EP3623077B1 - Oscillation device and corresponding method and computer program product for operating an oscillation device - Google Patents

Oscillation device and corresponding method and computer program product for operating an oscillation device Download PDF

Info

Publication number
EP3623077B1
EP3623077B1 EP19195564.0A EP19195564A EP3623077B1 EP 3623077 B1 EP3623077 B1 EP 3623077B1 EP 19195564 A EP19195564 A EP 19195564A EP 3623077 B1 EP3623077 B1 EP 3623077B1
Authority
EP
European Patent Office
Prior art keywords
plot
oscillation
speed
period
stroke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19195564.0A
Other languages
German (de)
French (fr)
Other versions
EP3623077A1 (en
Inventor
Axel Weyer
Lothar Schaps
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Group GmbH
Original Assignee
SMS Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Group GmbH filed Critical SMS Group GmbH
Publication of EP3623077A1 publication Critical patent/EP3623077A1/en
Application granted granted Critical
Publication of EP3623077B1 publication Critical patent/EP3623077B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/166Controlling or regulating processes or operations for mould oscillation

Definitions

  • the invention relates to a method and a computer program product for operating an oscillation device for a continuous casting mold within a continuous casting plant for producing a cast strand.
  • the invention can be used in billet, billet, BBL, slab and thin slab continuous casting plants.
  • Such continuous casting plants can be designed as vertical bending, arched or vertical slab plants.
  • the invention also relates to an oscillation device which is operated according to the method according to the invention.
  • Known oscillation devices typically use hydraulic or electromechanical drives or adjusting elements to oscillate the mold.
  • the continuous casters work with oscillating molds.
  • the high-quality production of cast products requires a defined speed profile of the mold oscillation as a function of certain casting parameters.
  • the allocation criterion / selection criterion is preferably the steel quality to be cast (steel analysis of the melt that is to be cast) and the casting speed.
  • the selected oscillation curve course (speed course) is then used for the production of a steel quality together with the variable Production parameter "casting speed" used.
  • a dynamic adjustment of the stroke height and stroke frequency then takes place depending on the casting speed.
  • Negative strip is the time range in which the mold exceeds the set casting speed in speed (with the direction of movement of the oscillation in the production direction of the strand produced, i.e. with the direction of the casting speed).
  • the negative strip is usually given as a percentage of an entire oscillation period.
  • the oscillation curve of the oscillation speed is the basis and basis for the further dependencies and settings mentioned.
  • the procedural background for the course of the oscillation movement is a targeted reduction of the friction between the strand shell on the copper plates of the mold during the oscillation movement.
  • the oscillating movement favors the feeding of the gap between the strand and the mold plates with casting powder, casting granulate or liquid lubricants (e.g. oil).
  • the properties (including the viscosity and the melting behavior) of the lubricant used (e.g. casting powder) can therefore also represent a supplementary selection criterion for the choice of the oscillation curve and its parameters.
  • the stroke amplitudes of the mold are, for example, in a typical range of around ⁇ 3 mm (with goat speeds around 1 m / min).
  • a mold stroke frequency in the range of up to approx. 70 strokes per minute per m / min casting speed is set.
  • Liquid metal is poured into a continuous casting mold of the continuous caster.
  • the liquid metal solidifies on the side walls of the continuous casting mold to form a strand shell.
  • the strand shell is withdrawn from the continuous casting mold with or without a still liquid core in a casting direction at a casting speed by means of a withdrawal device of the continuous casting plant.
  • the continuous casting mold is moved periodically in the casting direction by means of an oscillation device of the continuous casting plant.
  • the oscillation device is controlled by a control device of the continuous casting plant.
  • the movement of the continuous casting mold is a harmonic oscillation on which a speed offset is superimposed.
  • the movement takes place at a constant speed.
  • An oscillation is called harmonic, the course of which can be described by a sine function.
  • a method for oscillating a continuous casting mold using variable oscillation parameters is also described.
  • the invention described there relates to a method for oscillating a continuous casting mold by means of vertically reciprocating movements in the casting direction or in the opposite direction, whereby the stroke and frequency of the oscillation are adjustable parameters according to the casting speed and when the mold is advancing relative to the strand, the so-called negative strip, liquid and / or solid casting medium is drawn into the gap between the mold and strand.
  • the invention is based on the object of developing a known method and computer program product for operating an oscillation device for a continuous casting mold and a known corresponding oscillation device in such a way that individual oscillation speed curves can be specified for a specific application or casting order and implemented in the oscillation device.
  • the term "x-axis" typically means a time or angle axis, i. H.
  • the speed curve V for the oscillation is given for the present invention preferably in the form of a V (t) or V ( ⁇ ) curve.
  • the stroke profile is also preferably indicated over time or over the angle, more preferably within a period.
  • a conversion of the abscissa from a temporal dimension to an angular dimension and vice versa is possible at any time. This means that one cycle of an oscillating movement corresponds to 360 ° in the angle representation and - analogously to this - a period time T in the time representation.
  • the claimed test step in which it is checked whether the surface area of the positive and negative partial areas of the given speed profile are the same, is necessary because only if this condition is met is it guaranteed that the mold is not successively offset in height by the oscillation. Conversely, this would have the disadvantage that if the partial areas are of different sizes, the mold would then be gradually offset in height by the oscillation, which is not wanted.
  • Claim 1 initially relates to the case in which the predetermined speed profile is predetermined from the outset in such a form that its partial areas above and below the x-axis actually have the same area.
  • the case is dealt with in which, with the arbitrarily predetermined speed profile for the oscillation, the partial areas above the x-axis are actually not the same.
  • a correction of the speed profile is required, as claimed in claim 1, in order to produce the equality of the partial areas and in order to prevent said undesired height displacement of the mold due to the oscillation.
  • the speed profile can be specified in the form of a continuous curve profile or in the form of at least three support points over a period.
  • the correspondingly specified speed profile is then preferably determined by interpolation, for example by linear interpolation.
  • the stroke profile for the mold determined by integration is converted to a maximum desired oscillation amplitude, for example specified in the unit mm, and / or a desired stroke frequency, i.e. H. is normalized.
  • the predetermined speed profile for the oscillation preferably also contains a range or a time interval in which the oscillation speed in the casting direction is greater than the casting speed. This area is then the area of the “negative strip”, as described above in the prior art with associated advantages.
  • the predefined speed profile can also be arbitrary insofar as it does not have just one, but a plurality of zero crossings, not just an absolute but also at least one local maximum and / or not only has an absolute minimum but also, for example, at least one local minimum.
  • the claimed oscillation device preferably has an input device for manually specifying the arbitrary speed profile in the form of at least three support points over a period.
  • the input device preferably has a display device which offers the possibility of being able to graphically specify the speed profile or the support points representing the speed profile and also to graphically display an interpolation of the support points to the speed profile for an operator.
  • the display device preferably also shows the speed profile shifted to compensate for the positive and negative partial areas and / or the ultimately calculated stroke profile for the operator at least during one period.
  • the oscillation device can also have a data interface for specifying the speed profile z. B. via memory stick or network interface.
  • Figure 1 shows the oscillation device 100 according to the invention.
  • This oscillation device 100 serves to oscillate a continuous casting mold 210 of a continuous casting plant 200.
  • the continuous casting plant 200 essentially also comprises a strand guide device 220 located downstream of the continuous casting mold 210 in the casting direction R.
  • the mold 210 is set in oscillation with the aid of the oscillation device 100, ie in vibrations in and against the casting direction R.
  • This direction of oscillation is in Figure 1 illustrated by the vertical double arrow next to the mold 210.
  • the mold 210 is filled with a metal melt. Inside the mold 210, the melt solidifies on the cooled walls of the mold and a cast strand 300 is formed with an initially still liquid core. This cast strand is pulled down from the mold and deflected from the vertical to the horizontal with the aid of the strand guide device 220.
  • the oscillation of the mold serves to reduce the friction between the cast strand and the walls of the mold.
  • the oscillation device comprises at least one, typically 2 adjusting elements, for example in the form of hydraulic cylinders or electromechanical lifting elements for oscillating the continuous casting mold. These adjusting elements 110 are controlled with the aid of a control device 120 via an adjusting signal S in such a way that a stroke profile, represented by the adjusting signal, is set for the oscillation of the mold 210.
  • this stroke profile is calculated in advance of the oscillation from an arbitrarily or freely specified (oscillation) speed profile for the oscillation by a calculation device 130.
  • the method according to the invention provides that in FIG Figures 2a and 2 B illustrated step sequence.
  • a desired speed profile for the oscillation of the mold is first specified, be it as a continuous curve or in the form of at least three support points per period. It is sufficient to consider a period because the oscillation, as the name implies, is periodic.
  • This method step provides that if the speed profile is specified initially only in the form of support points, these support points are interpolated to form a continuous curve. This interpolation can be done linearly, for example, as shown in FIG Figure 2a is illustrated in the graphic representation next to method step 2.
  • a basic curve profile of an oscillation period can now be freely set e.g. via the variably settable support points of the desired oscillation speeds and the associated angles. can be entered in table form. Alternatively, a graphical input is possible.
  • the support points are then connected to one another (automatically in terms of the program) via a linear point connection, i.e. H. interpolated.
  • connection between two speed points each consisting of the coordinates speed and angle or time result in a linear function (in the coordinate system) for a section between two angles (or support points) of the speed curve of the oscillation.
  • the start and end point (0 and 360 degrees) are set as a fixed required angle input.
  • the value of the oscillation speeds for all set angular points is to be entered in a practice-related manner, for example in mm / s.
  • the operator can create a relative reference here and thus easily create his idea of the character or the profile of the oscillation curve to be created.
  • the individual support points are automatically connected to one another after they have been entered in the oscillation device.
  • the resulting entire curve (polygon) of a speed profile thus consists of a closed composition of linear sub-functions.
  • any other type of interpolation between the support points is also covered by the present invention.
  • step 2 can be dispensed with if the speed profile is specified immediately in the form of a continuous speed profile.
  • the specified speed profile or the speed profile determined by interpolation according to method step 2 does not have to be sinusoidal, but can also be that in Figure 4 only assume the courses shown as examples. So the left figure in Figure 4 For example, an oscillation curve with 2 0 crossings within one oscillation period. The right figure in Figure 4 shows, however, an oscillation curve with a plurality of here, for example three, minima per period.
  • This method step 3 provides that first the contents of the partial areas A1, A2 above and below the x-axis are calculated, which are enclosed or enveloped by the speed profile calculated in method step 2. This is done with a calculation device 130 according to the invention inside or outside the oscillation device 100. The positive (above the x-axis) and negative (below the x-axis) lying partial areas A1, A2 are determined in this way compared with each other in terms of their area. An automatic check within the calculation device generates a corresponding correction if the surfaces are not identical or offers the operator of the oscillation device an option for correction.
  • the previously determined speed profile with the sub-areas of equal size above and below the x-axis per period is integrated into a stroke profile for the oscillation according to method step 5.
  • the integration can be, for example, a numerical integration. In this way, the stroke progression can be calculated over an angle or over time as an oscillation period.
  • the stroke profile is normalized, in particular to a desired maximum stroke amplitude, e.g. B. in the amount of +/- 2mm and / or a desired stroke frequency.
  • a desired maximum stroke amplitude e.g. B. in the amount of +/- 2mm and / or a desired stroke frequency.
  • the stroke profile determined in this way can be entered into the oscillation device before the start of or during an oscillation in the ongoing casting operation and implemented by the oscillation device. If desired, the previous stroke can also be switched to a new stroke while the oscillation is running.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

