et va directement au module de détection.
[0021 ] L'invention a également pour objet un procédé de traitement numérique d'un signal par exemple issu d'un dispositif optoélectronique de mesure répartie par fibre optique selon l'invention, ledit procédé comprenant les étapes suivantes : - numériser un signal correspondant au battement entre un signal rétrodiffusé issu d'une fibre optique à tester et un signal de référence, et détecté par un module de photo-détection,
- découper ledit signal numérisé en une pluralité de tronçons (T1 ...TL .TN) par application d'une fenêtre temporelle glissante de type fenêtre rectangulaire ou de Hamming, ou de Hann ou de Blackman-Harris, chaque tronçon présentant une largeur égale à la largeur temporelle d'une impulsion du signal impulsionnel injecté dans la fibre optique à tester, la largeur de chaque tronçon étant en outre centrée autour d'une date t correspondant à un point de coordonnée z de ladite fibre optique à tester,
- calculer, par utilisation d'un algorithme de transformée de fourrier discrète, le spectre fréquentiel de chaque tronçon (T1 ...TL .TN) dudit signal numérisé;
- répéter les trois premières étapes et moyenner les spectres fréquentiels obtenus pour chaque point z de ladite fibre optique à tester ; - à partir des spectres fréquentiels moyennés, déterminer la variation des maxima de fréquence de la rétrodiffusion Brillouin, et/ou la variation de l'intensité totale de la rétrodiffusion Brillouin et/ou la variation de l'intensité totale de la rétrodiffusion Rayleigh, en fonction du temps aller et retour tz de rétrodiffusion,
- appliquer un coefficient de sensibilité à la température d'une part et un coefficient de sensibilité à la déformation d'autre part, sur ladite ou lesdites variations déterminées, afin d'obtenir un résultat en terme de mesure répartie en température et/ou un résultat en terme de mesure répartie en déformation.
[0022] Le procédé selon l'invention porte sur un traitement numérique des signaux pouvant être appliqué dès la sortie d'un module de photo-détection. Le traitement du signal qui suit se fait numériquement au niveau spectral et non directement sur le signal. Ce traitement comprend notamment la réalisation d'un découpage du signal numérisé en pluralité de tronçons dont la largeur est égale à la largeur temporelle d'une impulsion du signal impulsionnel injecté dans la fibre optique à tester. Ainsi, la durée d'une mesure est courte relativement à la durée de mesure des systèmes de l'art antérieur. Typiquement la durée d'une mesure est de 1 à quelques secondes pour une fibre de 10 km. [0023] Selon une autre caractéristique avantageuses du procédé, il peut comprendre la détermination, à partir des spectres fréquentiels moyennés, de la variation des maxima de fréquence de la rétrodiffusion Brillouin Anti-Stokes et la variation de l'intensité totale de la rétrodiffusion Brillouin et la variation de l'intensité totale de la rétrodiffusion Rayleigh en fonction du temps aller et retour tz de rétrodiffusion, ainsi que la détermination du rapport d'intensité totale Rayleigh et d'intensité totale Brillouin en tout point (z) de la fibre. Ce rapport correspondant au ratio de Landau Placzek.
[0024] Cette caractéristique optionnelle permet à l'utilisateur de différencier, en une seule mesure traitée, le paramètre de température et celui de déformation. Cela est particulièrement avantageux par rapport aux procédés de l'art antérieur qui nécessitent la mise en œuvre d'un traitement de signaux provenant d'au moins deux mesures.
[0025] En outre, dans le cadre du procédé de traitement numérique selon l'invention, le signal numérisé peut avantageusement présenter portion par portion au moins deux spectres correspondant au spectre de Brillouin VA +((vbAs (z) - vbref) et au spectre de Rayleigh VA.
[0026] De façon préférée, le procédé de traitement numérique selon l'invention peut également comprendre une sous étape de détermination d'un rapport intensité totale Rayleigh sur intensité totale Brillouin en tout point de la fibre dans le but d'en déterminer un ratio de Landau Placzek dépendant du paramètre de température. [0027] D'autres avantages et caractéristiques de l'invention apparaîtront à la lecture de la description suivante donnée à titre d'exemple illustratif et non limitatif, en référence aux Figures annexées qui représentent :
• La Figure 1 , déjà décrite, un schéma d'un dispositif optoélectronique de mesure répartie par rétrodiffusion Brillouin selon l'art antérieur, · La Figure 2, un schéma d'un dispositif optoélectronique de mesure répartie par fibre optique selon l'invention, les éléments en pointillés étant des éléments optionnels,
• Les Figures 3A à 3C, des traces temporelles obtenues aux premières étapes du procédé de traitement numérique du signal numérisé, et des spectres fréquentiels moyennés, interprétables, obtenus suite à la quatrième étape du procédé selon l'invention relatif à la portion T1 (trait plein) TN (trait pointillés), • Les Figures 4A à 4B, la fréquence Brillouin (4A) ainsi que le rapport Landau Placzek (4B) à deux températures différentes, obtenue à partir d'un ensemble de spectres de diffusion (Rayleigh et Brillouin) sur une fibre de longueur d'environ 150 m, · Les Figures 5A à 5B, des mesures réparties de températures (5A) et de déformation (5B), obtenues sur une fibre de 150 mètres avec le dispositif selon l'invention, à partir d'une seule mesure.
[Description détaillée de l'invention] [0028] On désigne par fibre optique à tester (ou sous test) dans la suite, la fibre optique disposée le long d'un ouvrage à surveiller et qui permet de réaliser une mesure répartie.
[0029] On entend par fibre optique de référence, une fibre optique pouvant avoir une fréquence Brillouin différente, identique ou sensiblement identique de la fréquence Brillouin de la fibre test. Cette fibre optique de référence est maintenue tout au long de la mesure sans déformation et à une température de référence. Le terme fibre optique à fréquence Brillouin différente désigne une fibre optique dont la fréquence Brillouin présente un écart de fréquence avec la fréquence Brillouin de la fibre optique à tester, d'au moins 200 MHz et de façon préféré un écart d'au moins 300 MHz. [0030] On entend par « une seule mesure », une série d'impulsion permettant d'obtenir un spectre fréquentiel moyenné.
[0031 ] On entend par durée d'une mesure, le temps nécessaire au système pour afficher une mesure à la précision nominale en termes de déformation ou de température. Cette durée inclut à la fois :
· le temps d'acquisition,
• le temps de calcul du système (Transformées de Fourrier, moyennages...)
[0032] Par sensiblement ou sensiblement identique, on entend au sens de l'invention une valeur variant de moins de 30 % par rapport à la valeur comparée, de préférence de moins de 20 %, de façon encore plus préférée de moins de 10 %. [0033] Par majorité, on entend au sens de l'invention au moins de 50 %. [0034] La présente invention se rapporte d'une façon générale aux dispositifs optoélectroniques de mesure répartie par fibre optique. L'invention concerne plus précisément une configuration optoélectronique du dispositif permettant d'augmenter sa précision, de diminuer sa consommation électrique, de réduire son encombrement, de réduire la durée d'une mesure et de fournir une mesure répartie séparée de la température et de la déformation.
