CN109883458B - 一种采用光学微波鉴频器和扰偏器的布里渊传感系统 - Google Patents

一种采用光学微波鉴频器和扰偏器的布里渊传感系统 Download PDF

Info

Publication number
CN109883458B
CN109883458B CN201711274067.4A CN201711274067A CN109883458B CN 109883458 B CN109883458 B CN 109883458B CN 201711274067 A CN201711274067 A CN 201711274067A CN 109883458 B CN109883458 B CN 109883458B
Authority
CN
China
Prior art keywords
optical
frequency
modulator
signals
coupler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711274067.4A
Other languages
English (en)
Other versions
CN109883458A (zh
Inventor
伍树东
王文博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zibo Qired Photoelectric Technology Co ltd
Beijing Qi Red Photoelectrical Technology Co ltd
Original Assignee
Zibo Qired Photoelectric Technology Co ltd
Beijing Qi Red Photoelectrical Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zibo Qired Photoelectric Technology Co ltd, Beijing Qi Red Photoelectrical Technology Co ltd filed Critical Zibo Qired Photoelectric Technology Co ltd
Priority to CN201711274067.4A priority Critical patent/CN109883458B/zh
Priority to US15/989,185 priority patent/US10931079B2/en
Publication of CN109883458A publication Critical patent/CN109883458A/zh
Application granted granted Critical
Publication of CN109883458B publication Critical patent/CN109883458B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35341Sensor working in transmission
    • G01D5/35348Sensor working in transmission using stimulated emission to detect the measured quantity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1305Feedback control systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/106Beam splitting or combining systems for splitting or combining a plurality of identical beams or images, e.g. image replication
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/108Beam splitting or combining systems for sampling a portion of a beam or combining a small beam in a larger one, e.g. wherein the area ratio or power ratio of the divided beams significantly differs from unity, without spectral selectivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/0014Monitoring arrangements not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10061Polarization control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/136Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
    • H01S3/302Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in an optical fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0085Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for modulating the output, i.e. the laser beam is modulated outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35358Sensor working in reflection using backscattering to detect the measured quantity
    • G01D5/35364Sensor working in reflection using backscattering to detect the measured quantity using inelastic backscattering to detect the measured quantity, e.g. using Brillouin or Raman backscattering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/02ASE (amplified spontaneous emission), noise; Reduction thereof

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Automation & Control Theory (AREA)
  • Optical Communication System (AREA)

Abstract

本发明涉及一种采用光学微波鉴频器和扰偏器的多光谱通道布里渊传感系统。由激光器输出的光经耦合器分成两路光信号,经由鉴频器驱动的调制器调节后产生两个泵浦光和三个探测光,泵浦光经差分脉冲编码调制和放大后再经过扰偏器和环路器进入传感光纤,探测光从另一方向直接进入传感光纤;当多个泵浦光与探测光通道间的频差与光纤中某区域的布里渊频移相等时,在该区域受激布里渊散射效应达到最大,能量由高频通道向低频通道方向传递,通过鉴频器扫频和对单一探测光通道信号的解码来获得传感光纤上的布里渊散射谱,进而获取光纤上的温度和应变信息。