Die Erfindung betrifft ein Verfahren und ein Computerprogrammprodukt zum Betreiben einer Oszillationsvorrichtung für eine Stranggießkokille innerhalb einer Stranggießanlage zum Erzeugen eines Gießstrangs. Die Erfindung kann Anwendung finden bei Block-, Knüppel-, BBL-, Brammen- und Dünnbrammenstranggießanlagen. Derartige Stranggießanlagen können als Senkrechtabbiege-, Bogen- oder Vertikalbrammenanlagen ausgebildet sein.The invention relates to a method and a computer program product for operating an oscillation device for a continuous casting mold within a continuous casting plant for producing a cast strand. The invention can be used in billet, billet, BBL, slab and thin slab continuous casting plants. Such continuous casting plants can be designed as vertical bending, arched or vertical slab plants.

Darüber hinaus betrifft die Erfindung eine Oszillationsvorrichtung, welche gemäß dem erfindungsgemäßen Verfahren betrieben wird. Bekannte Oszillationseinrichtungen verwenden typischerweise hydraulische oder elektromechanische Antriebe bzw. Anstellelemente zum Oszillieren der Kokille.The invention also relates to an oscillation device which is operated according to the method according to the invention. Known oscillation devices typically use hydraulic or electromechanical drives or adjusting elements to oscillate the mold.

Stand der Technik:State of the art:

Um der Reibung der Strangschale an den Kokillenplatten entgegen zu wirken, arbeiten die Stranggießanlagen mit oszillierenden Kokillen. Die hochwertige Produktion von Gießprodukten erfordert hierbei einen definierten Geschwindigkeitsverlauf der Kokillenoszillation in Abhängigkeit bestimmter Gießparameter.
Das Zuordnungskriterium/Auswahlkriterium (der Oszillationskurvenverläufe) ist vorzugsweise die zu vergießende Stahlqualität (Stahlanalyse der Schmelze die vergossen werden soll) und die Gießgeschwindigkeit.
In order to counteract the friction of the strand shell on the mold plates, the continuous casters work with oscillating molds. The high-quality production of cast products requires a defined speed profile of the mold oscillation as a function of certain casting parameters.
The allocation criterion / selection criterion (the oscillation curve progression) is preferably the steel quality to be cast (steel analysis of the melt that is to be cast) and the casting speed.

Der gewählte Oszillationskurvenverlauf (Geschwindigkeitsverlauf) wird dann für die Produktion einer Stahlqualität gemeinsam mit dem variablen Produktionsparameter "Gießgeschwindigkeit" verwendet. Eine dynamische Anpassung der Hubhöhe und Hubfrequenz erfolgt dann in der Abhängigkeit zur Gießgeschwindigkeit.The selected oscillation curve course (speed course) is then used for the production of a steel quality together with the variable Production parameter "casting speed" used. A dynamic adjustment of the stroke height and stroke frequency then takes place depending on the casting speed.

Somit ist u.a. auch eine gezielte Einstellung eines "Negativ Strip Wertes" möglich.Thus, i.a. A specific setting of a "negative strip value" is also possible.

Negativ Strip ist der Zeitbereich in der die Kokille in der Geschwindigkeit (bei der Bewegungsrichtung der Oszillation in Produktionsrichtung des erzeugten Stranges, also mit der Richtung der Gießgeschwindigkeit) die eingestellte Gießgeschwindigkeit überschreitet.Negative strip is the time range in which the mold exceeds the set casting speed in speed (with the direction of movement of the oscillation in the production direction of the strand produced, i.e. with the direction of the casting speed).

Der Negativ Strip wird meist in Prozent einer gesamten Oszillationsperiode angegeben. Der Oszillationskurvenverlauf der Oszillationsgeschwindigkeit ist dabei die Basis und Grundlage für die genannten weiteren Abhängigkeiten und Einstellungen.The negative strip is usually given as a percentage of an entire oscillation period. The oscillation curve of the oscillation speed is the basis and basis for the further dependencies and settings mentioned.

Der verfahrenstechnische Hintergrund für den Verlauf der Oszillationsbewegung ist eine gezielte Reduzierung der Reibung zwischen der Strangschale an den Kupferplatten der Kokille während der Oszillationsbewegung. Die Oszillationsbewegung begünstigt hierbei die Speisung des Spalts zwischen Strang und Kokillenplatten mit Gießpulver, Gießgranulat oder flüssigen Schmiermitteln (z. B. ÖI). Die Eigenschaften (u.a. die Viskosität und das Aufschmelzverhalten) des verwendeten Schmiermittels (z. B. Gießpulver) kann daher auch ein ergänzendes Auswahlkriterium für die Wahl der Oszillationskurve und deren Parameter darstellen.The procedural background for the course of the oscillation movement is a targeted reduction of the friction between the strand shell on the copper plates of the mold during the oscillation movement. The oscillating movement favors the feeding of the gap between the strand and the mold plates with casting powder, casting granulate or liquid lubricants (e.g. oil). The properties (including the viscosity and the melting behavior) of the lubricant used (e.g. casting powder) can therefore also represent a supplementary selection criterion for the choice of the oscillation curve and its parameters.

