EP3619436A1 - Soufflante et appareil de climatisation doté de celle-ci - Google Patents

Soufflante et appareil de climatisation doté de celle-ci

Info

Publication number
EP3619436A1
EP3619436A1 EP18797937.2A EP18797937A EP3619436A1 EP 3619436 A1 EP3619436 A1 EP 3619436A1 EP 18797937 A EP18797937 A EP 18797937A EP 3619436 A1 EP3619436 A1 EP 3619436A1
Authority
EP
European Patent Office
Prior art keywords
electrode
shroud
air conditioner
blower
conditioner according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18797937.2A
Other languages
German (de)
English (en)
Other versions
EP3619436A4 (fr
EP3619436B1 (fr
Inventor
Shinji Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority claimed from PCT/KR2018/005435 external-priority patent/WO2018208119A1/fr
Publication of EP3619436A1 publication Critical patent/EP3619436A1/fr
Publication of EP3619436A4 publication Critical patent/EP3619436A4/fr
Application granted granted Critical
Publication of EP3619436B1 publication Critical patent/EP3619436B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/687Plasma actuators therefore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/56Fluid-guiding means, e.g. diffusers adjustable
    • F04D29/563Fluid-guiding means, e.g. diffusers adjustable specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • F04D29/164Sealings between pressure and suction sides especially adapted for elastic fluid pumps of an axial flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • F04D29/526Details of the casing section radially opposing blade tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/667Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by influencing the flow pattern, e.g. suppression of turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/38Fan details of outdoor units, e.g. bell-mouth shaped inlets or fan mountings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2425Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the electrodes being flush with the dielectric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/20Purpose of the control system to optimise the performance of a machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/307Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the tip of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/17Purpose of the control system to control boundary layer
    • F05D2270/172Purpose of the control system to control boundary layer by a plasma generator, e.g. control of ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/002Influencing flow of fluids by influencing the boundary layer
    • F15D1/0065Influencing flow of fluids by influencing the boundary layer using active means, e.g. supplying external energy or injecting fluid
    • F15D1/0075Influencing flow of fluids by influencing the boundary layer using active means, e.g. supplying external energy or injecting fluid comprising electromagnetic or electrostatic means for influencing the state of the fluid, e.g. for ionising the fluid or for generating a plasma