[0035] La Figure 2 schématise plus particulièrement la configuration d'un dispositif optoélectronique de mesure répartie par fibre optique selon l'invention. Les mêmes références que sur la Figure 1 sont utilisées pour désigner les mêmes éléments. Le dispositif selon l'invention comprend également une source lumineuse 1 émettant un signal lumineux continu. Cette source de lumière 1 est avantageusement matérialisée par un laser, de préférence un laser DFB (de l'acronyme anglais « Distributed Feedback >>), utilisant un réseau de Bragg. La longueur d'onde d'émission λο est de préférence égale ou sensiblement égale à 1550 nm, à la fréquence correspondante vo. La raie de l'onde lumineuse émise est centrée sur la longueur d'onde d'émission λο et sa largeur est au plus de 1 MHz.
[0036] Avantageusement, la source de lumière 1 est accordable en fréquence et il est possible de faire varier sa fréquence de manière continue à une vitesse d'au moins 1 GHz/sec sur un intervalle d'au moins 125 GHz. De façon plus préférée, la source de lumière 1 est apte à émettre un rayonnement laser continu à une fréquence optique vo pouvant être variée, sur la durée de l'ensemble des acquisitions, suivant une rampe continue de 250 GHz au moins. Cette modulation de fréquence doit être continue et non par pas de fréquence et permet ainsi de diminuer les effets d'interférences intra- impulsion et donc le bruit. Cette caractéristique est particulièrement importante lorsqu'un suivi de la rétrodiffusion Rayleigh est souhaité.
[0037] La source de lumière 1 , par exemple un laser, émet un signal lumineux continu moyennement puissant, typiquement de l'ordre de 20 mW, dans une fibre optique le reliant à un premier coupleur 3 ou au troisième coupleur 2.
[0038] Le premier coupleur 3, recevant le signal lumineux via source de lumière 1 ou via le premier bras 21 du troisième coupleur 2, est apte à diviser ledit signal lumineux continu en deux signaux de fréquence identique répartis dans deux bras. [0039] Le premier bras 31 relie le premier coupleur 3 à un bloc fibre de référence 4 comportant une fibre de référence 42, ledit bloc fibre de référence 4 étant apte à émettre un autre signal lumineux de fréquence vo - vbref, où vbref est la fréquence Brillouin de la fibre de référence 42, destiné à être transmise au modulateur 6 ou à être mélangé audit signal initial par un quatrième coupleur 5. Ainsi, le bloc de référence 4 permet de renvoyer l'information dans une bande de fréquence plus basse améliorant ainsi les performances du dispositif. La fibre optique de référence 42 est conservée sans déformation et à une température de référence. Le second bras 32 relit le premier coupleur 3 à un deuxième coupleur 9 situé en aval du modulateur 6 et est apte à transmettre au deuxième coupleur 9 un signal lumineux continu à une fréquence vo, constituant ainsi un oscillateur local. De façon plus particulière, le second bras 32 relit le premier coupleur 3 à un deuxième coupleur 9 situé en amont du module de photodétection 10 et de préférence il est positionné juste avant ledit module de photodétection 10. [0040] Le premier coupleur 3 est apte à diriger suffisamment d'énergie du signal lumineux vers le premier bras 31 de façon à dépasser le seuil de Diffusion Brillouin Stimulée (Stimulated Brillouin Scattering) et ainsi que, dans la fibre de référence 42, l'onde rétrodiffusée soit décalée en fréquence de -vbref par rapport à l'onde optique. De façon avantageuse, le premier coupleur 3 est apte à diriger la majorité de l'énergie du signal lumineux vers le premier bras 31 . De préférence, le premier coupleur 3 est apte à diriger plus de 70%, de façon plus préférée plus de 80 %, de façon encore plus préférée sensiblement 90 % de l'énergie du signal lumineux vers le premier bras 31 .
[0041 ] Le bloc de référence 4 comprend avantageusement un circulateur 41 qui dirige le signal lumineux continu incident, à la fréquence vo, provenant du premier coupleur 3, dans une fibre optique 42 de référence. Cette fibre optique de référence 42 peut être identique à la fibre optique 15 à tester. Avantageusement, la fibre de référence 42 n'est soumise à aucune déformation. Elle est placée à une température de référence, en général comprise entre 18 et 25°C, de préférence à une température de l'ordre de 20°C. Cette fibre de référence 42 permet elle aussi d'émettre un signal par rétrodiffusion Brillouin en réponse au signal continu émanant de la source lumineuse 1 , de sorte que le bloc de référence 4 permet de transformer la fréquence incidente vo en une fréquence vbr = vo-VBref, où VBref représente la fréquence Brillouin de la fibre optique 42 de référence, et qui se situe par exemple dans la même gamme de fréquence que la fréquence VbAs issue du signal rétrodiffusé par la fibre optique 1 5 à tester. En outre, de façon avantageuse, la fibre optique de référence 42 du bloc fibre de référence 4 présente une fréquence Brillouin différente de celle de la fibre optique 15 à tester. Par exemple, la fibre optique de référence 42 présente une fréquence Brillouin décalée d'au moins 200 MHz, de préférence d'au moins 300 MHz par rapport à la réponse Brillouin de la fibre à mesurer. De préférence, la fréquence Brillouin de la fibre optique de référence 42 présente un écart de fréquence avec la fréquence Brillouin de la fibre optique 15 à tester, compris entre 300 MHz et 1 GHz. Ainsi, cela permet d'éviter tout recouvrement spectral des spectres Rayleigh et Brillouin tout en limitant les exigences pour le traitement de signal ultérieur. En effet, le module de photo-détection 10 situé en fin du montage optoélectronique reçoit un signal issu de la rétrodiffusion de Rayleigh qui se trouve modulé à la fréquence du modulateur acousto- optique VA (par exemple 200 MHz) et de la rétrodiffusion de Brillouin modulé à la fréquence (VbAs - Vbref + VA) sans qu'il n'y ait de recouvrement entre les deux spectres.
[0042] Une telle architecture permet de positionner la fibre de référence 42 sur le même bras optique que la fibre optique 15 à tester. Cela a pour avantage d'améliorer la qualité de mesure en ayant un signal dans l'oscillateur local issu directement de la source et donc sans parasites à basses fréquences. Il n'est donc ensuite pas nécessaire d'utiliser de filtre électrique basse fréquence en sortie du module de photodétection. Cette configuration permet également de mesurer la raie anti-Stokes de la rétrodiffusion Brillouin et, contrairement aux dispositifs de l'art antérieur, d'accéder à des mesures proches du DC (par exemple autour de 100 MHz) dans le domaine électrique où il n'était jusqu'alors pas possible de faire des mesures fiables. [0043] Le troisième coupleur 2 permet de diviser le signal lumineux incident émis par la source lumineuse 1 , en deux signaux de fréquence identique répartis dans deux bras 21 , 22 du dispositif.
[0044] Le premier bras 21 relie le troisième coupleur 2 au premier coupleur 3 et le premier bras 21 est apte à transmettre au premier coupleur 3 un signal lumineux continu à une fréquence vo. Le second bras 22 relie le troisième coupleur 2 à un quatrième coupleur 5 situé en amont du modulateur 6 et ce second bras 22 est apte à transmettre au quatrième coupleur 5 un signal initial à une fréquence vo. [0045] De façon avantageuse, le troisième coupleur 2 est apte à diriger la majorité de l'énergie du signal lumineux vers le premier bras 21 . De préférence, le troisième coupleur 2 est apte à diriger plus de 70%, de façon plus préférée plus de 80 %, de façon encore plus préférée sensiblement 90 % de l'énergie du signal lumineux vers le premier bras 21 .
[0046] Comme cela a été spécifié, le quatrième coupleur 5 est apte à mélanger le signal initial vo provenant du second bras 22 du troisième coupleur 2 au signal lumineux de fréquence vo - vbref provenant de la fibre de référence 42 et à les injecter dans le modulateur 6. Les signaux issus de la fibre optique de référence 42 sont donc recombinés au signal initial vo dans le quatrième coupleur 5. A la sortie du quatrième coupleur 5, on obtient un signal qui contient un signal à la fréquence vo - Vbref provenant de la fibre optique de référence 42 et un signal à la même fréquence que le signal initial vo.