Description

一种采用光学微波鉴频器和扰偏器的布里渊传感系统
技术领域
本发明属于光学光纤传感技术领域,具体涉及一种采用光学微波鉴频器和扰偏器的布里渊传感装置。
背景技术
光纤传感器技术是正在迅速发展的一项新技术。自1977年以来,随着光纤技术的大规模推广应用,光纤传感器技术的研究在国际上得到了迅速发展。目前国际上的光纤传感技术理论和相关的光器件已日趋成熟,其应用领域也不断扩展,目前光纤传感技术已广泛应用到国防、机械、能源、交通、冶金、石油、化工、医疗、航空、航天、气象等诸多领域。
由于光纤中布里渊散射效应可同时监测环境温度和应变,且监测距离长,检测精度高,使其在分布式光纤传感领域得到了广泛的重视。其基本原理是,分别将泵浦光与探测光注入传感光纤的两端,当泵浦光与探测光的频差与光纤中某区域的布里渊频移相等时,在该区域就会产生受激布里渊散射效应,分析布里渊频移与温度和应变之间的关系就可以实现对传感光纤温度/应变的检测。
目前国内外已经有利用光学捷变频技术实现动态分布式布里渊光纤传感器的专利,比如2013年6月13日申请的、公开号为CN103335666A的中国专利“动态分布式布里渊光纤传感装置及方法”等。
发明内容
根据布里渊散射原理,传感光纤测量温度和应力的精度完全取决于布里渊频移的控制精度。本发明通过采用一种光学微波鉴频器来提高布里渊频移的控制精度,同时系统采用多光谱通道(f-2、f-1、f0、f+1和f+2)技术,在长距离范围内可使光信号能量基本保持恒定,以使其监测精度不受距离长短影响,另外扰偏器的应用也大大提高了系统的信噪比。
一种采用光学微波鉴频器和扰偏器的布里渊传感系统,它包括DFB激光器A、耦合器1、调制器1、调制器2、光学微波鉴频器1、光学微波鉴频器2、耦合器2、耦合器3、耦合器4、环路器1、光纤布拉格光栅FBG1、环路器2、调制器3、调制器4、脉冲发生器AWG1、脉冲发生器AWG2、光纤布拉格光栅FBG2、光纤布拉格光栅3、环路器3、偏振控制器、光纤放大器EDFA、扰偏器、环路器4、传感光纤、环路器5、光纤布拉格光栅FBG4、光电探测器PD和数据处理模块。
所述DFB激光器A输出的光束经耦合器1分成两路相等的光信号,其中一路光信号进入调制器1,所述调制器1输出的光信号进入耦合器2中,所述耦合器2分成两路98%和2%的光信号,其中2%光信号进入耦合器4中;另一路光信号进入调制器2,所述调制器2输出的光信号进入耦合器3中,所述耦合器3分成两路98%和2%的光信号,其中2%的光信号进入耦合器4中;所述耦合器4接收并混合来自耦合器2和耦合器3的光信号,所述耦合器4连接环路器1的a端,并将混合后的光信号经环路器1的b端输入到光纤布拉格光栅FBG1中,所述FBG1透射后的光信号输出到光学微波鉴频器2中,所述光学微波鉴频器2给调制器2提供调制信号;所述FBG1反射后的光信号通过环路器1的c端将光信号输入到光学微波鉴频器1中,所述光学微波鉴频器1给调制器1提供调制信号;
所述环路器2的a端接收来自耦合器2的光信号,环路器2的b端将光信号输入到光纤布拉格光栅FBG2中,所述FBG2透射后的光信号直接输入到调制器4中,FBG2反射后的光信号通过环路器2的c端输入到调制器3中,所述脉冲发生器AWG1给调制器3提供脉冲信号,所述脉冲发生器AWG2给调制器4提供脉冲信号,从调制器4输出的光信号进入环路器3中并经b端将光信号输出到光纤布拉格光栅FBG3中,FBG3将光信号反射回环路器3,所述FBG3另一端连接调制器3,FBG3将调制器3输出的光信号透射到环路器3中,环路器3的c端输出两路的光信号;