Definitions

  • the present disclosure relate to a blower having a propeller fan installed in an air conditioner.
  • blower including a plasma actuator disclosed in Japanese Patent Publication No. 2014-103094 in order to actively solve the above problem by controlling the flow of air in the blower.
  • the blower disclosed in Japanese Patent Publication No. 2014-103094 includes a turbine formed of a metal material, a cylindrical shroud surrounding the turbine, and a plasma actuator provided on an outer circumferential end of the turbine blade and an inner circumferential surface of the shroud.
  • the plasma actuator includes a power source for applying a high-voltage, high-frequency alternating-current voltage between an insulated coating wire of a coil shape installed along the circumferential direction on the inner surface of the shroud and an outer peripheral end of the blade.
  • a power source for applying a high-voltage, high-frequency alternating-current voltage between an insulated coating wire of a coil shape installed along the circumferential direction on the inner surface of the shroud and an outer peripheral end of the blade.
  • the material of the propeller fan must be metal.
  • the clearance between the outer circumferential end of the propeller fan and the inner circumferential surface of the shroud must be set very small. Therefore, an assembly error between the propeller fan and the shroud must be strictly controlled and the manufacturing cost is greatly increased.
  • Japanese Patent Publication No. 2014-103094 has a limitation in applying to general air conditioners in which the manufacturing cost is strictly limited and the material of the propeller fan is limited to a resin material.
  • the induced airflow generated in the plasma actuator flows in the radial direction, the induced airflow flows to a portion of the outer peripheral end of the blade. As a result, unintended disturbance or vortex occurs.
  • the airflow flowing through the blade surface does not sufficiently flow at the outer peripheral end having the fastest velocity, so that even if the leakage flow can be suppressed, the blade cannot be utilized as efficiently as possible.
  • an air conditioner has a blower, the blower comprises a fan having a hub and at least one blade provided on an outer circumferential surface of the hub; a motor to rotatably drive the hub; a shroud configured to surround the periphery of the fan; and at least one actuator installed in the shroud and configured to form an airflow along an inner circumferential surface of the shroud.
  • the actuator may include a pair of electrodes; and a dielectric disposed between the pair of electrodes.
  • the pair of electrodes may include a first electrode provided on an inner circumferential surface of the shroud and a second electrode embedded in the inside of the shroud.
  • the first electrode and the second electrode may be alternately arranged along the circumferential direction of the shroud.
  • the first electrode may protrude from the inner circumferential surface of the shroud.
  • the second electrode may be disposed outside the first electrode along the radial direction of the shroud.
  • a plurality of the actuators may be spaced apart from each other along a circumferential direction of the shroud.
  • the air conditioner may further comprise a plurality of power sources to apply a voltage to each of the plurality of actuators; and a control unit to control the plurality of power sources.
  • the control unit may be configured to independently control the plurality of power sources.
  • the control unit may be configured to apply a voltage to a power source nearest to an outer peripheral end of the fan when the fan rotates.
  • the first electrode and the second electrode may be disposed so as to overlap each other at least in a section along the circumferential direction of the shroud.
  • the first electrode may extend obliquely with respect to a direction of a rotation axis of the hub.
  • the first electrode may extend in parallel with an outer peripheral end of the blade.
  • the first electrode may be disposed obliquely with respect to the inner circumferential surface of the shroud.
  • the shroud may include a receiving groove to receive at least a portion of the first electrode.
  • the pair of electrodes and the dielectric may be aligned in the axial direction of the hub.
  • the shroud may include a bell mouth formed in a cylindrical shape; a flow reducing portion provided on an upstream side of the bell mouth to reduce a flow path area; and a diffuser provided on a downstream side of the bell mouth to enlarge a flow path area.
  • the actuator may be provided on an inner peripheral surface of the bell mouth.
  • the actuator may be a plasma actuator configured to generate plasma by a dielectric barrier discharge (DBD).
  • DBD dielectric barrier discharge
  • the leakage flow is suppressed by the plasma actuator, so that the high efficiency and low noise can be achieved.
  • the plasma actuator can be installed in the blower at a low cost, the productivity of the blower and the air conditioner is improved.
  • FIG. 1 is a perspective view and a functional block diagram illustrating a blower according to a first embodiment of the present disclosure.
  • FIGS. 2a and 2b are views illustrating a configuration of a plasma actuator provided in the blower according to the first embodiment.