Die Hubamplituden der Kokille liegen beispielhaft in einem im typischen Bereich um ± 3 mm (bei Geißgeschwindigkeiten um 1 m/min). Bei einem sinusförmiger periodischen Verlauf der Oszillationskurve wird dabei eine Kokillenhubfrequenz im Bereich bis zu ca. 70 Hüben je Minute je m/min Gießgeschwindigkeit eingestellt.The stroke amplitudes of the mold are, for example, in a typical range of around ± 3 mm (with goat speeds around 1 m / min). In the case of a sinusoidal periodic course of the oscillation curve, a mold stroke frequency in the range of up to approx. 70 strokes per minute per m / min casting speed is set.

Aus der WO-2016/162141 A1 ist z.B. Folgendes bekannt: Flüssiges Metall wird in eine Stranggießkokille der Stranggießanlage gegossen. Das flüssige Metall erstarrt an den Seitenwänden der Stranggießkokille zu einer Strangschale. Die Strangschale wird mittels einer Abzugseinrichtung der Stranggießanlage mit oder ohne noch flüssigen Kern in einer Gießrichtung mit einer Gießgeschwindigkeit aus der Stranggießkokille abgezogen. Die Stranggießkokille wird mittels einer Oszillationseinrichtung der Stranggießanlage in der Gießrichtung periodisch bewegt. Die Oszillationseinrichtung wird von einer Steuereinrichtung der Stranggießanlage gesteuert. Die Bewegung der Stranggießkokille ist in einem ersten Zeitabschnitt der Periode eine harmonische Schwingung, der ein Geschwindigkeitsoffset überlagert ist. In einem zweiten Zeitabschnitt der Periode erfolgt die Bewegung mit konstanter Geschwindigkeit. Als harmonisch wird eine Schwingung bezeichnet, deren Verlauf durch eine Sinusfunktion beschrieben werden kann.From the WO-2016/162141 A1 For example, the following is known: Liquid metal is poured into a continuous casting mold of the continuous caster. The liquid metal solidifies on the side walls of the continuous casting mold to form a strand shell. The strand shell is withdrawn from the continuous casting mold with or without a still liquid core in a casting direction at a casting speed by means of a withdrawal device of the continuous casting plant. The continuous casting mold is moved periodically in the casting direction by means of an oscillation device of the continuous casting plant. The oscillation device is controlled by a control device of the continuous casting plant. In a first time segment of the period, the movement of the continuous casting mold is a harmonic oscillation on which a speed offset is superimposed. In a second time segment of the period, the movement takes place at a constant speed. An oscillation is called harmonic, the course of which can be described by a sine function.

Aus der DE-19742794-A1 ist eine weitere Lösung für die Oszillationsbewegung bekannt. Im Vergleich zu einer einfachen sinusförmigen oder nicht-sinusförmigen Schwingung mit vergleichbarer Frequenz und Amplitude können der Wärmeübergang in der Kokille und damit die Schalenbildung gesteuert und damit die Qualität des Gußproduktes gezielt verbessert werden. Dazu wird vorgeschlagen, dass bei beliebig vorgegebener Strangabzugsgeschwindigkeit die Null-Linie der Kokillenschwingungen relativ zur Lage des Badspiegels während des Gießvorganges nach oben und/oder nach unten bewegt (durch eine zweite überlagerte Schwingung) wird.From the DE-19742794-A1 another solution for the oscillatory movement is known. In comparison to a simple sinusoidal or non-sinusoidal oscillation with a comparable frequency and amplitude, the heat transfer in the mold and thus the shell formation can be controlled and thus the quality of the cast product can be specifically improved. For this purpose, it is proposed that at any given strand withdrawal speed, the zero line of the mold vibrations is moved upwards and / or downwards (by a second superimposed vibration) relative to the position of the bath surface during the casting process.

In der DE-19854329-A1 wird zusätzlich ein Verfahren zum Oszillieren einer Stranggießkokille mittels variabler Oszillationsparameter beschrieben. Die dort beschriebene Erfindung betrifft ein Verfahren zum Oszillieren einer Stranggießkokille mittels vertikal reziprozierender Bewegungen in Gießrichtung bzw. in Gegenrichtung, wobei Hub und Frequenz der Oszillation nach Maßgabe der Gießgeschwindigkeit einstellbare Parameter sind und bei voreilender Geschwindigkeit der Kokille relativ zum Strang, dem sog. Negativstrip, flüssiges und/oder festes Gießmedium in den Spalt zwischen Kokille und Strang eingezogen wird.In the DE-19854329-A1 a method for oscillating a continuous casting mold using variable oscillation parameters is also described. The invention described there relates to a method for oscillating a continuous casting mold by means of vertically reciprocating movements in the casting direction or in the opposite direction, whereby the stroke and frequency of the oscillation are adjustable parameters according to the casting speed and when the mold is advancing relative to the strand, the so-called negative strip, liquid and / or solid casting medium is drawn into the gap between the mold and strand.

Die vorbekannten Lösungen weisen folgende Nachteile auf:
Die bisher im Stand der Technik beschriebenen Oszillationskurven (Geschwindigkeitsverläufe) sind oft sinusförmig, besitzen einen sinuiden Charakter, haben einen sinusförmigen Anteil oder sind aufwendig zusammengesetzte Kurvenverläufe über einem zeitlichen Verlauf der Oszillationsbewegung.
The previously known solutions have the following disadvantages:
The oscillation curves (speed profiles) described so far in the prior art are often sinusoidal, have a sinuid character, have a sinusoidal component or are complex curve profiles over a temporal profile of the oscillation movement.

Die Generierung eines Oszillationskurvengeschwindigkeitsverlaufes ist mit hohem Aufwand verbunden. Durch spezifisch erstellten Maschinencode können die Geschwindigkeitsverläufe nur eingeschränkt erzeugt werden. Eine Übertragung der Verläufe über Datenträger (von Erstellungssystem zur Steuerung) ist umständlich bzw. zeitintensiv.The generation of an oscillation curve speed profile is associated with a lot of effort. The speed curves can only be generated to a limited extent through specifically created machine code. Transferring the courses via data storage media (from the creation system to the control) is cumbersome and time-consuming.

Da auch sinusförmige Kurvenverläufe die Freiheitsgrade einer Kurvengenerierung einschränken, ist den verfahrenstechnischen Vorgaben mit den bisher im Stand der Technik bekannten Möglichkeiten eine Grenze gesetzt.Since sinusoidal curve progressions also restrict the degrees of freedom of curve generation, the procedural specifications with the possibilities previously known in the prior art are limited.

Der Erfindung liegt die Aufgabe zugrunde, ein bekanntes Verfahren und Computerprogrammprodukt zum Betreiben einer Oszillationsvorrichtung für eine Stranggießkokille sowie eine bekannte entsprechende Oszillationsvorrichtung dahingehend weiterzubilden, dass individuelle Oszillations-Geschwindigkeitsverläufe für einen konkreten Anwendungsfall bzw. Gießauftrag vorgegeben und in der Oszillationsvorrichtung umgesetzt werden zu können.The invention is based on the object of developing a known method and computer program product for operating an oscillation device for a continuous casting mold and a known corresponding oscillation device in such a way that individual oscillation speed curves can be specified for a specific application or casting order and implemented in the oscillation device.

