EP3614175A1 - Verfahren und vorrichtung zur optischen distanzmessung - Google Patents

Verfahren und vorrichtung zur optischen distanzmessung Download PDF

Info

Publication number
EP3614175A1
EP3614175A1 EP18190429.3A EP18190429A EP3614175A1 EP 3614175 A1 EP3614175 A1 EP 3614175A1 EP 18190429 A EP18190429 A EP 18190429A EP 3614175 A1 EP3614175 A1 EP 3614175A1
Authority
EP
European Patent Office
Prior art keywords
pulse
sequence
measuring
delay
pulses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18190429.3A
Other languages
English (en)
French (fr)
Other versions
EP3614175B1 (de
Inventor
Michael Kiehn
Wolfgang Birnbacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibeo Automotive Systems GmbH
Original Assignee
Ibeo Automotive Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibeo Automotive Systems GmbH filed Critical Ibeo Automotive Systems GmbH
Priority to EP18190429.3A priority Critical patent/EP3614175B1/de
Priority to IL268695A priority patent/IL268695B2/en
Priority to CA3052003A priority patent/CA3052003C/en
Priority to US16/548,156 priority patent/US11506761B2/en
Priority to CN201910785782.7A priority patent/CN110895337B/zh
Publication of EP3614175A1 publication Critical patent/EP3614175A1/de
Application granted granted Critical
Publication of EP3614175B1 publication Critical patent/EP3614175B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4808Evaluating distance, position or velocity data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • G01S7/4876Extracting wanted echo signals, e.g. pulse detection by removing unwanted signals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0242Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using non-visible light signals, e.g. IR or UV signals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • G05D1/0248Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means in combination with a laser

Definitions

  • Optical distance measurements in particular for use in driverless navigation of vehicles, are known from the prior art. They are based on the time-of-flight principle, with a scanning sensor, in particular a LIDAR (abbreviation for "light detection and ranging") sensor, which periodically emits measurement pulses which are reflected on objects, the reflected ones being used for the measurement Measuring pulses are detected. From the determination of the transit time of the measuring pulses from the sensor to the objects and back, the distance to these objects can be inferred using the speed of light.
  • LIDAR abbreviation for "light detection and ranging”
  • the transmission pulses cannot be transmitted one after the other as quickly as desired in the prior art, since otherwise no clear assignment of the reflection is possible.
  • the running time of the measuring pulse i.e. the time it takes for a measuring pulse to reach the sensor again, cannot be accelerated.
  • double the running time to the farthest possible object must be waited until a measuring pulse can be delivered again.
  • the object of the present invention is to improve a method and a device for distance measurement in such a way that measurement pulses can be emitted in the form of a sequence, but no aliasing effects occur or these are minimized and the runtime of the sequence can thus be clearly determined , At the same time, the energy emitted should be maximized.
  • a method for optical distance measurement which comprises emitting a large number of measuring pulses, reflecting emitted measuring pulses on at least one object and receiving reflected measuring pulses.
  • a sequence of measuring pulses is sent out, the sequence comprising temporal pulse intervals between successive measuring pulses, and each measuring pulse of the sequence having a temporal pulse width of T (pulse).
  • the pulse distances form a first set, the first set being defined by ⁇ T (delay) + i * T (pulse): i is an element of the natural numbers between 0 and j ⁇ , where for all values of i: T (delay ) + i * T (pulse) ⁇ (2T (delay) + 2T (pulse)), the first set comprising only one element for all values of i between 0 and j, and wherein T (delay) defines a pulse distance base unit.
  • a measuring pulse reflected by the object is a measuring pulse that was previously emitted, so that the direction of propagation has changed due to the reflection on the object.
  • the reflected measuring pulse can thus be understood as an echo of the transmitted measuring pulse.
  • the duration of the measuring pulses to the objects on which they were reflected is determined by means of the method, and the distance from the respective measuring pulse to the object is determined from this using the speed of light.
  • optical distance measurement is characterized by the fact that distances are determined using optical signals, here optical measuring pulses.
  • distance means a distance.
  • the distance covered by the measuring pulse is to be understood as the distance between the transmitting element that sent the measuring pulse and the object that reflected it, plus the distance between the object and the receiving element that received the corresponding reflected measuring pulse.
  • the method includes taking into account the exact position of the transmitting element and the receiving element, in particular in relation to one another.
  • the at least one object is typically a three-dimensional object, so that some areas of the object can be arranged closer and other areas of the object further away, the term “distance to the object” is the distance to at least one point of the object meant, namely the point at which the measuring pulse was struck and where it was reflected.
  • the runtime is the time that the measuring pulse took for the previously described distance.
  • the method is preferably used for distance measurement for use in driverless navigation of vehicles.
  • a measuring pulse is in particular an electromagnetic, in particular an optical signal.
  • This signal preferably has a wavelength that does not come from the range visible to the human eye. For security reasons, invisible infrared is preferably used. Since the measuring pulse is an electromagnetic signal and the speed of the measuring pulse is known, the running time of a measuring pulse can be used to determine the distance traveled by the measuring pulse from the speed of light.
  • sequence means in particular a chronological sequence of measuring pulses.
  • the sequence is defined in particular by a pattern, in other words a pattern, which is determined by the number of measuring pulses, their pulse widths and the temporal pulse intervals between the measuring pulses.
  • the sequence has temporal pulse intervals between successive measuring pulses. Successive measuring pulses are temporally adjacent measuring pulses. In other words, these are measuring pulses that were sent one after the other. Each measuring pulse has a temporal pulse width of T (pulse). In particular, all measuring pulses of the sequence are also identical in shape.
  • pulse distance is in particular not to be understood as a pulse-to-pulse distance, that is to say the distance between the one pulse measured from its center to the center of the other pulse. Instead, the pulse distance defines the distance between the opposite ends of the pulses.
  • the temporal pulse interval can be determined by taking the pulse-to-pulse interval measured from the centers, in which case a pulse width of T (pulse) is subtracted. This takes into account the fact that the pulse distances are not determined from the center, but from the end of the pulses.
  • the first set contains only one element for all values of i between 0 and j. This means that despite the curly spelling of the first set, elements of the first set can only occur once.
  • the first set thus consists of only one element for all values of i between 0 and j.
  • the method comprises determining the first quantity.
  • the condition for all values of i namely that T (delay) + i * T (pulse) ⁇ (2T (delay) + 2T (pulse)), is an abort condition. This condition defines the largest element of the first Quantity.
  • T (delay) T (pulse).
  • the first set thus consists of the following elements: T (delay), T (delay) + T (pulse), T (delay) + 2 * T (pulse).
  • the first set thus comprises three elements, so that the sequence comprises a total of four measuring pulses, between which the pulse distances are arranged. The order of the pulse intervals is irrelevant.
  • T corresponds to at least twice T (pulse), preferably at least five times T (pulse), further preferably at least ten times T (pulse), most preferably at least 16 times T (pulse).
  • T delay
  • the first set comprises j + 1 pulse intervals and the sequence j + 2 measuring pulses.
  • the number of measuring pulses within the sequence is thus also defined by the termination condition, which determines j.
  • the method comprises sending out a first measuring pulse.
  • An element from the first set i.e. a pulse interval selected. This selected pulse interval is waited until a further measuring pulse is sent.
  • a further, but different element is then selected from the first set, the duration of which is again awaited.
  • a measuring pulse is then sent out again. This continues until each element of the first set has been selected once. Then a last measuring pulse is sent out and thus the sequence is sent out overall.
  • the method is a time-of-flight method, in particular a time-correlated single photon counting method (TCSPC method).
  • TCSPC method time-correlated single photon counting method
  • An advantage of the method according to the invention is that the runtime of the sequence can be clearly determined during the evaluation. Furthermore, the range can be increased.
  • the maximum range is defined by the double transit time that a measuring pulse would need in order to need back to a device for carrying out the method, reflected by a maximally distant object.
  • the double transit time would have to be waited until the maximum range, until another measurement pulse could be transmitted in order to prevent aliasing effects.
  • the sequence can be sent out in such a way that each pulse interval is smaller than the previous pulse interval. This applies again to all pulse intervals apart from the first pulse interval, since a comparison with a previous pulse interval of the same sequence is not possible.
  • the pulse interval thus decreases with an increasing sequence.
  • the sequence is sent out in such a way that the pulse intervals decrease after each measurement pulse is sent out until the minimum pulse interval, T (delay), is reached.
  • the transmission and reception of a sequence preferably defines a measurement run.
  • the method preferably includes the integration of the measurement runs carried out.
  • the quality of the measurement can be improved by integrating several measurement runs.
  • the method includes, in particular, the evaluation of the received measurement pulses, the evaluation comprising the use of an optimal filter, and the optimal filter being an adapted optimal filter.
  • the sequence of the pulse intervals of the first quantity within the sequence can be chosen arbitrarily, because the evaluation does not completely overlay the sequence with an optimal filter that is not optimally adapted to the sequence. This can be used to suppress crosstalk from neighboring sensor pixels of a receiving unit.
  • the device comprises a transmitting unit and a receiving unit.
  • the transmitting unit comprises transmitting elements and receiving unit receiving elements, in particular sensor pixels.
  • the transmission elements and reception elements are preferably combined on a transmission matrix or a reception matrix.
  • a matrix can be understood in particular as a three-dimensional, in particular plate-shaped, body, on the one surface of which the corresponding elements are arranged.
  • the device is a scanning device, preferably a LIDAR sensor.
  • the transmitting elements are preferably each a laser, while the receiving elements are in particular each formed by a diode, in particular by a single photon avalanche diode.
  • Figure 1 A method diagram of a method (100) according to the invention is shown.
  • the first set of pulse intervals (24) is determined (104). This includes in particular the definition of the temporal pulse width (23) of the measuring pulses to be emitted, i.e. T (pulse).
  • T pulse
  • the pulse interval base unit T delay is also preferably defined.
  • the sequence (20) comprises four measuring pulses (22), namely a first measuring pulse (22a), a second measuring pulse (22b), a third measuring pulse (22c) and a fourth measuring pulse (22d). All measuring pulses have T (pulse) as the pulse width (23). In other words, all measuring pulses have the same pulse width (23).
  • the first measuring pulse (22a) is sent out (104a).
  • a pulse interval (24) from the first set of pulse intervals (24), specifically the first pulse interval (24a), is then waited until a second measuring pulse (22b) is transmitted.
  • the first pulse interval (24a) is one pulse interval base unit (25) T (delay) plus two pulse widths (23) T (pulse).
  • a pulse interval (24), namely a second pulse interval (24b), is again waited for from the first set.
  • the second pulse spacing (24b) is a pulse spacing base unit (25) T (delay) plus a pulse width (23) T (pulse).
  • a third measuring pulse (22c) is then sent, after which a further pulse interval (24), specifically the third pulse interval (24c), which is a pulse interval base unit (25), is awaited.
  • a last measuring pulse (22), namely the fourth measuring pulse (22d) is sent out.
  • the length of the signal (21) is thus four pulse widths (23) and six pulse spacing base units (25).
  • the measuring pulses (22) are emitted in such a way that, starting from the largest pulse interval of the first set, each pulse interval is smaller than the previous one.
  • the pulse intervals (24) thus decrease in length with increasing sequence.
  • Figure 3 shows another sequence (20), characterized by the same first set as the sequence Figure 2 is defined.
  • Figure 4 is another sequence (20), which is characterized by the first set as the sequences (20) of Figures 2 and 3 is shown.
  • the first pulse interval (24a) the longest pulse interval (24) of the first set, whereupon, after the transmission of a second measurement pulse (22b), the smallest element of the first set follows as the second pulse interval (24b).
  • the last step is to wait for a pulse interval (24) as the third pulse interval (24c), which corresponds to a pulse interval base unit (25) and a pulse width (23).
  • FIG. 5 A large number of sequences (20) are shown which can be sent out by the method (100) according to the invention.
  • the plurality of sequences (20) are shown on a time scale (29) which is interrupted for reasons of space.
  • sequences (20) are sent out, a first sequence (20a), a second sequence (20b), a third sequence (20c) and a fourth sequence (20d), all of which are identical to one another.
  • Each sequence (20) is designed like that in Figure 2 shown.
  • Sequence spacings (26) are arranged between the sequences (20), specifically a first sequence spacing (26a) between the first sequence (20a) and the second sequence (20b), a second sequence spacing (26b) between the second sequence (20b) and the third sequence (20c), and a third sequence spacing (26c) between the third sequence (20c) and the fourth sequence (20d).
  • sequence distances (26) form a second set, which is given by the following elements: a sequence distance base unit (27), a sequence distance base unit (27) plus a sequence length (21), a sequence distance base unit (27) plus two sequence lengths (21).
  • sequence length (21) preferably corresponds to the sequence spacing base unit (27).
  • the sequence (20) which was transmitted and is contained in the received signal is analogous to the sequence in FIG Figure 2 educated.
  • a time scale (29) shows how an optimal filter (30), in other words a matching filter, runs over the received signal.
  • the time offset (31) of the optimal filter (30) is shown.
  • the optimal filter (30) is designed such that it has a pattern that is time-mirrored to the pattern of the sequence (20). This can be seen from the fact that in the Figure 6 shown ones in the time course direction first have a distance from each other that corresponds to the third pulse interval of the sequence, then a distance that corresponds to the second pulse interval, and then a distance that corresponds to the first pulse interval. Zeros, not shown, are arranged between the ones.
  • the optimal filter (30) with a time-mirrored pattern is successively, that is to say descending down along the time scale (29), correlated comprehensively via the received signal, the sequence (20).
  • Matches (33) are in the Figure 6 represented such that the corresponding one is encircled.
  • the right column shows the output (32) of the optimal filter (30).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