  • FIG. 3 is a perspective view illustrating an operation of the blower according to the first embodiment.
  • FIGS. 4a and 4b are views illustrating a flow of the induced flow (IF) by a plasma actuator in the conventional art.
  • FIGS. 5a and 5b are views illustrating a flow of the induced flow (IF) by the plasma actuator provided in the blower according to the first embodiment.
  • FIGS. 6a and 6b are views illustrating a first modified embodiment of the plasma actuator provided in the blower according to the first embodiment.
  • FIGS. 7a and 7b are views illustrating a second modified embodiment of the plasma actuator provided in the blower according to the first embodiment.
  • FIGS. 8a and 8B are views illustrating a blower according to a second embodiment of the present disclosure.
  • FIG. 9 is a view illustrating a blower according to a third embodiment of the present disclosure.
  • first may be referred to as a second component
  • second component may also be referred to as a first component
  • a blower 100 according to a first embodiment of the present disclosure will be described with reference to Figs. 1 to 5.
  • the blower 100 of the first embodiment may be provided in, for example, an outdoor unit of an air conditioner.
  • the blower 100 according to the first embodiment of the present disclosure may be provided not only in the outdoor unit but also in an indoor unit of the air conditioner.
  • the blower 100 is an axial flow fan, and includes a propeller fan 1 made of a resin material having one or a plurality of blades 12, a cylindrical-shaped shroud 2 disposed around the propeller fan 1, and a plasma actuator 3 installed in the shroud 2 and configured to generate an induced flow (IF) along an inner circumferential surface of the shroud 2.
  • a propeller fan 1 made of a resin material having one or a plurality of blades 12
  • a cylindrical-shaped shroud 2 disposed around the propeller fan 1
  • a plasma actuator 3 installed in the shroud 2 and configured to generate an induced flow (IF) along an inner circumferential surface of the shroud 2.
  • the blower 100 includes a motor 4 for rotating the propeller fan 1, a power source 5 for applying a voltage to the plasma actuator 3, and a control unit 6 which is constituted by software and controls the power supply 5.
  • the propeller fan 1 includes a cylindrical hub 11 formed of a resin material and rotated by the motor 4 and provided at a central portion of the propeller fan 1, and three blades 12 provided on the outer peripheral surface of the hub 11 at regular intervals.
  • the blade 12 has a shape curved in a helical shape along the direction of the rotation axis of the hub 11.
  • blower 100 when the propeller fan 1 is rotated by the motor 4, airflow is formed along the axial direction (mainstream direction) of the propeller fan 1 from the lower side to the upper side in Fig. 1.
  • the shroud 2 is provided with a bell mouth 22 formed in a cylindrical shape and a flow reduction portion provided on the upstream side of the bell mouth 22 to reduce an area of a flow path through which airflow introduced by the propeller fan 1 flows and a diffuser 23 provided on the downstream side of the bell mouth 22 to enlarge the area of the flow path.
  • the bell mouth 22 is disposed such that its inner peripheral surface faces the outer peripheral end 13 of the blade 12 of the propeller fan 1.
  • a clearance is formed between the inner peripheral surface of the bell mouth 22 and the outer peripheral end 13 of the blade 12.
  • the clearance may have a width of 1 mm or more and 100 mm or less along the radial direction of the bell mouth 22.
  • This clearance can be determined from the positional accuracy or assembly accuracy of the propeller fan 1 relative to the shroud 2.
  • the plasma actuator 3 generates plasma by a dielectric barrier discharge (DBD) to form an induced flow (IF) along the inner circumferential surface of the bell mouth 22.
  • DBD dielectric barrier discharge
  • the plasma actuator 3 includes a pair of electrodes 31 and 32 connected to a power source 5 having a predetermined voltage and a predetermined frequency and a dielectric 33 formed between the pair of electrodes 31 and 32.
  • a plurality of plasma actuators 3 are aligned in the circumferential direction of the bell mouth 22, and each electrode included in each plasma actuator 3 is aligned in parallel with the inner circumferential surface of the bell mouth 22.
  • the respective electrodes of the plasma actuator 3 are arranged so as to be located in the passage region of each blade 12.
  • the plasma actuator 3 is not provided on the inner peripheral surface of the flow reduction portion 21 of the shroud 2 in the blower 100 according to the first embodiment.
  • Fig. 2a is a plan view of a part of the inner circumferential surface of the bell mouth 22 according to the direction in which the electrodes are arranged
  • Fig. 2b is a sectional view thereof.
  • each of the plasma actuators 3 includes a pair of electrodes 31 and 32.
  • the pair of electrodes 31 and 32 includes a first electrode 31 provided on the inner peripheral surface of the bell mouth 22 and a second electrode 32 embedded in the bell mouth 22.
  • the second electrode 32 is disposed outside the first electrode 31 along the radial direction of the shroud 2.
  • the first electrode 31 is exposed on the inner peripheral surface of the bell mouth 22 and the second electrode 32 is embedded in the bell mouth 22. Therefore, in the following description, the first electrode 31 will be referred to as an exposed electrode, and the second electrode 32 will be referred to as an embedded electrode.