所述环路器3的c端输出的光信号经过偏振控制器调节后,通过光纤放大器EDFA后,作为泵浦光经扰偏器调节后通过环路器4的b端口进入到传感光纤中;
所述的探测光与泵浦光在传感光纤中满足布里渊散射条件后发生布里渊散射,探测光通过环路器4的c端口输出到环路器5中,再由环路器5输入到光纤布拉格光栅FBG4中,FBG4滤除杂光以及部分自发辐射的光谱成分,反射回来的光信号通过环路器5的c端口经光电探测器PD进入数据处理模块;
所述数据处理模块将发送相应的标志信号到两路光学微波鉴频器中,分别控制VCO进行扫频,通过分析系统信号频率和幅度在时域上的变化,从而得到温度和应变的数据;
根据能量守恒定律,声波的频率须等于布里渊频移的大小,则布里渊频移
Figure 757961DEST_PATH_IMAGE002
可表示为:
Figure 347206DEST_PATH_IMAGE004
(1-1)
式中:λ 为泵浦光波长,
Figure 782735DEST_PATH_IMAGE006
为光纤中的折射率,
Figure 709103DEST_PATH_IMAGE008
为泵浦光与Stokes光之间的夹角。
光纤中的后向布里渊的布里渊频移与光纤中声速有关,而光纤中的声速
Figure 930000DEST_PATH_IMAGE010
可以表示为:
Figure 283621DEST_PATH_IMAGE012
(1-2)
式中:
Figure 970561DEST_PATH_IMAGE014
为介质的杨氏模量,
Figure 700619DEST_PATH_IMAGE016
为泊松比,
Figure 776023DEST_PATH_IMAGE018
为介质密度。
所以外界环境的温度和应变的变化会影响光纤内的声场,进而影响光纤中的光速,从而使布里渊散射信号的功率和频移发生变化。
考虑热光效应以及弹光效应对光纤密度,杨氏模量以及泊松比的影响,由式(1-1)和(1-2)可得光纤布里渊频移与温度
Figure 300545DEST_PATH_IMAGE020
和应变
Figure 710666DEST_PATH_IMAGE022
的关系为:
Figure 119782DEST_PATH_IMAGE024
(1-3)
一种采用光学微波鉴频器和扰偏器的布里渊传感系统,包括以下步骤:
(一) DFB激光器A输出的光信号经耦合器1分成两路频率为f0的光信号,其中一路光信号经过调制器1后产生含有f+1、f-1两个频率的光信号到耦合器2中,耦合器2分成两路98%和2%的光信号,其中2%的光信号进入耦合器4中;耦合器1输出的另一路光信号经过调制器2后产生含有f+2、f0、f-2三个频率的光信号到耦合器3中,耦合器3分成两路98%和2%的光信号,98%一路的光信号作为探测光信号直接输入传感光纤中,2%一路的光信号进入耦合器4中;
(二) 耦合器4接收并混合来自耦合器2和耦合器3输出的2%的光信号,输出含有f+1、f-1、f0、f+2、f-2五个频率的光信号到环路器1中,环路器1的b端连接光纤布拉格光栅FBG1,FBG1将反射含有f-1、f0两个频率的光信号,经环路器1的c端输出到光学微波鉴频器1中,光学微波鉴频器1给调制器1提供调制信号;FBG1将透射含有f+1、f+2、f-2三个频率的光信号到光学微波鉴频器2中,光学微波鉴频器2给调制器2提供调制信号;