[0047] Le modulateur 6 est apte à imposer un décalage de fréquence d'au moins 100 Mhz au signal continu et à le transformer en un signal impulsionnel destiné à être injecté dans une fibre optique 15 à tester. De façon préférée, le modulateur 6 est un modulateur acousto-optique 6. Le modulateur 6 peut être associé à un ou plusieurs amplificateurs si nécessaire pour donner du gain. Le signal provenant du modulateur 6 comporte au moins deux composantes, - une composante continue de fréquence vo - vbref, transformée en une composante impulsionnelle de fréquence vpi = vo - Vbref + VA, et
- une composante continue de fréquence vo, transformée en une composante impulsionnelle de fréquence vP2 = vo + VA.
[0048] Le modulateur 6 est apte à générer un signal impulsionnel présentant une fréquence décalée par rapport à la fréquence du signal lumineux continu. Le décalage de fréquence VA appliqué à ladite fréquence décalée peut être supérieur ou égal à 100 MHz. La fréquence VA est la fréquence propre au modulateur 6 et est généralement supérieure ou égale à 100 MHz et inférieure ou égale à 1 GHz, de préférence sensiblement égale à 200 MHz. La largeur temporelle de l'impulsion ainsi générée peut par exemple être comprise entre 10 ns et 500 ns, de préférence elle est sensiblement égale à 20 ns. Le signal impulsionnel est alors dirigé vers un circulateur 7 qui l'injecte ensuite dans la fibre optique 15 à tester, sur laquelle doit être effectuée la mesure répartie. Au passage du signal impulsionnel, la fibre optique 15 émet en sens inverse un signal par rétrodiffusion Brillouin spontanée à la fréquence VFI = vo - vbref + VA + vbAS(z) ; et vo - vbref + VA - VbS(z) dans lequel vbAs est la fréquence Brillouin anti-Stokes à mesurer en tout point de coordonnée z le long de la fibre optique 15. VbS(z) est la fréquence Brillouin Stokes. La fibre optique 15 émet également en sens inverse un signal par rétrodiffusion de Rayleigh à la fréquence VF2 = vo + VA.
[0049] Ces signaux rétrodiffusés sont dirigés, par le circulateur 7, vers le deuxième coupleur 9 où ils sont recombinés avec un signal vo provenant de l'oscillateur local. En outre, avantageusement, le second bras 32 peut comporter un brouilleur de polarisation 8 disposé alors en amont des entrées d'un deuxième coupleur 9. Cela permet de diminuer les effets d'interférences dus à la polarisation entre le bras de l'oscillateur local et le bras de mesure 25, aussi appelé bras « pompe », et situé entre le circulateur 7 et un deuxième coupleur 9. [0050] Le deuxième coupleur 9 est apte à coupler le signal de l'oscillateur local au signal de rétrodiffusion provenant de la fibre optique 15 à tester avant de le transmettre au module de photo-détection 10. Le deuxième coupleur 9 peut être associé à des modules optionnels tels qu'à un module de séparation (polarization beam splitter) ou d'hybridation de polarisation. Le signal de rétrodiffusion peut être modulé au moins à une fréquence Brillouin vrB égale à vo - vbref + VA + VbAs, où VbAs est la fréquence de rétrodiffusion Brillouin anti-Stokes pouvant être mesurée en tout point z de la fibre optique 15 à tester. Cela donne la possibilité à l'utilisateur de mesurer la raie anti- Stokes de rétrodiffusion Brillouin tout en profitant d'un oscillateur local sans parasite à basses fréquences et ainsi permet d'améliorer la qualité de la mesure. [0051 ] Le signal de rétrodiffusion provenant de la fibre optique 15 à tester peut également être modulé à une fréquence Rayleigh vRR égale à vo + VA. Cela est possible lorsque le dispositif selon l'invention comporte le troisième coupleur 2 et quatrième coupleur 5. Ce deuxième coupleur 9 permet alors à la rétrodiffusion Rayleigh créée dans la fibre optique 15 à tester de se coupler avec la fréquence de l'oscillateur local. Ainsi, le dispositif selon l'invention permet également de mesurer le spectre de rétrodiffusion Rayleigh. De façon préférée, le signal de rétrodiffusion est modulé, il contient le spectre de rétrodiffusion Rayleigh à une fréquence vrR égale à vo + VA et le spectre de rétrodiffusion Brillouin à une fréquence vrB égale à vo - vbref + VA + vbAs.
[0052] Ce ou ces battements sont détectables électroniquement grâce à l'utilisation d'un module de photo-détection 10 positionné en aval du deuxième coupleur 9 et il est apte à transmettre le signal de rétrodiffusion reçu à un module de traitement 12. Le module de photo-détection 10 comporte au moins un photo-détecteur. De façon avantageuse, le module de photo-détection 10 présente une bande passante d'au moins 800 MHz, de préférence d'au moins 1 GHz. Le module de photo-détection 10 situé en fin du montage optoélectronique est apte à recevoir un signal issu de la rétrodiffusion de Rayleigh modulé à la fréquence du modulateur acousto-optique VA et de la rétrodiffusion de Brillouin modulé à la fréquence (vbAs - Vbref + VA). Dans ces conditions, en sortie du module de photo-détection 10 le signal électrique obtenu correspondant aux battements détectés à la fréquence de VBatti = VA +(vbAs - VBref) correspondant à la rétrodiffusion Brillouin et à la fréquence de VBatt2 = VA correspondant à la rétrodiffusion Rayleigh. Grâce à l'architecture du dispositif selon l'invention, ces battements ont été obtenus à partir d'une seule mesure et une seule fibre optique 15 à tester. En outre, ces battements présentent une fréquence plus faible que les signaux incidents du fait que la fréquence vo issue de la source lumineuse 1 est éliminée. Typiquement, un premier battement correspondant à Batti = VA +(vbAs - VBref) présente une fréquence supérieure à 200 MHz, et de préférence autour de 500 MHz, et un second battement correspondant à VBatt2 = VA présente une fréquence par exemple sensiblement égale à 200 MHz, correspondant à l'ordre de grandeur de la fréquence propre au modulateur 6. En effet, VA - (vbs + VBref) est à environ 20 GHZ et donc hors bande. La configuration optique permet donc d'augmenter le rendement du module de photo-détection 10 en limitant la bande passante à moins de 2 GHz au lieu de 1 1 GHz, de préférence à moins de 1 GHz, par exemple entre 400 MHz et 1 GHz.
[0053] Avantageusement, le dispositif selon l'invention peut ne pas comprendre de filtre électrique basse fréquence en sortie du module de photo-détection 10. En effet, comme spécifié précédemment, le positionnement de la fibre de référence 42 sur le même bras optique que la fibre optique 15 à tester permet d'améliorer la qualité de mesure en ayant un signal dans l'oscillateur local sans parasites à basses fréquences. En supprimant ces parasites à basses fréquences, cette configuration donne en outre accès à des informations non exploitables avec les configurations de l'art antérieur (e.g. < 100 MHz).
[0054] Le ou les signaux de battement obtenus peuvent être alors numérisés, au moyen d'un module convertisseur analogique - numérique 11. Puis ils sont traités par un module 12 de traitement numérique. De façon avantageuse, le module convertisseur analogique - numérique 1 1 présente une bande passante d'au moins 800 MHz, de préférence d'au moins 1 GHz et une vitesse d'échantillonnage d'au moins 1 ,6 Gech/s, de préférence d'au moins 2 Gech/s.