Es wird ein Verfahren (100) zur optischen Distanzmessung vorgeschlagen, das das Aussenden (101) einer Vielzahl von Messpulsen (22), die Reflektion (102) von ausgesandten Messpulsen (22) an mindestens einem Objekt und das Empfangen (103) von reflektierten Messpulsen (22) umfasst. Es wird eine Sequenz (20) von Messpulsen (22) ausgesandt wird, wobei die Sequenz (20) zeitliche Pulsabstände (24) zwischen zeitlich aufeinanderfolgenden Messpulsen (22) umfasst, und wobei jeder Messpuls (22) der Sequenz (20) eine zeitliche Pulsbreite (23) von T(Puls) aufweist. Die Pulsabstände (24) bilden eine erste Menge, wobei die erste Menge durch {T(delay)+i*T(Puls): i ist Element der natürlichen Zahlen zwischen 0 und j} definiert ist, wobei für alle Werte von i gilt T(delay)+i*T(Puls) < (2T(delay)+2T(Puls)), , wobei die erste Menge jeweils nur ein Element für alle Werte von i zwischen 0 und j umfasst, und wobei T(delay) eine Pulsabstandsbasiseinheit (25) definiert.

Description

    Technisches Gebiet
  • Die Erfindung betrifft ein Verfahren sowie eine Vorrichtung zur optischen Distanzmessung.
  • Stand der Technik
  • Optische Distanzmessungen, insbesondere zur Anwendung in der fahrerlosen Navigation von Fahrzeugen, sind aus dem Stand der Technik bekannt. Sie beruhen auf dem Time-of-Flight-Prinzip, wobei zur Messung ein scannender Sensor, insbesondere ein LIDAR (Abkürzung für "light detection and ranging") Sensor eingesetzt wird, der periodisch Messpulse aussendet, die an Objekten reflektiert werden, wobei die reflektierten Messpulse detektiert werden. Aus der Bestimmung der Laufzeit der Messpulse von dem Sensor zu den Objekten und zurück kann mithilfe der Lichtgeschwindigkeit auf die Distanz zu diesen Objekten geschlossen werden.
  • Für die maximale Messreichweite eines nach dem Time Correlated Single Photon Counting (TCSPC) Verfahren arbeitenden Time-of-Flight-Messgerätes ist die abgegebene Energie ein wesentlicher Parameter. Dabei ist es im Prinzip unerheblich, in welcher Zeitspanne die Energie abgegeben wird. Ziel für die Anwendung ist eine möglichst große Messreichweiten zu erreichen.
  • Da die technisch realisierbaren Pulsleistungen begrenzt sind und die Messgenauigkeit mit Verbreiterung der emittierten Messpulse abnimmt, bietet es sich an, die zur Erreichung einer Messreichweite erforderliche Energie auf mehrere Messpulse zu verteilen. Dadurch können allerdings Aliasing-Effekte auftreten. Dies bedeutet, dass die Reflektion eines Messpulses nicht eindeutig einem ausgesandten Messpuls zugeordnet werden kann. Als Resultat entstehen falsche Objektpositionen, die nach dem Stand der Technik nicht von der tatsächlichen Objektposition unterschieden werden können.
  • Um diese Aliasing-Effekte zu vermeiden, können die Sendepulse im Stand der Technik nicht beliebig schnell hintereinander ausgesandt werden, da ansonsten keine klare Zuordnung der Reflektion möglich ist. Gleichzeitig kann die Laufzeit des Messpulses, das heißt die Zeit, die ein Messpuls braucht, bis er wieder den Sensor erreicht, nicht beschleunigt werden. Um also einen großen Distanzbereich abzutasten, muss nach dem Emittieren eines Messpulses die doppelte Laufzeit bis zum weitest entferntesten, möglichen Objekt gewartet werden, bis erneut ein Messpuls abgegeben werden kann.
  • Wird nunmehr die Energie auf mehrere Pulse verteilt und diese sehr nah aneinander ausgesandt, kann die tatsächliche Laufzeit dieser Sequenz an Messpulsen, insbesondere durch Auftreten mehrerer Nebenmaxima, beim Auswerten der empfangenen Signale, nicht eindeutig ermittelt werden. Dadurch beschränkt das Verteilen der erforderlichen Energie auf mehrere Messpulse im Stand der Technik die maximale Messreichweite.
  • Darstellung der Erfindung: Aufgabe, Lösung, Vorteile
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren sowie eine Vorrichtung zur Distanzmessung derart zu verbessern, dass Messpulse in Form einer Sequenz ausgesandt werden können, wobei jedoch keine Aliasing-Effekte auftreten oder diese minimiert werden und somit die Laufzeit der Sequenz eindeutig bestimmt werden kann. Gleichzeitig soll die ausgesandte Energie maximiert werden.
  • Gelöst wird die oben genannte Aufgabe durch ein Verfahren zur optischen Distanzmessung, das das Aussenden einer Vielzahl von Messpulsen, die Reflektion von ausgesandten Messpulsen an mindestens einem Objekt und das Empfangen von reflektierten Messpulsen umfasst. Es wird eine Sequenz von Messpulsen ausgesandt, wobei die Sequenz zeitliche Pulsabstände zwischen zeitlich aufeinanderfolgenden Messpulsen umfasst, und wobei jeder Messpuls der Sequenz eine zeitliche Pulsbreite von T(Puls) aufweist. Die Pulsabstände bilden eine erste Menge, wobei die erste Menge durch {T(delay)+i*T(Puls): i ist Element der natürlichen Zahlen zwischen 0 und j} definiert ist, wobei für alle Werte von i gilt: T(delay)+i*T(Puls) < (2T(delay)+2T(Puls)), wobei die erste Menge jeweils nur ein Element für alle Werte von i zwischen 0 und j umfasst und wobei T(delay) eine Pulsabstandsbasiseinheit definiert.
  • Bei einem von dem Objekt reflektierten Messpuls handelt es sich um einen Messpuls, der zuvor ausgesendet wurde, sodass sich durch die Reflektion an dem Objekt seine Ausbreitungsrichtung verändert hat. Man kann den reflektierten Messpuls somit als Echo des ausgesendeten Messpulses verstehen. Insbesondere wird mittels des Verfahrens die Laufzeit der Messpulse zu den Objekten, an denen diese reflektiert wurden, ermittelt und aus dieser mithilfe der Lichtgeschwindigkeit die von dem jeweiligen Messpuls zurückgelegte Distanz zu dem Objekt bestimmt.
  • Eine optische Distanzmessung zeichnet sich dadurch aus, dass unter Ausnutzung von optischen Signalen, hier optischen Messpulsen, Distanzen bestimmt werden. Unter dem Begriff "Distanz" ist eine Entfernung zu verstehen. Unter der vom Messpuls zurückgelegten Distanz ist die Strecke zwischen dem Sendeelement, das den Messpuls ausgesandt hat, und dem Objekt, das diesen reflektiert hat, plus der Strecke zwischen dem Objekt und dem Empfangselement, das den entsprechenden reflektierten Messpuls empfangen hat, zu verstehen. Insbesondere umfasst das Verfahren die Berücksichtigung der genauen Position des Sendeelementes und des Empfangselementes, insbesondere in Relation zueinander. Da es sich bei dem mindestens einen Objekt typischerweise um ein dreidimensionales Objekt handelt, sodass einige Bereiche des Objektes näher und andere Bereiche des Objektes weiter entfernt angeordnet sein können, ist mit dem Begriff "Distanz zu dem Objekt" die Entfernung zu zumindest einer Stelle des Objektes gemeint, und zwar der Stelle, auf die der Messpuls aufgetroffen und an der diese reflektiert wurde. Mit Laufzeit ist die Zeit zu verstehen, die der Messpuls für die zuvor beschriebene Distanz gebraucht hat. Das Verfahren dient bevorzugterweise zur Distanzmessung zur Anwendung in der fahrerlosen Navigation von Fahrzeugen.