(三) 耦合器3接收来自调制器2输出的含有f+2、f0、f-2三个频率的光信号,然后将98%的光信号作为探测光信号输入到传感光纤中;
(四) 耦合器2接收来自调制器1输出的含有f+1、f-1两个频率的光信号,并输出98%的光信号到环路器2中,环路器2的b端经FBG2与调制器4相连,FBG2反射含有f+1频率的光信号到环路器2中,并由环路器2的c端输出至调制器3,FBG2透射含有f-1频率的光信号到调制器4中;脉冲发生器AWG1给调制器3提供脉冲信号,脉冲发生器AWG2给调制器4提供脉冲信号;调制器4输出含有f-1频率的光信号到环路器3的a端,并通过其b端进入FBG3,FBG3将环路器3的b端输出光信号反射回b端,并将调制器3输出的f+1频率光信号透射到环路器3的b端,这样环路器3的c端输出含有f+1、f-1频率的光信号;
(五) 环路器3的c端输出含有f+1、f-1频率的光信号到偏振控制器中,经偏振控制器调整后进入光纤放大器EDFA中,作为泵浦光经扰偏器后输入到环路器4中,环路器4的b端将泵浦光信号输入到传感光纤中。
(六) 探测光与泵浦光在传感光纤中发生布里渊散射,探测光经环路器4的c端输入到环路器5中,环路器5的b端连接FBG4,FBG4滤除杂光以及部分自发辐射的光谱成分后,通过环路器5的c端输出到PD,然后进入数据处理模块;
(七) 数据处理模块将发送相应的标志信号到两路光学微波鉴频器中,分别控制VCO进行扫频,通过分析系统信号频率和幅度在时域上的变化,从而得到温度和应变的数据。
本发明的优势:
(1)采用光学微波鉴频器,频差f+2-f+1和f+1-f0可以精确的控制和改变,温度和应力的测量精度可以得到显著提升;
(2)空间监测距离长,可达100kM,能满足长距离监测的需要;
(3)多光谱通道技术的应用保证了远距离温度和应力监测精度。
附图说明:
图1为本发明的系统结构示意图。
图2为本发明中光学微波鉴频器结构示意图。
图3为本发明中经扰偏器扰偏后系统中偏振态分布示意图。
具体实施方式:
下面结合附图对发明作进一步说明,但不用来限制本发明的范围。
本发明提供了一种采用光学微波鉴频器和扰偏器的布里渊传感系统,它包括DFB激光器A、耦合器1、调制器1、调制器2、光学微波鉴频器1、光学微波鉴频器2、耦合器2、耦合器3、耦合器4、环路器1、光纤布拉格光栅FBG1、环路器2、调制器3、调制器4、脉冲发生器AWG1、脉冲发生器AWG2、光纤布拉格光栅FBG2、光纤布拉格光栅FBG3、环路器3、偏振控制器、光纤放大器EDFA、扰偏器、环路器4、传感光纤、环路器5、光纤布拉格光栅FBG4、光电探测器PD和数据处理模块。
如图1所示,DFB激光器A输出的光束经耦合器1均分成两路频率为f0的激光信号。
一路光信号经调制器1后输出含有f+1、f-1两个频率的光信号进入耦合器2中,耦合器2输出2%的光信号进入到耦合器4中,另一路光信号经过调制器2后输出含有f+2、f0、f-2三个频率的光信号进入耦合器3,耦合器3输出2%的光信号进入耦合器4中。
耦合器4接收并混合来自耦合器2和耦合器3输出2%的光信号,混合后的光信号含有f+1、f-1、f0、f+2、f-2、五个频率,耦合器4连接环路器1的a端,环路器1的b端连接FBG1,FBG1将反射含有f-1、f0两个频率的光信号通过环路器1的c端输出到光学微波鉴频器1中,光学微波器给调制器1提供调制信号;FBG1将透射含有f+1、f+2、f-2三个频率的光信号到光学微波鉴频器2中,光学微波鉴频器2给调制器2提供调制器信号。