Diese Aufgabe wird verfahrenstechnisch durch das in Patentanspruch 1 beanspruchte Verfahren gelöst. Dieses ist dadurch gekennzeichnet, dass der Hubverlauf, mit welchem die Stranggießkokille oszilliert wird, wie folgt ermittelt wird:

  • Vorgeben eines beliebigen Geschwindigkeitsverlaufs für die Oszillation über der Periode;
  • Berechnen der Flächeneinhalte der von dem Geschwindigkeitsverlauf und der x-Achse innerhalb der Periode eingeschlossenen positiven und negativen Teilflächen oberhalb und unterhalb der x-Achse;
  • Prüfen, ob die Flächeninhalte der positiven und negativen Teilflächen gleich groß sind; und
  • falls ja: Ermitteln des Hubverlaufs für die Stranggießkokille durch Integrieren des Geschwindigkeitsverlaufs mit den gleich großen Teilflächen oberhalb und unterhalb der x-Achse über der Periode.
In terms of process engineering, this object is achieved by the method claimed in claim 1. This is characterized in that the stroke course with which the continuous casting mold is oscillated is determined as follows:
  • Presetting any speed profile for the oscillation over the period;
  • Calculating the area contents of the positive and negative partial areas above and below the x-axis enclosed by the speed profile and the x-axis within the period;
  • Check whether the areas of the positive and negative partial areas are equal; and
  • If so: Determine the stroke profile for the continuous casting mold by integrating the speed profile with the partial areas of equal size above and below the x-axis over the period.

Das beanspruchte Verfahren bietet den Vorteil, dass beliebige, d. h. frei vorgebbare und frei parametrierbare Geschwindigkeitsverläufe für die Oszillation der Stranggießkokille vorgegeben werden können, wie dies von der Verfahrenstechnik bzw. Metallurgie zunehmend gefordert wird. Diese beanspruchte Vorgabe von beliebigen Geschwindigkeitsverläufen, angepasst für eine konkrete Gießaufgabe bietet folgende Möglichkeiten:

  • den Schmiermitteleinzug zwischen Innenwand der Kokille und sich bildender Schale des Gießstrangs in der Kokille zu verbessern bzw. dort die Reibung zu reduzieren;
  • die Oberflächenqualität eines Gießstrangs durch die Beeinflussung der Oszillationsmarken (dies sind die Abdrücke die durch die Oszillationsbewegung auf der Strangoberfläche entstehen) in ihrer Ausprägung (Tiefe und Verlauf) zu optimieren bzw. zu verbessern; und
  • den Oszillationsgeschwindigkeitsverlauf so zu gestalten, dass eine Anregung von möglichen unerwünschte Resonanzen (insbesondere die Vermeidung von Sinusschwingungen als Anregungsschwingung) bei Einrichtungen in unmittelbarer Nähe der Oszillation (z.B. Kokille, Gießbühne, Strangführung, Segmente) vermieden wird.
The claimed method offers the advantage that any, ie freely predeterminable and freely parameterizable speed curves for the oscillation of the continuous casting mold can be specified, as is increasingly required by process engineering and metallurgy. This claimed specification of any speed curves, adapted for a specific casting task, offers the following options:
  • to improve the penetration of lubricant between the inner wall of the mold and the shell of the cast strand that is being formed in the mold or to reduce the friction there;
  • to optimize or improve the surface quality of a cast strand by influencing the oscillation marks (these are the imprints that are created by the oscillating movement on the strand surface) in terms of its expression (depth and course); and
  • to design the oscillation speed curve in such a way that an excitation of possible undesirable resonances (in particular the avoidance of sinusoidal oscillations as excitation oscillation) is avoided in devices in the immediate vicinity of the oscillation (e.g. mold, casting platform, strand guide, segments).

Der Begriff "x-Achse" meint im Sinne der Erfindung typischerweise eine Zeit- oder Winkel-Achse, d. h. der Geschwindigkeitsverlauf V für die Oszillation wird für die vorliegende Erfindung vorzugsweise in Form eines V(t)- oder V(α)-Verlaufs angegeben. Gleichermaßen wird der Hubverlauf ebenfalls vorzugsweise über der Zeit oder über dem Winkel, weiter vorzugsweise innerhalb einer Periode angegeben. Eine Umrechnung der Abszisse von einer zeitlichen Dimension in eine Winkeldimension, und umgekehrt, ist jederzeit möglich. Das bedeutet, ein Periodendurchlauf einer Oszillationsbewegung entspricht 360° in der Winkeldarstellung und - analog dazu - einer Periodenzeit T in der Zeitdarstellung.In the context of the invention, the term "x-axis" typically means a time or angle axis, i. H. the speed curve V for the oscillation is given for the present invention preferably in the form of a V (t) or V (α) curve. Likewise, the stroke profile is also preferably indicated over time or over the angle, more preferably within a period. A conversion of the abscissa from a temporal dimension to an angular dimension and vice versa is possible at any time. This means that one cycle of an oscillating movement corresponds to 360 ° in the angle representation and - analogously to this - a period time T in the time representation.

Der beanspruchte Prüfschritt, in welchem geprüft wird, ob die Flächeninhalt der positiven und negativen Teilflächen des vorgegebenen Geschwindigkeitsverlaufes gleich groß sind, ist deswegen erforderlich, weil nur wenn diese Bedingung erfüllt ist, gewährleistet ist, dass die Kokille durch die Oszillation nicht sukzessive höhenversetzt wird. Umgekehrt hätte dies den Nachteil, dass wenn die Teilflächen unterschiedlich groß sind, dass dann die Kokille durch die Oszillation sukzessive höhenversetzt würde, was nicht gewollt ist.The claimed test step, in which it is checked whether the surface area of the positive and negative partial areas of the given speed profile are the same, is necessary because only if this condition is met is it guaranteed that the mold is not successively offset in height by the oscillation. Conversely, this would have the disadvantage that if the partial areas are of different sizes, the mold would then be gradually offset in height by the oscillation, which is not wanted.

Der Anspruch 1 betrifft zunächst den Fall, dass der vorgegebene Geschwindigkeitsverlauf von vorneherein in einer solchen Form vorgegeben wird, dass seine Teilflächen oberhalb und unterhalb x-Achse tatsächlich den gleichen Flächeninhalt haben.Claim 1 initially relates to the case in which the predetermined speed profile is predetermined from the outset in such a form that its partial areas above and below the x-axis actually have the same area.

Gemäß einem ersten Ausführungsbeispiel wird der Fall behandelt, dass bei dem beliebig vorgegebenen Geschwindigkeitsverlauf für die Oszillation die Teilflächen oberhalb der x-Achse tatsächlich nicht gleich sind. In diesem Fall ist eine Korrektur des Geschwindigkeits-Verlaufes erforderlich, wie sie in dem Anspruch 1 beansprucht wird, um die Gleichheit der Teilflächen herzustellen, und um das besagte unerwünschte Höhenversetzen der Kokille durch die Oszillation zu verhindern.According to a first exemplary embodiment, the case is dealt with in which, with the arbitrarily predetermined speed profile for the oscillation, the partial areas above the x-axis are actually not the same. In this case, a correction of the speed profile is required, as claimed in claim 1, in order to produce the equality of the partial areas and in order to prevent said undesired height displacement of the mold due to the oscillation.

Gemäß einem weiteren Ausführungsbeispiel der Erfindung kann der Geschwindigkeitsverlauf in Form eines kontinuierlichen Kurvenverlaufs oder in Form von mindestens drei Stützpunkten über einer Periode vorgegeben werden. In letzterem Fall wird der entsprechend vorgegebene Geschwindigkeitsverlauf dann vorzugsweise durch Interpolation, beispielsweise durch lineare Interpolation ermittelt.According to a further exemplary embodiment of the invention, the speed profile can be specified in the form of a continuous curve profile or in the form of at least three support points over a period. In the latter case, the correspondingly specified speed profile is then preferably determined by interpolation, for example by linear interpolation.

Gemäß einem weiteren Ausführungsbeispiel der Erfindung ist es vorteilhaft, wenn der durch Integration ermittelte Hubverlauf für die Kokille auf eine maximal gewünschte Oszillationsamplitude, beispielsweise angegeben in der Einheit mm umgerechnet, und/oder eine gewünschte Hubfrequenz, d. h. normiert wird.According to a further exemplary embodiment of the invention, it is advantageous if the stroke profile for the mold determined by integration is converted to a maximum desired oscillation amplitude, for example specified in the unit mm, and / or a desired stroke frequency, i.e. H. is normalized.

Vorzugsweise enthält der vorgegebene Geschwindigkeitsverlauf für die Oszillation auch einen Bereich bzw. ein Zeitintervall, in welchem die Oszillationsgeschwindigkeit in Gießrichtung größer ist als die Gießgeschwindigkeit. Dieser Bereich ist dann der Bereich des "negativen Strips", wie er oben im Stand der Technik mit zugehörigen Vorteilen beschrieben ist.The predetermined speed profile for the oscillation preferably also contains a range or a time interval in which the oscillation speed in the casting direction is greater than the casting speed. This area is then the area of the “negative strip”, as described above in the prior art with associated advantages.