  • Bei einem Messpuls handelt es sich insbesondere um ein elektromagnetisches, insbesondere um ein optisches Signal. Dieses Signal hat vorzugsweise eine Wellenlänge, die nicht aus dem für das menschliche Auge sichtbaren Bereich stammt. Vorzugsweise wird aus Sicherheitsgründen unsichtbares Infrarot verwendet. Da es sich beim Messpuls um ein elektromagnetisches Signal handelt und somit die Geschwindigkeit des Messpulses bekannt ist, kann aus der Laufzeit eines Messpulses mithilfe der Lichtgeschwindigkeit darauf geschlossen werden, welche Strecke der Messpuls zurückgelegt hat.
  • Mit dem Begriff "Sequenz" ist insbesondere eine zeitliche Abfolge von Messpulsen gemeint. Dabei ist die Sequenz insbesondere durch ein Muster, in anderen Worten Pattern, definiert, dass durch die Anzahl von Messpulsen, deren Pulsbreiten und den zeitlichen Pulsabständen zwischen den Messpulsen bestimmt ist.
  • Die Sequenz weist zeitliche Pulsabstände zwischen zeitlich aufeinanderfolgende Messpulse auf. Zeitlich aufeinanderfolgende Messpulse sind zeitlich benachbarte Messpulse. In anderen Worten sind dies Messpulse, die hintereinander ausgesandt wurden. Jeder Messpuls weist eine zeitliche Pulsbreite von T(Puls) auf. Insbesondere sind alle Messpulse der Sequenz auch in ihrer Form identisch ausgebildet.
  • Unter dem Begriff "Pulsabstand" ist insbesondere nicht ein Puls-zu-Puls Abstand, das heißt der Abstand zwischen dem einen Puls gemessen von dessen Mitte bis zur Mitte des anderen Pulses, zu verstehen. Stattdessen definiert der Pulsabstand hier den Abstand zwischen den sich gegenüberliegenden Enden der Pulse. In anderen Worten kann der zeitliche Pulsabstand ermittelt werden, in dem der Puls-zu-Puls Abstand gemessen von den Mitten genommen wird, wobei dann eine Pulsbreite von T(Puls) abgezogen wird. Dies berücksichtigt, dass die Pulsabstände vorliegend nicht von der Mitte, sondern vom Ende der Pulse, bestimmt werden.
  • Die Pulsabstände bilden eine erste Menge, die durch {T(delay)+i*T(Puls): i ist Element der natürlichen Zahlen zwischen 0 und j} definiert ist. i ist insbesondere als Laufindex zu verstehen. i nimmt Werte zwischen 0 und j an. Dabei gilt für alle Werte von i: T(delay)+i*T(Puls) < (2T(delay)+2T(Puls)). Insbesondere ist die Bedingung für alle Werte größer als j nicht erfüllt. j definiert somit den maximalen Pulsabstand, der T(delay) + j*T(Puls) entspricht.
  • Entscheidend ist, dass die erste Menge jeweils nur ein Element für alle Werte von i zwischen 0 und j umfasst. Dies bedeutet, dass trotz der geschweiften Schreibweise der ersten Menge Elemente der ersten Menge nur einmalig vorkommen können. Die erste Menge besteht somit abschließend aus jeweils nur einem Element für alle Werte von i zwischen 0 und j.
  • Insbesondere umfasst das Verfahren das Bestimmen der ersten Menge. Dabei stellt die Bedingung für alle Werte von i, und zwar dass T(delay)+i*T(Puls) < (2T(delay)+2T(Puls)) ist, eine Abbruchbedingung dar. Diese Bedingung definiert das größte Element der ersten Menge.
  • T(delay) ist als Pulsabstandsbasiseinheit zu verstehen, da der kleinste Pulsabstand genau T(delay) beträgt. Das Verfahren umfasst bevorzugterweise die Definition von T(delay). T(delay) kann als minimale Pause zwischen zwei Messpulsen, beispielsweise begrenzt durch die technischen Gegebenheiten einer Sendeeinheit zum Aussenden der Messpulse, definiert sein. T(delay) kann aber auch größer als die technisch bedingte minimale Pause zwischen zwei Messpulsen gewählt werden. Dies führt zu längeren Sequenzen, da die Abbruchbedingung später erreicht wird. Es kann somit bewusst T(delay) größer definiert werden als technisch notwendig, um längere Sequenzen mit mehr Messpulsen zu erzeugen.
  • Das Verfahren umfasst bevorzugterweise die Definition von T(Puls). T(Puls) kann insbesondere als minimale Pulsbreite definiert werden. Die minimale Pulsbreite ist technisch bedingt, da keine Sendeeinheit Pulse mit unendlicher kurzer Dauer erzeugen kann. T(Puls) kann aber auch größer als die technisch bedingte minimale Pulsbreite gewählt werden.
  • Insbesondere können T(delay) und T(Puls) derart definiert werden, dass T(delay)=T(Puls). In diesem Fall wird durch die oben genannte Abbruchbedingung bei j=2 erreicht. Die erste Menge besteht somit aus den folgenden Elemente: T(delay), T(delay) + T(Puls), T(delay) + 2*T(Puls). Die erste Menge umfasst somit drei Elemente, sodass die Sequenz insgesamt vier Messpulse umfasst, zwischen denen die Pulsabstände angeordnet sind. Dabei ist die Reihenfolge der Pulsabstände irrelevant.
  • Insbesondere entspricht T(delay) mindestens zweimal T(Puls), vorzugsweise mindestens fünfmal T(Puls), ferner bevorzugt mindestens zehnmal T(Puls), am meisten bevorzugt mindestens 16-mal T(Puls).
  • Insbesondere vorteilhaft ist es, wenn durch die Definition von T(delay) die Länge der Sequenz derart stark verlängert wird, dass insgesamt weniger Energie als typischerweise notwendig (das heißt bei einem normalen Scan mit einem Abwarten zwischen den Pulsen der doppelten maximalen Laufzeit) notwendig wäre.
  • Insbesondere umfasst die erste Mange j+1 Pulsabstände und die Sequenz j+2 Messpulse. Die Anzahl der Messpulse innerhalb der Sequenz ist somit ebenfalls durch die Abbruchbedingung definiert, die j bestimmt.
  • Insbesondere umfasst das Verfahren das Aussenden eines ersten Messpulses. Im Anschluss wird ein Element aus der ersten Menge, d.h. ein Pulsabstand, gewählt. Es wird dieser gewählte Pulsabstand abgewartet, bis ein weiterer Messpuls ausgesandt wird. Im Anschluss wird ein weiteres, aber anderes Element, aus der ersten Menge gewählt, dessen Zeitdauer erneut abgewartet wird. Im Anschluss wird wieder ein Messpuls ausgesandt. Dies wird fortgeführt, bis jedes Element der ersten Menge einmalig gewählt wurde. Im Anschluss wird ein letzter Messpuls ausgesandt und somit insgesamt die Sequenz ausgesandt.
  • Insbesondere handelt es sich bei dem Verfahren um ein Time-of-Flight Verfahren, insbesondere um ein Time Correlated Single Photon Counting Verfahren (TCSPC-Verfahren).
  • Ein Vorteil am erfindungsgemäßen Verfahren liegt darin, dass bei der Auswertung die Laufzeit der Sequenz eindeutig bestimmt werden kann. Ferner kann eine Vergrößerung der Reichweite erreicht werden.
  • Die maximale Reichweite ist im Stand der Technik durch die doppelte Laufzeit definiert, die ein Messpuls brauchen würde, um von einem maximal entfernten Objekt reflektiert wieder zurück zu einer Vorrichtung zur Durchführung des Verfahrens zu brauchen. Vorliegend werden jedoch trotz des Aussendens einer Vielzahl von Messpulsen in einer kürzeren Zeitspanne als die zuvor genannte doppelte maximale Laufzeit keine Aliasing Effekte auftreten und die Energie auf mehrere Messpulse aufgeteilt. Die ausgesandte Energieleistung und somit auch die Reichweite kann maximiert werden. Ferner kann auch in großer Weite ein kleiner Distanzbereich abgetastet werden. Im Stand der Technik müsste nach dem Aussenden eines Messpulses die doppelte Laufzeit bis zur maximalen Reichweite gewartet werden, bis ein weiterer Messpuls ausgesandt werden könnte um Aliasing-Effekte zu verhindern. Dies ist besonders hinderlich, wenn nur ein kleiner Bereich in großer Entfernung vermessen werden soll, da die Messung des kleinen Bereichs durch die große Entfernung zur Vorrichtung unverhältnismäßig lange dauert. Mit dem vorliegenden Verfahren müsste die Wartezeit zwischen dem Aussenden benachbarter Messpulse nur das Doppelte der Länge des abgetasteten Distanzbereiches entsprechen. Wie weit dieser Distanzbereich vom Sensor entfernt ist, spielt dabei keine Rolle.