[0055] Le module de traitement 12 est configuré pour relier ladite fréquence Brillouin anti-Stokes VbAs à une valeur de température et/ou à une valeur de déformation en tout point z de ladite fibre optique 15 à tester. Ainsi, il est apte à séparer la mesure de température et la mesure de déformation afin d'obtenir, à partir d'une seule mesure, des valeurs distinctes de température et de déformation. Ce dernier peut comporter une carte d'acquisition qui permet d'acquérir le signal généré par le module de photo- détection 10 et donc avoir une bande passante et une fréquence d'échantillonnage en mesure d'analyser un signal correspondant à : VA + VbAs - Vbref. Ainsi, avantageusement, le module de traitement 12 est apte à mesurer un signal ayant une bande passante d'au moins 800 MHz, de préférence d'au moins 1 GHz et une vitesse d'échantillonnage d'au moins 1 ,6 Gech/s, de préférence d'au moins 2 Gech/s dans le but de détecter les deux spectres simultanément (spectre Brillouin et spectre Rayleigh). En outre, de façon avantageuse, il convient d'utiliser une carte d'acquisition avec une résolution élevée comme par exemple une résolution supérieure ou égale à 10 bits. Cela permet, considérant les faibles variations d'intensité du spectre rétrodiffusé Brillouin en fonction de la température, d'atteindre une précision de l'ordre de 1 °C. Les modules convertisseur analogique - numérique 1 1 et de traitement 12 sont présentés de façon distincte mais peuvent être intégrés dans un seul et même ensemble positionné directement après le module de photo-détection 10.
[0056] Le module de traitement 12 est apte à découper le signal numérisé en une pluralité de tronçons (T1 ...TL .TN) par application d'une fenêtre temporelle glissante de type fenêtre rectangulaire ou de Hamming, ou de Hann ou de Blackman-Harris, chaque tronçon présentant une largeur égale à la largeur temporelle d'une impulsion du signal impulsionnel injecté dans la fibre optique 15 à tester, la largeur de chaque tronçon étant en outre centrée autour d'une date t correspondant à un point de coordonnée z de ladite fibre optique 15 à tester.
[0057] De plus, le module 12 de traitement numérique utilise avantageusement un algorithme de transformé de fourrier discrète (de préférence rapide), au moyen par exemple d'un circuit intégré logique connu sous l'acronyme anglais FPGA (pour « Field Programmable Gâte Array >>). Il permet ainsi de calculer directement la fréquence Brillouin, l'intensité totale de la rétrodiffusion Brillouin et/ou l'intensité totale de la rétrodiffusion Rayleigh en tout point de coordonnée z de la fibre optique 15 sous test. Le module 12 de traitement numérique permet en outre de moyenner les spectres obtenus dans le domaine fréquentiel, pour chaque point z de ladite fibre, à l'issue de l'application de l'algorithme de transformée de fourrier discrète (de préférence rapide), afin de déterminer la mesure répartie de la variation fréquentielle tout le long de ladite fibre optique 15 sous test.
[0058] Selon un autre aspect, l'invention porte sur un procédé de traitement numérique d'un signal pouvant être issu, de préférence issu, d'un dispositif optoélectronique de mesure répartie par fibre optique selon l'invention. Les différentes étapes du traitement numérique effectué sur le signal numérisé, sont plus particulièrement illustrées par les Figures 3 à 5 expérimentales et explicatives qui représentent des traces temporelles ou spectrales obtenues à chaque étape du procédé de traitement numérique du signal numérisé, obtenu après recombinaison des signaux rétrodiffusés par la fibre optique sous test et par la fibre optique de référence.
[0059] Le procédé de traitement selon l'invention comporte une première étape de numérisation d'un signal correspondant au battement entre un signal rétrodiffusé issu d'une fibre optique 15 à tester et un signal de référence, et détecté par un module de photo-détection 10. La Figure 3A représente le signal numérisé en sortie du convertisseur analogique - numérique 1 1 . De façon préférée, le signal numérisé ne provient que d'une seule mesure et le procédé de traitement selon l'invention ne repose que sur une seule mesure réalisée sur une fibre optique 15 à tester. De façon préférée, le signal comporte un battement VA + (vbAs - VBref) et un battement VA. [0060] Une deuxième étape du traitement numérique effectué par le module de traitement numérique 12, consiste à découper le signal numérisé en tronçons. La première étape consiste à découper le signal numérisé par tronçons autour de la date t correspondant à la position z sur la fibre de largeur égale à la largeur temporelle de l'impulsion. Le découpage en tronçon est réalisé par exemple par application d'une fenêtre temporelle glissante sur le signal. De préférence, le fenêtrage est réalisé par une fenêtre rectangulaire ou de Hamming ou de Hann ou de Blackman-Harris. Le découpage du signal numérisé est représenté sur la Figure 3B, un premier tronçon à traiter étant repéré par la référence T1 et le tronçon N étant repéré par la référence TN. Chaque tronçon présente avantageusement une largeur égale à la largeur temporelle d'une impulsion du signal impulsionnel injecté dans la fibre optique 5 à tester. Chaque tronçon T1 ...Ti... TN est en outre centré autour d'une date ti , .. . ti.. .tN correspondant à un point de coordonnée z de ladite fibre optique à tester. Ainsi, pour une position de coordonnée z sur la fibre optique 15, z=2nc*t, avec c la célérité de la lumière et n l'indice optique de la fibre, et le temps tz correspond alors au temps aller-retour (z) d'une impulsion, décompté à partir du point de départ de l'impulsion jusqu'au point z de mesure. L'écart entre deux points de mesure peut être aussi petit qu'une unité d'échantillonnage (glissement d'un intervalle). Cependant l'écart entre deux mesures indépendantes (résolution spatiale) est considéré comme égal à la largeur de l'impulsion. Ainsi, l'écart entre deux points de mesure indépendants z(t1 ), z(t2) est égal à la largeur d'une impulsion.
[0061 ] De façon préférée, le signal numérisé présente portion par portion au moins deux spectres correspondant au spectre de Brillouin VA+(vBas(z) - VBref) et au spectre de Rayleigh VA. Une troisième étape du traitement numérique consiste ensuite à calculer le spectre fréquentiel de chaque tronçon T1 ...Ti... TN dudit signal numérisé, par l'utilisation d'un algorithme de Transformée de Fourrier Discrète DFT et de façon préférée un algorithme de Transformée de Fourrier Rapide FFT. Ainsi, pour chaque tronçon T1 ...Ti... TN du signal numérisé on obtient un spectre fréquentiel.
[0062] Une quatrième étape consiste à répéter les trois étapes de numérisation, découpage et calcul du spectre fréquentiel, et à moyenner les résultats afin d'obtenir un spectre fréquentiel moyenné, interprétable. De préférence, la quatrième étape permet de générer un spectre fréquentiel interprétable comportant un spectre Brillouin et un spectre Rayleigh dont on peut déterminer le maximum pour la mesure de fréquence Brillouin, l'énergie pour la mesure d'intensité Brillouin et l'énergie pour la mesure de l'intensité Rayleigh. Il s'agit de réaliser la moyenne des courbes DFT (de façon préférée FFT) pour réduire au maximum le bruit de fond. On utilise par exemple un algorithme d'ajustement Gaussien ou de Lorentz. Deux spectres fréquentiels moyennés interprétables sont illustrés sur la Figure 3C correspondant au tronçon T1 (trait plein) et au tronçon TN (trait pointillé) du signal découpé de la Figure 3B. Ces spectres fréquentiels moyennés interprétables permettent d'obtenir la fréquence des battements VA+ (vbAs<z)- VBref) et VA. Et par exemple de déterminer, pour le battement VA+ (vbAS(z)- VBref), la position fréquentielle des maxima du spectre Brillouin.