Der vorgegebene Geschwindigkeitsverlauf kann auch insofern beliebig sein, als dass er nicht nur einen, sondern eine Mehrzahl von Nulldurchgängen, nicht nur ein absolutes, sondern auch zusätzlich noch zumindest ein lokales Maximum und/oder nicht nur ein absolutes Minimum, sondern darüber hinaus auch noch beispielsweise mindestens ein lokales Minimum aufweist.The predefined speed profile can also be arbitrary insofar as it does not have just one, but a plurality of zero crossings, not just an absolute but also at least one local maximum and / or not only has an absolute minimum but also, for example, at least one local minimum.

Die oben genannte Aufgabe wird weiterhin durch ein Computerprogrammprodukt gemäß Anspruch 8 sowie eine Oszillationsvorrichtung gemäß Anspruch 9 gelöst. Die Vorteile dieser beiden Lösungen entsprechen den oben mit Bezug auf das beanspruchte Verfahren genannten Vorteilen.The above-mentioned object is also achieved by a computer program product according to claim 8 and an oscillation device according to claim 9. The advantages of these two solutions correspond to the advantages mentioned above with reference to the claimed method.

Die beanspruchte Oszillationsvorrichtung weist vorzugsweise eine Eingabeeinrichtung auf zum manuellen Vorgeben des beliebigen Geschwindigkeitsverlaufes in Form von mindestens drei Stützpunkten über einer Periode. Zu diesem Zweck besitzt die Eingabevorrichtung vorzugsweise eine Anzeigevorrichtung, welche die Möglichkeit bietet, den Geschwindigkeitsverlauf bzw. die den Geschwindigkeitsverlauf repräsentierenden Stützpunkte grafisch vorgeben zu können und auch eine Interpolation der Stützpunkte zu dem Geschwindigkeitsverlauf für eine Bedienperson grafisch darzustellen. Neben dem vorgegebenen Geschwindigkeitsverlauf zeigt die Anzeigevorrichtung vorzugsweise weiterhin auch den zum Ausgleich der positiven und negativen Teilflächen verschobenen Geschwindigkeitsverlauf und/oder den letztendlich berechneten Hubverlauf zumindest während einer Periode für die Bedienperson an. Alternativ oder zusätzlich zu der manuellen Eingabemöglichkeit kann die Oszillationsvorrichtung auch über eine Datenschnittstelle verfügen zur Vorgabe des Geschwindigkeitsverlaufs z. B. per Speicherstick oder Netzwerkschnittstelle.The claimed oscillation device preferably has an input device for manually specifying the arbitrary speed profile in the form of at least three support points over a period. For this purpose, the input device preferably has a display device which offers the possibility of being able to graphically specify the speed profile or the support points representing the speed profile and also to graphically display an interpolation of the support points to the speed profile for an operator. In addition to the predetermined speed profile, the display device preferably also shows the speed profile shifted to compensate for the positive and negative partial areas and / or the ultimately calculated stroke profile for the operator at least during one period. As an alternative or in addition to the manual input option, the oscillation device can also have a data interface for specifying the speed profile z. B. via memory stick or network interface.

Der Beschreibung sind insgesamt 5 Figuren beigefügt, wobei

Figur 1
die erfindungsgemäße Oszillationseinrichtung;
Figuren 2a und 2b
das erfindungsgemäße Verfahren zum Betreiben der Oszillationsvorrichtung;
Figur 3
die Vorgabe des Geschwindigkeitsverlaufes in Form von Stützpunkten;
Figur 4
mögliche verschiedenartige vorgebbare Geschwindigkeitsverläufe pro Periode; und
Figur 5
die Interpolation des Geschwindigkeitsverlaufs und den "Negativ Strip"
veranschaulicht.The description is accompanied by a total of 5 figures, with
Figure 1
the oscillation device according to the invention;
Figures 2a and 2b
the inventive method for operating the oscillation device;
Figure 3
the specification of the speed profile in the form of support points;
Figure 4
possible different types of predeterminable speed curves per period; and
Figure 5
the interpolation of the speed curve and the "negative strip"
illustrated.

Die Erfindung wird nachfolgend unter Bezugnahme auf die genannten Figuren in Form von Ausführungsbeispielen detailliert beschrieben. In allen Figuren sind gleiche technische Elemente mit gleichen Bezugszeichen bezeichnet.The invention is described in detail below with reference to the figures mentioned in the form of exemplary embodiments. In all figures, the same technical elements are denoted by the same reference symbols.

Figur 1 zeigt die erfindungsgemäße Oszillationsvorrichtung 100. Diese Oszillationsvorrichtung 100 dient zum Oszillieren einer Stranggießkokille 210 einer Stranggießanlage 200. Neben der Stranggießkokille 210 umfasst die Stranggießanlage 200 im Wesentlichen noch eine der Stranggießkokille 210 in Gießrichtung R nachgelagerte Strangführungseinrichtung 220. Figure 1 shows the oscillation device 100 according to the invention. This oscillation device 100 serves to oscillate a continuous casting mold 210 of a continuous casting plant 200. In addition to the continuous casting mold 210, the continuous casting plant 200 essentially also comprises a strand guide device 220 located downstream of the continuous casting mold 210 in the casting direction R.

Die Kokille 210 wird insbesondere während eines Gießvorgangs zum Erzeugen des Gießstrangs 300 mit Hilfe der Oszillationseinrichtung 100 in Oszillation, d. h. in Schwingungen in und entgegen der Gießrichtung R versetzt. Diese Oszillationsrichtung ist in Figur 1 mit dem vertikalen Doppelpfeil neben der Kokille 210 veranschaulicht. Im Gießbetrieb wird die Kokille 210 mit einer Metallschmelze befüllt. Innerhalb der Kokille 210 erstarrt die Schmelze an den gekühlten Wänden der Kokille und es bildet sich ein Gießstrang 300 mit zunächst noch flüssigem Kern aus. Dieser Gießstrang wird aus der Kokille nach unten herausgezogen und mit Hilfe der Strangführungseinrichtung 220 aus der Vertikalen in die Horizontale umgelenkt. Die Oszillation der Kokille dient zum Reduzieren der Reibung zwischen dem Gießstrang und den Wänden der Kokille.In particular, during a casting process for producing the cast strand 300, the mold 210 is set in oscillation with the aid of the oscillation device 100, ie in vibrations in and against the casting direction R. This direction of oscillation is in Figure 1 illustrated by the vertical double arrow next to the mold 210. In the casting operation, the mold 210 is filled with a metal melt. Inside the mold 210, the melt solidifies on the cooled walls of the mold and a cast strand 300 is formed with an initially still liquid core. This cast strand is pulled down from the mold and deflected from the vertical to the horizontal with the aid of the strand guide device 220. The oscillation of the mold serves to reduce the friction between the cast strand and the walls of the mold.

Die Oszillationsvorrichtung umfasst mindestens ein, typischerweise 2 Anstellelemente, beispielsweise in Form von Hydraulikzylindern oder elektromechanischen Hubelementen zum Oszillieren der Stranggießkokille. Diese Anstellelemente 110 werden mit Hilfe einer Steuereinrichtung 120 über ein Stellsignal S derart angesteuert, dass sich ein durch das Stellsignal repräsentierter Hubverlauf für die Oszillation der Kokille 210 einstellt.The oscillation device comprises at least one, typically 2 adjusting elements, for example in the form of hydraulic cylinders or electromechanical lifting elements for oscillating the continuous casting mold. These adjusting elements 110 are controlled with the aid of a control device 120 via an adjusting signal S in such a way that a stroke profile, represented by the adjusting signal, is set for the oscillation of the mold 210.

Dieser Hubverlauf wird erfindungsgemäß im Vorfeld der Oszillation aus einem beliebig bzw. frei vorgegebenen (Oszillations-)Geschwindigkeitsverlauf für die Oszillation von einer Berechnungseinrichtung 130 berechnet.According to the invention, this stroke profile is calculated in advance of the oscillation from an arbitrarily or freely specified (oscillation) speed profile for the oscillation by a calculation device 130.