耦合器3接收来自调制器2输出的含有f+2、f0、f-2三个频率的光信号,并输出98%的光信号作为探测光信号输出到传感光纤中。
耦合器2接收来自调制器1输出的含有f+1、f-1两个频率的光信号,并输出98%的光信号输出到环路器2中,环路器2的b端经FBG2与调制器4相连,FBG2将含有f+1频率的光信号反射回环路器2中,并由环路器2的c端输出至调制器3,AWG1给调制器3提供脉冲信号;FBG2将含有f-1频率的光信号透射到调制器4中,AWG2给调制器4提供脉冲信号;环路器3的a端接收调制器4输出的光信号并通过b端进入FBG3,FBG3将b端输出的光信号反射回环路器b端,FBG3另一端连接调制器3并透射含有f+1频率的光信号到环路器的b端,环路器3的c端输出的光信号含有f+1、f-1两个频率。
环路器3的c端输出的光信号经偏振控制器调节为线偏振光后进入EDFA中并放大,放大后的光信号作为泵浦光经偏振控制器调节后输入到环路器4中,并由环路器4的b端将泵浦光信号输入到传感光纤中。
探测光与泵浦光在传感光纤中发生布里渊散射,探测光经环路器4的c端输入到环路器5中,环路器5的b端连接FBG4,FBG4滤除杂光以及部分自发辐射的光谱成分后,通过环路器5的c端输出到PD,然后进入数据处理模块。
数据处理模块将发送相应的标志信号到两路光学微波鉴频器中,分别控制VCO进行扫频,通过分析系统信号频率和幅度在时域上的变化,从而得到温度和应变的数据。
根据能量守恒定律,声波的频率须等于布里渊频移的大小,则布里渊频移
Figure DEST_PATH_IMAGE026
可表示为:
Figure DEST_PATH_IMAGE028
(1-1)
式中:λ 为泵浦光波长,
Figure DEST_PATH_IMAGE030
为光纤中的折射率,
Figure DEST_PATH_IMAGE032
为泵浦光与Stokes光之间的夹角。
光纤中的后向布里渊的布里渊频移与光纤中声速有关,而光纤中的声速
Figure DEST_PATH_IMAGE034
可以表示为
Figure DEST_PATH_IMAGE036
(1-2)
式中:
Figure DEST_PATH_IMAGE038
为介质的杨氏模量,
Figure DEST_PATH_IMAGE040
为泊松比,
Figure DEST_PATH_IMAGE042
为介质密度。
所以外界环境的温度和应变的变化会影响光纤内的声场,进而影响光纤中的光速,从而使布里渊散射信号的功率和频移发生变化。
考虑热光效应以及弹光效应对光纤密度,杨氏模量以及泊松比的影响,由式(1-1)和(1-2)可得光纤布里渊频移与温度
Figure DEST_PATH_IMAGE044
和应变
Figure DEST_PATH_IMAGE046
的关系为:
Figure DEST_PATH_IMAGE048
(1-3)
如图2所示,光学微波鉴频器接收两路具有差频的光信号并将其转换为具有相应相位差的微波信号,将该微波信号耦合以后的包络信号转换成VCO的控制信号,从而调节VCO的输出频率来调节光信号中的频率分量值,最终实现高精度的控频和扫频功能。光学微波鉴频器1和光学微波鉴频器2结构相同。

