EP3622554A1 - Method for connecting components by means of a metal paste - Google Patents

Method for connecting components by means of a metal paste

Info

Publication number
EP3622554A1
EP3622554A1 EP18717630.0A EP18717630A EP3622554A1 EP 3622554 A1 EP3622554 A1 EP 3622554A1 EP 18717630 A EP18717630 A EP 18717630A EP 3622554 A1 EP3622554 A1 EP 3622554A1
Authority
EP
European Patent Office
Prior art keywords
metal paste
components
radiation
drying
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18717630.0A
Other languages
German (de)
French (fr)
Inventor
Wolfgang Schmitt
Michael Schäfer
Susanne Klaudia Duch
Jens Nachreiner
Ly May CHEW
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Deutschland GmbH and Co KG
Original Assignee
Heraeus Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Deutschland GmbH and Co KG filed Critical Heraeus Deutschland GmbH and Co KG
Publication of EP3622554A1 publication Critical patent/EP3622554A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • B23K1/203Fluxing, i.e. applying flux onto surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • B23K35/025Pastes, creams, slurries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4821Flat leads, e.g. lead frames with or without insulating supports
    • H01L21/4825Connection or disconnection of other leads to or from flat leads, e.g. wires, bumps, other flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4882Assembly of heatsink parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • B22F7/064Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts using an intermediate powder layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04026Bonding areas specifically adapted for layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05639Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05655Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/0566Iron [Fe] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05664Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05669Platinum [Pt] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/273Manufacturing methods by local deposition of the material of the layer connector
    • H01L2224/2731Manufacturing methods by local deposition of the material of the layer connector in liquid form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/273Manufacturing methods by local deposition of the material of the layer connector
    • H01L2224/2731Manufacturing methods by local deposition of the material of the layer connector in liquid form
    • H01L2224/27312Continuous flow, e.g. using a microsyringe, a pump, a nozzle or extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/273Manufacturing methods by local deposition of the material of the layer connector
    • H01L2224/2731Manufacturing methods by local deposition of the material of the layer connector in liquid form
    • H01L2224/2732Screen printing, i.e. using a stencil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2741Manufacturing methods by blanket deposition of the material of the layer connector in liquid form
    • H01L2224/27422Manufacturing methods by blanket deposition of the material of the layer connector in liquid form by dipping, e.g. in a solder bath
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/29294Material of the matrix with a principal constituent of the material being a liquid not provided for in groups H01L2224/292 - H01L2224/29291
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2224/29387Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/2939Base material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/32227Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the layer connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75272Oven
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75283Means for applying energy, e.g. heating means by infrared heating, e.g. infrared heating lamp
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83009Pre-treatment of the layer connector or the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83053Bonding environment
    • H01L2224/83054Composition of the atmosphere
    • H01L2224/83055Composition of the atmosphere being oxidating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83053Bonding environment
    • H01L2224/83054Composition of the atmosphere
    • H01L2224/83075Composition of the atmosphere being inert
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83193Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/8321Applying energy for connecting using a reflow oven
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/8322Applying energy for connecting with energy being in the form of electromagnetic radiation
    • H01L2224/8323Polychromatic or infrared lamp heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83417Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/83424Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83439Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83444Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83447Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83455Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/8346Iron [Fe] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83463Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/83464Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83463Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/83469Platinum [Pt] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1131Sintering, i.e. fusing of metal particles to achieve or improve electrical conductivity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3463Solder compositions in relation to features of the printed circuit board or the mounting process