[0063] La cinquième étape du traitement numérique consiste ensuite à déterminer la variation des positions fréquentielles des maxima du spectre Brillouin et/ou de l'intensité totale des spectres Rayleigh et Brillouin, en fonction des coordonnées z des différents points de la fibre optique 15, et peut inclure une étape consistant à tracer un ou plusieurs graphes de la mesure répartie de variation de maxima fréquence ou d'intensité tout le long de la fibre optique 15 à tester. De façon préférée, la cinquième étape du traitement numérique consiste à déterminer les positions fréquentielles des maxima du spectre Brillouin et l'intensité totale des spectres Rayleigh et Brillouin respectivement, en fonction des coordonnées z des différents points de la fibre optique 15. Par exemple, la Figure 4A représente les positions fréquentielles des maxima du spectre Brillouin en fonction des coordonnées z de la fibre optique 15 à tester dans deux conditions différentes : dans un environnement à température homogène (trait plein) et dans un environnement où la fibre optique 15 est exposée à une source de chaleur (trait pointillé). Cette cinquième étape peut également comprendre une sous étape de détermination du rapport d'intensité totale Rayleigh et d'intensité totale Brillouin en tout point (z) de la fibre dans le but d'en déterminer le ratio de Landau Placzek dépendant du paramètre de température. Les variations uniquement de température créées sur une fibre optique entraînent une augmentation ou une diminution de l'intensité de rétrodiffusion Brillouin. Cette intensité peut être normalisée grâce à une mesure de rétrodiffusion Rayleigh qui permet de donner une information sur les pertes linéaires de la fibre testée ainsi que les défauts de cette dernière pouvant engendrer des pertes optiques. Cette normalisation passe par le calcul du ratio de Landau Placzek. Par exemple, la Figure 4B représente le ratio de Landau Placzek en fonction des coordonnées z de la fibre optique 15 à tester dans les deux conditions ci- dessus. L'intensité du spectre de rétrodiffusion Brillouin varie en fonction du paramètre de température. Cependant de manière à obtenir une mesure représentative de l'intensité Brillouin, il convient de normaliser l'intensité de rétrodiffusion Brillouin par l'intensité de rétrodiffusion Rayleigh (représentative des pertes optiques dans une fibre). De cette manière seules les variations d'intensité sur le spectre rétrodiffusé Brillouin dues seulement à la température sont mesurées. La variation peut par exemple être mesurée par rapport à des valeurs de positions fréquentielles des maxima, et/ou d'intensité totale, obtenues lors d'une mesure antérieure. Lesdites valeurs étant fonction des coordonnées z des différents points de la fibre optique 15.
[0064] Enfin, une dernière étape du traitement numérique consiste à appliquer le coefficient de sensibilité propre à la fibre optique 15 à tester aux variations de positions fréquentielles et/ou aux variations d'intensités totales des spectres Rayleigh et Brillouin déterminées en amont. Cela peut permettre d'obtenir deux résultats correspondant à une mesure répartie de déformation et à une mesure répartie de température. Cela n'était pas envisageable à partir d'une seule mesure avec les méthodes de l'art antérieur puisque VBas(z) dépend de ces deux paramètres. De plus, dans les procédés de l'art antérieur, ces mesures pouvaient être obtenues par une analyse des spectres Brillouin et Raman dont l'acquisition nécessite deux dispositifs différents et donc forcément deux mesures.
[0065] En particulier, la dernière étape du traitement numérique consiste à appliquer les coefficients de sensibilité, respectivement de température CT et de déformation CE, propres à la fibre optique 15, pour obtenir un résultat respectivement en termes de mesure répartie de température et de mesure répartie de déformation. Les Figures 5A et 5B représentent un graphe obtenu après application des coefficients de sensibilité à la déformation et permettant d'obtenir respectivement la mesure répartie de déformation ε tout le long de la fibre optique et la mesure répartie de température T tout le long de la fibre optique. Ainsi, sur le graphe de la figure 5A, on constate que la fibre optique analysée n'est pas déformée alors qu'au regard de la figure 5B il y a une variation périodique de la température correspondant bien à la présence d'une source de chaleur à proximité de la fibre optique 15 enroulée. Le coefficient Cvbs de sensibilité à la déformation est typiquement de 0,05 MHz / (μιη/m)) et le coefficient de sensibilité à la température CvbT est typiquement 1 MHz/°C.
[0066] De façon plus particulière, ces mesures peuvent être déterminées en inversant le système linéaire (1 ). Système linéaire (1 ) :
Avec CPbs que l'on peut considérer nul par rapport à CPbT = 0.32 %/°C
[0067] L'invention permet une suppression de tous les composants électroniques analogiques, excepté le module de photo-détection 10 et permet leur remplacement par un numériseur 1 1 et un module de traitement numérique 12. Ainsi, on s'affranchit des niveaux de bruit apportés par les composants actifs analogiques tels que les amplificateurs ou les oscillateurs par exemple. De plus, le traitement du signal étant entièrement numérique, les traitements sont moins consommateurs d'énergie et le dispositif présente un encombrement réduit, si bien qu'il peut être embarqué. Il peut donc avantageusement être alimenté en basse tension, typiquement en 12 ou 24 Volts, à partir d'une batterie. Cette batterie peut en outre être rechargeable, par un panneau solaire isolé par exemple, dont le besoin de puissance est de l'ordre de 100 Watt continu. En outre, le dispositif est apte à fonctionner en accédant à une seule extrémité de la fibre optique 15 à tester et comme cela a été vu, il est apte à mesurer de manière séparée la température et les déformations dans la fibre optique 15 à tester en une seule et unique mesure.
[0068] De plus le dispositif permet d'utiliser un module de calcul numérique permettant d'effectuer des traitements en parallèle pour chaque tronçon ce qui réduit le temps de mesure à la durée d'acquisition, par exemple pour 10 km de fibre on pourra avoir 10000 acquisitions par seconde avec une fréquence d'horloge du processeur de 10 kHz et ainsi obtenir 10000 moyennes. Le module de calcul numérique comporte avantageusement processeur graphique de type GPU (Graphical Processing Unit) afin de déporter le calcul hautement parallélisable sur celui-ci. Ainsi, le calcul est réalisé en parallèle de l'acquisition et la durée d'une mesure correspond au temps d'acquisition. Ce temps d'acquisition est faible par rapport au temps d'acquisition des dispositifs de l'art antérieur. A titre d'exemple, pour une fibre de 10km, avec une fréquence d'horloge du processeur de 10 kHz, on réalise 10000 acquisitions en une seconde ce qui permet d'avoir 10000 moyennes alors que dans l'état de la technique la durée d'une mesure est supérieure à une minute pour 10 km. [0069] L'utilisation des mesures renvoyées par ce dispositif est consacrée à l'optimisation de la maintenance d'ouvrages du domaine du génie-civil ou du pétrole et gaz par exemple. La continuité des mesures le long de la fibre optique garantie la détection d'un événement qui ne l'aurait pas été par un autre procédé utilisant des mesures ponctuelles et localisées. La détection précoce des désordres structuraux dans des ouvrages permet une intervention avant une dégradation plus importante. A l'inverse, l'absence de détection peut permettre de retarder les opérations de maintenance systématique si elles ne sont pas nécessaires. Dans les deux cas, un tel dispositif optoélectronique de mesure répartie par fibre optique permet à un exploitant de réaliser des économies significatives sur la maintenance des ouvrages de génie- civil.