  • Insbesondere wird die Sequenz derart ausgesandt, dass jeder Pulsabstand größer ist als der vorherige Pulsabstand. Dies trifft natürlich nicht auf den ersten Pulsabstand zu, da ein Vergleich mit einem vorherigen Pulsabstand der gleichen Sequenz nicht möglich ist. In anderen Worten nimmt der Pulsabstand der Sequenz mit zunehmender Sequenz zu. Dies bedeutet, dass die Pulsabstände zeitlich derart angeordnet sind, dass zuerst der kleinste Pulsabstand abgewartet wird und sich die Pulsabstände dann kontinuierlich vergrößern bis zum größten Pulsabstand, der T(delay) + j*T(Puls) entspricht.
  • Alternativ kann die Sequenz derart ausgesandt werden, dass jeder Pulsabstand kleiner ist als der vorherige Pulsabstand. Dies trifft wieder auf alle Pulsabstände bis auf den ersten Pulsabstand zu, da ein Vergleich mit einem vorherigen Pulsabstand der gleichen Sequenz nicht möglich ist. Der Pulsabstand nimmt somit mit zunehmender Sequenz ab. Die Sequenz wird in anderen Worten derart ausgesandt, dass sich die Pulsabstände nach dem Aussenden jedes Messpulses verkleinern bis der minimale Pulsabstand, T(delay), erreicht ist.
  • Insbesondere umfasst das Verfahren das Aussenden einer Vielzahl von Sequenzen. Diese Vielzahl von Sequenzen stellt bevorzugterweise eine Folge von Sequenzen dar. Insbesondere sind alle Sequenzen identisch ausgebildet, und zwar bevorzugterweise wie oben beschrieben.
  • Das Aussenden und Empfangen einer Sequenz definiert vorzugsweise einen Messdurchlauf. Das Verfahren umfasst bevorzugterweise die Integration der durchgeführten Messdurchläufe. Durch die Integration mehrerer Messdurchläufe kann die Qualität der Messung verbessert werden.
  • Insbesondere können zwischen mehreren ausgesandten Sequenzen zeitliche Sequenzabstände liegen, und zwar zwischen zeitlich aufeinanderfolgenden Sequenzen, das heißt zeitlich benachbarten Sequenzen. Jede Sequenz weist vorzugsweise eine zeitliche Länge von T(Sequenz) auf, wobei die Sequenzabstände eine zweite Menge bilden, wobei die zweite Menge durch {T(delay2)+i*T(Sequenz): i ist Element der natürlichen Zahlen zwischen 0 und k} definiert ist, wobei für alle Werte von i gilt: T(delay2)+i*T(Sequenz) < (2T(delay2)+2T(Sequenz)), und wobei die zweite Menge jeweils nur ein Element für alle Werte von i zwischen 0 und k umfasst. Die zweite Menge besteht vorzugsweise abschließend aus jeweils einem Element für alle Werte von i zwischen 0 und k. T(delay2) ist als Sequenzabstandsbasiseinheit zu verstehen. T(delay2) definiert insbesondere den minimalen Abstand zwischen zwei zeitlich aufeinanderfolgenden Sequenzen.
  • Die Sequenzabstände werden vorteilhafterweise analog zu den Pulsabständen nicht zwischen den Mitten zweier benachbarter Sequenzen bestimmt, sondern zwischen zwei gegenüberliegenden Enden der benachbarten Sequenzen.
  • Das Verfahren umfasst insbesondere das Auswerten der empfangenen Messpulse, wobei das Auswerten die Anwendung eines Optimalfilters umfasst, und wobei es sich bei dem Optimalfilter um einen angepassten Optimalfilter handelt.
  • In anderen Worten ist der Optimalfilter an die Sequenz angepasst. Ein solcher Filter wird auch Matching-Filter oder Korrelationsfilter genannt. Insbesondere ist der Optimalfilter derart angepasst, dass der Optimalfilter das zeitlich gespiegelte Muster der Sequenz umfasst.
  • In anderen Worten ist die Sequenz durch ein Muster definiert, wobei der Optimalfilter, beziehungsweise dessen Impulsantwort, durch das zeitlich gespiegelte Muster definiert ist. Mathematisch gesehen wird die Sequenz durch eine Nutzsignalfunktion beschrieben. Die Aufgabe des Optimalfilters besteht darin, in dem empfangenen Signal die Nutzsignalfunktion, d.h. die Sequenz, zu finden. Das empfangene Signal wird dem Optimalfilter zugeführt, der optimal an die Sequenz angepasst ist. Durch diese Anpassung ist es möglich, dass der Optimalfilter die bekannte Sequenz, also die bekannte Nutzsignalfunktion, innerhalb des empfangenen Signals findet. Daraus kann auf die Laufzeit der Sequenz und somit auf die Position des Objektes, an dem diese reflektiert wurde, rückgeschlossen werden. Insbesondere dient der Optimalfilter zur optimalen Bestimmung der zeitlichen Lage der Sequenz innerhalb des Empfangssignals.
  • Durch die Anwendung eines oben beschriebenen Optimalfilters wird erreicht, dass als Output, das heißt als Ergebnis am Ausgang des Optimalfilters, als Autokorrelation eine Antwort resultiert, die bis auf die korrekte Position der Sequenz, minimale Nebenmaxima aufweist. In anderen Worten weist der Output des Optimalfilters nur ein Hauptmaximum auf, das vorzugsweise eine (j+2)-fache Stärke, wobei j+2 die Anzahl der Messpulse in der Sequenz darstellt. Alle anderen weiteren Maxima des Outputs sind lediglich einfach, das heißt sie weisen eine einfache Stärke auf. Dadurch kann vermieden werden, dass die zeitliche Position der Sequenz im empfangenen Signal falsch detektiert wird.
  • Die Reihenfolge der Pulsabstände der ersten Meng innerhalb der Sequenz kann beliebig gewählt werden, denn bei der Auswertung wird keine vollständige Überlagerung der Sequenz mit einem Optimalfilter erreicht, der nicht optimal an die Sequenz angepasst ist. Dies kann zur Unterdrückung von Übersprechen von benachbarten Sensor-Pixeln einer Empfangseinheit verwendet werden.
  • Werden eine Vielzahl von Sequenzen, d.h. eine Folge von Sequenzen, ausgesandt, kann der Optimalfilter bevorzugterweise analog auf das Muster dieser Folge von Sequenzen abgestimmt sein.
  • In einem weiteren Aspekt betrifft die Erfindung eine Vorrichtung zur Durchführung des oben beschriebenen Verfahrens. Die Vorrichtung ist somit zur Durchführung eines erfindungsgemäßen Verfahrens ausgebildet.
  • Insbesondere umfasst die Vorrichtung eine Sendeeinheit und eine Empfangseinheit. Insbesondere umfasst die Sendeeinheit Sendeelemente und Empfangseinheit Empfangselemente, insbesondere Sensorpixel. Die Sendeelemente und Empfangselemente sind vorzugsweise an einer Sendematrix beziehungsweise einer Empfangsmatrix zusammengefasst. Eine Matrix kann insbesondere als dreidimensionaler, insbesondere plattenförmiger, Körper verstanden werden, auf dessen einen Oberfläche die entsprechenden Elemente angeordnet sind.
  • Insbesondere handelt es sich bei der Vorrichtung um eine Scanvorrichtung, bevorzugterweise einen LIDAR-Sensor. Vorzugsweise handelt es sich bei den Sendeelementen jeweils um einen Laser, während die Empfangselemente insbesondere jeweils von einer Diode, insbesondere von einer Einzelphotonen Avalanche-Diode, gebildet sind.