Claims (4)

1.一种采用光学微波鉴频器和扰偏器的布里渊传感系统,其特征在于DFB激光器经过耦合器输出两路光信号,两路光信号经过调制器后输出含有不同频率的光信号,同时光学微波鉴频器分别给两路的调制器提供调制信号,一路经放大后作为泵浦光输入传感光纤,另一路光信号作为探测光进入传感光纤,泵浦光与探测光在传感光纤中发生布里渊散射,根据光纤中布里渊散射信号的布里渊频移和功率与光纤所处的温度和应变在一定条件下呈线性变化关系,通过测定布里渊散射信号的频移和功率,就可得到传感光纤上的温度和应变信息;
DFB激光器A输出光信号到耦合器1,耦合器1输出两路频率为f0的光信号;一路光信号经调制器1后输出含有f+1、f-1两个频率的光信号到耦合器2,耦合器2输出2%的光信号到耦合器4;另一路光信号经调制器2后输出含有f+2、f0、f-2三个频率的光信号到耦合器3中,耦合器3输出2%的光信号到耦合器4中;耦合器4输出含有f+1、f-1、f0、f+2、f-2五个频率的光信号到环路器1中;环路器1的b端连接FBG1,FBG1将反射含有f-1、f0两个频率的光信号,通过环路器1的c端输出到光学微波鉴频器1中,光学微波鉴频器1给调制器1提供调制电信号;FBG1将透射含有f+1、f+2、f-2三个频率的光信号到光学微波鉴频器2中,光学微波鉴频器2给调制器2提供调制电信号;
所述耦合器3接收来自调制器2输出的含有f+2、f0、f-2三个频率的光信号,然后将98%的光信号作为探测光信号输出到传感光纤中;
所述耦合器2接收来自调制器1输出的含有f+1、f-1两个频率的光信号,然后将98%的光信号输出到环路器2,环路器2的b端经FBG2与调制器4相连,FBG2将含有f+1频率的光信号反射回环路器2中,并由环路器2的c端输出至调制器3;FBG2含有f-1频率的光信号透射到调制器4中;脉冲发生器AWG1和脉冲发生器AWG2分别为调制器3和调制器4提供脉冲调制信号;调制器4输出f-1频率的光信号到环路器3的a端,并通过其b端进入FBG3,FBG3将环路器3的b端输出光信号反射回b端,并将调制器3输出的f+1频率光信号透射到环路器3的b端,这样环路器3的c端输出含有f+1、f-1频率的光信号;
所述环路器3输出含有f+1、f-1频率的光信号到偏振控制器和光纤放大器EDFA中,作为泵浦光经扰偏器后输入到环路器4中,环路器4的b端将泵浦光信号输入到传感光纤中;
探测光与泵浦光在传感光纤中发生布里渊散射,探测光经环路器4的c端输入到环路器5中,环路器5的b端连接FBG4,FBG4滤除杂光以及部分自发辐射的光谱成分后,通过环路器5的c端输出到光电探测器PD,然后进入数据处理模块;
数据处理模块将发送相应的标志信号到两路光学微波鉴频器中,分别控制VCO进行扫频,通过分析系统信号频率和幅度在时域上的变化,从而得到温度和应变的数据。
2.根据权利要求1所述的一种采用光学微波鉴频器和扰偏器的布里渊传感系统,它包括DFB激光器A、耦合器1、调制器1、调制器2、光学微波鉴频器1、光学微波鉴频器2、耦合器2、耦合器3、耦合器4、环路器1、光纤布拉格光栅FBG1、环路器2、调制器3、调制器4、脉冲发生器AWG1、脉冲发生器AWG2、光纤布拉格光栅FBG2、光纤布拉格光栅3、环路器3、偏振控制器、光纤放大器EDFA、扰偏器、环路器4、传感光纤、环路器5、光纤布拉格光栅FBG4、光电探测器PD和数据处理模块。
3.根据权利要求1所述的一种采用光学微波鉴频器和扰偏器的布里渊传感系统,其特征在于,光学微波鉴频器接收两路光信号中的频差并将其转换为具有相应相位差的微波信号,将该微波信号耦合以后的包络信号转换成VCO的控制信号,从而调节VCO的输出频率来调节光信号中的频率分量值,最终实现高精度的控频和扫频功能,所述光学微波鉴频器1和光学微波鉴频器2结构相同。
4.根据权利要求1所述的一种采用光学微波鉴频器和扰偏器的布里渊传感系统,其特征在于,所述的扰偏器是通过波片的正/反向摆动来实现偏振平均,可以减少系统噪音,提高系统抗干扰能力,从而提高整个系统的信噪比。
CN201711274067.4A 2017-12-06 2017-12-06 一种采用光学微波鉴频器和扰偏器的布里渊传感系统 Active CN109883458B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201711274067.4A CN109883458B (zh) 2017-12-06 2017-12-06 一种采用光学微波鉴频器和扰偏器的布里渊传感系统
US15/989,185 US10931079B2 (en) 2017-12-06 2018-05-25 Brillouin sensing system using optical microwave frequency discriminators and scrambler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711274067.4A CN109883458B (zh) 2017-12-06 2017-12-06 一种采用光学微波鉴频器和扰偏器的布里渊传感系统