Claims

REVENDICATIONS
1. Dispositif optoélectronique de mesure répartie par fibre optique, ledit dispositif comprenant une source de lumière (1 ) continue émettant un signal lumineux continu à une première fréquence vo, un modulateur (6) apte à imposer un décalage de fréquence VA d'au moins 1 00 Mhz au signal continu et à le transformer en un signal impulsionnel destiné à être injecté dans une fibre optique (1 5) à tester et un module de photo-détection (1 0) apte à détecter un signal de rétrodiffusion, provenant de la fibre optique (15) à tester, issu d'une rétrodiffusion
Brillouin spontanée et/ou d'une rétrodiffusion Rayleigh provenant de ladite fibre optique (15) à tester,
ledit dispositif étant caractérisé en ce qu'il comprend en outre un premier coupleur (3) et un deuxième coupleur (9), ledit premier coupleur (3) étant apte à diviser ledit signal lumineux continu en deux signaux de fréquence identique répartis dans deux bras,
- un premier bras (31 ) reliant le premier coupleur (3) à un bloc fibre de référence (4) comportant une fibre de référence (42), ledit bloc fibre de référence (4) étant apte à émettre un autre signal lumineux de fréquence vo - vbref, où vbref est la fréquence Brillouin de la fibre de référence (42) sans déformation et à une température de référence,
- un second bras (32) reliant le premier coupleur (3) au deuxième coupleur (9) situé en amont du module de photo-détection (1 0) et apte à transmettre au deuxième coupleur (9) un signal lumineux continu à une fréquence vo, constituant ainsi un oscillateur local,
ledit deuxième coupleur (9) étant apte à coupler le signal de l'oscillateur local au signal de rétrodiffusion provenant de ladite fibre optique (1 5) à tester avant de le transmettre au module de photo-détection (1 0),
le signal de rétrodiffusion étant modulé à une fréquence vrB égale à vo - vbref + VA + VbAs, où VbAs est la fréquence de rétrodiffusion Brillouin anti-Stokes pouvant être mesurée en tout point z de ladite fibre optique (1 5) où VA est la fréquence propre au modulateur (6), et
ledit module de photo-détection (10) étant apte à transmettre le signal de rétrodiffusion reçu, à un module de traitement (1 2) apte à relier la modulation du signal de rétrodiffusion à une valeur de température et à une valeur de déformation en tout point z de ladite fibre optique (1 5) à tester.
2. Dispositif selon la revendication 1 , caractérisé en ce qu'il comprend en outre un troisième coupleur (2) et un quatrième coupleur (5), le troisième coupleur (2) étant apte à diviser ledit signal lumineux continu provenant de la source lumineuse (1 ) en deux signaux de fréquence identique répartis dans deux bras,
- un premier bras (21 ) reliant le troisième coupleur (2) au premier coupleur (3) et apte à transmettre au premier coupleur (3) un signal lumineux continu à une fréquence vo,
- un second bras (22) reliant le troisième coupleur (2) au quatrième coupleur (5) situé en amont du modulateur (6) et apte à transmettre au quatrième coupleur (5) un signal initial à une fréquence vo,
ledit quatrième coupleur (5) étant apte à coupler le signal initial vo au signal lumineux de fréquence vo - vbref, provenant du bloc de référence (4).
3. Dispositif selon l'une des revendications 1 ou 2, caractérisé en ce que la fibre optique de référence (42) présente une fréquence Brillouin décalée d'au moins 200 MHz par rapport à la réponse Brillouin de la fibre optique (15) à tester.
4. Dispositif selon l'une des revendications 2 ou 3, caractérisé en ce que le signal de rétrodiffusion contient le spectre de rétrodiffusion Rayleigh à une fréquence vrR égale à vo + VA et le spectre de rétrodiffusion Brillouin à une fréquence vrB égale à VO - Vbref + VA + VbAS.
5. Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il comprend un module convertisseur analogique - numérique (1 1 ) présentant une bande passante d'au moins 800 MHz et une fréquence d'échantillonnage d'au moins 1 ,6 Gech/s.
6. Dispositif optoélectronique de mesure répartie par fibre optique selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il est apte à fonctionner en accédant à une seule extrémité de la fibre optique (15) à tester.
7. Dispositif optoélectronique de mesure répartie par fibre optique selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il est apte à mesurer de manière séparée la température et les déformations dans la fibre optique (15) à tester en une seule et unique mesure. 8. Dispositif optoélectronique de mesure répartie par fibre optique selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le module de traitement (12) est apte à découper le signal numérisé en une pluralité de tronçons (T1 ...TL .TN) par application d'une fenêtre temporelle glissante de type fenêtre rectangulaire ou de Hamming, ou de Hann ou de Blackman-Harris, chaque tronçon présentant une largeur égale à la largeur temporelle d'une impulsion du signal impulsionnel injecté dans la fibre optique (15) à tester, la largeur de chaque tronçon étant en outre centrée autour d'une date t correspondant à un point de coordonnée z de ladite fibre optique (15) à tester.
9. Dispositif optoélectronique de mesure répartie par fibre optique selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la fibre de référence
(42) est positionnée le même bras optique que la fibre optique (15) à tester.
10. Dispositif optoélectronique de mesure répartie par fibre optique selon l'une quelconque des revendications 1 à 9, caractérisé en ce que la fibre optique de référence (42) du bloc fibre de référence (4) présente une fréquence Brillouin différente de celle de la fibre optique (15) à tester.
11. Dispositif optoélectronique de mesure répartie par fibre optique selon la revendication 10, caractérisé en ce que la fréquence Brillouin de la fibre optique de référence (42) présente un écart de fréquence avec la fréquence Brillouin de la fibre optique (15) à tester, compris entre 300 MHz et 1 GHz. 12. Dispositif optoélectronique de mesure répartie par fibre optique selon l'une quelconque des revendications 1 à 1 1 , caractérisé en ce que le second bras (32) peut comporter un module d'hybridation de polarisation, ou un module de séparation, ou un brouilleur de polarisation (8), disposé alors en amont des entrées d'un deuxième coupleur (9).
13. Dispositif optoélectronique de mesure répartie par fibre optique selon l'une quelconque des revendications 1 à 12, caractérisé en ce que le signal impulsionnel provenant du modulateur (6) comporte au moins deux composantes,
- une composante impulsionnelle de fréquence vp1 = vo - vbref + VA, et
- une composante impulsionnelle de fréquence vp2 = vo + VA.
14. Dispositif optoélectronique de mesure répartie par fibre optique selon l'une quelconque des revendications 1 à 13, caractérisé en ce que le module de photodétection (10) reçoit un signal issu de la rétrodiffusion de Rayleigh modulé à la fréquence du modulateur acousto-optique VA et de la rétrodiffusion de Brillouin modulé à la fréquence VbAs - vbref + VA sans qu'il n'y ait de recouvrement entre les deux spectres.
15. Procédé de traitement numérique d'un signal issu d'un dispositif optoélectronique de mesure répartie par fibre optique selon l'une des revendications 1 à 14, ledit procédé comprenant les étapes suivantes :
- numériser un signal correspondant au battement entre un signal rétrodiffusé issu d'une fibre optique (15) à tester et un signal de référence, et détecté par un module de photo-détection (10) ;
- découper ledit signal numérisé en une pluralité de tronçons (T1 ...TL .TN) par application d'une fenêtre temporelle glissante de type fenêtre rectangulaire ou de Hamming, ou de Hann ou de Blackman-Harris, chaque tronçon présentant une largeur égale à la largeur temporelle d'une impulsion du signal impulsionnel injecté dans la fibre optique (15) à tester, la largeur de chaque tronçon étant en outre centrée autour d'une date t correspondant à un point de coordonnée z de ladite fibre optique (15) à tester ;
- calculer, par utilisation d'un algorithme de transformée de fourrier discrète, le spectre fréquentiel de chaque tronçon (T1 ...TL .TN) dudit signal numérisé ;
- répéter les trois premières étapes et moyenner les spectres fréquentiels obtenus pour chaque point z de ladite fibre optique (15) à tester ;
- à partir des spectres fréquentiels moyennés, déterminer la variation des maxima de fréquence de la rétrodiffusion Brillouin, et/ou la variation de l'intensité totale de la rétrodiffusion Brillouin et/ou la variation de l'intensité totale de la rétrodiffusion Rayleigh, en fonction du temps aller et retour tz de rétrodiffusion ; et
- appliquer un coefficient de sensibilité à la température d'une part et un coefficient de sensibilité à la déformation d'autre part, sur ladite ou lesdites variations déterminées, afin d'obtenir un résultat en terme de mesure répartie en température et/ou un résultat en terme de mesure répartie en déformation.
16. Procédé de traitement numérique selon la revendication 15, caractérisé en ce qu'il comprend la détermination, à partir des spectres fréquentiels moyennés, de la variation des maxima de fréquence de la rétrodiffusion Brillouin Anti-Stokes et la variation de l'intensité totale de la rétrodiffusion Brillouin et la variation de l'intensité totale de la rétrodiffusion Rayleigh en fonction du temps aller et retour tz de rétrodiffusion, ainsi que la détermination du rapport d'intensité Rayleigh et d'intensité Brillouin en tout point (z) de la fibre.
17. Procédé de traitement numérique selon l'une des revendications 14 ou 15, caractérisé en ce que le signal numérisé présente portion par portion au moins deux spectres correspondant au spectre de Brillouin VA +((vbAs (z) - vbref) et au spectre de Rayleigh VA.
18. Procédé de traitement numérique selon l'une quelconque des revendications 15 à 17, caractérisé en ce qu'il peut également comprendre une sous étape de détermination d'un rapport intensité totale Rayleigh sur intensité totale Brillouin en tout point (z) de la fibre dans le but d'en déterminer un ratio de Landau Placzek dépendant du paramètre de température.
EP18728981.4A 2017-05-11 2018-05-14 Dispositif optoélectronique de mesure répartie par fibre optique Active EP3635354B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1754158A FR3066280B1 (fr) 2017-05-11 2017-05-11 Dispositif optoelectronique de mesure repartie par fibre optique
PCT/IB2018/053353 WO2018207163A2 (fr) 2017-05-11 2018-05-14 Dispositif optoélectronique de mesure répartie par fibre optique