Für diese Ermittlung bzw. Berechnung des Hubverlaufes sieht das erfindungsgemäße Verfahren die in den Figuren 2a und 2b dargestellte Schrittabfolge vor.For this determination or calculation of the stroke profile, the method according to the invention provides that in FIG Figures 2a and 2 B illustrated step sequence.

Verfahrensschritt 1:Process step 1:

Zu Beginn des erfindungsgemäßen Verfahrens wird zunächst ein gewünschter Geschwindigkeitsverlauf für die Oszillation der Kokille vorgegeben, sei es als kontinuierlicher Kurvenzug oder in Form von zumindest drei Stützpunkten pro Periode. Die Betrachtung einer Periode ist ausreichend, weil die Oszillation, wie der Name schon impliziert, periodisch erfolgt.At the beginning of the method according to the invention, a desired speed profile for the oscillation of the mold is first specified, be it as a continuous curve or in the form of at least three support points per period. It is sufficient to consider a period because the oscillation, as the name implies, is periodic.

Die Vorgabe der Stützpunkte kann in tabellarischer Form erfolgen, wie dies in der Tabelle in Figur 2a neben Schritt 1 veranschaulicht ist.The specification of the support points can be made in tabular form, as shown in the table in Figure 2a illustrated next to step 1.

Verfahrensschritt 2:Process step 2:

Dieser Verfahrensschritt sieht vor, dass im Falle einer Vorgabe des Geschwindigkeitsverlaufes zunächst nur in Form von Stützpunkten, diese Stützpunkte zu einem durchgehenden Kurvenzug interpoliert werden. Diese Interpolation kann beispielsweise linear erfolgen, wie dies in Figur 2a in der graphischen Darstellung neben dem Verfahrensschritt 2 veranschaulicht ist.This method step provides that if the speed profile is specified initially only in the form of support points, these support points are interpolated to form a continuous curve. This interpolation can be done linearly, for example, as shown in FIG Figure 2a is illustrated in the graphic representation next to method step 2.

Über die variabel setzbaren Stützpunkte von gewünschten Oszillationsgeschwindigkeiten und den jeweils zugehörigen Winkeln kann nun ein Grundkurvenprofil einer Oszillationsperiode frei z.B. in Tabellenform eingegeben werden. Alternativ ist eine grafische Eingabe möglich. Die Stützpunkte werden (prorammtechnisch automatisch) dann über eine lineare Punktverbindung miteinander verbunden, d. h. interpoliert.A basic curve profile of an oscillation period can now be freely set e.g. via the variably settable support points of the desired oscillation speeds and the associated angles. can be entered in table form. Alternatively, a graphical input is possible. The support points are then connected to one another (automatically in terms of the program) via a linear point connection, i.e. H. interpolated.

Die Verbindung zwischen zwei Geschwindigkeitspunkten, jeweils bestehend aus den Koordinaten Geschwindigkeit und Winkel bzw. Zeit ergeben dann eine lineare Funktion (im Koordinatensystem) für einen Teilabschnitt zwischen zwei Winkeln (oder Stützpunkten) des Geschwindigkeitsverlaufes der Oszillation.The connection between two speed points, each consisting of the coordinates speed and angle or time result in a linear function (in the coordinate system) for a section between two angles (or support points) of the speed curve of the oscillation.

Eine lineare Funktion wird in der Mathematik in diesem Fall als lineare Normalfunktion bezeichnet entspricht daher folgendem Formelgrundsatz: f x = mx + n

Figure imgb0001

  • f(x) = Funktionsverlauf in Abhängigkeit von x
  • m = Steigung der linearen Funktion
  • x = Variable
  • n = Konstante
  • entspricht f α = v 3 v 2 / α 3 α 2 α + V c 1
    Figure imgb0002
  • für die Beispielstützpunkte 2 und 3, siehe Figur 3. Für Figur 3 gilt folgende Legende:
    V
    = Oszillationsgeschwindigkeit
    t
    = Zeit
    T
    = Periodenzeit einer Schwingung, Oszillationsperiode
    T1
    = Oszillationskurvenanteil entgegen der Gießgeschwindigkeitsrichtung
    T2
    = Oszillationskurvenanteil in Gießgeschwindigkeitsrechnung
    1/2T
    = Halbe Periodenzeit
    A1
    = Flächenanteil (integrierter Weg, Aufwärtsbewegung)
    A2
    = Flächenanteil (integrierter Weg, Aufwärtsbewegung
    (1)
    = Stützpunkt (Geschwindigkeit und Zeit)
    VG
    = Gießgeschwindigkeitsrichtung
In mathematics, a linear function is referred to as a linear normal function in this case, therefore corresponds to the following formula principle: f x = mx + n
Figure imgb0001
  • f (x) = function curve depending on x
  • m = slope of the linear function
  • x = variable
  • n = constant
  • corresponds f α = v 3 - v 2 / α 3 - α 2 α + V c 1
    Figure imgb0002
  • for example support points 2 and 3, see Figure 3 . For Figure 3 the following legend applies:
    V
    = Oscillation speed
    t
    = Time
    T
    = Period time of an oscillation, oscillation period
    T 1
    = Part of the oscillation curve against the direction of the casting speed
    T 2
    = Part of the oscillation curve in the casting speed calculation
    1 / 2T
    = Half the period time
    A 1
    = Area share (integrated path, upward movement)
    A 2
    = Area share (integrated path, upward movement
    (1)
    = Base point (speed and time)
    V G
    = Direction of casting speed

Der Anfangs- und der Endpunkt (0 und 360 Grad) sind als feste erforderliche Winkeleingabe gesetzt. Der Wert der Oszillationsgeschwindigkeiten für alle gesetzten Winkelpunkte ist praxisbezogen beispielsweise in mm/s einzugeben. Der Bediener kann hier einen relativen Bezug herstellen und somit seine Vorstellung über den Charakter bzw. das zu erstellende Profil der Oszillationskurve einfach herstellen.The start and end point (0 and 360 degrees) are set as a fixed required angle input. The value of the oscillation speeds for all set angular points is to be entered in a practice-related manner, for example in mm / s. The operator can create a relative reference here and thus easily create his idea of the character or the profile of the oscillation curve to be created.

Die einzelnen Stützpunkte werden nach der Eingabe in die Oszillationsvorrichtung automatisch miteinander verbunden. Der hierdurch entstandene gesamte Kurvenzug (Polygonzug) eines Geschwindigkeitsverlaufes besteht hiermit aus einer geschlossenen Zusammensetzung von linearen Teilfunktionen. Selbstverständlich ist neben der linearen Interpolation auch jede andere Art der Interpolation zwischen den Stützpunkten von der vorliegenden Erfindung mit umfasst.The individual support points are automatically connected to one another after they have been entered in the oscillation device. The resulting entire curve (polygon) of a speed profile thus consists of a closed composition of linear sub-functions. Of course, in addition to linear interpolation, any other type of interpolation between the support points is also covered by the present invention.

Diese besagte Interpolation der Stützpunkte und damit auch Schritt 2 ist entbehrlich, wenn der Geschwindigkeitsverlauf sofort in Form eines kontinuierlichen Geschwindigkeitsverlaufes vorgegeben wird.This said interpolation of the interpolation points and thus also step 2 can be dispensed with if the speed profile is specified immediately in the form of a continuous speed profile.

Der vorgegebene Geschwindigkeitsverlauf bzw. der gemäß Verfahrensschritt 2 durch Interpolation ermittelte Geschwindigkeitsverlauf muss keineswegs sinusförmig sein, sondern kann auch die in Figur 4 lediglich beispielhaft gezeigten Verläufe annehmen. So zeigt die linke Abbildung in Figur 4 beispielsweise eine Oszillationskurve mit 2 0-Durchgängen innerhalb einer Oszillationsperiode. Die rechte Abbildung in Figur 4 zeigt dagegen eine Oszillationskurve mit einer Mehrzahl von hier beispielsweise drei, Minima pro Periode.The specified speed profile or the speed profile determined by interpolation according to method step 2 does not have to be sinusoidal, but can also be that in Figure 4 only assume the courses shown as examples. So the left figure in Figure 4 For example, an oscillation curve with 2 0 crossings within one oscillation period. The right figure in Figure 4 shows, however, an oscillation curve with a plurality of here, for example three, minima per period.