Publications (2)

Publication Number Publication Date
CN109883458A CN109883458A (zh) 2019-06-14
CN109883458B true CN109883458B (zh) 2021-09-17

Family

ID=63583009

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711274067.4A Active CN109883458B (zh) 2017-12-06 2017-12-06 一种采用光学微波鉴频器和扰偏器的布里渊传感系统

Country Status (2)

Country Link
US (1) US10931079B2 (zh)
CN (1) CN109883458B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110967048B (zh) * 2019-12-28 2021-11-05 桂林电子科技大学 正交倾斜三芯光纤光栅并行集成Mach-Zehnder干涉仪
CN112332911B (zh) * 2020-11-09 2022-01-18 南京航空航天大学 一种基于微波光子技术的微波鉴相装置及锁相装置
CN113465722B (zh) * 2021-07-14 2022-06-07 安徽至博光电科技股份有限公司 一种低成本测振系统及振动测量方法
CN113390467B (zh) * 2021-07-14 2022-05-03 安徽至博光电科技股份有限公司 测振测温装置及其信号处理方法
CN113566728B (zh) * 2021-07-22 2023-03-14 太原理工大学 一种格构梁形变光纤实时传感监测系统
CN113764980A (zh) * 2021-09-15 2021-12-07 南京大学 一种自脉冲激光器及脉冲产生方法
CN114720780B (zh) * 2022-06-09 2022-09-09 杭州微纳智感光电科技有限公司 一种高功率高频微波场强传感方法及装置
CN116165433B (zh) * 2023-04-25 2023-07-18 之江实验室 一种基于光纤布拉格光栅的微波光子学测量装置和方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06167422A (ja) * 1992-11-30 1994-06-14 Ando Electric Co Ltd Botda用装置
CN101929880A (zh) * 2010-08-09 2010-12-29 宁波诺驰光电科技发展有限公司 一种新型布里渊光时域分析器
CN102538844A (zh) * 2011-11-22 2012-07-04 无锡成电光纤传感科技有限公司 一种提高长距离布里渊光时域分析系统传感性能的方法及系统
CN102645236A (zh) * 2012-04-06 2012-08-22 南昌航空大学 基于梳状频谱连续探测光的botda系统
CN102809430A (zh) * 2012-08-22 2012-12-05 哈尔滨工业大学 基于光学锁相环的布里渊光时域反射计的装置
CN103115632A (zh) * 2013-01-24 2013-05-22 南京大学(苏州)高新技术研究院 多波长布里渊光时域分析仪
CN103335666A (zh) * 2013-06-13 2013-10-02 哈尔滨工业大学 动态分布式布里渊光纤传感装置及方法
KR101358942B1 (ko) * 2012-09-13 2014-02-07 한국과학기술연구원 분포형 광섬유 센서 및 분포형 광섬유 센서의 공간 분해능 향상 방법
CN104567960A (zh) * 2015-01-04 2015-04-29 西南交通大学 一种基于相位调制探测光的相干布里渊光时域分析传感系统
CN104677421A (zh) * 2015-02-10 2015-06-03 中国科学技术大学先进技术研究院 基于高光谱分辨技术的光纤温度和应力传感装置及方法
CN106643544A (zh) * 2017-02-23 2017-05-10 鞍山睿科光电技术有限公司 一种温度增敏型分布式布里渊光纤传感器
CN106767963A (zh) * 2017-01-16 2017-05-31 中国计量大学 用于布里渊传感的多通道并行微波扫频装置及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7480460B2 (en) * 2005-03-29 2009-01-20 University Of New Brunswick Dynamic strain distributed fiber optic sensor
US8379217B2 (en) * 2006-03-23 2013-02-19 General Electric Company System and method for optical sensor interrogation
GB2440952B (en) * 2006-08-16 2009-04-08 Schlumberger Holdings Measuring brillouin backscatter from an optical fibre using digitisation
US9823098B2 (en) * 2014-05-05 2017-11-21 Filippo Bastianini Apparatus for interrogating distributed optical fibre sensors using a stimulated brillouin scattering optical frequency-domain interferometer
JP6358277B2 (ja) * 2016-03-04 2018-07-18 沖電気工業株式会社 光ファイバ歪み及び温度測定装置並びに光ファイバ歪み及び温度測定方法
WO2018005539A1 (en) * 2016-06-27 2018-01-04 The Regents Of The University Of California Distributed dynamic strain fiber optics measurement by brillouin optical time-domain reflectometry
FR3066280B1 (fr) * 2017-05-11 2019-09-13 Febus Optics Dispositif optoelectronique de mesure repartie par fibre optique
CN109540207B (zh) * 2018-11-27 2020-03-10 大连理工大学 一种计算型分布式光纤传感方法及系统