Publications (2)

Publication Number Publication Date
EP3635354A2 true EP3635354A2 (fr) 2020-04-15
EP3635354B1 EP3635354B1 (fr) 2021-06-30

Family

ID=59974514

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18728981.4A Active EP3635354B1 (fr) 2017-05-11 2018-05-14 Dispositif optoélectronique de mesure répartie par fibre optique

Country Status (7)

Country Link
US (1) US10794733B2 (fr)
EP (1) EP3635354B1 (fr)
CN (1) CN111051832B (fr)
CA (1) CA3063048A1 (fr)
ES (1) ES2893548T3 (fr)
FR (1) FR3066280B1 (fr)
WO (1) WO2018207163A2 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109883458B (zh) * 2017-12-06 2021-09-17 北京齐瑞德光电科技有限公司 一种采用光学微波鉴频器和扰偏器的布里渊传感系统
PL235969B1 (pl) * 2018-10-18 2020-11-16 El Cab Spolka Z Ograniczona Odpowiedzialnoscia Urządzenie do monitorowania temperatury, sposób monitorowania temperatury oraz system monitorowania temperatury
US11265079B2 (en) * 2018-12-14 2022-03-01 Omnisens Sa Process and device for measurement of physical quantity based on Rayleigh backscattering
US20220057255A1 (en) * 2019-03-05 2022-02-24 Nec Corporation Sensor signal processing apparatus and sensor signal processing method
CN111609875B (zh) * 2020-06-10 2021-12-28 电子科技大学 基于啁啾连续光的数字域可调分布式光纤传感系统及方法
US11566921B2 (en) * 2020-07-31 2023-01-31 Subcom, Llc Techniques and apparatus for improved spatial resolution for locating anomalies in optical fiber
CN116707628A (zh) * 2022-02-24 2023-09-05 华为技术有限公司 一种传输信号的方法和装置
CN114745045B (zh) * 2022-03-10 2023-11-03 吉林大学 一种基于c-otdr的少模光纤差分模式群时延测量方法
CN114910191B (zh) * 2022-03-16 2024-07-26 上海波汇科技有限公司 一种布里渊光时域散射系统的自校准方法
CN114608719B (zh) * 2022-03-29 2023-04-07 电子科技大学 一种高温物体的激光测温装置
CN116086341B (zh) * 2023-04-12 2023-07-04 深圳钧雷光电技术有限公司 一种待测物体变形监测方法及装置、以及测量单元