  • Ferner bevorzugt umfasst die Vorrichtung mindestens eine Auswerteeinheit, die vorzugsweise dazu ausgebildet ist, als Time-to-Digital Converter zu agieren. Die Auswerteeinheit ist insbesondere dazu ausgebildet, die empfangenen Messpulse auszuwerten, insbesondere durch Anwendung eines Optimalfilters. Die Auswerteeinheit ist ferner dazu ausgebildet, die Laufzeit der Sequenz zu ermitteln. Ferner bevorzugt kann die Vorrichtung eine Steuereinheit umfassen, die dazu ausgebildet ist, die Sendeeinheit und/oder die Empfangseinheit und/oder die Auswerteeinheit zur Durchführung des Verfahrens entsprechend zu steuern. Die Steuereinheit umfasst vorzugsweise eine anwendungsspezifische integrierte Schaltung (ASIC) oder einen Field Programmable Gate Array (FPGA).
  • Ferner bezieht sich die vorliegende Erfindung auf ein Computerprogrammprodukt, das ein computerlesbares Speichermedium umfasst, auf dem ein Programm gespeichert ist, das es einem Computer ermöglicht, nachdem es in den Speicher des Computers geladen worden ist, ein oben beschriebenes Verfahren, gegebenenfalls im Zusammenspiel mit einer oben beschriebenen Vorrichtung, durchzuführen. Weiterhin betrifft die Erfindung ein computerlesbares Speichermedium, auf dem ein Programm gespeichert ist, das es einem Computer ermöglicht, nachdem es in den Speicher des Computers geladen worden ist, ein oben beschriebenes Verfahren, gegebenenfalls im Zusammenspiel mit einer oben beschriebenen Vorrichtung, durchzuführen.
  • Kurze Beschreibung der Zeichnungen
  • Es zeigen schematisch:
  • Figur 1
    ein Verfahrensschema eines erfindungsgemäßen Verfahrens;
    Figur 2
    eine Sequenz, die mit einem erfindungsgemäßen Verfahren ausgesandt werden kann;
    Figur 3
    eine weitere Sequenz, die durch dieselbe erste Menge wie die Sequenz aus Figur 2 definiert ist;
    Figur 4
    eine weitere Sequenz, die durch dieselbe erste Menge wie die Sequenzen aus den Figuren 2 und 3 definiert ist;
    Figur 5
    eine Vielzahl von Sequenzen, die nach dem erfindungsgemäßen Verfahren ausgesandt werden können; und
    Figur 6
    der zeitliche Ablauf eines "Matching" mit einem Optimalfilter gezeigt.
    Bevorzugte Ausführungsformen der Erfindung
  • In Figur 1 ist ein Verfahrensdiagramm eines erfindungsgemäßen Verfahrens (100) dargestellt.
  • Das Verfahren (100) umfasst das Aussenden (101) einer Vielzahl von Messpulsen (22), die Reflektion (102) von ausgesandten Messpulsen an mindestens einem Objekt sowie das Empfangen (103) von reflektierten Messpulsen. Erfindungsgemäß wird eine Sequenz (20) von Messpulsen (22) ausgesandt (105), wobei die Pulsabstände (24) der Sequenz (20) durch eine erste Menge definiert sind.
  • Vor dem Aussenden (105) der Sequenz (20) wird die erste Menge von Pulsabständen (24) bestimmt (104). Diese umfasst insbesondere die Definition der zeitlichen Pulsbreite (23) der auszusendenden Messpulse, d.h. T(Puls). Ferner bevorzugt wird die Pulsabstandsbasiseinheit T(Delay) definiert.
  • Die erste Menge ist definiert durch {T(delay)+i*T(Puls): i ist Element der natürlichen Zahlen zwischen 0 und j} definiert ist, wobei für alle Werte von i gilt: T(delay)+i*T(Puls) < (2T(delay)+2T(Puls)), und wobei die erste Menge jeweils nur ein Element für alle Werte von i zwischen 0 und j umfasst. Nach Definition von T(Delay) und T(Puls) kann die erste Menge abschließend eindeutig bestimmt werden.
  • Die Sequenz (20) wird insbesondere derart ausgesandt (105), dass zuerst ein erster Messpuls (22a) ausgesandt wird (105a). Im Anschluss wird ein Pulsabstand (24) aus der ersten Menge von Pulsabständen abgewartet (105b). Es wird somit aus der ersten Menge von Pulsabständen ein Element ausgewählt und die entsprechende Zeitspanne des Pulsabstandes (24) abgewartet. Dies entspricht dem ersten Pulsabstand (24a) der Sequenz (20).
  • Im Anschluss wird ein weiterer Messpuls ausgesandt (105c), woraufhin erneut eines anderen Pulsabstand aus der ersten Menge abgewartet wird (105d). Hierzu wird ein Element aus der ersten Menge ausgewählt, das zuvor noch nicht ausgewählt wurde, und dessen Zeitspanne abgewartet. Anschließend wird ein weiterer Messpuls ausgesandt (105e), wonach erneut ein weiterer bisher noch nicht ausgewählter Pulsabstand (24) aus der ersten Menge ausgewählt werden kann. Dies geschieht so lange, bis jeweils einmal jedes Element aus der ersten Menge ausgewählt wurde. Im Anschluss erfolgt das Aussenden eines letzten Messpulses.
  • Vorzugsweise kann eine Vielzahl von Sequenzen (20) ausgesandt werden (106). Dabei können insbesondere Sequenzabstände (26) zwischen dem Aussenden von Sequenzen (20) abgewartet werden, die durch eine oben beschriebene zweite Menge definiert sind. Das Aussenden (106) einer Vielzahl von Sequenzen (20) kann daher zuvor das Bestimmen der zweiten Menge umfassen. Das Aussenden der Sequenzen (20) und das Abwarten der Sequenzabstände (26) bzw. das Auswählen eines Sequenzabstandes (26) aus der zweiten Menge erfolgt insbesondere analog zu dem oben Beschriebenen zur ersten Menge.
  • Die empfangenen Messpulse werden vorzugsweise ausgewertet (107), wobei die Auswertung bevorzugterweise die Anwendung (108) eines Optimalfilters (31) umfasst. Im Rahmen der Auswertung wird die Laufzeit der Sequenz (20) bestimmt (109) und somit die Distanz zum Objekt, an dem die Sequenz (20) reflektiert wurde, bestimmt (110).
  • Figur 2 zeigt eine Sequenz (20), die mit einem erfindungsgemäßen Verfahren (100) ausgesandt werden kann.
  • Die Sequenz (20) hat eine Länge (21). Die Sequenz (20) ist auf einer Zeitskala (29) dargestellt. Die Abbruchbedingung ist hier bei j=2 erreicht. Die erste Menge besteht und zwar abschließend aus den folgenden Elementen: eine Pulsabstandsbasiseinheit, eine Pulsabstandsbasiseinheiten plus einer Pulsbreite, eine Pulsabstandsbasiseinheiten plus zwei Pulsbreiten, wobei jedes vorgenannte Element nur einmalig in der ersten Menge enthalten ist.
  • Die Sequenz (20) umfasst vier Messpulse (22), und zwar einen ersten Messpuls (22a), einen zweiten Messpuls (22b), einen dritten Messpuls (22c) und einen vierten Messpuls (22d). Alle Messpulse weisen T(Puls) als Pulsbreite (23) auf. In anderen Worten weisen alle Messpulse dieselbe Pulsbreite (23) auf.
  • Als erstes wird der erste Messpuls (22a) ausgesandt (104a). Im Anschluss wird ein Pulsabstand (24) aus der ersten Menge von Pulsabständen (24), und zwar der erste Pulsabstand (24a), abgewartet, bis ein zweiter Messpuls (22b) ausgesandt wird. Der erste Pulsabstand (24a) beträgt eine Pulsabstandsbasiseinheit (25) T(delay) plus zwei Pulsbreiten (23) T(Puls).
  • Nach dem Aussenden des zweiten Messpulses (22b) wird erneut ein Pulsabstand (24), und zwar ein zweiter Pulsabstand (24b), aus der ersten Menge abgewartet. Der zweite Pulsabstand (24b) beträgt eine Pulsabstandsbasiseinheiten (25) T(delay) plus eine Pulsbreite (23) T(Puls). Anschließend wird ein dritter Messpuls (22c) ausgesandt, wonach ein weiterer Pulsabstand (24), und zwar der dritte Pulsabstand (24c), der eine Pulsabstandsbasiseinheit (25) beträgt, abgewartet. Zuletzt wird ein letzter Messpuls (22), und zwar der vierte Messpuls (22d), ausgesandt.
  • Die Länge des Signales (21) beträgt somit vier Pulsbreiten (23) und sechs Pulsabstandsbasiseinheiten (25).