  • the exposed electrode 31 is inclined with respect to the inner peripheral surface of the bell mouth 22 and extends obliquely with respect to the direction of the rotation axis of the hub 11.
  • the inclined or curved shape of the exposed electrode 31 corresponds to a shape formed when the outer peripheral end 13 of the blade 12 is projected on the inner peripheral surface of the bell mouth 22 in the radial direction of the bell mouth 22.
  • a layer of dielectric 33 is formed between the exposed electrode 31 and the embedded electrode 32.
  • the dielectric 33 is disposed on the outside of the exposed electrode 31 along the radial direction of the bell mouth 22 and the embedded electrode 32 is disposed on the outside of the dielectric 33. That is, the exposed electrode 31, the dielectric 33, and the embedded electrode 32 are arranged in order along the radial direction of the bell mouth 22.
  • a central axis passing through the center of the exposed electrode 31 and a central axis passing through the center of the embedded electrode 32 are arranged to be shifted from each other along the arrangement direction of the electrodes.
  • a circumferential distance along the circumferential direction of the bell mouth 22 between the exposed electrode 31 and the embedded electrode 32 constituting one plasma actuator 3 is smaller than the distance to the adjacent other plasma actuator 3.
  • the exposed electrode 31 and the embedded electrode 32 are arranged so as to generate an induced flow (IF) in one direction.
  • any arrangement that can generate the induced flow (IF) in one direction is applicable.
  • the exposed electrode 31 and the embedded electrode 32 are arranged to overlap at least in a section along the circumferential direction of the bell mouth 22 so that the circumferential distance between the exposed electrode 31 and the embedded electrode 32 along the circumferential direction of the bell mouth 22 is zero, and the plasma actuators 3 adjacent to each other are arranged at regular intervals.
  • plasma is formed on the inner circumferential surface of the bell mouth 22 adjacent to the exposed electrode 31.
  • the exposed electrode 31 protrudes radially inward from the inner circumferential surface of the bell mouth 22 and is disposed within the clearance.
  • the exposed electrode 31 is disposed so as to be spaced apart from the outer peripheral end 13 of the blade 12 by a predetermined distance.
  • a side surface of the exposed electrode 31 and a side surface of the embedded electrode 32 are arranged in parallel with the inner circumferential surface of the bell mouth 22 and the plurality of exposed electrodes 31 and the embedded electrodes 32 are alternately arranged along the circumferential direction of the bell mouth 22.
  • Each of the plurality of exposed electrodes 31 and the embedded electrodes 32 are disposed apart from each other along the circumferential direction of the bell mouth 22.
  • the power supply 5 has a plurality of independently controllable power supply systems. It is preferable that the plurality of power supply systems are configured to have the same number as the number of the plasma actuators 3 divided by the number of the blades 12. However, the number and type of power supply systems that can be independently controlled may be provided in various numbers and types.
  • the power source 5 is configured to apply a predetermined high-voltage, high-frequency AC voltage so as to generate plasma between the exposed electrode 31 and the embedded electrode 32.
  • the power source 5 may be configured to apply an AC voltage or a pulse voltage of 3 kV, 10 kH between the exposed electrode 31 and the embedded electrode 32.
  • the control unit 6 is configured to control the ON / OFF of the voltage of the plurality of plasma actuators 3 in synchronization with the rotation of the propeller fan 1.
  • control unit 6 acquires the current rotation angle of the propeller fan 1 from the encoder or armature current installed in the motor 4, and determines which of the plurality of plasma actuators 3 is to be driven in accordance with the rotation angle of the propeller fan 1 and apply the voltage of the power source 5 to the corresponding plasma actuator 3.
  • control unit 6 may operate the plasma actuator 3 closest to the outer peripheral end 13 of the blade 12 of the propeller fan 1.
  • Synchronization with the rotation of the propeller fan 1 means not only turning the voltage ON at a time when the outer peripheral end 13 of the blade 12 passes through the exposed electrode 31 but also turning the voltage ON at a predetermined time before or after the time when the outer peripheral end 13 of the blade 12 passes through the exposed electrode 31.
  • plasma is formed every time the outer peripheral end 13 of the blade 12 of the propeller fan 1 passes the exposed electrode 31, an induced flow (IF) is formed along the inner peripheral surface of the bell mouth 22.
  • the induced flow (IF) is formed along the inner circumferential surface of the bell mouth 22 in a direction perpendicular to the outer peripheral end 13 of the blade 12. That is, the induced flow (IF) is formed as a flow having an axial component and a circumferential component along the inner peripheral surface of the bell mouth 22.