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001356070A (ja) * 2000-06-13 2001-12-26 Ando Electric Co Ltd 光ファイバ歪測定装置
KR100625807B1 (ko) * 2004-02-25 2006-09-20 한국과학기술원 브릴루앙 광섬유 센서를 이용하는 물리량 측정방법
US7283216B1 (en) 2004-06-22 2007-10-16 Np Photonics, Inc. Distributed fiber sensor based on spontaneous brilluoin scattering
JP4002934B2 (ja) * 2005-10-03 2007-11-07 株式会社アドバンテスト 散乱光測定装置
JP3982714B2 (ja) * 2006-01-11 2007-09-26 株式会社アドバンテスト 歪み測定装置、方法、プログラムおよび記録媒体
GB2440952B (en) * 2006-08-16 2009-04-08 Schlumberger Holdings Measuring brillouin backscatter from an optical fibre using digitisation
WO2008047329A2 (fr) * 2006-10-19 2008-04-24 University Of Johannesburg Procédé et dispositif de détection distribuée au moyen d'un laser de référence à verrouillage de stokes
CN100504309C (zh) * 2007-09-30 2009-06-24 南京大学 基于快速傅立叶变换的布里渊光时域反射测量方法
JP2010217029A (ja) 2009-03-17 2010-09-30 Nippon Telegr & Teleph Corp <Ntt> 後方ブリルアン散乱光測定方法及び装置
US20110134940A1 (en) * 2009-12-08 2011-06-09 Schlumberger Technology Corporation Narrow linewidth brillouin laser
CN101825499B (zh) * 2010-05-18 2012-06-06 华北电力大学(保定) 一种基于光纤布里渊散射原理的海水温度剖面测量方法
US8744782B2 (en) * 2010-11-16 2014-06-03 Corning Incorporated System and method for simultaneously determining strain and temperature characteristics of an object
CN102322880B (zh) * 2011-08-18 2013-06-05 天津大学 偏振敏感的分布式光频域反射扰动传感装置和解调方法
WO2013185810A1 (fr) * 2012-06-13 2013-12-19 Omnisens Sa Système de détection et procédé de détection de diffusion de brillouin répartie
CN102759371B (zh) * 2012-07-19 2014-10-15 南京大学 融合cotdr的长距离相干检测布里渊光时域分析仪
WO2014012411A1 (fr) * 2012-07-19 2014-01-23 南京大学 Système botda basé sur codage d'impulsion et détection cohérente
CN102798411B (zh) * 2012-07-27 2015-07-01 广西师范大学 基于布里渊散射的分布式光纤传感测量系统及测量方法
US9645018B2 (en) * 2013-02-19 2017-05-09 Chung Lee Method and apparatus for auto-correcting the distributed temperature sensing system
FR3008788B1 (fr) * 2013-07-17 2018-01-26 Agence Nationale Pour La Gestion Des Dechets Radioactifs Systeme de mesure de deformations mecaniques a fibre optique auto-etalonnee et procedes d'etalonnage d'un tel systeme
US9276373B1 (en) * 2013-09-20 2016-03-01 University Of Ottawa Frequency stabilized coherent brillouin random fiber laser
CN103698049B (zh) * 2013-12-18 2016-09-14 中国能源建设集团广东省电力设计研究院有限公司 基于布里渊散射的分布式测量系统及方法
CN104729751A (zh) * 2013-12-18 2015-06-24 广西大学 一种基于布里渊散射分布式光纤温度和应力传感器
US9823098B2 (en) * 2014-05-05 2017-11-21 Filippo Bastianini Apparatus for interrogating distributed optical fibre sensors using a stimulated brillouin scattering optical frequency-domain interferometer
CN104089636B (zh) * 2014-07-15 2017-10-24 鞍山鹏泽伟业科技有限公司 一种基于布里渊散射双峰激励式监测仪
CN104697557B (zh) * 2015-03-30 2017-01-18 南京大学 一种基于循环移频的botdr相干探测装置和方法
FR3043457B1 (fr) * 2015-11-06 2020-02-07 Febus Optics Dispositif optoelectronique de mesure repartie par diffusion brillouin.
US10359302B2 (en) * 2015-12-18 2019-07-23 Schlumberger Technology Corporation Non-linear interactions with backscattered light
CN206235415U (zh) * 2016-12-08 2017-06-09 珠海中瑞电力科技有限公司 智能高压电缆监测系统
CN107664541A (zh) * 2017-09-18 2018-02-06 南京大学 一种分布式光纤振动和温度融合传感系统及方法
JP6791113B2 (ja) * 2017-12-27 2020-11-25 横河電機株式会社 光ファイバ特性測定装置及び光ファイバ特性測定方法

Also Published As

Publication number Publication date
US20200109971A1 (en) 2020-04-09
WO2018207163A2 (fr) 2018-11-15
CA3063048A1 (fr) 2018-11-15
CN111051832A (zh) 2020-04-21
WO2018207163A3 (fr) 2019-03-07
US10794733B2 (en) 2020-10-06
FR3066280A1 (fr) 2018-11-16
ES2893548T3 (es) 2022-02-09
EP3635354B1 (fr) 2021-06-30
FR3066280B1 (fr) 2019-09-13
CN111051832B (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
FR3066280B1 (fr) Dispositif optoelectronique de mesure repartie par fibre optique
EP3371554B1 (fr) Dispositif optoelectronique de mesure repartie par diffusion brillouin
EP3353502B1 (fr) Systeme de mesure et capteur de temperature et/ou de deformation par analyse de retroreflexion brillouin.
US20180073959A1 (en) Temperature or strain distribution sensor
FR2942876A1 (fr) Instrument et procedure d’inspection d’une fibre optique
EP0882977A1 (fr) Procédé et dispositif de détermination en temps réel du pouvoir calorifique d&#39;un gaz naturel par voie optique
FR3055424A1 (fr) Methode de traitement d&#39;un signal issu d&#39;un lidar coherent et systeme lidar associe
EP3997419B1 (fr) Procede et dispositif de reconstruction d&#39;une onde electromagnetique vectorielle retrodiffusee
EP0564366A1 (fr) Détecteur à fibre optique de contraintes
WO2015097383A1 (fr) Dispositif de caractérisation d&#39;un phénomène physique par ablation de fibre optique à réseaux de bragg
EP2724145B1 (fr) Systeme et procede d&#39;analyse par determination d&#39;un caractere depolarisant ou dichroïque d&#39;un objet
EP2405287B1 (fr) Dispositif dé telédétection laser et procédé d&#39;interférometrie
FR2977320A1 (fr) Dispositif de gestion d&#39;impulsions en spectroscopie pompe-sonde.
FR2975489A1 (fr) Composant thermo electrique a guide plasmonique, integrant un dispositif de mesure de la puissance couplee dans le mode guide
FR3138207A1 (fr) Système de capteur à fibre optique distribué
FR2710150A1 (fr) Procédé de mesure de la diffusion Brillouin dans une fibre optique et dispositif de mise en Óoeuvre de ce procédé.
FR2570186A1 (fr) Procede et dispositif de mesure du taux de polarisation
EP0463938A1 (fr) Dispositif d&#39;analyse photothermique de matériaux minces
FR3073940A1 (fr) Dispositif optique autocalibrant pour la mesure sans contact du niveau d&#39;un liquide
FR2738430A1 (fr) Procede et dispositif de transmission d&#39;information sur fibre optique avec detection et/ou localisation d&#39;intrusion
FR2727201A1 (fr) Procede de detection et/ou de mesure de grandeurs physiques utilisant un capteur distribue

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191206

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210122

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1406760

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018019385

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210930

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1406760

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211001

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210930

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211102

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2893548

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018019385

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

26N No opposition filed

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180514

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20240521

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20240513

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240521

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240510

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240602

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240605

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240522

Year of fee payment: 7

Ref country code: FR

Payment date: 20240531

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240521

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630