Die linke Abbildung in Figur 5 veranschaulicht nochmals die in Verfahrensschritt 2 durchgeführte lineare Interpolation zwischen zwei vorgegebenen Stützpunkten. Der Kurvenverlauf zwischen zwei Stützpunkten entspricht einer linearen Normalfunktion. Für Figur 5, linke Abbildung gilt: f x = mx + n

Figure imgb0003
entspricht f a = v 3 v 2 / a 3 a 2 a + V c 1
Figure imgb0004
The left figure in Figure 5 once again illustrates the linear interpolation between two specified interpolation points carried out in method step 2. The curve between two support points corresponds to a linear normal function. For Figure 5 , left figure applies: f x = mx + n
Figure imgb0003
corresponds f a = v 3 - v 2 / a 3 - a 2 a + V c 1
Figure imgb0004

Die rechte Abbildung in Figur 5 veranschaulicht ein Beispiel für einen aus der Interpolation resultierenden vorgegebenen Geschwindigkeitsverlauf über der Zeit, wobei - bei Auftragung der Gießgeschwindigkeit VG in negativer Richtung erkennbar ist, dass dieser Geschwindigkeitsverlauf während eines Zeitintervalls Tn einen Betrag der Geschwindigkeit aufweist, der größer als die Gießgeschwindigkeit ist. Dieser Zeitbereich bzw. dieses Zeitintervall Tn repräsentiert die sogenannte "negative strip"-Zeit, wie sie mit ihren Vorteilen im einleitenden Teil der Beschreibung beschrieben ist. Für die in der rechten Abbildung von Figur 5 gezeigte generierte Oszillationskurve mit Darstellung des Negativ Strip Bereiches gilt folgende Legende: T n % = T n / T

Figure imgb0005

Tn
= Negativ Strip Zeit
T
= gesamte Periodenzeit
V
= Oszillationsgeschwindigkeit
t
= Oszillationszeit
VG
= Gießgeschwindigkeit
f
= Oszillationsfrequenz
The right figure in Figure 5 illustrates an example of a predetermined speed profile resulting from the interpolation over time, where - at Plotting the casting speed V G in the negative direction, it can be seen that this speed profile has a speed value during a time interval T n which is greater than the casting speed. This time range or this time interval T n represents the so-called "negative strip" time, as it is described with its advantages in the introductory part of the description. For those in the right figure of Figure 5 The generated oscillation curve shown with representation of the negative strip area applies the following legend: T n % = T n / T
Figure imgb0005
T n
= Negative strip time
T
= total period time
V
= Oscillation speed
t
= Oscillation time
V G
= Casting speed
f
= Oscillation frequency

Verfahrensschritt 3:Step 3:

Gemäß Figur 2a sieht dieser Verfahrensschritt 3 vor, dass zunächst die Inhalte der Teilflächen A1, A2 oberhalb und unterhalb der x-Achse berechnet werden, die von dem in Verfahrensschritt 2 berechneten Geschwindigkeitsverlauf eingeschlossen bzw. umhüllt werden. Dies erfolgt mit einer erfindungsgemäßen Berechnungseinrichtung 130 innerhalb oder außerhalb der Oszillationsvorrichtung 100. Die so ermittelten positiven (oberhalb der x-Achse) und negativen (unterhalb der x-Achse) liegenden Teilflächen A1, A2 werden bezüglich ihrer Flächeninhalte miteinander verglichen. Eine automatische Prüfung innerhalb der Berechnungseinrichtung erzeugt bei einer festgestellten Nicht-Gleichheit der Flächen eine entsprechende Korrektur bzw. bietet der Bedienperson der Oszillationsvorrichtung eine Möglichkeit zur Korrektur an.According to Figure 2a This method step 3 provides that first the contents of the partial areas A1, A2 above and below the x-axis are calculated, which are enclosed or enveloped by the speed profile calculated in method step 2. This is done with a calculation device 130 according to the invention inside or outside the oscillation device 100. The positive (above the x-axis) and negative (below the x-axis) lying partial areas A1, A2 are determined in this way compared with each other in terms of their area. An automatic check within the calculation device generates a corresponding correction if the surfaces are not identical or offers the operator of the oscillation device an option for correction.

Verfahrensschritt 4:Step 4:

Damit der gewünschte Kurvenverlauf bzw. der Charakter der eingegebenen Kurve erhalten bleibt, wird zur Angleichung der Flächeninhalte der Teilflächen eine Parallelverschiebung des vorgegebenen Geschwindigkeitsverlaufes entlang der Ordinate solange durchgeführt, bis die Flächeninhalt der Teilflächen oberhalb und unterhalb der Abszisse gleich sind; siehe Verfahrensschritt 4 in Figur 2b. Diese Angleichung der Flächeninhalte der Teilflächen im Geschwindigkeitsverlauf ist bei der vorliegenden Erfindung erforderlich, damit bei einer später erfolgenden Umrechnung des Geschwindigkeitsverlaufes in den Hubverlauf für die Oszillationsvorrichtung gleiche Amplituden bei Oszillation in und entgegen der Gießrichtung einstellbar sind. Wenn die positive und die negative Amplitude bei der Oszillation nicht gleich wären, hätte dies den Nachteil, dass die Kokille durch die der Oszillation sukzessive höhenversetzt würde, was nicht gewollt ist.So that the desired curve profile or the character of the entered curve is retained, a parallel shift of the specified speed profile along the ordinate is carried out to adjust the surface area of the partial areas until the area of the partial areas above and below the abscissa are the same; see process step 4 in Figure 2b . This adjustment of the surface areas of the partial areas in the speed profile is necessary in the present invention so that when the speed profile is converted into the stroke profile for the oscillation device, the same amplitudes can be set when oscillating in and against the casting direction. If the positive and negative amplitude during the oscillation were not the same, this would have the disadvantage that the mold would be successively displaced in height by the oscillation, which is not wanted.

Verfahrensschritt 5:Process step 5:

Der zuvor ermittelte Geschwindigkeitsverlauf mit den gleichgroßen Teilflächen oberhalb und unterhalb der x-Achse pro Periode wird gemäß Verfahrensschritt 5 in einen Hubverlauf für die Oszillation aufintegriert. Bei der Integration kann es sich beispielsweise um eine nummerische Integration handeln. Der Hubverlauf kann auf diese Weise über einem Winkel oder über der Zeit als Oszillationsperiode berechnet werden.The previously determined speed profile with the sub-areas of equal size above and below the x-axis per period is integrated into a stroke profile for the oscillation according to method step 5. The integration can be, for example, a numerical integration. In this way, the stroke progression can be calculated over an angle or over time as an oscillation period.

Verfahrensschritt 6:Process step 6:

Nach der Integration des Geschwindigkeitsverlaufes erfolgt eine Normierung des Hubverlaufes insbesondere auf eine gewünschte maximale Hubamplitude, z. B. in Höhe von +/- 2mm und/oder eine gewünschte Hubfrequenz.After the integration of the speed profile, the stroke profile is normalized, in particular to a desired maximum stroke amplitude, e.g. B. in the amount of +/- 2mm and / or a desired stroke frequency.

Der so ermittelte Hubverlauf kann vor Beginn oder während einer Oszillation im laufenden Gießbetrieb in die Oszillationsvorrichtung eingegeben und von der Oszillationsvorrichtung umgesetzt werden. Falls gewünscht, kann eine Umschaltung des vorherigen auf einen neuen Hubverlauf auch während einer laufenden Oszillation erfolgen.The stroke profile determined in this way can be entered into the oscillation device before the start of or during an oscillation in the ongoing casting operation and implemented by the oscillation device. If desired, the previous stroke can also be switched to a new stroke while the oscillation is running.