  • a high-voltage, high-frequency AC voltage is applied between a propeller fan 1 having a metal material and a coating wire provided on the inner circumferential surface of the shroud 2 to form plasma, an induced flow (IF) flowing in the radial direction of the shroud 2 is formed.
  • IF induced flow
  • the induced flow (IF) flowing in the radial direction also flows on the outer peripheral end 13 of the blade 12, so that the leakage flow is suppressed.
  • air cannot be pushed out at the outer peripheral end of the blade 12 where the flow of air is the fastest, which causes a decrease in the efficiency of the blower.
  • a pair of the exposed electrodes 31 and the embedded electrodes 32 are formed on the inner peripheral surface of the bell mouth 22, the induced flow (IF) flows in the clearance along the inner peripheral surface of the bell mouth 22.
  • the efficiency of the blower 100 is improved and the noise is reduced.
  • the blower 100 has a structure in which the exposed electrode 31 is provided on the inner peripheral surface of the bell mouth 22.
  • one surface of the exposed electrode 31 is provided so as to coincide with the inner peripheral surface of the bell mouth 22.
  • spaces between the plurality of exposed electrodes 31 are filled with the dielectric 33 or another resin or the like to form the inner peripheral surface of the bell mouth 22.
  • one surface of the exposed electrode 31 and one surface of the embedded electrode 32 are formed to be inclined so as to intersect the inner peripheral surface of the bell mouth 22.
  • the bell mouth 22 includes a receiving groove to receive a portion of the radially outer side of the exposed electrode 31.
  • a portion of the radially inner side of the exposed electrode 31 is not accommodated in the receiving groove but protrudes from the inner peripheral surface of the bell mouth 22.
  • the plasma actuator 3 forms the induced flow (IF) along the inner peripheral surface of the bell mouth 22, so that the leakage flow of the propeller fan 1 can be suppressed.
  • IF induced flow
  • blower 100 according to a second embodiment of the present disclosure will be described with reference to Fig. 8a and 8B.
  • the blower 100 has a structure in which the exposed electrode 31 and the embedded electrode 32 of the plasma actuator 3 are arranged along the circumferential direction of the shroud 2, the induced flow (IF) generated by the plasma actuator 3 flows in a direction perpendicular to the peripheral end 13 of the blade 12.
  • the exposed electrode 31, the embedded electrode 32, and the dielectric 33 of the plasma actuator 3 are formed in a ring shape and aligned in only one set in the direction of the rotational axis of the hub 11.
  • the plasma actuator 3 provided at the bell mouth 22 forms a induced flow (IF) flowing in the axial direction along the inner peripheral surface of the bell mouth 22.
  • the structure of the pair of electrodes constituting the plasma actuator 3 can be simplified.
  • IF cylindrical induced flow
  • a set of plasma actuator 3 is provided in the blower 100 according to the second embodiment shown in Fig. 8a and 8B, a plurality of sets of plasma actuators 3 may be provided.
  • the plasma actuator 3 is installed only in the propeller fan 1.
  • a set of the exposed electrodes 31 and the embedded electrodes 32 are formed along the outer peripheral end of the blade 12 of the propeller fan 1, and the induced flow (IF) is generated on the outer peripheral end of the blade 12.
  • the induced flow (IF) can be formed directly on the outer peripheral end of the blade 12 where the leakage flow occurs , so that the suppression effect of the leakage flow can be obtained even with the small induced flow (IF).
  • an air conditioner is exemplified as an application example of the blower according to the present disclosure, but it is also possible to apply the blower according to the present disclosure to electronic products having other blowing applications.
  • the plasma actuator is not limited to forming an induced flow (IF) by generating plasma by a pair of parallel electrodes.
  • a pair of electrodes for forming plasma in the plasma actuator may be installed only in one of the shroud and the propeller fan to generate plasma regardless of the size of the clearance.
  • the plasma actuator is not limited to forming an induced flow (IF) by dielectric barrier discharge, and it is also possible to form an induced flow (IF) by, for example, atmospheric pressure glow discharge.
  • the positional relationship and the magnitude relationship between the exposed electrode and the embedded electrode are not limited to the above-described structure as long as the structure can generate plasma.
  • the plasma actuator may be installed not only on the inner circumferential surface of the bell mouth but also on the inner circumferential surface of the diffuser. Further, the plasma actuator may be provided only on the inner peripheral surface of the diffuser.
  • the blower may be configured to perform an air cleaning function by using a sterilizing component or an air cleaning component of plasma generated in the plasma actuator.
  • the leakage flow is suppressed by the plasma actuator, so that the high efficiency and low noise can be achieved.
  • the plasma actuator can be installed in the blower at a low cost, the productivity of the blower and the air conditioner is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Plasma Technology (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