Definitions

  • the invention relates to a method for connecting components by means of metal paste.
  • the two mutually facing contact surfaces of the components form a common overlapping surface.
  • the present invention consists in effecting both the drying and the pressureless sintering not by convection but by means of IR radiation (infrared radiation).
  • the method according to the invention is a method for joining components, comprising the steps:
  • the method according to the invention comprises the steps (1) to (5). These are, in particular, successive steps, specifically steps that follow each other directly without intermediate steps.
  • the term component should preferably comprise individual parts. These items are preferably not further dismantled.
  • the components each have one, possibly also a plurality of contact surfaces.
  • the contact surfaces are generally metallic, for example in the form of a metallization layer.
  • the metal of the devices or pads may be pure metal or an alloy of the metal. Examples of the metal are aluminum, copper, silver, gold, nickel, palladium, iron and platinum.
  • the contact surface of the components used in the method according to the invention is in the range of, for example, 1 to 150 mm 2 , in particular> 20 to 150 mm 2 , especially 40 to 150 mm 2 . It is advantageous that the method according to the invention can be used even with components having a large contact surface with a reasonably short duration of drying and pressureless sintering. tern can be performed without having to accept the formation of defects of the aforementioned kind in purchasing.
  • the first and second components to be connected may be of the same type, i.
  • they can be substrates, or they can be active or passive components or an active and a passive component.
  • the one component is a substrate and the other component is an active or passive component, or vice versa.
  • the substrates, the active and the passive components are in particular parts that are used in electronics. For example, the following embodiments can be distinguished:
  • substrates are IMS substrates (insulated metal substrates), direct copper bonded substrates (DCB), AMB (active metal substrate) substrates, ceramic substrates, printed circuit boards (PCBs) and leadframes.
  • active devices include diodes, light emitting diodes (LED), dies (semiconductor chips), IGBTs (insulated-gate bipolar transistors, insulated-gate bipolar transistors), ICs (integrated circuits, integrated circuits), and MOSFETs (me - tal-oxide-semiconductor field effect transistors, metal oxide semiconductor field effect transistors).
  • passive components are sensors, bottom plates, heat sinks, resistors, capacitors and coils.
  • step (1) of the method according to the invention a metal paste containing organic solvent is applied to the contact surface of a first component.
  • the organic solvent-containing metal paste is a conventional metal paste known to the person skilled in the art as a means for producing a sintered connection between components or their contact surfaces, also referred to as a metal sintering paste.
  • metal pastes contain, for example, from 25 to 90% by weight of sinterable metal particles, in particular silver, silver alloy, copper and / or copper alloy particles; 5 to 30% by weight of organic solvent; 0 to 65% by weight of metal precursor compounds (metal precursors), in particular silver oxide, silver carbonate; 0 to 5% by weight sintering aids, for example peroxides, formates; and 0 to 5% by weight of other additives, for example saturated fatty acids and / or polymers such as ethyl cellulose or polyimide.
  • Such metal pastes are available in various embodiments, for example in WO 2016/071005 A1, EP 3 009 21 1 A1, WO 2016/028221 A1, WO 2015/193014 A1, WO 2014/177645 A1, WO 2014/170050 A1, WO 201 1/026624 A1, WO 201 1/026623 A1, EP 2 572 814 A1, EP 2 425 920 A1 and EP 2 158 997 A2.
  • the application of the metal paste to the contact surface of the first component can be effected by means of conventional methods, for example by means of printing processes such as screen printing, stencil printing or jetting.
  • the application of the metal paste can also be effected by means of dispensing technology, by means of pin transfer or by dipping.
  • the method according to the invention comprises an optional step (2). If step (2) takes place, the already mentioned metal paste is also applied to the contact surface of the second component. Possible application methods are those already mentioned.
  • step (3) of the method according to the invention a sandwich assembly of the two components is produced with the metal paste located between the two components.
  • the metal paste located between the two components.
  • either the first component with its provided with the metal paste contact surface placed on the optionally also provided with the metal paste contact surface of the second component or the second component is placed with its optionally provided with the metal paste contact surface on the provided with the metal paste contact surface of the first component.
  • the wet layer thickness of the layer of metal paste between the components is preferably in the range of 20 to 200 ⁇ m.
  • Wet layer thickness is understood here to mean the distance between the facing or opposing contact surfaces of the components before drying.
  • the wet film thickness may be dependent on the chosen method of applying the metal paste.
  • for dispensing for example, in the range from 20 to 100 ⁇ m
  • for application by jetting for example, in the range from 20 to 200 ⁇ m 70 ⁇ .
  • step (4) of the method according to the invention the layer of the metal paste located between the contact surfaces of the two components is dried. During drying, organic solvent is removed from the metal paste.
  • the proportion of organic solvent in the dried metal paste is for example 0 to 5 wt .-% or 0 to ⁇ 1 wt .-% based on the original proportion of organic solvent in the metal paste, i. ready for application metal paste.
  • the proportion of organic solvent in the dried metal paste is for example 0 to 5 wt .-% or 0 to ⁇ 1 wt .-% based on the original proportion of organic solvent in the metal paste, i. ready for application metal paste.
  • 95 to 100 wt .-% or> 99 to 100 wt .-% of or originally contained in the metal paste organic solvents are removed during the drying.
  • Drying takes place by irradiation with IR radiation having a peak wavelength in the wavelength range from 750 to 1500 nm, preferably from 750 to 1200 nm. If desired, convection support can take place at the same time, but this is neither necessary nor preferred. In other words, it is not only possible but also preferable to effect the drying solely by irradiating with IR radiation having a peak wavelength in the wavelength range of 750 to 1500 nm, preferably 750 to 1200 nm.
  • radiation sources which can be used for such IR radiation include conventional NIR radiators (near-infrared radiators). Such NIR emitters are available, for example, from Heraeus.
  • the NIR lamps can be high-performance short-wave lamps.
  • the one or more NIR emitters may have a power, for example, in the range from 15 to 100 W / cm (watts per centimeter radiator length), preferably in the range of 20 to 50 W / cm.
  • the radiator surface temperature (incandescent temperature) of the NIR radiators is, for example, in the range from 1800 to 3000 ° C., preferably in the range from 1850 to 2500 ° C.
  • Suitable NIR radiators have for example an emission spectrum with a maximum in the range of 750 to 1500 nm, preferably from 750 to 1200 nm, in particular between 750 and 1500 nm or between 750 and 1200 nm.
  • the IR irradiation can take place statically or in a continuous system, wherein the sandwich assemblies to be irradiated are moved relative to one another from components with metal paste to be dried therebetween and / or the IR radiation source or sources.
  • One or both devices are transparent to the IR radiation, i. partially or completely and in any case sufficiently permeable for the purposes of the method according to the invention. In other words, at least one of the components does not completely absorb the IR radiation.
  • IR irradiation occurs through one or both of the IR radiation transmissive devices. Preference is given to the case in which the IR irradiation takes place only through one or the component transparent to the IR radiation.
  • the IR irradiation preferably takes place from above through the component located above.
  • IR radiation transmissive devices include substrates such as ceramic substrates, active devices such as diodes, LEDs, dies, IGBTs, ICs, MOSFETs, and passive devices such as sensors, ceramic heatsinks, resistors, capacitors, and coils.
  • the distance between the IR radiation source or, more precisely, between the radiation exit surface of the IR radiation source or sources and the layer of metal paste to be dried is, for example, in the range from 1 to 50 cm, preferably 5 to 20 cm.
  • the mutually facing contact surfaces of the two components form a common overlapping surface with each other.
  • the contact surface of the device with the smaller contact area is fully utilized, i.
  • the size of the overlap area corresponds to that of the full contact area of the device with the smaller contact area.
  • the drying process effected in particular solely by the IR irradiation requires a period of time, for example in the range of only 1 to 60 minutes, and is therefore significant shortest zer as in the case of the aforementioned oven drying according to the prior art. Quality disadvantages do not arise when comparing with the oven drying. For small overlap areas at the lower end of said area, short drying times are sufficient; for large overlapping areas, the drying times are at the upper end of said area.
  • step (4) The person skilled in the art can select the IR irradiation parameters and / or the drying time for step (4) such that sintering or sintering of the drying or dried metal paste can be avoided.
  • step (5) of the method according to the invention the sandwich arrangement comprising the layer of the dried metal paste is sintered without pressure.
  • the pressureless sintering is carried out as in the drying according to step (4) also under irradiation with said IR radiation.
  • the steps (4) and (5) can expediently be connected directly to one another, for example by the IR irradiation being continued without interruption for the purposes of step (5) after completion of the drying according to step (4).
  • the steps (4) and (5) can thus practically merge with each other. But it is also possible to perform step (4) and step (5) with intervening interruption and interim cooling.
  • Pressureless sintering takes place by irradiation with IR radiation having a peak wavelength in the wavelength range from 750 to 1500 nm, preferably from 750 to 1200 nm. If desired, convection support can take place at the same time, but this is neither necessary nor preferred. In other words, it is not only possible but also preferable to effect pressureless sintering as in the case of drying only by irradiation with IR radiation having a peak wavelength in the wavelength range of 750 to 1500 nm, preferably 750 to 1200 nm.
  • the radiation sources for the IR radiation and their operating states reference is made to the aforementioned in connection with the drying step (4).
  • the IR irradiation can be carried out statically or in a continuous system as in the drying step (4), whereby the sandwich assemblies to be irradiated are moved relative to each other from components with metal paste to be sintered without pressure and / or the IR radiation source or sources.
  • the IR irradiation takes place, as in the drying step (4), through the one or both components which are permeable to the IR radiation. Preference is given to the case in which the IR irradiation takes place only through one or the component transparent to the IR radiation.
  • the IR irradiation preferably takes place from above through the component located above.
  • the distance between the IR radiation source or, more precisely, between the beam exit surface of the IR radiation source or sources and the layer of metal paste to be sintered without pressure is, for example, in the range from 1 to 50 cm, preferably 5 to 20 cm.
  • the pressure-free sintering caused by the IR irradiation requires a period of time, for example in the range of only 15 to 90 minutes.
  • Both step (4) and step (5) may be carried out in an atmosphere which is not particularly limited.
  • drying and pressureless sintering may be carried out in an atmosphere containing oxygen, for example air.
  • oxygen-containing atmosphere for example air
  • an oxygen-free atmosphere is understood as meaning an atmosphere whose oxygen content is not more than 100 ppm by volume (ppm by volume), preferably not more than 10 ppm by volume and more preferably not more than 1 ppm by volume is.
  • the method according to the invention for joining components has advantages over the prior art working with convection, such as a shortening of the drying time and the duration of pressureless sintering without loss of quality, the extension of the applicability of the pressureless sintered connection technique Even on components with a large contact area and the need for an inertization even in the case of working with devices with oxidation-sensitive contact surface, such as copper or nickel contact surface.
  • Reference Example 2 Application of the Metal Paste from Example 1 and Formation of a Sandwich Arrangement:
  • the metal paste from Example 1 was applied by means of stencil printing on a DCB substrate in a wet film thickness of 75 ⁇ m and with an area of 4 mm ⁇ 4 mm over the entire surface.
  • a silicon chip having a silver contact area of 4 mm ⁇ 4 mm was applied to the paste thus applied, forming a sandwich arrangement with a common overlapping area of DCB substrate and chip of 4 mm ⁇ 4 mm.
  • Example 3a Drying of the Sandwich Assembly of Example 2 in an Oven:
  • the sandwich prepared according to Example 2 was dried under nitrogen atmosphere at 150 ° C oven temperature to a residual solvent content of ⁇ 0.5 wt .-%, based on originally contained in the metal paste organic Solvent (determined gravimetrically). The drying process took 60 minutes.
  • Example 3b Drying of the Sandwich Arrangement from Example 2 under IR Irradiation:
  • the sandwich arrangement provided according to Example 2 was carried out at a distance of 10 cm with an NIR emitter having a length of 30 cm, a power of 30 W / cm, a filament temperature from 2009 ° C and irradiated with a peak wavelength of 1100 nm from above the silicon chip in air and thus freed from organic solvent to a residual solvent content of ⁇ 0.5 wt .-%, based on original in the metal paste contained organic solvent ( determined gravimetrically).
  • the drying process caused solely by the IR irradiation required 10 minutes.
  • Comparative Example 4a Pressurisation of the sandwich arrangement dried according to Example 3a in an oven:
  • the sandwich arrangement dried according to Example 3a was pressure-less sintered in a convection oven under a nitrogen atmosphere at 230 ° C. oven temperature for 60 minutes.
  • the adhesion was determined by shear strength. In doing so, sheared the silicon chips with a shear chisel at a speed of 0.3 mm / s at 260 ° C.
  • the force was recorded by means of a load cell (device DAGE 2000 from DAGE, Germany). Shear strengths above 20 N / mm 2 are satisfactory. Measured shear strength: 23 N / mm 2 .
  • Example 4b Pressure-free sintering of the sandwich arrangement dried according to Example 3b in an oven:
  • the sandwich arrangement dried according to Example 3b was pressure-less sintered in a convection oven under a nitrogen atmosphere at 230 ° C. oven temperature for 60 minutes. Thereafter, the adhesion was determined as in Example 4a on the shear strength. Measured shear strength: 24 N / mm 2 .
  • Example 4c Pressure-free sintering of the sandwich arrangement dried according to Example 3b under IR irradiation:
  • the sandwich arrangement dried according to Example 3b was from a distance of 10 cm with a NIR radiator of a length of 30 cm, a power of 30 W / cm, a filament temperature from 2009 ° C and with a peak wavelength of 1100 nm for 20 minutes from above the silicon chip and so sintered without pressure by the IR irradiation process of Example 3b was continued without interruption. Thereafter, the adhesion was determined as in Example 4a on the shear strength. Measured shear strength: 21 N / mm 2 .
  • Reference Example 6b Drying of the Sandwich Assembly of Example 5 under IR Irradiation:
  • the sandwich assembly created according to Example 5 was spaced 10 cm apart with an NIR emitter of 30 cm length, 30 W / cm, filament temperature of 2009 ° C and with a peak wavelength of 1 100 nm from above the Irradiated silicon chips in the air and freed from organic solvent to a residual solvent content of ⁇ 0.5 wt .-%, based on originally contained in the metal paste organic solvent (determined gravimetrically).
  • the drying process caused solely by the IR irradiation required 20 minutes.
  • Comparative Example 7a Pressurisation of the sandwich arrangement dried according to Example 6a in an oven:
  • the sandwich arrangement dried according to Example 6a was pressureless sintered in a convection oven under nitrogen atmosphere for 60 minutes at 230 ° C. oven temperature. After cooling, the adhesion was determined by shear strength.
  • the silicon chips were sheared off at 260 ° C. with a shear chisel at a speed of 0.3 mm / s.
  • the force was recorded by means of a load cell (device DAGE 2000 from DAGE, Germany). Measured shear strength: 22 N / mm 2 .
  • Example 7b Pressure-free sintering of the sandwich arrangement dried according to Example 6b in an oven:
  • the sandwich arrangement dried according to Example 6b was pressure-sintered in a convection oven under nitrogen atmosphere for 60 minutes at 230 ° C. oven temperature. Thereafter, the adhesion was determined as in Example 7a on the shear strength. Measured shear strength: 22 N / mm 2 .
  • Example 7c Pressurized internally under IR irradiation of the sandwich arrangement dried according to Example 6b The sandwich arrangement dried according to Example 6b was removed from a distance of 10 cm with an NIR emitter having a length of 30 cm, a power of 30 W / cm, a filament temperature from 2009 ° C and with a peak wavelength of 1100 nm for 20 minutes from above the silicon chip and so sintered without pressure by the IR irradiation process of Example 6b was continued without interruption. Thereafter, the adhesion was determined as in Example 7a on the shear strength. Measured shear strength: 23 N / mm 2 .

Abstract

The invention relates to a method for connecting components, comprising the following steps: (1) applying a metal paste containing an organic solvent to the contact surface of a first component; (2) optionally applying the metal paste to the contact surface of a second component to be connected to the first component; (3) producing a sandwich arrangement with the two components and a layer of the metal paste in-between; (4) drying the layer of metal paste between the components; and (5) pressureless sintering of the sandwich arrangement comprising the layer of dried metal paste, the drying and the pressureless sintering being performed by irradiation with IR radiation with a peak wavelength in the wavelength range of between 750 and 1500 nm. The components can be selected from the group consisting of substrates, active components and passive components. One or both of the components can be permeable to IR radiation. Step (4) and/or step (5) can be carried out in an atmosphere containing oxygen or an oxygen-free atmosphere. In both cases, at least one of the components can have an oxidation-sensitive contact surface.