  • Die Messpulse (22) sind derart ausgesandt, dass ausgehend vom größten Pulsabstand der ersten Menge jeder Pulsabstand kleiner ist als der vorherige. Die Pulsabstände (24) nehmen somit in ihrer Länge mit zunehmender Sequenz ab.
  • Figur 3 zeigt eine weitere Sequenz (20), die durch dieselbe erste Menge wie die Sequenz aus Figur 2 definiert ist.
  • Die Pulsabstände (24), und zwar der erste Pulsabstand (24a), der zweite Pulsabstand (24b) und der dritte Pulsabstand (24c), stammen aus der ersten Menge. Dabei folgt allerdings nun, im Gegensatz zur Figur 2, zeitlich als erster Pulsabstand (24a) der kleinste Pulsabstand (24) der ersten Menge, im Anschluss als zweiter Pulsabstand (24b) der zweitkleinste Pulsabstand der ersten Menge, und als letzter, dritte Pulsabstand (24c) der längste Pulsabstand. In anderen Worten, sind die Pulsabstände (24) zeitlich gespiegelt im Vergleich zu der Sequenz (20) der Figur 2 angeordnet. Die Pulsabstände (24) nehmen so mit fortschreitender Sequenz zu, bis der maximale Pulsabstand (24), hier der dritte Pulsabstand (24c), erreicht ist.
  • In Figur 4 ist eine weitere Sequenz (20), die durch die erste Menge wie die Sequenzen (20) der Figuren 2 und 3 definiert ist, gezeigt.
  • Im Vergleich zu den Sequenzen (20) der Figuren 2 und 3 erfolgt zeitlich, als erster Pulsabstand (24a), der längste Pulsabstand (24) der ersten Menge, woraufhin im Anschluss, nach dem Aussenden eines zweiten Messpulses (22b) als zweiter Pulsabstand (24b) das kleinste Element der ersten Menge folgt. Als letztes wird ein Pulsabstand (24) als dritter Pulsabstand (24c) abgewartet, der eine Pulsabstandsbasiseinheit (25) und eine Pulsbreite (23) entspricht.
  • In Figur 5 ist eine Vielzahl von Sequenzen (20) gezeigt, die nach dem erfindungsgemäßen Verfahren (100) ausgesandt werden können. Die Vielzahl von Sequenzen (20) sind auf einer Zeitskala (29) dargestellt, die aus Platzgründen unterbrochen ist.
  • Dabei werden vier Sequenzen (20) ausgesandt, eine erste Sequenz (20a), eine zweite Sequenz (20b), eine dritte Sequenz (20c) und eine vierte Sequenz (20d), die alle identisch zueinander ausgebildet sind. Jede Sequenz (20) ist ausgebildet wie die in Figur 2 dargestellt.
  • Zwischen den Sequenzen (20) sind Sequenzabstände (26) angeordnet, und zwar ein erster Sequenzabstand (26a) zwischen der ersten Sequenz (20a) und der zweiten Sequenz (20b), ein zweiter Sequenzabstand (26b) zwischen der zweiten Sequenz (20b) und der dritten Sequenz (20c), sowie ein dritter Sequenzabstand (26c) zwischen der dritten Sequenz (20c) und der vierten Sequenz (20d).
  • Dabei bilden die Sequenzabstände (26) eine zweite Menge, die durch folgende Elemente gegeben ist: eine Sequenzabstandsbasiseinheit (27), eine Sequenzabstandsbasiseinheit (27) plus eine Sequenzlänge (21), eine Sequenzabstandsbasiseinheit (27) plus zwei Sequenzlängen (21). Hier entspricht die Sequenzlänge (21) vorzugsweise der Sequenzabstandsbasiseinheit (27).
  • In Figur 6 ist der zeitliche Ablauf eines "Matching" eines empfangenen Signals mit einem Optimalfilter (30) gezeigt.
  • Die Sequenz (20), die ausgesandt wurde und in dem empfangenen Signal enthalten ist, ist analog zur Sequenz der Figur 2 ausgebildet.
  • Entlang einer Zeitskala (29) ist dargestellt, wie ein Optimalfilter (30), in anderen Worten ein Matching-Filter, über das empfangene Signal läuft. Neben der Zeitskala (29) ist der Zeitoffset (31) des Optimalfilters (30) gezeigt. Der Optimalfilter (30) ist derart ausgebildet, dass er ein Muster aufweist, das zum Muster der Sequenz (20) zeitgespiegelt ist. Dies ist daran zu erkennen, dass die in der Figur 6 dargestellten Einsen in Zeitverlaufsrichtung zuerst einen Abstand zueinander aufweisen, der dem dritten Pulsabstand der Sequenz entspricht, dann einen Abstand, der dem zweiten Pulsabstand entspricht, und dann einem Abstand, der dem ersten Pulsabstand entspricht. Zwischen den Einsen sind nicht dargestellte Nullen angeordnet. Der Optimalfilter (30) mit zeitgespiegeltem Muster wird sukzessiv, das heißt absteigend nach unten entlang der Zeitskala (29), über das empfangene Signal umfassend die Sequenz (20) korreliert.
  • Sobald der Optimalfilter (30) auf einen Messpuls (22) trifft, wird ein Match (33) registriert. Ansonsten ist kein Match (34) das Resultat. Matches (33) sind in der Figur 6 derart dargestellt, dass die entsprechende Eins umkreist ist.
  • In der rechten Spalte ist der Output (32) des Optimalfilters (30) dargestellt. Der Output (32) zu einer bestimmten Zeit ist eine Summe der Matches (33) in der entsprechenden Zeile. Beispielsweise ist in der ersten Zeile (bei T=-9) nur ein Match (33) festgestellt worden. Gleiches gilt für die dritte Zeile und die fünfte Zeile. Nur zur Zeit T=0 hat der Output (32) ein Ergebnis von 4, das heißt vier Matches (33) wurden zur gleichen Zeit erkannt. Bis auf dieses Hauptmaximum von 4 beim Zeitpunkt T=0 weist der Output kein weiteres Maximum aufweist, sondern lediglich von dem Hauptmaximum leicht zu unterscheidende Nebenmaxima, die nur 1 betragen.
  • Mit Hilfe des Optimalfilters (30) kann somit eindeutig festgestellt werden, dass die Sequenz (20) zur Zeit T=0 empfangen wurde. Dadurch, dass eindeutig der Empfangszeitpunkt und somit die Laufzeit der Sequenz (20) festgestellt werden kann, kann eindeutig auf die Distanz zu einem Objekt, an dem die Sequenz (20) reflektiert wurde, geschlossen werden.
  • Bezugszeichenliste
  • 100
    Verfahren
    101
    Aussenden einer Vielzahl von Messpulsen
    102
    Reflektion von ausgesandten Messpulsen an mindestens einem Objekt
    103
    Empfangen von reflektierten Messpulsen
    104
    Bestimmen einer ersten Menge von Pulsabständen
    105
    Aussenden einer Sequenz von Messpulsen
    105a
    Aussenden eines ersten Messpulses
    105b
    Abwarten eines Pulsabstandes aus der ersten Menge
    105c
    Aussenden eines weiteren Messpulses
    105d
    Abwarten eines anderen Pulsabstandes aus der ersten Menge
    105e
    Aussenden eines weiteren Messpulses
    106
    Aussenden von einer Vielzahl von Sequenzen
    107
    Auswerten der empfangenden Messpulse
    108
    Anwendung eines Optimalfilters
    109
    Bestimmen der Laufzeit der Sequenz
    110
    Bestimmen der Distanz zum Objekt
    20
    Sequenz
    20a
    erste Sequenz
    20b
    zweite Sequenz
    20c
    dritte Sequenz
    20d
    vierte Sequenz
    21
    Länge der Sequenz
    22
    Messpulse
    22a
    erster Messpuls
    22b
    zweiter Messpuls
    22c
    dritter Messpuls
    22d
    vierter Messpuls
    23
    Pulsbreite T(Puls)
    24
    Pulsabstände
    24a
    erster Pulsabstand
    24b
    zweiter Pulsabstand
    24c
    dritter Pulsabstand
    25
    Pulsabstandsbasiseinheit T(delay)
    26
    Sequenzabstand
    26a
    erster Sequenzabstand
    26b
    zweiter Sequenzabstand
    26c
    dritter Sequenzabstand
    27
    Sequenzabstandsbasiseinheit
    29
    Zeitskala
    30
    Optimalfilter
    31
    Zeitoffset des Optimalfilters
    32
    Output des Optimalfilters
    33
    Match
    34
    kein Match