L'invention concerne une soufflante ayant une efficacité élevée et un faible bruit par commande active de l'écoulement d'air dans la soufflante, et un climatiseur comportant la soufflante. Le climatiseur comporte une soufflante. La soufflante comprend un ventilateur ayant un moyeu et au moins une lame disposée sur une surface circonférentielle externe du moyeu, un moteur pour entraîner en rotation le moyeu, un carénage configuré pour entourer la périphérie du ventilateur et au moins un actionneur installé dans le carénage et configuré pour former un flux d'air le long d'une surface circonférentielle interne du carénage.
EP18797937.2A 2017-05-12 2018-05-11 Soufflante et appareil de climatisation doté de celle-ci Active EP3619436B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017096039A JP2018193876A (ja) 2017-05-12 2017-05-12 送風機、及び、空気調和装置
KR1020180037531A KR102455234B1 (ko) 2017-05-12 2018-03-30 송풍기 및 이를 가지는 공기 조화 장치
PCT/KR2018/005435 WO2018208119A1 (fr) 2017-05-12 2018-05-11 Soufflante et appareil de climatisation doté de celle-ci

Publications (3)

Publication Number Publication Date
EP3619436A1 true EP3619436A1 (fr) 2020-03-11
EP3619436A4 EP3619436A4 (fr) 2020-05-13
EP3619436B1 EP3619436B1 (fr) 2024-01-17

Family

ID=64571677

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18797937.2A Active EP3619436B1 (fr) 2017-05-12 2018-05-11 Soufflante et appareil de climatisation doté de celle-ci

Country Status (3)

Country Link
EP (1) EP3619436B1 (fr)
JP (1) JP2018193876A (fr)
KR (1) KR102455234B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115443382A (zh) * 2020-04-30 2022-12-06 三菱电机株式会社 送风机

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023154751A (ja) * 2022-04-08 2023-10-20 日本未来科学研究所合同会社 プラズマ生成装置及び空気調和装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5563010B2 (ja) * 2006-04-28 2014-07-30 株式会社東芝 翼、気流発生装置、熱交換装置、マイクロマシンおよびガス処理装置
JP4912955B2 (ja) 2007-05-28 2012-04-11 株式会社東芝 空力騒音低減装置、流体機器、移動体および回転機器
WO2009018532A1 (fr) 2007-08-02 2009-02-05 University Of Notre Dame Du Lac Régulation d'écoulement de jeu d'embout de compresseur en utilisant des actionneurs au plasma
US8317457B2 (en) 2007-12-28 2012-11-27 General Electric Company Method of operating a compressor
US8282336B2 (en) 2007-12-28 2012-10-09 General Electric Company Instability mitigation system
DE102011015784A1 (de) 2010-08-12 2012-02-16 Ziehl-Abegg Ag Ventilator
JP5837323B2 (ja) * 2011-04-21 2015-12-24 株式会社東芝 風力発電装置
EP2884823B3 (fr) * 2012-08-08 2019-03-06 National Institute of Advanced Industrial Science and Technology Actionneur de plasma de surface
JP6551173B2 (ja) * 2015-11-09 2019-07-31 株式会社デンソー 遠心送風機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115443382A (zh) * 2020-04-30 2022-12-06 三菱电机株式会社 送风机