Description

VERFAHREN ZUM VERBINDEN VON BAUELEMENTEN MITTELS METALLPASTE  METHOD FOR CONNECTING COMPONENTS BY METAL PASTE
Die Erfindung betrifft ein Verfahren zum Verbinden von Bauelementen mittels Metallpaste. The invention relates to a method for connecting components by means of metal paste.
Im Bereich der Leistungs- und Konsumerelektronik stellt das Verbinden von Bauelementen, die eine hohe Druck- und Temperaturempfindlichkeit aufweisen, eine besondere Herausforderung dar. Aus diesem Grund werden solche druck- und temperaturempfindlichen Bauelemente häufig durch Kleben miteinander verbunden. Die Klebetechnik besitzt jedoch den Nachteil, dass damit Kontaktstellen zwischen den Bauelementen geschaffen werden, die eine nur unzureichende Wärmeleitfähigkeit bzw. elektrische Leitfähigkeit aufweisen. Eine bekannte Lösung dieses Problems besteht darin, zu verbindende Bauelemente drucklos durch Sintern zu verbinden. Druckloses Sintern stellt ein sehr einfaches Verfahren zum stabilen Verbinden von Bauelementen dar. Dabei wird üblicherweise eine organisches Lösemittel enthaltende Metallpaste auf die zu verbindende Kontaktfläche eines der oder beider der zu verbindenden Bauelemente aufgetragen und die zu verbindenden Kontaktflächen werden zueinander gewandt mit der dazwischen befindlichen Schicht der Metallpaste miteinander in Kontakt gebracht unter Ausbildung einer Sandwichanordnung. Dabei bilden die beiden zueinander gewandten Kontaktflächen der Bauelemente eine gemeinsame Überlappungsfläche. Es folgen ein Trocknungsschritt bei erhöhter Temperatur und ein sich daran anschließender bei weiter erhöhter Temperatur drucklos (ohne Pressen) durchgeführter Sinterschritt, in dessen Verlauf die feste mechanische Verbindung zwischen den Bauelementen entsteht. Trocknung und Sintern erfolgen üblicherweise in Konvektionsöfen. Je nach Größe der Verbindungs- bzw. Kontaktfläche respektive Überlappungsfläche der zu verbindenden Bauelemente beispielsweise im Bereich von 1 bis 25 mm2 benötigt dieser Trocknungsvorgang des Standes der Technik eine Zeitdauer im Bereich von 30 bis 180 Minuten bei Ofentemperaturen im Bereich von 100 bis160 °C. Bei Wahl einer zu kurzen Trocknungsdauer bilden sich häufig unerwünschte Fehlstellen wie beispielsweise Lunker in der noch zu sinternden Schicht aus. Derartige Poren oder Fehlstellen können die spätere Verbindung in Form der dann gesinterten Schicht nicht nur mechanisch, sondern auch hinsichtlich ihrer elektrischen Leitfähigkeit sowie Wärmeleitfähigkeit schwächen. In the field of power and consumer electronics, the joining of components that have a high pressure and temperature sensitivity is a particular challenge. For this reason, such pressure and temperature-sensitive components are often joined together by gluing. However, the adhesive technique has the disadvantage that it creates contact points between the components which have only insufficient thermal conductivity or electrical conductivity. A known solution to this problem is to connect components to be connected without pressure by sintering. Pressure-free sintering is a very simple method for stable connection of components. In this case, an organic solvent-containing metal paste is usually applied to the contact surface to be connected of one or both of the components to be connected and the contact surfaces to be connected facing each other with the intervening layer of Metal paste brought into contact with each other to form a sandwich assembly. The two mutually facing contact surfaces of the components form a common overlapping surface. This is followed by a drying step at elevated temperature and an adjoining at a further elevated temperature without pressure (without pressing) carried out sintering step, during which the solid mechanical connection between the components is formed. Drying and sintering are usually carried out in convection ovens. Depending on the size of the connection or contact area or overlapping surface of the components to be connected, for example in the range of 1 to 25 mm 2 requires this drying process of the prior art, a period of time in the range of 30 to 180 minutes at oven temperatures in the range of 100 to 160 ° C. If too short a drying time is selected, unwanted defects such as voids in the layer still to be sintered often form. Such pores or defects can weaken the subsequent compound in the form of the then sintered layer not only mechanically, but also in terms of their electrical conductivity and thermal conductivity.
Die vorliegende Erfindung besteht darin, sowohl das Trocknen als auch das drucklose Sintern nicht durch Konvektion sondern mittels IR-Strahlung (Infrarotstrahlung) zu bewirken. Es handelt sich bei dem erfindungsgemäßen Verfahren um ein Verfahren zum Verbinden von Bauelementen, umfassend die Schritte: The present invention consists in effecting both the drying and the pressureless sintering not by convection but by means of IR radiation (infrared radiation). The method according to the invention is a method for joining components, comprising the steps:
(1 ) Auftragen einer organisches Lösemittel enthaltenden Metallpaste auf die Kontaktfläche eines ersten Bauelementes, (2) gegebenenfalls Auftragen der Metallpaste auf die Kontaktfläche eines mit dem ersten Bauelement zu verbindenden zweiten Bauelementes, (1) applying an organic solvent-containing metal paste to the contact surface of a first component, (2) optionally applying the metal paste to the contact surface of a second component to be connected to the first component,
(3) Herstellen einer Sandwichanordnung aus den beiden Bauelementen mit einer dazwischen befindlichen Schicht der Metallpaste, (3) producing a sandwich arrangement of the two components with a layer of the metal paste therebetween,
(4) Trocknen der zwischen den beiden Bauelementen befindlichen Schicht der Metallpaste, und (5) druckloses Sintern der die Schicht aus getrockneter Metallpaste umfassenden Sandwichanordnung, dadurch gekennzeichnet, dass das Trocknen und das drucklose Sintern unter Bestrahlen mit IR-Strahlung (Infrarotstrahlung) mit einer Peakwellenlänge im Wellenlängenbereich von 750 bis 1500 nm erfolgt. Das erfindungsgemäße Verfahren umfasst die Schritte (1 ) bis (5). Dabei handelt es sich insbesondere um aufeinander folgende Schritte, speziell um direkt aufeinander folgende Schritte ohne Zwischenschritte. (4) drying the layer of the metal paste between the two components, and (5) pressureless sintering of the layer comprising dried metal paste sandwich assembly, characterized in that the drying and pressureless sintering under irradiation with infrared radiation (infrared radiation) with a Peak wavelength in the wavelength range of 750 to 1500 nm takes place. The method according to the invention comprises the steps (1) to (5). These are, in particular, successive steps, specifically steps that follow each other directly without intermediate steps.
Im Rahmen der Erfindung soll der Begriff Bauelement vorzugsweise Einzelteile umfassen. Diese Einzelteile sind vorzugsweise nicht weiter zerlegbar. Die Bauelemente haben jeweils eine, gegebenenfalls auch mehrere Kontaktflächen. Die Kontaktflächen sind im Allgemeinen metallisch, beispielsweise in Form einer Metallisierungsschicht. Das Metall der Bauelemente oder der Kontaktflächen kann reines Metall oder eine Legierung des Metalls sein. Beispiele für das Metall sind Aluminium, Kupfer, Silber, Gold, Nickel, Palladium, Eisen und Platin. Die Kontaktfläche der im erfindungsgemäßen Verfahren verwendeten Bauelemente liegt im Bereich von beispielsweise 1 bis 150 mm2, insbesondere >20 bis 150 mm2, speziell 40 bis 150 mm2. Vorteilhaft ist, dass das erfindungsgemäße Verfahren gerade auch mit Bauelementen mit großer Kontaktfläche bei dennoch vertretbar kurzer Dauer von Trocknung und drucklosem Sin- tern durchgeführt werden kann, ohne dabei eine Bildung von Fehlstellen der vorerwähnten Art in Kauf nehmen zu müssen. In the context of the invention, the term component should preferably comprise individual parts. These items are preferably not further dismantled. The components each have one, possibly also a plurality of contact surfaces. The contact surfaces are generally metallic, for example in the form of a metallization layer. The metal of the devices or pads may be pure metal or an alloy of the metal. Examples of the metal are aluminum, copper, silver, gold, nickel, palladium, iron and platinum. The contact surface of the components used in the method according to the invention is in the range of, for example, 1 to 150 mm 2 , in particular> 20 to 150 mm 2 , especially 40 to 150 mm 2 . It is advantageous that the method according to the invention can be used even with components having a large contact surface with a reasonably short duration of drying and pressureless sintering. tern can be performed without having to accept the formation of defects of the aforementioned kind in purchasing.
Das erste und das damit zu verbindende zweite Bauelement können von derselben Art sein, d.h. es kann sich beispielsweise in beiden Fällen um Substrate handeln, oder es handelt sich jeweils um aktive oder passive Bauelemente oder um ein aktives und ein passives Bauelement. Es kann aber auch sein, dass es sich bei dem einen Bauelement um ein Substrat und bei dem anderen Bauelement um ein aktives oder passives Bauelement handelt, oder umgekehrt. Bei den Substraten, den aktiven und den passiven Bauelementen handelt es sich insbesondere um Teile, die in der Elektronik verwendet werden. Beispielsweise lassen sich so folgende Ausführungsformen unterscheiden: The first and second components to be connected may be of the same type, i. For example, in both cases they can be substrates, or they can be active or passive components or an active and a passive component. However, it can also be that the one component is a substrate and the other component is an active or passive component, or vice versa. The substrates, the active and the passive components are in particular parts that are used in electronics. For example, the following embodiments can be distinguished:
Beispiele für Substrate sind IMS-Substrate (insulated metal-Substrate), DCB-Substrate (direct copper bonded-Substrate), AM B-Substrate (active metal braze-Substrate), keramische Substrate, PCBs (printed circuit boards) und Leadframes. Beispiele für aktive Bauelemente sind Dioden, LEDs (light emitting diodes, lichtemittierende Dioden), Dies (Halbleiterchips), IGBTs (insulated-gate bipolar transistors, Bipolartransistoren mit isolierter Gate-Elektrode), ICs (integrated circuits, integrierte Schaltungen) und MOSFETs (me- tal-oxide-semiconductor field-effect transistors, Metall-Oxid-Halbleiter-Feldeffekttransistoren). Beispiele für passive Bauelemente sind Sensoren, Bodenplatten, Kühlkörper, Widerstände, Kondensatoren und Spulen. Examples of substrates are IMS substrates (insulated metal substrates), direct copper bonded substrates (DCB), AMB (active metal substrate) substrates, ceramic substrates, printed circuit boards (PCBs) and leadframes. Examples of active devices include diodes, light emitting diodes (LED), dies (semiconductor chips), IGBTs (insulated-gate bipolar transistors, insulated-gate bipolar transistors), ICs (integrated circuits, integrated circuits), and MOSFETs (me - tal-oxide-semiconductor field effect transistors, metal oxide semiconductor field effect transistors). Examples of passive components are sensors, bottom plates, heat sinks, resistors, capacitors and coils.
In Schritt (1 ) des erfindungsgemäßen Verfahrens wird eine organisches Lösemittel enthaltende Metallpaste auf die Kontaktfläche eines ersten Bauelementes aufgetragen. In step (1) of the method according to the invention, a metal paste containing organic solvent is applied to the contact surface of a first component.