Claims (14)

  1. Verfahren (100) zur optischen Distanzmessung,
    wobei das Verfahren (100) das Aussenden (101) einer Vielzahl von Messpulsen (22), die Reflektion (102) von ausgesandten Messpulsen (22) an mindestens einem Objekt und das Empfangen (103) von reflektierten Messpulsen (22) umfasst,
    wobei eine Sequenz (20) von Messpulsen (22) ausgesandt wird,
    wobei die Sequenz (20) zeitliche Pulsabstände (24) zwischen zeitlich aufeinanderfolgenden Messpulsen (22) umfasst,
    wobei jeder Messpuls (22) der Sequenz (20) eine zeitliche Pulsbreite (23) von T(Puls) aufweist,
    dadurch gekennzeichnet, dass
    die Pulsabstände (24) eine erste Menge bilden,
    wobei die erste Menge durch {T(delay)+i*T(Puls): i ist Element der natürlichen Zahlen zwischen 0 und j} definiert ist,
    wobei für alle Werte von i gilt: T(delay)+i*T(Puls) < (2T(delay)+2T(Puls)), wobei die erste Menge jeweils nur ein Element für alle Werte von i zwischen 0 und j umfasst, und wobei T(delay) eine Pulsabstandsbasiseinheit (25) definiert.
  2. Verfahren (100) nach Anspruch 1,
    dadurch gekennzeichnet, dass
    das Verfahren die Definition von T(delay) und/oder T(Puls) umfasst.
  3. Verfahren nach einem der Ansprüche 1 oder 2,
    dadurch gekennzeichnet, dass
    T(delay) ≥T(Puls) ist.
  4. Verfahren (100) nach einem der vorherigen Ansprüche,
    dadurch gekennzeichnet, dass
    T(delay) mindestens 2*T(Puls), vorzugsweise mindestens 5*T(Puls), ferner bevorzugt mindestens 10*T(Puls), am meisten bevorzugt mindestens 16*T(Puls), entspricht.
  5. Verfahren (100) nach einem der vorherigen Ansprüche,
    dadurch gekennzeichnet, dass
    das Verfahren das Bestimmen (104) der ersten Menge umfasst.
  6. Verfahren (100) nach einem der vorherigen Ansprüche,
    dadurch gekennzeichnet, dass
    die Sequenz (20) derart ausgesandt wird, dass jeder Pulsabstand (24) größer ist als der vorherige Pulsabstand (24).
  7. Verfahren (100) nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet, dass
    die Sequenz (20) derart ausgesandt wird, dass jeder Pulsabstand (24) kleiner ist als der vorherige Pulsabstand (24).
  8. Verfahren (100) nach einem der vorherigen Ansprüche,
    dadurch gekennzeichnet, dass
    das Verfahren (100) das Aussenden (106) einer Vielzahl von Sequenzen (20) umfasst.
  9. Verfahren (100) nach Anspruch 8,
    dadurch gekennzeichnet, dass
    zeitliche Sequenzabstände (26) zwischen zeitlich aufeinanderfolgenden Sequenzen (20) angeordnet sind,
    wobei jede Sequenz (20) eine zeitliche Länge (21) von T(Sequenz) aufweist, wobei die Sequenzabstände (26) eine zweite Menge bilden,
    wobei die zweite Menge durch {T(delay2)+i*T(Sequenz): i ist Element der natürlichen Zahlen zwischen 0 und k} definiert ist,
    wobei für alle Werte von i gilt: T(delay2)+i*T(Sequenz) < (2T(delay2)+2T(Sequenz)),
    wobei die zweite Menge jeweils nur ein Element für alle Werte von i zwischen 0 und k umfasst, und wobei T(delay2) eine Sequenzabstandsbasiseinheit (27) definiert.
  10. Verfahren (100) nach einem der vorherigen Ansprüche,
    dadurch gekennzeichnet, dass
    das Verfahren (100) das Auswerten (107) der empfangenden Messpulse (22) umfasst,
    wobei das Auswerten (107) die Anwendung (108) eines Optimalfilters (30) umfasst, und
    wobei es sich bei dem Optimalfilter (30) um einen angepassten Optimalfilter handelt.
  11. Verfahren nach Anspruch 10,
    dadurch gekennzeichnet, dass
    die Sequenz (20) ein Muster umfasst,
    wobei der Optimalfilter (30) derart angepasst ist, dass der Optimalfilter (30) das zeitlich gespiegelte Muster umfasst.
  12. Vorrichtung zur optischen Distanzmessung,
    dadurch gekennzeichnet, dass
    die Vorrichtung dazu ausgebildet ein Verfahren (100) nach einem der Ansprüche 1 bis 11 durchzuführen.
  13. Computerprogrammprodukt, das ein computerlesbares Speichermedium umfasst, auf dem ein Programm gespeichert ist, das es einem Computer ermöglicht, nachdem es in den Speicher des Computers geladen worden ist, ein Verfahren (100) gemäß einem der Ansprüche 1 bis 11, gegebenenfalls im Zusammenspiel mit einer Vorrichtung gemäß Anspruch 12, durchzuführen.
  14. Computerlesbares Speichermedium, auf dem ein Programm gespeichert ist, das es einem Computer ermöglicht, nachdem es in den Speicher des Computers geladen worden ist, ein Verfahren gemäß einem der Ansprüche 1 bis 11, gegebenenfalls im Zusammenspiel mit einer Vorrichtung gemäß Anspruch 12, durchzuführen.
EP18190429.3A 2018-08-23 2018-08-23 Verfahren und vorrichtung zur optischen distanzmessung Active EP3614175B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18190429.3A EP3614175B1 (de) 2018-08-23 2018-08-23 Verfahren und vorrichtung zur optischen distanzmessung
IL268695A IL268695B2 (en) 2018-08-23 2019-08-14 Method and device for measuring optical distance
CA3052003A CA3052003C (en) 2018-08-23 2019-08-14 Method and device for optical distance measurement
US16/548,156 US11506761B2 (en) 2018-08-23 2019-08-22 Method and device for optical distance measurement
CN201910785782.7A CN110895337B (zh) 2018-08-23 2019-08-23 用于光学距离测量的方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18190429.3A EP3614175B1 (de) 2018-08-23 2018-08-23 Verfahren und vorrichtung zur optischen distanzmessung

Publications (2)

Publication Number Publication Date
EP3614175A1 true EP3614175A1 (de) 2020-02-26
EP3614175B1 EP3614175B1 (de) 2022-06-22

Family

ID=63371545

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18190429.3A Active EP3614175B1 (de) 2018-08-23 2018-08-23 Verfahren und vorrichtung zur optischen distanzmessung

Country Status (5)

Country Link
US (1) US11506761B2 (de)
EP (1) EP3614175B1 (de)
CN (1) CN110895337B (de)
CA (1) CA3052003C (de)
IL (1) IL268695B2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020120858A1 (de) 2020-08-07 2022-02-10 Wenglor sensoric elektronische Geräte GmbH Verfahren sowie Messvorrichtung zur Bestimmung einer Distanz
DE102020215000A1 (de) 2020-11-27 2022-06-02 Volkswagen Aktiengesellschaft Laserbasierte Erfassungseinrichtung, Kraftfahrzeug und Verfahren zum Betreiben einer laserbasierten Erfassungseinrichtung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2157445A2 (de) * 2008-08-19 2010-02-24 Rosemount Aerospace Inc. Lidar-System mit Pseudozufallsimpulsfolge
US20180188368A1 (en) * 2017-01-03 2018-07-05 Stmicroelectronics S.R.L. Method of detecting objects, corresponding system and apparatus
US20180188358A1 (en) * 2017-01-05 2018-07-05 Innovusion Ireland Limited METHOD AND SYSTEM FOR ENCODING AND DECODING LiDAR

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3219423C2 (de) * 1981-06-09 1986-04-30 MTC, Meßtechnik und Optoelektronik AG, Neuenburg/Neuchâtel Entfernungsmeßverfahren und Vorrichtung zu seiner Durchführung
EP2178220A1 (de) * 2008-10-20 2010-04-21 Universität Ulm Vorrichtung und Verfahren zur Impulsübertragung und -empfang einer Mehrwegausbreitung, verschiedenen Interfernzarten und niedrigem SNR
KR101525124B1 (ko) * 2009-12-22 2015-06-03 라이카 게오시스템스 아게 고정밀 거리 측정 장치
EP2589980A1 (de) * 2011-11-04 2013-05-08 Leica Geosystems AG Entfernungsmesser
EP2846173B1 (de) * 2013-09-09 2019-06-19 Trimble AB Mehrdeutigkeitsausgleich in der Flugzeitmessung
AT515214B1 (de) * 2013-12-16 2015-07-15 Riegl Laser Measurement Sys Verfahren zur Entfernungsmessung
DE102014117097B3 (de) * 2014-11-21 2016-01-21 Odos Imaging Ltd. Abstandsmessvorrichtung und Verfahren zum Bestimmen eines Abstands
DE102014117705B3 (de) * 2014-12-02 2016-02-18 Odos Imaging Ltd. Abstandsmessvorrichtung und Verfahren zum Bestimmen eines Abstands

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2157445A2 (de) * 2008-08-19 2010-02-24 Rosemount Aerospace Inc. Lidar-System mit Pseudozufallsimpulsfolge
US20180188368A1 (en) * 2017-01-03 2018-07-05 Stmicroelectronics S.R.L. Method of detecting objects, corresponding system and apparatus
US20180188358A1 (en) * 2017-01-05 2018-07-05 Innovusion Ireland Limited METHOD AND SYSTEM FOR ENCODING AND DECODING LiDAR

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020120858A1 (de) 2020-08-07 2022-02-10 Wenglor sensoric elektronische Geräte GmbH Verfahren sowie Messvorrichtung zur Bestimmung einer Distanz
DE102020215000A1 (de) 2020-11-27 2022-06-02 Volkswagen Aktiengesellschaft Laserbasierte Erfassungseinrichtung, Kraftfahrzeug und Verfahren zum Betreiben einer laserbasierten Erfassungseinrichtung
DE102020215000B4 (de) 2020-11-27 2022-10-27 Volkswagen Aktiengesellschaft Laserbasierte Erfassungseinrichtung, Kraftfahrzeug und Verfahren zum Betreiben einer laserbasierten Erfassungseinrichtung

Also Published As

Publication number Publication date
CA3052003A1 (en) 2020-02-23
CN110895337B (zh) 2023-06-30
EP3614175B1 (de) 2022-06-22
US20200064447A1 (en) 2020-02-27
CA3052003C (en) 2024-05-21
IL268695B1 (en) 2023-03-01
IL268695B2 (en) 2023-07-01
CN110895337A (zh) 2020-03-20
US11506761B2 (en) 2022-11-22
IL268695A (en) 2020-02-27

Similar Documents

Publication Publication Date Title
EP2889642B1 (de) Verfahren zur Entfernungsmessung
AT511310B1 (de) Verfahren zur entfernungsmessung
EP1423731B1 (de) Verfahren und vorrichtung zur aufnahme eines dreidimensionalen abstandsbildes
EP1522870B1 (de) Entfernungsmessung
EP0854368A2 (de) Lichttaster mit Lichtlaufzeit-Auswertung
EP3683599B1 (de) Verfahren und vorrichtung zur optischen abstandsmessung
EP3816656A1 (de) Verfahren und vorrichtung zur optischen distanzmessung
AT517300B1 (de) Verfahren zur Entfernungsmessung
DE3727837A1 (de) Verfahren und vorrichtung zur fehlerverminderung bei der messung raeumlicher bewegung von messpunkten mittels ultraschallsignalen
EP3614175B1 (de) Verfahren und vorrichtung zur optischen distanzmessung
EP0786097B1 (de) Verfahren und vorrichtung zur elektrooptischen entfernungsmessung
EP3267224B1 (de) Verfahren zur entfernungsmessung
EP0427969B1 (de) Impulslaufzeitmessanordnung
EP2962127B1 (de) Verfahren zur ermittlung eines abstands eines objekts zu einem kraftfahrzeug unter benutzung eines pmd-sensors
DE2133497C3 (de) Verfahren und Anordnung zur Korre lations Entfernungsmessung mittels einer pseudostochastischen Impulsfolge
EP3531166B1 (de) Verfahren und vorrichtung zur optischen distanzmessung
EP3599485B1 (de) Verfahren und vorrichtung zur optischen distanzmessung
DE3713956C2 (de)
AT505037B1 (de) Verfahren zur ermittlung der zeitlichen lage von impulsen
EP3141928A1 (de) Verfahren zum ermitteln einer lage eines objektes mittels akustischer sensoren
DE2802936A1 (de) Verfahren zur seismischen prospektion zur bestimmung der seitlichen neigung unterirdischer schichten und vorrichtung zur durchfuehrung des verfahrens
DE2801333A1 (de) Schaltungsanordnung zum empfang von echosignalen in einer echolotanlage
DE102017117357A1 (de) Verfahren zum Bestimmen eines räumlichen Abstands zwischen einem Ultraschallsensor und einem Hindernis
EP1602938B1 (de) Entfernungsmesser
DE2325361A1 (de) Verfahren zur exploration eines gebietes und seine anwendungen auf die seismische bodenforschung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211108

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220412

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018009962

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1500115

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220922

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220923

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221024

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221022

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018009962

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502018009962

Country of ref document: DE

Owner name: MICROVISION, INC., REDMOND, US

Free format text: FORMER OWNER: IBEO AUTOMOTIVE SYSTEMS GMBH, 22143 HAMBURG, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220823

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220831

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20230413 AND 20230419

26N No opposition filed

Effective date: 20230323

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230613

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230711

Year of fee payment: 6

Ref country code: GB

Payment date: 20230629

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230721

Year of fee payment: 6

Ref country code: DE

Payment date: 20230627

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622