Also Published As

Publication number Publication date
EP3619436A4 (fr) 2020-05-13
JP2018193876A (ja) 2018-12-06
EP3619436B1 (fr) 2024-01-17
KR20180124714A (ko) 2018-11-21
KR102455234B1 (ko) 2022-10-17

Similar Documents

Publication Publication Date Title
WO2018208119A1 (fr) Soufflante et appareil de climatisation doté de celle-ci
WO2017043927A1 (fr) Unité extérieure d'appareil de climatisation
WO2016195238A1 (fr) Structure de refroidissement de turbo-soufflante du type à entraînement direct
EP3619436A1 (fr) Soufflante et appareil de climatisation doté de celle-ci
KR910000391B1 (ko) 가스냉각식 발전기에서의 냉각제 가스유동 제어방법 및 냉각제 가스유동 제어용 배플
US6779799B2 (en) Sealing apparatus for electrical generator ventilation system
WO2017039330A1 (fr) Unité d'aspiration
CN87102423A (zh) 电动发电机冷却气流分隔导流板
WO2015060509A1 (fr) Dispositif d'évacuation à ventilateur de type à tourbillon destiné à prévenir la rediffusion
WO2014119813A1 (fr) Ventilateur soufflant du type à turbulence
WO2017010627A1 (fr) Turbine à gaz comprenant un système de refroidissement pourvu d'un chemin d'alimentation en air froid déviant vers une enveloppe extérieure
WO2020204534A1 (fr) Convertisseur
WO2016104872A1 (fr) Dispositif d'aspiration permettant d'augmenter la quantité d'aspiration par formation d'un trajet de circulation d'air stable
EP2659022A2 (fr) Appareil de revêtement à sec
WO2020125114A1 (fr) Structure pour introduire de l'air de refroidissement dans un rotor à l'extérieur pour refroidir un palier magnétique radial
WO2016002994A1 (fr) Moteur
JP5881921B1 (ja) 回転電機
JP2016046971A (ja) 回転電機のステータ
WO2022203178A1 (fr) Turbocompresseur avec fonction antidéflagrante
EP4004452A1 (fr) Diffuseur, ensemble diffuseur et climatiseur les comprenant
WO2018012885A1 (fr) Rotor et moteur comprenant ledit rotor
US20240088755A1 (en) Electrical machine and method for cleaning an air gap in an electrical machine
US10840759B2 (en) Rotary electric machine
EP3251195A1 (fr) Moteur à courant continu sans balais et son nettoyeur
EP3312974B1 (fr) Système de refroidissement à jet d'écoulement à contre-courant radial

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref document number: 602018064288

Country of ref document: DE

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: F04D0029560000

Ipc: F04D0029520000

A4 Supplementary search report drawn up and despatched

Effective date: 20200415

RIC1 Information provided on ipc code assigned before grant

Ipc: H05H 1/24 20060101ALI20200407BHEP

Ipc: F24F 1/38 20110101ALI20200407BHEP

Ipc: F04D 29/68 20060101ALI20200407BHEP

Ipc: F04D 29/16 20060101ALI20200407BHEP

Ipc: F04D 29/52 20060101AFI20200407BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220425

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20231123

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018064288

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20240117

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1650704

Country of ref document: AT

Kind code of ref document: T

Effective date: 20240117