Bei der organisches Lösemittel enthaltenden Metallpaste handelt es sich um eine übliche dem Fachmann als Mittel zur Herstellung einer Sinterverbindung zwischen Bauelementen bzw. deren Kontaktflächen bekannte Metallpaste, auch bezeichnet als Metallsinterpaste. Solche Metallpasten enthalten beispielsweise 25 bis 90 Gew.-% sinterfähige Metallpartikel, insbesondere Silber-, Silberlegierungs-, Kupfer- und/oder Kupferlegierungspartikel; 5 bis 30 Gew.-% organisches Lösemittel; 0 bis 65 Gew.-% Metallvorläuferverbindungen (Metallprekursoren), insbeson- dere Silberoxid, Silbercarbonat; 0 bis 5 Gew.-% Sinterhilfsmittel, beispielsweise Peroxide, For- miate; und 0 bis 5 Gew.-% andere Additive, beispielsweise gesättigte Fettsäuren und/oder Polymere wie Ethylcellulose oder Polyimid. The organic solvent-containing metal paste is a conventional metal paste known to the person skilled in the art as a means for producing a sintered connection between components or their contact surfaces, also referred to as a metal sintering paste. Such metal pastes contain, for example, from 25 to 90% by weight of sinterable metal particles, in particular silver, silver alloy, copper and / or copper alloy particles; 5 to 30% by weight of organic solvent; 0 to 65% by weight of metal precursor compounds (metal precursors), in particular silver oxide, silver carbonate; 0 to 5% by weight sintering aids, for example peroxides, formates; and 0 to 5% by weight of other additives, for example saturated fatty acids and / or polymers such as ethyl cellulose or polyimide.
Solche Metallpasten sind in vielfältigen Ausführungsformen beispielsweise in WO 2016/071005 A1 , EP 3 009 21 1 A1 , WO 2016/028221 A1 , WO 2015/193014 A1 , WO 2014/177645 A1 , WO 2014/170050 A1 , WO 201 1/026624 A1 , WO 201 1/026623 A1 , EP 2 572 814 A1 , EP 2 425 920 A1 und EP 2 158 997 A2 offenbart. Such metal pastes are available in various embodiments, for example in WO 2016/071005 A1, EP 3 009 21 1 A1, WO 2016/028221 A1, WO 2015/193014 A1, WO 2014/177645 A1, WO 2014/170050 A1, WO 201 1/026624 A1, WO 201 1/026623 A1, EP 2 572 814 A1, EP 2 425 920 A1 and EP 2 158 997 A2.
Die Auftragung der Metallpaste auf die Kontaktfläche des ersten Bauelements kann mittels herkömmlicher Verfahren erfolgen, beispielsweise mittels Druckverfahren wie Siebdruck, Schablonendruck oder Jetten. Andererseits kann die Auftragung der Metallpaste auch mittels Dispens- technik, mittels Pintransfer oder durch Dippen erfolgen. The application of the metal paste to the contact surface of the first component can be effected by means of conventional methods, for example by means of printing processes such as screen printing, stencil printing or jetting. On the other hand, the application of the metal paste can also be effected by means of dispensing technology, by means of pin transfer or by dipping.
Das erfindungsgemäße Verfahren umfasst einen optionalen Schritt (2). Falls Schritt (2) stattfindet, so wird die schon vorerwähnte Metallpaste auch auf die Kontaktfläche des zweiten Bauelementes aufgetragen. Mögliche Auftragungsmethoden sind die schon Vorerwähnten. The method according to the invention comprises an optional step (2). If step (2) takes place, the already mentioned metal paste is also applied to the contact surface of the second component. Possible application methods are those already mentioned.
In Schritt (3) des erfindungsgemäßen Verfahrens wird eine Sandwichanordnung aus den beiden Bauelementen mit der zwischen den beiden Bauelementen befindlichen Metallpaste hergestellt. Dazu wird entweder das erste Bauelement mit seiner mit der Metallpaste versehenen Kontakt- fläche auf die gegebenenfalls ebenfalls mit der Metallpaste versehene Kontaktfläche des zweiten Bauelements aufgesetzt oder das zweite Bauelement wird mit seiner gegebenenfalls mit der Metallpaste versehenen Kontaktfläche auf die mit der Metallpaste versehene Kontaktfläche des ersten Bauelements aufgesetzt. Im Ergebnis befindet sich zwischen den zu verbindenden Bau- elementen eine Schicht der Metallpaste. In step (3) of the method according to the invention, a sandwich assembly of the two components is produced with the metal paste located between the two components. For this purpose, either the first component with its provided with the metal paste contact surface placed on the optionally also provided with the metal paste contact surface of the second component or the second component is placed with its optionally provided with the metal paste contact surface on the provided with the metal paste contact surface of the first component. As a result, there is a layer of metal paste between the components to be connected.
Die Nassschichtdicke der Schicht der Metallpaste zwischen den Bauelementen liegt vorzugsweise im Bereich von 20 bis 200 μηη. Unter Nassschichtdicke wird hier der Abstand zwischen den einander zugewandten bzw. gegenüberliegenden Kontaktflächen der Bauelemente vor dem Trocknen verstanden. Die Nassschichtdicke kann beispielsweise abhängig sein vom gewählten Verfahren zum Auftragen der Metallpaste. Bei mittels Siebdruckverfahren aufgetragener Metallpaste kann die Nassschichtdicke beispielsweise im Bereich von 20 bis 50 μηη liegen, bei Schablonendruck beispielsweise im Bereich von 50 bis 200 μηη, bei Dispensauftrag beispielsweise im Bereich von 20 bis 100 μηη und bei Auftrag durch Jetten beispielsweise im Bereich von 20 bis 70 μπι. In Schritt (4) des erfindungsgemäßen Verfahrens wird die zwischen den Kontaktflächen der beiden Bauelemente befindliche Schicht der Metallpaste getrocknet. Bei der Trocknung wird organisches Lösemittel aus der Metallpaste entfernt. Gemäß einer bevorzugten Ausführungsform liegt der Anteil an organischem Lösemittel in der getrockneten Metallpaste beispielsweise bei 0 bis 5 Gew.-% oder 0 bis <1 Gew.-% bezogen auf den ursprünglichen Anteil an organi- schem Lösemittel in der Metallpaste, d.h. applikationsbereiten Metallpaste. Mit anderen Worten, gemäß dieser bevorzugten Ausführungsform werden beispielsweise 95 bis 100 Gew.-% oder >99 bis 100 Gew.-% des oder der ursprünglich in der Metallpaste enthaltenen organischen Lösemittel bei der Trocknung entfernt. The wet layer thickness of the layer of metal paste between the components is preferably in the range of 20 to 200 μm. Wet layer thickness is understood here to mean the distance between the facing or opposing contact surfaces of the components before drying. For example, the wet film thickness may be dependent on the chosen method of applying the metal paste. For example, in the case of stencil printing, for example in the range from 50 to 200 μm, for dispensing, for example, in the range from 20 to 100 μm, and for application by jetting, for example, in the range from 20 to 200 μm 70 μπι. In step (4) of the method according to the invention, the layer of the metal paste located between the contact surfaces of the two components is dried. During drying, organic solvent is removed from the metal paste. According to a preferred embodiment, the proportion of organic solvent in the dried metal paste is for example 0 to 5 wt .-% or 0 to <1 wt .-% based on the original proportion of organic solvent in the metal paste, i. ready for application metal paste. In other words, according to this preferred embodiment, for example, 95 to 100 wt .-% or> 99 to 100 wt .-% of or originally contained in the metal paste organic solvents are removed during the drying.
Das Trocknen erfolgt unter Bestrahlen mit IR-Strahlung mit einer Peakwellenlänge im Wellen- längenbereich von 750 bis 1500 nm, bevorzugt von 750 bis 1200 nm. Falls gewünscht kann zugleich eine Unterstützung durch Konvektion stattfinden, dies ist jedoch weder notwendig noch bevorzugt. Mit anderen Worten, es ist nicht nur möglich, sondern auch bevorzugt das Trocknen alleinig durch das Bestrahlen mit IR-Strahlung mit einer Peakwellenlänge im Wellenlängenbereich von 750 bis 1500 nm, bevorzugt von 750 bis 1200 nm zu bewirken. Beispiele für für solche IR-Strahlung verwendbare Strahlungsquellen umfassen übliche NIR- Strahler (Nahinfrarot-Strahler). Solche NIR-Strahler sind beispielsweise von Heraeus erhältlich. Es kann sich bei den NIR-Strahlern beispielsweise um Hochleistungskurzwellenstrahler handeln. Der oder die einzelnen NIR-Strahler können mit einer Leistung beispielsweise im Bereich von 15 bis 100 W/cm (Watt pro Zentimeter Strahlerlänge), bevorzugt im Bereich von 20 bis 50 W/cm betrieben werden. Die Strahleroberflächentemperatur (Glühwendeltemperatur) der NIR- Strahler liegt dabei beispielsweise im Bereich von 1800 bis 3000 °C, bevorzugt im Bereich von 1850 bis 2500 °C. Geeignete NIR-Strahler haben beispielsweise ein Emissionsspektrum mit einem Maximum im Bereich von 750 bis 1500 nm, bevorzugt von 750 bis 1200 nm, insbesondere zwischen 750 und 1500 nm oder zwischen 750 und 1200 nm. Drying takes place by irradiation with IR radiation having a peak wavelength in the wavelength range from 750 to 1500 nm, preferably from 750 to 1200 nm. If desired, convection support can take place at the same time, but this is neither necessary nor preferred. In other words, it is not only possible but also preferable to effect the drying solely by irradiating with IR radiation having a peak wavelength in the wavelength range of 750 to 1500 nm, preferably 750 to 1200 nm. Examples of radiation sources which can be used for such IR radiation include conventional NIR radiators (near-infrared radiators). Such NIR emitters are available, for example, from Heraeus. For example, the NIR lamps can be high-performance short-wave lamps. The one or more NIR emitters may have a power, for example, in the range from 15 to 100 W / cm (watts per centimeter radiator length), preferably in the range of 20 to 50 W / cm. The radiator surface temperature (incandescent temperature) of the NIR radiators is, for example, in the range from 1800 to 3000 ° C., preferably in the range from 1850 to 2500 ° C. Suitable NIR radiators have for example an emission spectrum with a maximum in the range of 750 to 1500 nm, preferably from 750 to 1200 nm, in particular between 750 and 1500 nm or between 750 and 1200 nm.
Die IR-Bestrahlung kann statisch oder in einer Durchlaufanlage erfolgen, wobei die zu bestrahlenden Sandwichanordnungen aus Bauelementen mit dazwischen befindlicher zu trocknender Metallpaste und/oder die IR-Strahlungsquelle oder -quellen relativ zueinander bewegt werden. Eines der oder beide Bauelemente sind für die IR-Strahlung durchlässig, d.h. teilweise oder vollständig und in jedem Falle hinreichend durchlässig für die Zwecke des erfindungsgemäßen Verfahrens. Mit anderen Worten, wenigstens eines der Bauelemente absorbiert die IR- Strahlung nicht vollständig. Die IR-Bestrahlung erfolgt durch das eine oder durch beide für die IR-Strahlung durchlässigen Bauelemente hindurch. Bevorzugt ist der Fall, bei dem die IR- Bestrahlung nur durch eines oder das eine für die IR-Strahlung durchlässige Bauelement hindurch erfolgt. Bevorzugt erfolgt die IR-Bestrahlung von oberhalb durch das oben befindliche Bauelement hindurch. Beispiele für für die IR-Strahlung durchlässige Bauelemente sind Substrate wie keramische Substrate, aktive Bauelemente wie Dioden, LEDs, Dies, IGBTs, ICs, MOSFETs, und passive Bauelemente wie Sensoren, keramische Kühlkörper, Widerstände, Kondensatoren und Spulen. The IR irradiation can take place statically or in a continuous system, wherein the sandwich assemblies to be irradiated are moved relative to one another from components with metal paste to be dried therebetween and / or the IR radiation source or sources. One or both devices are transparent to the IR radiation, i. partially or completely and in any case sufficiently permeable for the purposes of the method according to the invention. In other words, at least one of the components does not completely absorb the IR radiation. IR irradiation occurs through one or both of the IR radiation transmissive devices. Preference is given to the case in which the IR irradiation takes place only through one or the component transparent to the IR radiation. The IR irradiation preferably takes place from above through the component located above. Examples of IR radiation transmissive devices include substrates such as ceramic substrates, active devices such as diodes, LEDs, dies, IGBTs, ICs, MOSFETs, and passive devices such as sensors, ceramic heatsinks, resistors, capacitors, and coils.
Der Abstand zwischen IR-Strahlungsquelle oder - genauer - zwischen Strahlenaustrittsfläche der IR-Strahlungsquelle oder -quellen und der zu trocknenden Schicht der Metallpaste liegt beispielsweise im Bereich von 1 bis 50 cm, bevorzugt 5 bis 20 cm. The distance between the IR radiation source or, more precisely, between the radiation exit surface of the IR radiation source or sources and the layer of metal paste to be dried is, for example, in the range from 1 to 50 cm, preferably 5 to 20 cm.
Die zueinander gewandten Kontaktflächen der beiden Bauelemente bilden eine gemeinsame Überlappungsfläche miteinander. Im Allgemeinen wird dabei die Kontaktfläche des Bauelements mit der kleineren Kontaktfläche vollständig ausgenutzt, d.h. im Allgemeinen entspricht die Größe der Überlappungsfläche der der vollständigen Kontaktfläche des Bauelements mit der kleineren Kontaktfläche. The mutually facing contact surfaces of the two components form a common overlapping surface with each other. In general, the contact surface of the device with the smaller contact area is fully utilized, i. In general, the size of the overlap area corresponds to that of the full contact area of the device with the smaller contact area.
Je nach Größe der aus den zueinander gewandten Kontaktflächen der beiden Bauelemente gebildeten gemeinsamen Überlappungsfläche beispielsweise im Bereich von 1 bis 150 mm2 benötigt der insbesondere alleinig durch die IR-Bestrahlung bewirkte Trocknungsvorgang eine Zeitdauer beispielsweise im Bereich von lediglich 1 bis 60 Minuten und ist damit bedeutend kür- zer als im Falle der vorerwähnten Ofentrocknung gemäß Stand der Technik. Qualitätsnachteile entstehen keine beim Vergleich mit der Ofentrocknung. Bei kleinen Überlappungsflächen am unteren Ende des genannten Bereichs reichen kurze Trocknungsdauern aus, bei großen Überlappungsflächen bewegen sich die Trocknungsdauern am oberen Ende des genannten Be- reichs. Depending on the size of the common overlapping area formed from the mutually facing contact surfaces of the two components, for example in the range of 1 to 150 mm 2 , the drying process effected in particular solely by the IR irradiation requires a period of time, for example in the range of only 1 to 60 minutes, and is therefore significant shortest zer as in the case of the aforementioned oven drying according to the prior art. Quality disadvantages do not arise when comparing with the oven drying. For small overlap areas at the lower end of said area, short drying times are sufficient; for large overlapping areas, the drying times are at the upper end of said area.
Der Fachmann kann die IR-Bestrahlungsparameter und/oder die Trocknungsdauer für Schritt (4) so auswählen, dass ein Sintern oder Ansintern der trocknenden oder getrockneten Metallpaste vermieden werden kann. The person skilled in the art can select the IR irradiation parameters and / or the drying time for step (4) such that sintering or sintering of the drying or dried metal paste can be avoided.
In Schritt (5) des erfindungsgemäßen Verfahrens wird die die Schicht der getrockneten Metall- paste umfassende Sandwichanordnung drucklos gesintert. In step (5) of the method according to the invention, the sandwich arrangement comprising the layer of the dried metal paste is sintered without pressure.
Das drucklose Sintern erfolgt wie beim Trocknen gemäß Schritt (4) ebenfalls unter Bestrahlen mit besagter IR-Strahlung. Die Schritte (4) und (5) können dabei zweckmäßigerweise unmittelbar aneinander anschließen, beispielsweise indem die IR-Bestrahlung nach Beendigung des Trocknens gemäß Schritt (4) ohne Unterbrechung für die Zwecke von Schritt (5) fortgeführt wird. Die Schritte (4) und (5) können so praktisch miteinander verschmelzen. Es ist aber auch möglich, Schritt (4) und Schritt (5) mit dazwischen liegender Unterbrechung und zwischenzeitlicher Abkühlung durchzuführen. The pressureless sintering is carried out as in the drying according to step (4) also under irradiation with said IR radiation. The steps (4) and (5) can expediently be connected directly to one another, for example by the IR irradiation being continued without interruption for the purposes of step (5) after completion of the drying according to step (4). The steps (4) and (5) can thus practically merge with each other. But it is also possible to perform step (4) and step (5) with intervening interruption and interim cooling.
Das drucklose Sintern erfolgt unter Bestrahlen mit IR-Strahlung mit einer Peakwellenlänge im Wellenlängenbereich von 750 bis 1500 nm, bevorzugt von 750 bis 1200 nm. Falls gewünscht kann zugleich eine Unterstützung durch Konvektion stattfinden, dies ist jedoch weder notwendig noch bevorzugt. Mit anderen Worten, es ist nicht nur möglich, sondern auch bevorzugt das drucklose Sintern wie im Falle des Trocknens alleinig durch das Bestrahlen mit IR-Strahlung mit einer Peakwellenlänge im Wellenlängenbereich von 750 bis 1500 nm, bevorzugt von 750 bis 1200 nm zu bewirken. Bezüglich der Strahlungsquellen für die IR-Strahlung und deren Betriebszustände wird auf das im Zusammenhang mit Trocknungsschritt (4) Vorerwähnte verwiesen. Pressureless sintering takes place by irradiation with IR radiation having a peak wavelength in the wavelength range from 750 to 1500 nm, preferably from 750 to 1200 nm. If desired, convection support can take place at the same time, but this is neither necessary nor preferred. In other words, it is not only possible but also preferable to effect pressureless sintering as in the case of drying only by irradiation with IR radiation having a peak wavelength in the wavelength range of 750 to 1500 nm, preferably 750 to 1200 nm. With regard to the radiation sources for the IR radiation and their operating states, reference is made to the aforementioned in connection with the drying step (4).
Die IR-Bestrahlung kann wie beim Trocknungsschritt (4) statisch oder in einer Durchlaufanlage erfolgen, wobei die zu bestrahlenden Sandwichanordnungen aus Bauelementen mit dazwischen befindlicher drucklos zu sinternder Metallpaste und/oder die IR-Strahlungsquelle oder - quellen relativ zueinander bewegt werden. Die IR-Bestrahlung erfolgt wie beim Trocknungsschritt (4) durch das eine oder durch beide für die IR-Strahlung durchlässigen Bauelemente hindurch. Bevorzugt ist der Fall, bei dem die IR- Bestrahlung nur durch eines oder das eine für die IR-Strahlung durchlässige Bauelement hindurch erfolgt. Bevorzugt erfolgt die IR-Bestrahlung von oberhalb durch das oben befindliche Bauelement hindurch. The IR irradiation can be carried out statically or in a continuous system as in the drying step (4), whereby the sandwich assemblies to be irradiated are moved relative to each other from components with metal paste to be sintered without pressure and / or the IR radiation source or sources. The IR irradiation takes place, as in the drying step (4), through the one or both components which are permeable to the IR radiation. Preference is given to the case in which the IR irradiation takes place only through one or the component transparent to the IR radiation. The IR irradiation preferably takes place from above through the component located above.
Der Abstand zwischen IR-Strahlungsquelle oder - genauer - zwischen Strahlenaustrittsfläche der IR-Strahlungsquelle oder -quellen und der drucklos zu sinternden Schicht der Metallpaste liegt beispielsweise im Bereich von 1 bis 50 cm, bevorzugt 5 bis 20 cm. The distance between the IR radiation source or, more precisely, between the beam exit surface of the IR radiation source or sources and the layer of metal paste to be sintered without pressure is, for example, in the range from 1 to 50 cm, preferably 5 to 20 cm.
Je nach Größe der aus den zueinander gewandten Kontaktflächen der beiden Bauelemente gebildeten gemeinsamen Überlappungsfläche beispielsweise im Bereich von 1 bis 150 mm2 benötigt das durch die IR-Bestrahlung bewirkte drucklose Sintern eine Zeitdauer beispielsweise im Bereich von lediglich 15 bis 90 Minuten. Qualitätsnachteile entstehen keine beim Vergleich mit einem drucklosen Sintern im Ofen. Bei kleinen Überlappungsflächen am unteren Ende des genannten Bereichs reichen kurze Zeitdauern für das drucklose Sintern aus, bei großen Über- lappungsflächen bewegen sich die Zeitdauern am oberen Ende des genannten Bereichs. Depending on the size of the common overlapping surface formed from the mutually facing contact surfaces of the two components, for example in the range of 1 to 150 mm 2 , the pressure-free sintering caused by the IR irradiation requires a period of time, for example in the range of only 15 to 90 minutes. There are no disadvantages in terms of quality when compared with pressureless sintering in the furnace. For small overlap areas at the lower end of said area, short periods of time for pressureless sintering are sufficient; for large overlap areas, the periods of time are at the upper end of said area.
Sowohl Schritt (4) als auch Schritt (5) können in einer Atmosphäre erfolgen, die keinen besonderen Beschränkungen unterliegt. So können Trocknen und druckloses Sintern in einer Atmosphäre durchgeführt werden, die Sauerstoff enthält, beispielsweise Luft. Vermutlich als Folge der durch das erfindungsgemäße Verfahren ermöglichten vergleichsweise kurzen Trocknungs- dauer und ebenfalls kurzen Dauer des drucklosen Sinterns kann selbst im Falle von Bauelementen mit an sich oxidationsempfindlicher Kontaktfläche, wie beispielsweise einer Kupfer- o- der Nickelkontaktfläche, in sauerstoffhaltiger Atmosphäre, beispielsweise Luft gearbeitet werden. Both step (4) and step (5) may be carried out in an atmosphere which is not particularly limited. Thus, drying and pressureless sintering may be carried out in an atmosphere containing oxygen, for example air. Presumably as a result of the comparatively short drying time and likewise short duration of pressureless sintering made possible by the method according to the invention, it is possible to operate in an oxygen-containing atmosphere, for example air, even in the case of components having an oxidation-sensitive contact surface, such as a copper or nickel contact surface become.
Falls gewünscht, ist es selbstverständlich auch möglich, das Trocknen und drucklose Sintern in sauerstofffreier Atmosphäre durchzuführen. Unter sauerstofffreier Atmosphäre ist im Rahmen der Erfindung eine Atmosphäre zu verstehen, deren Sauerstoffgehalt nicht mehr als 100 Vol.- ppm (Volumen-ppm), vorzugsweise nicht mehr als 10 Vol.-ppm und noch mehr bevorzugt nicht mehr als 1 Vol.-ppm beträgt. Of course, if desired, it is also possible to carry out the drying and pressureless sintering in an oxygen-free atmosphere. For the purposes of the invention, an oxygen-free atmosphere is understood as meaning an atmosphere whose oxygen content is not more than 100 ppm by volume (ppm by volume), preferably not more than 10 ppm by volume and more preferably not more than 1 ppm by volume is.
Zusammenfassend ist festzustellen, dass das erfindungsgemäße Verfahren zum Verbinden von Bauelementen Vorteile gegenüber dem mit Konvektion arbeitenden Stand der Technik aufweist wie eine Verkürzung der Trocknungsdauer und der Dauer des drucklosen Sinterns ohne Qualitätseinbußen, die Ausweitung der Anwendbarkeit der drucklosen Sinterverbindungstechnik auch auf Bauelemente mit großer Kontaktfläche und die Nichtnotwendigkeit einer Inertisierung selbst im Falle des Arbeitens mit Bauelementen mit oxidationsempfindlicher Kontaktfläche, beispielsweise Kupfer- oder Nickelkontaktfläche. In summary, it should be noted that the method according to the invention for joining components has advantages over the prior art working with convection, such as a shortening of the drying time and the duration of pressureless sintering without loss of quality, the extension of the applicability of the pressureless sintered connection technique Even on components with a large contact area and the need for an inertization even in the case of working with devices with oxidation-sensitive contact surface, such as copper or nickel contact surface.
Beispiele: Referenzbeispiel 1 , Herstellung einer Metallpaste: 85 Gew.-Teile Silberpartikel (mit 0,6 Gew.-% Laurinsäure/Stearinsäure im Gewichtsverhältnis 25:75 gecoatete Silberflakes), 7,4 Gew.-Teile a-Terpineol, 7,4 Gew.-Teile Iso-Tridecanol und 0,2 Gew.-Teile Ethylcellulose wurden zu einer Metallpaste vermischt. EXAMPLES Reference Example 1, Production of a Metal Paste: 85 parts by weight of silver particles (silver powder coated with 0.6% by weight of lauric acid / stearic acid in a weight ratio of 25:75), 7.4 parts by weight of a-terpineol, 7.4 Parts by weight of isotridecanol and 0.2 part by weight of ethyl cellulose were mixed to a metal paste.
Referenzbeispiel 2, Applikation der Metallpaste aus Beispiel 1 und Bildung einer Sandwichan- Ordnung: Die Metallpaste aus Beispiel 1 wurde mittels Schablonendruck auf ein DCB-Substrat in einer Nassschichtdicke von 75 μηι und mit einer Fläche von 4 mm 4 mm vollflächig appliziert. Auf die so applizierte Paste wurde ein Siliziumchip mit seiner Silberkontaktfläche von 4 mm 4 mm unter Bildung einer Sandwichanordnung mit einer gemeinsamen Überlappungsfläche von DCB-Substrat und Chip von 4 mm 4 mm aufgesetzt. Referenzbeispiel 3a, Trocknung der Sandwichanordnung aus Beispiel 2 in einem Ofen: Die gemäß Beispiel 2 geschaffene Sandwichanordnung wurde unter Stickstoffatmosphäre bei 150°C Ofentemperatur getrocknet bis auf einen Restlösemittelgehalt von < 0,5 Gew.-%, bezogen auf ursprünglich in der Metallpaste enthaltenes organisches Lösemittel (gravimetrisch bestimmt). Der Trocknungsvorgang benötigte 60 Minuten. Referenzbeispiel 3b, Trocknung der Sandwichanordnung aus Beispiel 2 unter IR-Bestrahlung: Die gemäß Beispiel 2 geschaffene Sandwichanordnung wurde aus einem Abstand von 10 cm mit einem NIR-Strahler einer Länge von 30 cm, einer Leistung von 30 W/cm, einer Fila- menttemperatur von 2009 °C und mit einer Peakwellenlänge von 1 100 nm von oberhalb des Siliziumchips an der Luft bestrahlt und so vom organischen Lösemittel befreit bis auf einen Restlösemittelgehalt von < 0,5 Gew.-%, bezogen auf ursprünglich in der Metallpaste enthaltenes organisches Lösemittel (gravimetrisch bestimmt). Der alleinig durch die IR-Bestrahlung bewirkte Trocknungsvorgang benötigte 10 Minuten. Reference Example 2, Application of the Metal Paste from Example 1 and Formation of a Sandwich Arrangement: The metal paste from Example 1 was applied by means of stencil printing on a DCB substrate in a wet film thickness of 75 μm and with an area of 4 mm 4 mm over the entire surface. A silicon chip having a silver contact area of 4 mm × 4 mm was applied to the paste thus applied, forming a sandwich arrangement with a common overlapping area of DCB substrate and chip of 4 mm × 4 mm. Reference Example 3a, Drying of the Sandwich Assembly of Example 2 in an Oven: The sandwich prepared according to Example 2 was dried under nitrogen atmosphere at 150 ° C oven temperature to a residual solvent content of <0.5 wt .-%, based on originally contained in the metal paste organic Solvent (determined gravimetrically). The drying process took 60 minutes. Reference Example 3b, Drying of the Sandwich Arrangement from Example 2 under IR Irradiation: The sandwich arrangement provided according to Example 2 was carried out at a distance of 10 cm with an NIR emitter having a length of 30 cm, a power of 30 W / cm, a filament temperature from 2009 ° C and irradiated with a peak wavelength of 1100 nm from above the silicon chip in air and thus freed from organic solvent to a residual solvent content of <0.5 wt .-%, based on original in the metal paste contained organic solvent ( determined gravimetrically). The drying process caused solely by the IR irradiation required 10 minutes.
Vergleichsbeispiel 4a, Drucklossintern der gemäß Beispiel 3a getrockneten Sandwichanordnung in einem Ofen: Die gemäß Beispiel 3a getrocknete Sandwichanordnung wurde in einem Konvektionsofen unter Stickstoffatmosphäre 60 Minuten bei 230 °C Ofentemperatur drucklos gesintert. Nach dem Abkühlen wurde die Haftung über die Scherfestigkeit bestimmt. Dabei wur- den die Siliziumchips mit einem Schermeißel bei einer Geschwindigkeit von 0,3 mm/s bei 260 °C abgeschert. Die Kraft wurde mittels einer Kraftmessdose aufgenommen (Gerät DAGE 2000 der Firma DAGE, Deutschland). Scherfestigkeiten über 20 N/mm2 stellen zufriedenstellende Ergebnisse dar. Gemessene Scherfestigkeit: 23 N/mm2. Vergleichsbeispiel 4b, Drucklossintern der gemäß Beispiel 3b getrockneten Sandwichanordnung in einem Ofen: Die gemäß Beispiel 3b getrocknete Sandwichanordnung wurde in einem Konvektionsofen unter Stickstoffatmosphäre 60 Minuten bei 230 °C Ofentemperatur drucklos gesintert. Danach wurde die Haftung wie in Beispiel 4a über die Scherfestigkeit bestimmt. Gemessene Scherfestigkeit: 24 N/mm2. Erfindungsgemäßes Beispiel 4c, Drucklossintern der gemäß Beispiel 3b getrockneten Sandwichanordnung unter IR-Bestrahlung: Die gemäß Beispiel 3b getrocknete Sandwichanordnung wurde aus einem Abstand von 10 cm mit einem NIR-Strahler einer Länge von 30 cm, einer Leistung von 30 W/cm, einer Filamenttemperatur von 2009°C und mit einer Peakwellenlänge von 1 100 nm 20 Minuten von oberhalb des Siliziumchips bestrahlt und so drucklos gesintert, indem der IR-Bestrahlungsvorgang aus Beispiel 3b ohne Unterbrechung fortgesetzt wurde. Danach wurde die Haftung wie in Beispiel 4a über die Scherfestigkeit bestimmt. Gemessene Scherfestigkeit: 21 N/mm2. Comparative Example 4a Pressurisation of the sandwich arrangement dried according to Example 3a in an oven: The sandwich arrangement dried according to Example 3a was pressure-less sintered in a convection oven under a nitrogen atmosphere at 230 ° C. oven temperature for 60 minutes. After cooling, the adhesion was determined by shear strength. In doing so, sheared the silicon chips with a shear chisel at a speed of 0.3 mm / s at 260 ° C. The force was recorded by means of a load cell (device DAGE 2000 from DAGE, Germany). Shear strengths above 20 N / mm 2 are satisfactory. Measured shear strength: 23 N / mm 2 . Comparative Example 4b, Pressure-free sintering of the sandwich arrangement dried according to Example 3b in an oven: The sandwich arrangement dried according to Example 3b was pressure-less sintered in a convection oven under a nitrogen atmosphere at 230 ° C. oven temperature for 60 minutes. Thereafter, the adhesion was determined as in Example 4a on the shear strength. Measured shear strength: 24 N / mm 2 . Inventive Example 4c, Pressure-free sintering of the sandwich arrangement dried according to Example 3b under IR irradiation: The sandwich arrangement dried according to Example 3b was from a distance of 10 cm with a NIR radiator of a length of 30 cm, a power of 30 W / cm, a filament temperature from 2009 ° C and with a peak wavelength of 1100 nm for 20 minutes from above the silicon chip and so sintered without pressure by the IR irradiation process of Example 3b was continued without interruption. Thereafter, the adhesion was determined as in Example 4a on the shear strength. Measured shear strength: 21 N / mm 2 .
Referenzbeispiel 5, Applikation der Metallpaste aus Beispiel 1 und Bildung einer Sandwichanordnung: Die Metallpaste aus Beispiel 1 wurde mittels Schablonendruck auf ein DCB-Substrat in einer Nassschichtdicke von 75 μηι und mit einer Fläche von 5 mm 8 mm vollflächig appliziert. Auf die so applizierte Paste wurde ein Siliziumchip mit seiner Silberkontaktfläche von 5 mm 8 mm unter Bildung einer Sandwichanordnung mit einer gemeinsamen Überlappungsfläche von DCB-Substrat und Chip von 5 mm 8 mm aufgesetzt. Reference Example 5, Application of the metal paste from Example 1 and formation of a sandwich arrangement: The metal paste from Example 1 was applied by stencil printing on a DCB substrate in a wet film thickness of 75 μηι and with an area of 5 mm 8 mm over the entire surface. A silicon chip with its silver contact area of 5 mm × 8 mm was placed on the paste applied in this way to form a sandwich arrangement with a common overlapping area of DCB substrate and chip of 5 mm × 8 mm.
Referenzbeispiel 6a, Trocknung der Sandwichanordnung aus Beispiel 5 in einem Ofen: Die gemäß Beispiel 5 geschaffene Sandwichanordnung wurde unter Stickstoffatmosphäre beiReference Example 6a, Drying of the Sandwich Assembly of Example 5 in an Oven: The sandwich prepared according to Example 5 was added under a nitrogen atmosphere
150°C Ofentemperatur getrocknet bis auf einen Restlösemittelgehalt von < 0,5 Gew.-%, bezogen auf ursprünglich in der Metallpaste enthaltenes organisches Lösemittel (gravimetrisch bestimmt). Der Trocknungsvorgang benötigte 90 Minuten. 150 ° C oven temperature dried to a residual solvent content of <0.5 wt .-%, based on original organic solvent contained in the metal paste (determined gravimetrically). The drying process took 90 minutes.
Referenzbeispiel 6b, Trocknung der Sandwichanordnung aus Beispiel 5 unter IR-Bestrahlung: Die gemäß Beispiel 5 geschaffene Sandwichanordnung wurde aus einem Abstand von 10 cm mit einem NIR-Strahler einer Länge von 30 cm, einer Leistung von 30 W/cm, einer Filamenttemperatur von 2009 °C und mit einer Peakwellenlänge von 1 100 nm von oberhalb des Siliziumchips an der Luft bestrahlt und so vom organischen Lösemittel befreit bis auf einen Restlösemittelgehalt von < 0,5 Gew.-%, bezogen auf ursprünglich in der Metallpaste enthaltenes organisches Lösemittel (gravimetrisch bestimmt). Der alleinig durch die IR-Bestrahlung bewirkte Trocknungsvorgang benötigte 20 Minuten. Vergleichsbeispiel 7a, Drucklossintern der gemäß Beispiel 6a getrockneten Sandwichanordnung in einem Ofen: Die gemäß Beispiel 6a getrocknete Sandwichanordnung wurde in einem Konvektionsofen unter Stickstoffatmosphäre 60 Minuten bei 230 °C Ofentemperatur drucklos gesintert. Nach dem Abkühlen wurde die Haftung über die Scherfestigkeit bestimmt. Dabei wurden die Siliziumchips mit einem Schermeißel bei einer Geschwindigkeit von 0,3 mm/s bei 260 °C abgeschert. Die Kraft wurde mittels einer Kraftmessdose aufgenommen (Gerät DAGE 2000 der Firma DAGE, Deutschland). Gemessene Scherfestigkeit: 22 N/mm2. Reference Example 6b, Drying of the Sandwich Assembly of Example 5 under IR Irradiation: The sandwich assembly created according to Example 5 was spaced 10 cm apart with an NIR emitter of 30 cm length, 30 W / cm, filament temperature of 2009 ° C and with a peak wavelength of 1 100 nm from above the Irradiated silicon chips in the air and freed from organic solvent to a residual solvent content of <0.5 wt .-%, based on originally contained in the metal paste organic solvent (determined gravimetrically). The drying process caused solely by the IR irradiation required 20 minutes. Comparative Example 7a, Pressurisation of the sandwich arrangement dried according to Example 6a in an oven: The sandwich arrangement dried according to Example 6a was pressureless sintered in a convection oven under nitrogen atmosphere for 60 minutes at 230 ° C. oven temperature. After cooling, the adhesion was determined by shear strength. The silicon chips were sheared off at 260 ° C. with a shear chisel at a speed of 0.3 mm / s. The force was recorded by means of a load cell (device DAGE 2000 from DAGE, Germany). Measured shear strength: 22 N / mm 2 .
Vergleichsbeispiel 7b, Drucklossintern der gemäß Beispiel 6b getrockneten Sandwichanordnung in einem Ofen: Die gemäß Beispiel 6b getrocknete Sandwichanordnung wurde in einem Konvektionsofen unter Stickstoffatmosphäre 60 Minuten bei 230 °C Ofentemperatur drucklos gesintert. Danach wurde die Haftung wie in Beispiel 7a über die Scherfestigkeit bestimmt. Gemessene Scherfestigkeit: 22 N/mm2. Comparative Example 7b, Pressure-free sintering of the sandwich arrangement dried according to Example 6b in an oven: The sandwich arrangement dried according to Example 6b was pressure-sintered in a convection oven under nitrogen atmosphere for 60 minutes at 230 ° C. oven temperature. Thereafter, the adhesion was determined as in Example 7a on the shear strength. Measured shear strength: 22 N / mm 2 .
Erfindungsgemäßes Beispiel 7c, Drucklossintern der gemäß Beispiel 6b getrockneten Sandwichanordnung unter IR-Bestrahlung: Die gemäß Beispiel 6b getrocknete Sandwichanordnung wurde aus einem Abstand von 10 cm mit einem NIR-Strahler einer Länge von 30 cm, einer Leistung von 30 W/cm, einer Filamenttemperatur von 2009°C und mit einer Peakwellenlänge von 1 100 nm 20 Minuten von oberhalb des Siliziumchips bestrahlt und so drucklos gesintert, indem der IR-Bestrahlungsvorgang aus Beispiel 6b ohne Unterbrechung fortgesetzt wurde. Danach wurde die Haftung wie in Beispiel 7a über die Scherfestigkeit bestimmt. Gemessene Scherfestigkeit: 23 N/mm2. Inventive Example 7c Pressurized internally under IR irradiation of the sandwich arrangement dried according to Example 6b: The sandwich arrangement dried according to Example 6b was removed from a distance of 10 cm with an NIR emitter having a length of 30 cm, a power of 30 W / cm, a filament temperature from 2009 ° C and with a peak wavelength of 1100 nm for 20 minutes from above the silicon chip and so sintered without pressure by the IR irradiation process of Example 6b was continued without interruption. Thereafter, the adhesion was determined as in Example 7a on the shear strength. Measured shear strength: 23 N / mm 2 .

Claims

Patentansprüche claims
1 . Verfahren zum Verbinden von Bauelementen, umfassend die Schritte: (1 ) Auftragen einer organisches Lösemittel enthaltenden Metallpaste auf die Kontaktfläche eines ersten Bauelementes, 1 . A method of joining components, comprising the steps of: (1) applying an organic solvent-containing metal paste to the contact surface of a first device,
(2) gegebenenfalls Auftragen der Metallpaste auf die Kontaktfläche eines mit dem ersten Bauelement zu verbindenden zweiten Bauelementes, (2) optionally applying the metal paste to the contact surface of a second component to be connected to the first component,
(3) Herstellen einer Sandwichanordnung aus den beiden Bauelementen mit einer dazwischen befindlichen Schicht der Metallpaste, (3) producing a sandwich arrangement of the two components with a layer of the metal paste therebetween,
(4) Trocknen der zwischen den beiden Bauelementen befindlichen Schicht der Metallpaste, und (4) drying the metal paste layer between the two components, and
(5) druckloses Sintern der die Schicht aus getrockneter Metallpaste umfassenden Sandwichanordnung, dadurch gekennzeichnet, dass das Trocknen und das drucklose Sintern unter Bestrahlen mit IR-Strahlung mit einer Peakwellenlänge im Wellenlängenbereich von 750 bis 1500 nm erfolgt. (5) pressureless sintering of the layer comprising dried metal paste sandwich assembly, characterized in that the drying and pressureless sintering takes place while irradiating with IR radiation having a peak wavelength in the wavelength range of 750 to 1500 nm.
2. Verfahren nach Anspruch 1 , wobei die Kontaktfläche der Bauelemente im Bereich von 1 bis 150 mm2 liegt. 2. The method of claim 1, wherein the contact area of the components is in the range of 1 to 150 mm 2 .
3. Verfahren nach Anspruch 1 oder 2, wobei die Bauelemente ausgewählt sind aus der Gruppe bestehend aus Substraten, aktiven Bauelementen und passiven Bauelementen. 4. Verfahren nach einem der vorhergehenden Ansprüche, wobei die in Schritt (1 ) und gegebenenfalls Schritt (2) aufgetragene Metallpaste 25 bis 90 Gew.-% sinterfähige Metallpartikel, 5 bis 30 Gew.-% organisches Lösemittel, 0 bis 65 Gew.-% Metallvorläuferverbindungen, 0 bis 5 Gew.-% Sinterhilfsmittel und 0 bis 5 Gew.-% andere Additive enthält. 3. The method of claim 1 or 2, wherein the devices are selected from the group consisting of substrates, active devices and passive devices. 4. The method according to any one of the preceding claims, wherein the in step (1) and optionally step (2) applied metal paste 25 to 90 wt .-% sinterable metal particles, 5 to 30 wt .-% organic solvent, 0 to 65 wt. % Metal precursor compounds, 0 to 5 wt .-% sintering aid and 0 to 5 wt .-% other additives.
5. Verfahren nach einem der vorhergehenden Ansprüche, wobei während Schritt (4) 95 bis 100 Gew.-% des oder der ursprünglich in der Metallpaste enthaltenen organischen Lösemittel entfernt werden. 5. The method according to any one of the preceding claims, wherein during step (4) 95 to 100 wt .-% of or originally contained in the metal paste organic solvents are removed.
6. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Peakwellenlänge im Wellenlängenbereich von 750 bis 1200 nm liegt. 6. The method according to any one of the preceding claims, wherein the peak wavelength is in the wavelength range of 750 to 1200 nm.
7. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Trocknen und das drucklose Sintern jeweils alleinig durch das Bestrahlen mit der IR-Strahlung bewirkt werden. 7. The method according to any one of the preceding claims, wherein the drying and the pressureless sintering are each effected solely by the irradiation with the IR radiation.
8. Verfahren nach einem der vorhergehenden Ansprüche, wobei ein oder mehrere mit einer Leistung im Bereich von 15 bis 100 W/cm betriebene NIR-Strahler als Strahlungsquellen für die IR-Strahlung verwendet werden. 8. The method according to any one of the preceding claims, wherein one or more with a power in the range of 15 to 100 W / cm operated NIR emitters are used as radiation sources for the IR radiation.
9. Verfahren nach Anspruch 8, wobei die Strahleroberflächentemperatur des oder der NIR- Strahler im Bereich von 1800 bis 3000 °C liegt. 9. The method of claim 8, wherein the radiator surface temperature of the NIR or the radiator is in the range of 1800 to 3000 ° C.
10. Verfahren nach einem der vorhergehenden Ansprüche, wobei eines der oder beide Bauelemente für die IR-Strahlung durchlässig sind. 10. The method according to any one of the preceding claims, wherein one or both components are transparent to the IR radiation.
1 1 . Verfahren nach Anspruch 10, wobei die IR-Bestrahlung von oberhalb durch das oben befindliche für die IR-Strahlung durchlässige Bauelement hindurch erfolgt. 1 1. The method of claim 10, wherein the IR irradiation is from above through the top IR radiation transmissive device.
12. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Abstand zwischen der Strahlenaustrittsfläche der IR-Strahlungsquelle oder -quellen und der Schicht der Metallpaste im Bereich von 1 bis 50 cm liegt. 12. The method according to any one of the preceding claims, wherein the distance between the beam exit surface of the IR radiation source or sources and the layer of metal paste in the range of 1 to 50 cm.
13. Verfahren nach einem der vorhergehenden Ansprüche, wobei Schritt (4) und Schritt (5) in einer Sauerstoff enthaltenden oder in sauerstofffreier Atmosphäre durchgeführt werden, wobei in beiden Fällen eines der oder beide Bauelemente eine oxidationsempfindliche Kontaktflä- che besitzen. 13. The method according to any one of the preceding claims, wherein step (4) and step (5) are carried out in an oxygen-containing or in oxygen-free atmosphere, in both cases, one or both components have an oxidation-sensitive contact surface.
14. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Schritte (4) und (5) unmittelbar aneinander anschließen. 14. The method according to any one of the preceding claims, wherein the steps (4) and (5) directly adjoin one another.
EP18717630.0A 2017-05-12 2018-04-20 Method for connecting components by means of a metal paste Withdrawn EP3622554A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17170737 2017-05-12
PCT/EP2018/060155 WO2018206267A1 (en) 2017-05-12 2018-04-20 Method for connecting components by means of a metal paste

Publications (1)

Publication Number Publication Date
EP3622554A1 true EP3622554A1 (en) 2020-03-18

Family

ID=58994820

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18717630.0A Withdrawn EP3622554A1 (en) 2017-05-12 2018-04-20 Method for connecting components by means of a metal paste

Country Status (6)

Country Link
US (1) US20200147696A1 (en)
EP (1) EP3622554A1 (en)
JP (1) JP2020520410A (en)
KR (1) KR20190130148A (en)
CN (1) CN110546747A (en)
WO (1) WO2018206267A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021121625B3 (en) 2021-08-20 2022-11-03 Danfoss Silicon Power Gmbh Method for producing an electronic assembly having at least one active electronic component and at least one passive component

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167702A (en) * 1982-03-29 1983-10-04 Sumitomo Electric Ind Ltd Luminous energy sintering method
US4487638A (en) * 1982-11-24 1984-12-11 Burroughs Corporation Semiconductor die-attach technique and composition therefor
JPS59113654A (en) * 1982-12-20 1984-06-30 Matsushita Electric Ind Co Ltd Manufacture of tape carrier having metal projection
US6046076A (en) * 1994-12-29 2000-04-04 Tessera, Inc. Vacuum dispense method for dispensing an encapsulant and machine therefor
CN1134056C (en) * 1997-07-23 2004-01-07 因芬尼昂技术股份公司 Device and method for producing chip-substrate connection
US6284086B1 (en) * 1999-08-05 2001-09-04 Three - Five Systems, Inc. Apparatus and method for attaching a microelectronic device to a carrier using a photo initiated anisotropic conductive adhesive
DE10009678C1 (en) * 2000-02-29 2001-07-19 Siemens Ag Heat conducting adhesive joint between two workpieces used in the production of electronic components comprises a layer of heat conducting material having two flat sided surfaces with openings on each surface
US8555491B2 (en) * 2007-07-19 2013-10-15 Alpha Metals, Inc. Methods of attaching a die to a substrate
DE102007060784A1 (en) * 2007-12-17 2009-06-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Low-temperature method for joining glass and the like for optics and precision mechanics
JP5214345B2 (en) * 2008-06-24 2013-06-19 ヤマハ発動機株式会社 Laser reflow method and apparatus
DE102008039828A1 (en) 2008-08-27 2010-03-04 W.C. Heraeus Gmbh Control of the porosity of metal pastes for the pressure-free low-temperature sintering process
WO2010050209A1 (en) * 2008-10-31 2010-05-06 東レ株式会社 Method and apparatus for bonding electronic component and flexible film substrate
DE102009040078A1 (en) 2009-09-04 2011-03-10 W.C. Heraeus Gmbh Metal paste with CO precursors
DE102009040076A1 (en) 2009-09-04 2011-03-10 W.C. Heraeus Gmbh Metal paste with oxidizing agent
DE102010044326A1 (en) 2010-09-03 2012-03-08 Heraeus Materials Technology Gmbh & Co. Kg Use of aliphatic hydrocarbons and paraffins as solvents in silver pastes
JP6300525B2 (en) * 2010-11-03 2018-03-28 アルファ・アセンブリー・ソリューションズ・インコーポレイテッドAlpha Assembly Solutions Inc. Sintered material and mounting method using the same
EP2572814B1 (en) 2011-09-20 2016-03-30 Heraeus Deutschland GmbH & Co. KG Paste and method for connecting electronic components with a substrate
JP2013125769A (en) * 2011-12-13 2013-06-24 Fuji Electric Co Ltd Method of manufacturing semiconductor device
JP2014013827A (en) * 2012-07-04 2014-01-23 Panasonic Corp Manufacturing system of electronic component mounting substrate and manufacturing method
EP2792642B1 (en) 2013-04-15 2018-02-21 Heraeus Deutschland GmbH & Co. KG Sinter paste with coated silver oxide on noble and non-noble surfaces that are difficult to sinter
EP2799164B1 (en) 2013-05-03 2018-12-19 Heraeus Deutschland GmbH & Co. KG Improved sinter paste with partially oxidised metal particles
JP6351938B2 (en) * 2013-08-16 2018-07-04 国立大学法人大阪大学 Manufacturing method of bonded structure, bonded structure and apparatus
MX2016012036A (en) * 2014-05-05 2017-01-19 Heraeus Deutschland Gmbh & Co Kg Method for applying dried metal sintering compound by means of a transfer substrate onto a carrier for electronic components, corresponding carrier, and the use thereof for sintered connection to electronic components.
EP2957366B1 (en) 2014-06-18 2016-08-17 Heraeus Deutschland GmbH & Co. KG Metal paste and its use in joining components
DE102014111634A1 (en) * 2014-08-14 2016-02-18 Atv Technologie Gmbh Device for in particular thermal connection of microelectromechanical components
SG10201406685YA (en) 2014-10-16 2016-05-30 Heraeus Materials Singapore Pte Ltd Metal sintering preparation and the use thereof for the connecting of components
EP3215288B1 (en) 2014-11-03 2018-08-29 Heraeus Deutschland GmbH & Co. KG Sintered metal preparation and its use for joining components
EP3009211B1 (en) 2015-09-04 2017-06-14 Heraeus Deutschland GmbH & Co. KG Metal paste and its use for joining components

Also Published As

Publication number Publication date
CN110546747A (en) 2019-12-06
US20200147696A1 (en) 2020-05-14
JP2020520410A (en) 2020-07-09
KR20190130148A (en) 2019-11-21
WO2018206267A1 (en) 2018-11-15

Similar Documents

Publication Publication Date Title
EP2425920B1 (en) Use of aliphatic hydrocarbons and paraffins as solvent in silver sintering pastes
DE102014103013B4 (en) Method for producing a dried paste layer, method for producing a sintered connection and continuous system for carrying out the method
EP2158997A2 (en) Control of the porosity of metal pastes for pressure-free low temperature sinter-process
DE102013216633B4 (en) Pre-sintered semiconductor chip structure and method of manufacture
DE102010044329A1 (en) Contacting agent and method for contacting electrical components
DE102014117020A1 (en) METHOD FOR PRODUCING A CONNECTIVE CONNECTION BETWEEN A SEMICONDUCTOR CHIP AND A METAL LAYER
DE102009026480A1 (en) Module with a sintered joint
DE102012207652A1 (en) Two-stage process for joining a semiconductor to a substrate with silver-based compound material
DE112013001555B4 (en) Method for producing a semiconductor device
EP2959990A1 (en) Metal preparation and its use in joining components
EP2942129B1 (en) Metal paste and its use in joining components
EP3622554A1 (en) Method for connecting components by means of a metal paste
WO2016041736A1 (en) Metal sintering preparation and use thereof for joining components
EP3174657A1 (en) Method for producing a silver sintering agent having silver oxide surfaces and use of said agent in methods for joining components by pressure sintering
EP3401039A1 (en) Method of joining structural elements using metal paste
EP3762171B1 (en) Method for producing a sandwich arrangement
EP2957366B1 (en) Metal paste and its use in joining components
DE102018118251B4 (en) Chip arrangement and method for producing the same
WO2021032350A1 (en) Method for producing a soldered connection
WO2019115077A1 (en) Method for producing a component which is connected to a solder preform
WO2019170211A1 (en) Method for producing a sandwich arrangement
EP3174656B1 (en) Method of joining structural elements by means of pressure sintering
WO2019170212A1 (en) Method for producing a sandwich arrangement
WO2019115081A1 (en) Method for producing a stable sandwich arrangement of two components with solder situated therebetween
EP2979783A1 (en) Method of joining structural elements by means of pressure sintering

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20221101