BezugszeichenlisteList of reference symbols

100100
OszillationsvorrichtungOscillating device
110110
AnstellelementAdjusting element
120120
SteuereinrichtungControl device
130130
BerechnungseinrichtungCalculation device
140140
EingabevorrichtungInput device
142142
AnzeigevorrichtungDisplay device
200200
StranggießanlageContinuous caster
210210
Oszillationseinrichtung mit KokilleOscillation device with mold
220220
StrangführungStrand guide
300300
GießstrangCast strand
RR.
GießrichtungPouring direction
SS.
StellsignalControl signal
VG V G
GießgeschwindigkeitCasting speed

Claims (14)

  1. Method of operating an oscillation device (100) for a continuous casting mould (210) for producing a cast strip (300), preferably of metal, comprising the following steps:
    oscillating the continuous casting mould (210) with a stroke plot over at least one period, characterised in that the stroke plot is determined as follows:
    - predetermining a desired periodic speed plot for the oscillation over the period;
    - calculating the surface areas of the positive and negative part areas, which are included by the speed plot and the x axis within the period, above and below the x axis;
    - checking whether the surface areas of the positive and negative part areas are of the same size; and
    - if yes:
    determining the stroke plot for the continuous casting mould by integration of the speed plot with the same-size part areas above and below the x axis over the period.
  2. Method according to claim 1, characterised in that if when the check is carried out a difference between the size of the positive and the negative part areas per period is ascertained then before determining the stroke plot the following intermediate step is performed:
    - displacing the predetermined speed plot so that a displaced speed plot arises in which the positive and negative part areas, which are included by the displaced speed plot and the x axis within the period, above and below the x axis are respectively of the same size,
    and that when determination of the stroke plot is carried out the displaced speed plot is used as the speed plot with the part areas of the same size.
  3. Method according to one of the preceding claims, characterised in that the speed plot is predetermined in the form of a continuous curve plot or in the form of at least three support points over the period.
  4. Method according to claim 3, characterised in that the support points are interpolated with respect to the speed plot.
  5. Method according to any one of the preceding claims, characterised in that the stroke plot determined by integration is normalised to a maximum desired amplitude of oscillation.
  6. Method according to any one of the preceding claims, characterised in that the speed plot for the oscillation is predetermined in such a way that the speed in casting direction is greater than the casting speed during a time period.
  7. Method according to any one of the preceding claims, characterised in that the predetermined speed plot for the oscillation has a plurality of zero transitions, at least one local maximum and/or at least one local minimum.
  8. Computer program produce which can be downloaded directly into the memory of a computer and has software code segments by which the steps according to any one of the preceding method claims can be performed when the computer program product is run on a computer.
  9. Oscillation device (100) for a continuous casting mould (21) for producing a cast strip (300), with
    at least one adjusting element (110) for oscillating the continuous casting mould (210); and a control device (120) for controlling the adjusting element (110) by a setting signal (S) which represents a stroke plot for the oscillation over a period;
    characterised in that
    the control device (120) is constructed to operate the oscillation device (100) in accordance with the method according to any one of the preceding claims 1 to 7.
  10. Oscillation device according to claim 9, characterised by a computing device (130) constructed to determine the stroke plot as follows:
    - computing the surface areas of the positive and negative part areas, which are included by the speed plot and the x axis within the period, above and below the x axis;
    - checking whether the surface areas of the positive and negative part areas are the same size; and
    - if yes: determining the stroke plot for the continuous casting mould by integrating the speed plot with the same-size part areas above and below the x axis over the period; and wherein the computing device (130) is further constructed to communicate the determined stroke plot to the control device.
  11. Oscillation device according to claim 10, characterised in that the computing device (130) is further constructed to perform, before determination of the stroke plot, the following intermediate step if when the check is carried out a difference of the positive part surface areas from the negative part surface areas is ascertained:
    - displacing the predetermined speed plot for the oscillation over the period so that a displaced speed plot arises in which the positive and negative part areas, which are included by the displaced speed plot and the x axis within the period, above and below the x axis are respectively of the same size; and
    - determining the stroke plot for the continuous casting mould (210) by integrating the displaced speed plot as the speed plot with the same-size part areas over the period.
  12. Oscillation device according to any one of claims 9 to 11, characterised in that the computing device (130) is constructed to interpolate the predetermined speed plot if this is predetermined only in the form of at least three support points over the period.
  13. Oscillation device according to any one of claims 10 to 12, characterised by an input device (140) for the predetermination or input of the desired speed plot in the form of at least three support points per period.
  14. Oscillation device according to claim 11, characterised in that a display device (142) for graphical representation of the predetermined speed plot, the displaced speed plot and/or the computed stroke plot at least during a period is associated with the input device (140).
EP19195564.0A 2018-09-13 2019-09-05 Oscillation device and corresponding method and computer program product for operating an oscillation device Active EP3623077B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018215566.6A DE102018215566A1 (en) 2018-09-13 2018-09-13 Method and computer program product for operating an oscillation device and the corresponding oscillation device

Publications (2)

Publication Number Publication Date
EP3623077A1 EP3623077A1 (en) 2020-03-18
EP3623077B1 true EP3623077B1 (en) 2020-12-16

Family

ID=67874310

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19195564.0A Active EP3623077B1 (en) 2018-09-13 2019-09-05 Oscillation device and corresponding method and computer program product for operating an oscillation device

Country Status (2)

Country Link
EP (1) EP3623077B1 (en)
DE (1) DE102018215566A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19742794A1 (en) 1997-04-26 1998-10-29 Schloemann Siemag Ag Process and generation of the oscillation of a continuous casting mold
DE19854329A1 (en) 1998-11-25 2000-05-31 Schloemann Siemag Ag Method for oscillating a continuous casting mold using variable oscillation parameters
AT517006B1 (en) 2015-04-07 2018-08-15 Primetals Technologies Austria GmbH Continuous casting with optimized oscillation of the continuous casting mold

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3623077A1 (en) 2020-03-18
DE102018215566A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
AT394817B (en) METHOD FOR EXTENDING THE MOLDING SPACE WIDTH OF AN ADJUSTABLE PLATE CHOCOLATE IN A CONTINUOUS CASTING SYSTEM
DE102005059530A1 (en) Command generation device
DE10315525B4 (en) Control method for jerk-limited speed control of a movable machine element of a numerically controlled industrial processing machine
EP3280557B1 (en) Strand casting having optimized oscillation of the strand casting mold
EP3554744B1 (en) Method and device for regulating a strand casting system
EP0325931A1 (en) Method and apparatus for the oscillation of a continuous-casting mould
CH639297A5 (en) CONTINUOUS CHOCOLATE SUITABLE FOR SETTING TO DIFFERENT STRAND CROSS SECTION FORMATS.
EP3623077B1 (en) Oscillation device and corresponding method and computer program product for operating an oscillation device
EP0028766B1 (en) Method and device for changing the dimensions of a strand during continuous casting
EP0992302B1 (en) Method and apparatus for continuously controlling the basic setting and oscillation parameters of a continuous casting mould
EP3173166B1 (en) Method and device for setting the width of a continuously cast metal strand
EP0977642B1 (en) Method of oscillating a continuous casting mold
EP4023360A1 (en) Mould for strand casting of metal
EP1133370B1 (en) Method for oscillating a continuous-casting mould by means of variable oscillation parameters
DE69303309T2 (en) Continuous casting process
DE102005049151A1 (en) Extruding liquid metals, especially steel, comprises controlling the temperature to the solidification point before the tip region
EP4101560A1 (en) Stirring for cast billets or blooms using an oscillating stirrer
AT408854B (en) METHOD AND DEVICE FOR CASTING A STRAND OF LIQUID METAL
WO2001087518A1 (en) Method and system for continuously casting slabs, especially thin slabs, with comparatively high casting speeds
DE69401582T2 (en) DEVICE FOR CONTROLLING THE MOVEMENT OF A STRAND
DE19745547A1 (en) Process and plant for the continuous casting of thin slabs
DE19742794A1 (en) Process and generation of the oscillation of a continuous casting mold
EP4140616A1 (en) Method and device for regulating a continuous casting machine
EP3272442A1 (en) Method for operating a strand guide in a continuous casting system and corresponding strand guide
AT410408B (en) METHOD FOR CONTINUOUSLY casting METAL MELTS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190905

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200708

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019000542

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1345123

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210316

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210416

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019000542

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210416

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

26N No opposition filed

Effective date: 20210917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210416

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210905

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210905

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190905

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230707

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230927

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230905