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06167422A (ja) * 1992-11-30 1994-06-14 Ando Electric Co Ltd Botda用装置
CN101929880A (zh) * 2010-08-09 2010-12-29 宁波诺驰光电科技发展有限公司 一种新型布里渊光时域分析器
CN102538844A (zh) * 2011-11-22 2012-07-04 无锡成电光纤传感科技有限公司 一种提高长距离布里渊光时域分析系统传感性能的方法及系统
CN102645236A (zh) * 2012-04-06 2012-08-22 南昌航空大学 基于梳状频谱连续探测光的botda系统
CN102809430A (zh) * 2012-08-22 2012-12-05 哈尔滨工业大学 基于光学锁相环的布里渊光时域反射计的装置
KR101358942B1 (ko) * 2012-09-13 2014-02-07 한국과학기술연구원 분포형 광섬유 센서 및 분포형 광섬유 센서의 공간 분해능 향상 방법
CN103115632A (zh) * 2013-01-24 2013-05-22 南京大学(苏州)高新技术研究院 多波长布里渊光时域分析仪
CN103335666A (zh) * 2013-06-13 2013-10-02 哈尔滨工业大学 动态分布式布里渊光纤传感装置及方法
CN104567960A (zh) * 2015-01-04 2015-04-29 西南交通大学 一种基于相位调制探测光的相干布里渊光时域分析传感系统
CN104677421A (zh) * 2015-02-10 2015-06-03 中国科学技术大学先进技术研究院 基于高光谱分辨技术的光纤温度和应力传感装置及方法
CN106767963A (zh) * 2017-01-16 2017-05-31 中国计量大学 用于布里渊传感的多通道并行微波扫频装置及方法
CN106643544A (zh) * 2017-02-23 2017-05-10 鞍山睿科光电技术有限公司 一种温度增敏型分布式布里渊光纤传感器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Characterization of Brillouin frequency shift in Brillouin Optical Time Domain Analysis (BOTDA);N. Lalam et.al;《2015 20th European Conference on Networks and Optical Communications》;20151231;第1-4页 *
Mach-Zehnder干涉仪差分检测布里渊温度和应变同时传感系统;李永倩等;《华北电力大学学报》;20070531;第34卷(第3期);第27-30页 *

Also Published As

Publication number Publication date
US10931079B2 (en) 2021-02-23
US20180278009A1 (en) 2018-09-27
CN109883458A (zh) 2019-06-14

Similar Documents

Publication Publication Date Title
CN109883458B (zh) 一种采用光学微波鉴频器和扰偏器的布里渊传感系统
CN108120525B (zh) 光纤光栅温度/应变传感系统及其解调方法
CN102706437B (zh) 一种超长距离相敏光时域反射系统
CN102997949B (zh) 基于布里渊散射的温度和应变同时测量方法
CN102829806B (zh) 基于相移光纤光栅的光纤传感系统
CN105758433B (zh) 一种基于布里渊光纤激光器的分布式光纤传感装置
CN101929880B (zh) 一种新型布里渊光时域分析器
CN106154289B (zh) 基于差分受激布里渊增益效应的直接测风激光雷达
CN108827175B (zh) 基于宽频混沌激光的分布式光纤动态应变传感装置及方法
CN109818235B (zh) 基于多模光电振荡器的弱信号探测放大系统及方法
CN104180833A (zh) 温度和应变同时传感的光时域反射计
CN103471701A (zh) 一种光纤声波传感器及光纤声波探测方法
CN107091698B (zh) 布里渊光时域分析系统及方法
CN203310428U (zh) 一种基于相干检测的分布式布里渊光纤传感系统
CN105790070B (zh) 微腔芯片型激光自混合距离传感方法
CN103743354A (zh) 一种基于布里渊相移检测的动态应变测量方法及测量装置
CN103901700A (zh) 波长可调和频谱可控小型化量子关联光子对源及生成方法
CN103323041A (zh) 一种基于相干检测的分布式布里渊光纤传感系统
CN102829812B (zh) 基于光学锁相环锁定两台激光器频率的布里渊光时域分析仪
CN103337776B (zh) 一种全光纤型激光自混合测距系统
CN207557107U (zh) 一种基于腔内放大的腔衰荡光谱湿度测量系统
CN205192442U (zh) 亚纳应变级多点复用光纤光栅准静态应变传感系统
CN105203225A (zh) 一种光纤光栅温度检测方法及装置
CN103344184A (zh) 基于线性腔多波长光纤激光器的自混合波分复用多通道位移传感系统
CN112129229B (zh) 基于光电振荡器的准分布式位移测量装置和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant